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Abstract

The zero-divisor graph of a ring R is defined as the directed graph Γ (R) that its vertices are all non-zero
zero-divisors of R in which for any two distinct vertices x and y, x → y is an edge if and only if xy = 0.
Recently, it has been shown that for any finite ring R, Γ (R) has an even number of edges. Here we give a
simple proof for this result. In this paper we investigate some properties of zero-divisor graphs of matrix
rings and group rings. Among other results, we prove that for any two finite commutative rings R,S with
identity and n,m � 2, if Γ (Mn(R)) � Γ (Mm(S)), then n = m, |R| = |S|, and Γ (R) � Γ (S).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The study of algebraic structures, using the properties of graphs, becomes an exciting research
topic in the last twenty years, leading to many fascinating results and questions. There are many
papers on assigning a graph to a ring, see [1–4]. Throughout the paper, R denotes a ring, not
necessarily with identity; and D(R) denotes the set of all zero-divisors of R. If X is either an
element or a subset of R, then the left annihilator of X is Ann�(X) = {a ∈ R | aX = 0} and
the right annihilator of X, denoted by Annr (X), is similarly defined. For any subset Y of R, let
Y ∗ = Y\{0}. The zero-divisor graph of R, denoted by Γ (R), is a directed graph with the vertex
set D(R)∗ in which for every two vertices x and y, x → y is an edge if and only if x �= y and
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xy = 0. It is well-known that if R is not a domain, then R is a finite ring if and only if Γ (R) is
a finite graph [2, Remark 1]. Also, for a ring R, we define a simple undirected graph Γ (R) with
the vertex set D(R)∗ in which two vertices x and y are adjacent if and only if x �= y and either
xy = 0 or yx = 0.

In [15] it has been shown that for any ring R, every two vertices in Γ (R) are connected by
a path of length at most 3. Moreover, in [15] it is shown that for any ring R, if Γ (R) contains
a cycle, then the length of the shortest cycle in Γ (R), is at most 4. For other properties of zero-
divisor graphs, see [2,3].

For every directed graph Γ and any vertex a of Γ , the number of the edges of Γ of the form
x → a is called the in-degree of a. The out-degree of a is similarly defined. A directed graph Γ

is called Eulerian if for every vertex of Γ , the in-degree and the out-degree are the same. Two
directed graphs Γ1 and Γ2 are said to be isomorphic if there is a bijective map ϕ between the
vertex set of Γ1 and the vertex set of Γ2 such that for any two vertices x and y of Γ1, x → y is
an edge in Γ1 if and only if ϕ(x) → ϕ(y) is an edge in Γ2. Similarly, two undirected graphs G1

and G2 are said to be isomorphic if there is a bijective map ψ between the vertex set of G1 and
the vertex set of G2 such that the adjacency relation is preserved. For an undirected graph G,
the degree of a vertex v of G is the number of edges incident with v and denoted by deg(v).
Moreover, N(v) denotes the set of all vertices of G adjacent to the vertex v.

For any ring R, we denote Mn(R) and Mn×m(R) the ring of all n×n matrices over R and the
set of all n×m matrices over R, respectively. If R has identity, then for any i and j , 1 � i, j � n,
we denote by Eij that element of Mn(R) whose (i, j)-entry is 1 and whose other entries are 0.
The Jacobson radical of a ring R denoted by J (R). A ring R is called semi-simple if J (R) = {0}.
If e is an idempotent element of R; that is e2 = e, then by the Peirce Decomposition [12, (21.3)],
we can write R = eRe ⊕ eR(1 − e) ⊕ (1 − e)Re ⊕ (1 − e)R(1 − e). Notice that if R has no
identity, then eR(1 − e) denotes the subring {ex − exe | x ∈ R}; and similar definitions are used
for (1−e)Re and (1−e)R(1−e). We recall that the idempotent e is said to be trivial if e ∈ {0,1}.
Moreover, we say that a ring R is decomposable if R is isomorphic to a direct product of two
non-zero rings. A ring R is called local if R has identity and R/J (R) is a division ring. Also, R

is said to be nilpotent if Rn = {a1 · · ·an | a1, . . . , an ∈ R} = {0}, for some n � 1.

2. The zero-divisor graphs of general rings

We begin this section with the investigation of finite rings whose zero-divisor graphs are
Eulerian.

Proposition 1. If n � 2 and R1, . . . ,Rn are finite rings and R = R1 × · · · × Rn, then Γ (R) is an
Eulerian graph if and only if for i = 1, . . . , n, either Ri is a field or Γ (Ri) is an Eulerian graph.

Proof. Clearly, if S is a finite ring which is not a field, then Γ (S) is an Eulerian graph if and
only if |Ann�(s)| = |Annr (s)|, for each element s ∈ D(S). First suppose that for i = 1, . . . , n,
either Ri is a field or Γ (Ri) is an Eulerian graph. Let x = (x1, . . . , xn) be a vertex in Γ (R). If
Ri is not a field and xi is a vertex of Γ (Ri), then we have |Ann�(xi)| = |Annr (xi)|. Otherwise,
xi is either zero or a unit. Thus we obtain that |Ann�(xi)| = |Annr (xi)|, for i = 1, . . . , n. Hence

∣∣Ann�(x)
∣∣ = ∣∣Ann�(x1)

∣∣· · · ∣∣Ann�(xn)
∣∣ = ∣∣Annr (x1)

∣∣ · · · ∣∣Annr (xn)
∣∣ = ∣∣Annr (x)

∣∣.
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This implies that Γ (R) is Eulerian. For the other direction, assume that for a fixed index i,
Ri is not a field and let xi be an arbitrary vertex of Γ (Ri). Suppose that ωi is that element of R

whose ith component is xi and other components are zero. Since Γ (R) is Eulerian, |Ann�(ωi)| =
|Annr (ωi)|. This clearly yields that |Ann�(xi)| = |Annr (xi)| and so Γ (Ri) is an Eulerian graph.
Now, the result follows. �
Lemma A. (See [2, Lemma 14].) Let F be a finite field and n � 2. Suppose that a ∈ D(Mn(F ))∗
and ranka = k. Then the in-degree and the out-degree of a in Γ (Mn(F )) are |F |n(n−k) − ε, and
deg(a) = 2|F |n(n−k) − |F |(n−k)2 − ε in Γ (Mn(F )), where ε = 1, unless a2 = 0 and in this case
ε = 2.

Theorem 2. Let R be a finite semi-simple ring which is not a field. Then Γ (R) is an Eulerian
graph.

Proof. By Proposition 1 and the Wedderburn–Artin Theorem [12, (3.5)], we may assume that
R = Mn(F), for a finite field F and n � 2. By Lemma A, for any vertex a of Γ (R), |Ann�(a)| =
|Annr (a)|. This completes the proof. �
Theorem 3. Let K be a finite field and G be a finite group. Then Γ (KG) is an Eulerian graph.

Proof. Assume that α = ∑
g∈G αgg, β = ∑

g∈G βgg, and γ = ∑
g∈G γgg be three elements in

KG such that βα = αγ = 0. We have

∑
h∈G

( ∑
g∈G

βg−1αgh

)
h = 0 and

∑
h∈G

( ∑
g∈G

αhgγg−1

)
h = 0.

Therefore if we set G = {g1, . . . , gn}, then the above relations shows that the vectors (β
g−1

1
, . . . ,

β
g−1
n

) and (γ
g−1

1
, . . . , γ

g−1
n

) are contained in the right kernels of the matrices L = [αgj gi
]1�i, j�n

and R = [αgigj
]1�i, j�n

, respectively. Conversely, for any two vectors U and V in the right
kernels of L and R, respectively, we can easily construct two elements βU ∈ Ann�(α) and
γV ∈ Annr (α). Now, since R is the transpose of L ,

dimK Ann�(α) = nullityL = nullityR = dimK Annr (α).

This yields that |Ann�(α)| = |Annr (α)| and so the theorem is proved. �
Remark 4. Suppose that R is a left Artinian ring. A well-known theorem due to Brauer states
that every left ideal of R either is nilpotent or it contains a non-zero idempotent element [6,
Theorem 13-1]. Hence R has no non-trivial idempotent if and only if R is either a nilpotent ring
or a local ring. We will use of this fact frequently.

In the next theorem, we characterize all zero-divisor graphs whose out-degrees of all vertices
are the same.

Theorem 5. Let R be a finite ring. If all vertices of Γ (R) have the same out-degrees, then either
D(R)2 = {0} or there exists a finite field F such that R � F × F .
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Proof. If there is a vertex v in Γ (R) such that for any vertex x �= v, v → x is an edge in Γ (R),
then Γ (R) is a complete graph and so by [2, Theorem 5], we are done. So we may assume that
R is neither a nilpotent ring nor a local ring. Thus by Remark 4, R has a non-trivial idempotent,
say e, and therefore R = eRe ⊕ eR(1 − e) ⊕ (1 − e)Re ⊕ (1 − e)R(1 − e).

First we show that eRe is a field. It is enough to show that eRe is a domain. Assume that there
exist two elements x, y ∈ eRe∗ such that xy = 0. We have Annr (e) ⊆ Annr (x), so noting the out-
degrees of e and x are the same and ey �= 0, we find y = x and Annr (x) = Annr (e) ∪ {x}. Since
Annr (e) and Annr (x) are two additive subgroups of R and |Annr (x)\Annr (e)| = 1, we conclude
that Annr (e) = {0}. This implies that the out-degree of any vertex of Γ (R) is zero. Since Γ (R)

is a connected graph [15, Theorem 3.2] and Γ (R) has at least two vertices e and x, we get a
contradiction. Thus D(eRe) = {0} and so eRe is a field. Next, we show that (1 − e)Re = {0}.
Consider an element a ∈ (1−e)Re∗. Since the out-degrees of e and a are the same and as well as
{a} ⊆ Annr (e) ⊆ Annr (a), both sets Annr (e) and Annr (a) are two non-trivial additive subgroups
of R with |Annr (a) \ Annr (e)| = 1, which is impossible.

Now, for simplification, let S = (1−e)R(1−e) and T = eRe⊕eR(1−e). Suppose that there
exist two elements s1, s2 ∈ S∗ such that s2

1 = 0 and s2
2 �= 0. It is easily checked that the out-degree

of s1 is |T ||Annr (s1) ∩ S| − 2 and the out-degree of s2 is |T ||Annr (s2) ∩ S| − 1. The equality of
these numbers shows that |T |(|Annr (s1) ∩ S| − |Annr (s2) ∩ S|) = 1. This is a contradiction and
so either S is a nilpotent ring or a reduced ring. In the first case, since S is finite, there exists at
least one element c ∈ S∗ ∩ Annr (S). The equality R = T ⊕ S follows that for each vertex v �= c

in Γ (R), there exists an edge from c to v, a contradiction. Hence S is a finite reduced ring and
so has identity, say g. Suppose that (e + g)z = 0, for some z ∈ R. Then multiplying on the left
by e yields ez = 0. This shows that Annr (e + g) ⊆ Annr (e). Since g ∈ Annr (e) \ Annr (e + g),
e + g cannot be a vertex of Γ (R). Thus e + g is an idempotent in R \ D(R) and so 1 = e + g is
the identity of R. Hence 1 − e ∈ R. So, if we apply the method used in the previous paragraph
for g instead of e, then we conclude that S is a field and eR(1 − e) = {0}. Hence T = eRe is a
field and therefore the equality R = T ⊕ S completes the proof. �

Note that if we replace the out-degrees by the in-degrees in Theorem 5, by considering Rop

instead of R, then the assertion is still valid. The following theorem has been established in [3]
for commutative rings with identity. We want to generalize this result for any arbitrary ring.

Theorem 6. Let R be a finite ring. If all vertices of Γ (R) have the same degrees, then either
D(R)2 = {0} or there exists a finite field F such that R � F × F .

Proof. If there exists a vertex v in Γ (R) adjacent to all other vertices of the graph, then Γ (R)

is a complete graph and so by [2, Theorem 5], we are done. So assume that there is no such a
vertex. Thus R is neither a nilpotent ring nor a local ring. Hence by Remark 4, R has a non-
trivial idempotent e and therefore we can write R = R1 ⊕ R2 ⊕ R3 ⊕ R4, where R1 = eRe,
R2 = eR(1− e), R3 = (1− e)Re, and R4 = (1− e)R(1− e). We show that R1 is a field. Suppose
that xy = 0, for some elements x, y ∈ R∗

1 . Since deg(e) = deg(x) and N(e) ⊆ N(x), N(e) =
N(x). Also, since ye = ey = y, y = x and Ann�(x) \ Ann�(e) = Annr (x) \ Annr (e) = {x}. Now,
Ann�(x),Ann�(e),Annr (x) and Annr (e) are additive subgroups of R, thus we conclude that
Ann�(e) = Annr (e) = {0}. So R = R1, which contradicts e is a non-trivial idempotent. Thus R1
is a field.

First assume that R4 has no non-zero idempotent. Then R4 is a nilpotent ring. For any two
elements a ∈ R2 and b ∈ R3, we have ba ∈ R4 and thus ab is a nilpotent element of R1. Since R1
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is a field, ab = 0. Suppose that R4 = {0}. Since e �= 1, at least one of the rings R2 and R3 is non-
zero. Also, for any two elements a ∈ R2 and b ∈ R3, we have R ⊆ Annr (a) and R ⊆ Ann�(b).
So we find a vertex adjacent to all other vertices of Γ (R), a contradiction. Hence R4 �= {0} and
since R4 is nilpotent, there is an element c ∈ R∗

4 ∩ Ann�(R4)∩ Annr (R4). Noting c2 = 0, we find
that

deg(c) = |R1|
∣∣Ann�(c) ∩ R2

∣∣|R3||R4| + |R1||R2|
∣∣Annr (c) ∩ R3

∣∣|R4|
− |R1|

∣∣Ann�(c) ∩ R2
∣∣∣∣Annr (c) ∩ R3

∣∣|R4| − 2.

Note that if |R2| � |R3|, then obviously we have∣∣Ann�(c) ∩ R2
∣∣(|R3| −

∣∣Annr (c) ∩ R3
∣∣) + |R2|

(∣∣Annr (c) ∩ R3
∣∣ − 1

) + 1 � |R3|.

If |R3| � |R2|, then we obtain a similar inequality. Thus∣∣Ann�(c) ∩ R2
∣∣|R3| + |R2|

∣∣Annr (c) ∩ R3
∣∣ − ∣∣Ann�(c) ∩ R2

∣∣∣∣Annr (c) ∩ R3
∣∣ � |R2| + |R3| − 1.

Since deg(e) = |R2||R4| + |R3||R4| − |R4| − 1, the above inequality shows that deg(c) + 2 �
|R1|(deg(e) + 1). This is a contradiction, since deg(e) = deg(c) � 1 and |R1| � 2.

Next assume that R4 has a non-zero idempotent, say g. Clearly, we have Ann�(e + g) ⊆
Ann�(e) and Annr (e + g) ⊆ Annr (e). Therefore, if e + g is a vertex of Γ (R), then N(e + g) ⊆
N(e). Since deg(e) = deg(e + g), N(e) = N(e + g). But g ∈ N(e) \ N(e + g), a contradiction.
Thus e + g is an idempotent in R \ D(R) and so 1 = e + g is the identity of R. Hence 1 − e ∈ R,
so with a similar argument given in the first paragraph of the proof, we find that R4 is a field.
Since R1 and R4 are fields, it is straightforward to verify that eR and gR are two simple right
R-modules. Since R = eR ⊕ gR,

R � End(RR) �
[

HomR(eR, eR) HomR(eR,gR)

HomR(gR, eR) HomR(gR,gR)

]
and hence R is isomorphic to either the 2 × 2 full matrix ring over a finite field or the direct
product of two finite fields; depends on eR � gR as right R-modules or not. By Lemma A,
deg(E11) = 2|K|2 − |K| − 1 and deg(E12) = 2|K|2 − |K| − 2 in Γ (M2(K)), for any finite field
K . Therefore there exist two finite fields F1 and F2 such that R � F1 × F2. Now, deg(1,0) =
|F2| − 1 and deg(0,1) = |F1| − 1 are equal, thus we find that |F1| = |F2|. Hence F1 � F2 and
the proof is complete. �

The following beautiful theorem has been proved by Redmond in [16]. His proof is rather
long. Here we give a simple proof for Redmond’s result.

Theorem 7. (See [16, Theorem 5.1].) Let R be a finite ring which is not a field. Then Γ (R) has
an even number of edges.

Proof. We prove that the total sum of the out-degrees in Γ (R) is even. For every vertex x, we
have Annr (x) = Annr (−x) and so the out-degrees of x and −x are the same. Hence it is enough
to verify that the total sum of the out-degrees of the vertices x with this property that x = −x,
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is even. Moreover, if 2x = 0 and x → y is an edge, then x → −y is also an edge of Γ (R).
Therefore it is sufficient to show that the induced subgraph on all vertices x in which 2x = 0, has
an even number of edges. So we may assume that charR = 2. Clearly, it is enough to show that∑

x∈R |Annr (x)\Ann�(x)| is even. For any x ∈ R, we have

∣∣Annr (x)\Ann�(x)
∣∣ = ([

Annr (x) : Ann�(x) ∩ Annr (x)
] − 1

)∣∣Ann�(x) ∩ Annr (x)
∣∣.

Since |R| is a 2-power, |Annr (x)\Ann�(x)| is even if and only if Ann�(x) ∩ Annr (x) �= {0}.
Thus, to complete the proof, we show that the set

T = {
x ∈ R | Ann�(x) ∩ Annr (x) = {0} and Annr (x) �= {0}}

has an even number of elements. Assume that a is an arbitrary element of T . Since R is finite,
there are two natural numbers m > n such that am = an. Thus an−1(am−n+1 − a) = 0. On the
other hand, Ann�(a) ∩ Annr (a) = {0}, so we conclude that am−n+1 = a. Thus e = am−n is an
idempotent element and it is easily checked that Ann�(e) = Ann�(a) and Annr (e) = Annr (a).
Therefore e ∈ T . Since Ann�(e) ∩ Annr (e) = {0}, (1 − e)R(1 − e) = {0}. On the other hand,
R = eRe⊕eR(1−e)⊕ (1−e)Re implies that Annr (e) = (1−e)Re. For any h ∈ Annr (e), since
((1−e)Re)2 = {0} and ae = a, we have Annr (e) ⊆ Annr (a +h). Now, if (a +h)y = 0, for some
y ∈ R, then multiplying this equation by e, we conclude that ay = 0 and so ey = am−n−1ay = 0.
This shows that Annr (e) = Annr (a + h). Also, we have Ann�(a + h) ∩ Annr (a + h) = {0}.
To see this, suppose that z(a + h) = (a + h)z = 0, for some z ∈ R. Thus z ∈ (1 − e)Re and so
zh = hz = 0. Hence za = az = 0 and this implies that z = 0. So we obtain that a +Annr (e) ⊆ T .

Let U be the family of all sets of the form a + Annr (e), where a, e ∈ T , e2 = e, and e = ak ,
for some k � 1. Thus T is the union of all elements of U . We show that every two distinct
elements a + Annr (e) and a′ + Annr (e

′) of U are disjoint. Indeed, if a + w = a′ + w′ is an
element in their intersection, then Annr (e) = Annr (a + w) = Annr (a

′ + w′) = Annr (e
′) and

so a + Annr (e) = a′ + Annr (e
′). Moreover, for any e ∈ T , Annr (e) is a non-trivial additive

subgroup of R. Hence every element of U has even size and therefore |T | is even. The proof is
complete. �
3. The zero-divisor graphs of matrix rings

A subset Ω of the vertex set of a directed graph Γ is called clique if x → y and y → x are
two edges of Γ , for each pair of distinct vertices x, y ∈ Ω . The maximum size of a clique in a
directed graph Γ is called the clique number of Γ and denoted by ω(Γ ). In the next theorem,
we calculate ω(Γ (Mn(F ))), for any finite field F and n � 2.

Theorem 8. If F is a finite field and n � 2, then ω(Γ (Mn(F ))) = |F |� n2
4 
 − 1, unless n = 2 and

|F | = 2 and in this case ω(Γ (Mn(F ))) = 2.

Proof. Clearly, the set

Ω0 =
{[

0 X

0 0

] ∣∣∣∣ X ∈ M� n
2 
×� n

2 �(F )∗
}
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is a clique of size |F |� n2
4 
 − 1 in Γ (Mn(F )). Let Ω be a clique of maximum size in Γ (Mn(F )).

For any x, y ∈ Ω , we have xy = yx = 0. By a theorem due to Schur [13], every commuting

subset of Mn(F) contains at most m = �n2

4 
 + 1 linearly independent matrices over F . Assume
that |Ω| > |Ω0|. So Ω has exactly m linearly independent matrices, say a1, . . . , am. Then I is
contained in the vector space generated by Ω . This means that

I = λ1a1 + · · · + λmam, (1)

where λi ∈ F , for any i. We have

kera1 ⊇ kera1 ∩ kera2 ⊇ · · · ⊇
m⋂

i=1

kerai. (2)

If n � 4, then m > n. Now, the relation (2) implies that there exists some index t such that⋂t
i=1 kerai = ⋂t+1

i=1 kerai . Since all columns of at+1 are contained in
⋂t

i=1 kerai , a2
t+1 = 0.

Now, multiplying Eq. (1) by at+1 yields at+1 = 0, a contradiction. Therefore n � 3. If there
exists a matrix a ∈ Ω whose minimal polynomial has degree 3, then n = 3 and by [11, Corol-
lary 4.4.18], every matrix in Ω is a polynomial in a. Let b = λa2 + μa + νI be an arbitrary
element in Ω . Clearly, in this case |Ω0| � 3 and so there exists a matrix c ∈ Ω\{a, b}. We have
ca = cb = 0. But cb = νc and so ν = 0. Hence we have |Ω| � |F |2 −1, a contradiction. Thus the
minimal polynomial of every matrix in Ω has degree 2. If there exists a matrix z ∈ Ω such that
z2 = 0, then we may suppose that a1 = z. By multiplying Eq. (1) by a1, we obtain again a con-
tradiction. So ω2 �= 0, for every ω ∈ Ω . Since each element of Ω has zero as an eigenvalue, the
minimal polynomial of any element of Ω has simple roots. Thus Ω is simultaneously diagonal-
izable. Furthermore, since the product of every two distinct elements of Ω is zero, |Ω| � n. On

the other hand, |Ω| > |F |� n2
4 
 −1, so we conclude that n = 2 and |F | = 2. Now, since {E11,E22}

is a clique in Γ (Mn(F )), the proof is complete. �
Now we want to verify for which full matrix rings over a finite commutative ring with identity,

the zero-divisor graph determines the corresponding ring.

Lemma 9. Let F and E be two finite fields with charF = charE and n,m � 2. If∣∣D(Mn(F ))
∣∣ = ∣∣D(Mm(E))

∣∣,
then n = m and F � E.

Proof. Let p = charF . Since |D(Mn(F ))| = |D(Mm(E))|, using [12, (9.20)] we have

|F |n2 −
n−1∏
i=0

(|F |n − |F |i) = |E|m2 −
m−1∏
i=0

(|E|m − |E|i).
By considering the p-powers in the left side and the right side of the above equality we find

|F |n(n−1)/2 = |E|m(m−1)/2, (3)
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and also

|F |n(n+1)/2 − |E|m(m+1)/2 =
n∏

i=1

(|F |i − 1
) −

m∏
i=1

(|E|i − 1
)
. (4)

By contradiction, assume that |F | > |E|. So by (3) we have n < m. If n and m have the same
parities, then |E|m(m+1)/2 and |E| are the biggest p-powers that divide the left side and the right
side of (4), respectively, which contradicts m � 2. Thus the parities of n and m are not the same.
Since the left side and the right side of (4) are congruent to 0 and (−1)n − (−1)m modulo of |E|,
respectively, we conclude that |E| = 2 and therefore there exists an integer t such that |F | = 2t .
If t � 3, then it is not hard to verify that the left side and the right side of (4) are congruent to
0 and 4 modulo of 8, respectively, which is impossible. Hence t = 2. By a result of [7], for any
integer α � 2, α �= 6, the number 2α − 1 has a prime factor, say q , such that for every integer β ,
1 � β � α − 1, 2β − 1 is not divisible by q . Equation (3) follows that 2n(n− 1) = m(m− 1) and
hence n �= 6 and 2n > m. So (4) yields that

2m(m+1)/2(22n−m − 1
) =

n∏
i=1

(
2i + 1

) n∏
i=1

(
2i − 1

) −
m∏

i=1

(
2i − 1

)
.

Now, 2n − m < n, so there exists a prime number q such that divides 2n − 1 and does not divide
22n−m − 1. Since n < m, we get a contradiction. Thus |F | = |E|. Now, Eq. (3) implies that
n = m, as desired. �
Theorem 10. Let R and S be two finite commutative local rings and n,m � 2. If Γ (Mn(R)) �
Γ (Mm(S)), then n = m, |R| = |S|, and Γ (R) � Γ (S).

Proof. If one of the rings R and S is a field, then by [2, Theorem 20], there is nothing to prove. So
suppose that J (R) and J (S) are non-zero. Assume that A is the set of all vertices v of Γ (Mn(R))

such that v → x is an edge in Γ (Mn(R)) if and only if x → v is an edge. Let F = R/J (R) and
Z = Ann�(J (R)). Also, for any element x ∈ Mn(R), suppose that x is the element of Mn(F)

corresponding to x. It is straightforward to see that for any matrix x ∈ D(Mn(F ))∗, Annr (x) \
Ann�(x) �= ∅. Hence if there exists a vertex v ∈ A with v �= 0, then there is a matrix w ∈ Mn(F)

such that v w = 0 and w v �= 0. Now, for an element z ∈ Z∗, v → wz is an edge in Γ (Mn(R)) and
there is no edge from wz to v. This contradicts the definition of A and shows that A ⊆ Mn(J (R)).
Let B = Ann�(A)∗. Since A ⊆ Mn(J (R)), Mn(Z)∗ ⊆ B. Furthermore, {xI | x ∈ J (R)∗} ⊆ A.
Therefore B ⊆ Mn(Z) and so B = Mn(Z)∗. We have Mn(J (R)) ⊆ Ann�(B). On the other hand,
{xI | x ∈ Z∗} ⊆ B and thus Ann�(B) ⊆ Mn(J (R)). So Ann�(B) = Mn(J (R)). By Γ (Mn(R)) �
Γ (Mm(S)), we conclude that

∣∣J (R)
∣∣n2 = ∣∣J (S)

∣∣m2
. (5)

Since the order of any finite local ring is a prime power, Eq. (5) yields that charF = charE, where
E = S/J (S). Moreover, if GLn(F ) denotes the unit group of Mn(F), then by [8, Theorem 1], the
number of units of Mn(R) is |J (R)|n2 |GLn(F )|. Therefore the number of vertices of Γ (Mn(R))

is |R|n2 − |J (R)|n2 |GLn(F )| − 1 = |J (R)|n2 |D(Mn(F ))| − 1. Since Γ (Mn(R)) � Γ (Mm(S)),
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the equality (5) concludes that |D(Mn(F ))| = |D(Mm(E))|. By Lemma 9, n = m and |F | = |E|.
Again applying (5), we obtain that |J (R)| = |J (S)| and therefore |R| = |S|.

To complete the proof, we show that Γ (R) � Γ (S). Let a be the vertex of Γ (Mn(S)) cor-
responding to the vertex E11 in Γ (Mn(R)). Then by Lemma A, the out-degree of a is equal
to |R|n(n−1) − 1. Since Ann�(B) = Mn(J (R)) and Γ (Mn(R)) � Γ (Mn(S)), the induced sub-
graph of Γ (Mn(R)) on Mn(J (R))∗ is isomorphic to the induced subgraph of Γ (Mn(S)) on
Mn(J (S))∗. Hence, since E11 /∈ Mn(J (R)), at least one of the entries of a is unit. Up to matrix
similarity, we may assume that at least one of the entries of the first row of a is unit. There is a
permutation matrix p such that

ap =
[

a1 A2
A3 A4

]
,

where a1 is a unit in S. Suppose that[
x1 X2
X3 X4

]
∈ Annr (ap),

where x1 ∈ S. Thus [x1 X2] = −a−1
1 A2[X3 X4] and (A4 − a−1

1 A3A2)[X3 X4] = 0. This
implies that∣∣Annr (ap)

∣∣ = ∣∣{M ∈ M(n−1)×n(S) | (A4 − a−1
1 A3A2

)
M = 0

}∣∣ � |S|n(n−1).

On the other hand, |Annr (ap)| = |Annr (a)| = |S|n(n−1). Therefore (A4 − a−1
1 A3A2)M = 0, for

each M ∈ M(n−1)×n(S). This yields that A4 − a−1
1 A3A2 = 0. If we put

q =
[

1 0
−A3 a1In−1

]
,

then for i = 2, . . . , n, the ith row of qap is zero. Obviously, this property holds for the matrix
qaq−1. Up to matrix similarity, we may assume that a = a11E11 + · · · + a1nE1n. We show that
a11 is unit. Clearly, Ann�(E11) is the set of all matrices in Mn(R) whose first columns are zero.
Since at least one of the entries of the first row of a is unit, a similar property holds for Ann�(a).
Hence Annr (Ann�(E11)) and Annr (Ann�(a)) are the sets of all matrices in Mn(R) and Mn(S),
respectively, whose ith rows are zero, for i = 2, . . . , n. Indeed, C = {xE11 | x ∈ Annr (a11)} is a
subset of Annr ({a} ∪ Ann�(a)). Since Annr ({E11} ∪ Ann�(E11)) = {0}, C = {0}. This implies
that a11 is unit, as desired. Obviously, two matrices a and a11E11 are similar and hence we may
assume that a = a11E11. Suppose that ΓR is the induced subgraph of Γ (Mn(R)) on the subset{

x ∈ Mn(R)∗ | Ann�(E11) ⊆ Ann�(x) and Annr (E11) ⊆ Annr (x)
}
,

and similarly define the subgraph ΓS of Γ (Mn(S)). Clearly, the vertex sets of ΓR and ΓS are
{rE11 | r ∈ R∗} and {sE11 | s ∈ S∗}, respectively. By Γ (Mn(R)) � Γ (Mn(S)), we have ΓR �
ΓS . Suppose that ψ is a graph isomorphism from ΓR to ΓS . Note that for any r ∈ R, r ∈ D(R)

if and only if Ann�(rE11) �= Ann�(E11); and a similar fact holds for S. So we can define a map
f :D(R)∗ → D(S)∗ in which f (z) is the (1,1)-entry of the matrix ψ(zE11), for any z ∈ D(R)∗.
Now, it is easily seen that f is a graph isomorphism from Γ (R) to Γ (S). �
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Theorem 11. Let n � 2 and S1, . . . , Sn be finite indecomposable rings with identity. Suppose
that S = S1 × · · · × Sn and R is a ring with identity such that Γ (R) � Γ (S). Then there exist
indecomposable rings R1, . . . ,Rn such that R � R1 × · · · × Rn and for i = 1, . . . , n, |Ri | = |Si |
and Γ (Ri) � Γ (Si), unless S � Z2 × Z2 or S � Z6.

Proof. Let ϕ be a graph isomorphism from Γ (R) to Γ (S). If S1, . . . , Sn are fields, then using
[2, Theorem 17], the assertion is proved. So, after a suitable reindexing, we may assume that
S1, . . . , St are not fields and St+1, . . . , Sn are fields, for some t , 1 � t � n. Consider the vertices
x̃ = (1,0, . . . ,0) and ỹ = (0,1, . . . ,1) in Γ (S) and let x = ϕ−1(x̃) and y = ϕ−1(ỹ). Since x̃–ỹ is
an edge of Γ (S) and N(x̃)∩N(ỹ) = ∅, we have N(x)∩N(y) = ∅ and without loss of generality,
we may assume that xy = 0. Let S′

1 = S2 × · · · × Sn.
We show that x is not a nilpotent element. To get a contradiction, assume that xk = 0, where

k is the smallest natural number with this property. First we claim that k = 2. Toward a con-
tradiction, suppose k �= 2. Then xk−1 �= x. Since xk−1 ∈ Ann�({x, y}) and N(x) ∩ N(y) = ∅,
xk−1 = y. This yields that N(x) = {y} and so N(x̃) = {ỹ}. Hence S′

1 � Z2. We show that
Ann�(y) = Annr (y). Assume that z ∈ Ann�(y)∗. Since zxk−1 = 0, there exists an integer i,
1 � i � k − 1, such that zxi = 0 and zxi−1 �= 0. We note that zxi−1 ∈ Ann�({x, y}), x2 �= 0,
and N(x) ∩ N(y) = ∅, so zxi−1 = y and this implies that (xz)xi−1 = 0. By repeating this proce-
dure (at most k − 1 times), we obtain an integer j , 1 � j � k − 1, such that xj z = 0. Therefore
yz = 0 and so Ann�(y) ⊆ Annr (y). Noting xy = yx = 0, the converse is similarly proved and
thus Ann�(y) = Annr (y), as desired. If R is a local ring, then D(R) is a nilpotent ideal. Thus
there exists a non-zero element w ∈ Ann�(D(R)) ∩ Annr (D(R)). Indeed, w is adjacent to all
other vertices of Γ (R). Since S1 is not field, it is easily seen that Γ (S) contains no such a vertex.
Thus R is not a local ring. By Remark 4, R has a non-trivial idempotent e and therefore we can
write R = eRe ⊕ eR(1 − e) ⊕ (1 − e)Re ⊕ (1 − e)R(1 − e). Let ue = (u1, u2) and ve = (v1, v2)

be those vertices of Γ (S) such that ϕ(e) = ue and ϕ(1 − e) = ve. Since e and 1 − e are ad-
jacent, u2v2 = 0. If u2 = v2 = 0, then ỹ ∈ N(ue) ∩ N(ve) and so y ∈ N(e) ∩ N(1 − e). Since
Ann�(y) = Annr (y), ye = y(1 − e) = 0, which is impossible. With no loss of generality, assume
that u2 = 0 and v2 = 1. Note that y2 = 0, so y �= 1 − e and therefore v1 �= 0. Moreover, ue is
adjacent to ỹ in Γ (S). This implies that e–y is an edge of Γ (R) and since Ann�(y) = Annr (y),
ey = ye = 0 and hence y ∈ (1 − e)R(1 − e).

Let z̃e = (v1,0) and ze = ϕ−1(z̃e). It is easy to verify that N(ve) \ {z̃e} = N(ỹ) ∩ N(z̃e) \ {ve}
and so

N(1 − e) \ {ze} = (
N(y) ∩ N(ze)

) \ {1 − e}. (6)

If e �= ze , then the equality (6) shows that e and ze are adjacent. Moreover, since ỹ is adjacent to
z̃e, yze = zey = 0. Now, e+y ∈ (N(y)∩N(ze))\N(1−e), a contradiction. Therefore e = ze . For
every three elements a ∈ eRe∗, b ∈ eR(1 − e), and c ∈ (1 − e)Re, we have {a, e + b, e + c} ⊆
N(1 − e) \ N(e). Hence the equality (6) implies that {a, e + b, e + c} = {e}. This shows that
eRe = {0, e} and eR(1 − e) = (1 − e)Re = {0}. If Γ ((1 − e)R(1 − e)) has more than one vertex,
then by connectivity [15, Theorem 3.2], Γ ((1 − e)R(1 − e)) has at least one vertex d adjacent
to y. Now, d ∈ (N(y) ∩ N(e)) \ N(1 − e), which contradicts (6). Hence Γ ((1 − e)R(1 − e)) has
exactly one vertex and using [2, Corollary 4], we find that (1 − e)R(1 − e) � Z4 or Z2[X]/(X2).
Therefore R is isomorphic to one of the rings Z2 × Z4 or Z2 × Z2[X]/(X2). But these rings have
just one non-zero nilpotent element, while x and y are two non-zero nilpotent elements of R.
This contradiction establishes the claim, i.e., x2 = 0.
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Since x2 = xy = 0, Rx\{0, x, y} ⊆ N(x) ∩ N(y). But N(x) ∩ N(y) = ∅, so we have Rx ⊆
{0, x, y}. If Rx = {0, x, y}, then x + y = 0. Moreover, if D(R)∗ �= {x, y}, then the connectivity
of Γ (R) [15, Theorem 3.2] yields that there exists a vertex z ∈ (N(x) ∪ N(y)) \ {x, y}. By
x + y = 0, we deduce that z ∈ N(x) ∩ N(y), which is impossible. Thus Γ (R) has exactly two
vertices. Using [2, Theorem 17], we find that S � Z2 × Z2, i.e., S1 is a field, a contradiction.
Hence Rx = {0, x} and so [R : Ann�(x)] = 2. Indeed, we have deg(x) � |Ann�(x)|−2 = |R|

2 −2
and deg(x̃) = |S′

1|−1. On the other hand, Γ (R) contains at most |R|−1 vertices and the number
of vertices of Γ (S) is |S1||D(S′

1)| + |D(S1)||S′
1| − |D(S1)||D(S′

1)| − 1. Since deg(x) = deg(x̃)

and the vertex sets of Γ (R) and Γ (S) have the same sizes, we find

|S1|
∣∣D(S′

1)
∣∣ + ∣∣D(S1)

∣∣|S′
1| −

∣∣D(S1)
∣∣∣∣D(S′

1)
∣∣ − 1 � |R| − 1 � 2|S′

1| + 1.

This implies that ∣∣D(S′
1)

∣∣(|S1| −
∣∣D(S1)

∣∣) + |S′
1|

(∣∣D(S1)
∣∣ − 2

)
� 2. (7)

By the Wedderburn–Artin Theorem [12, (3.5)], it is not hard to see that a finite ring which con-
tains exactly one non-zero-divisor is isomorphic to the direct product of finitely many Z2. Since
S1 is not a field, |S1| − |D(S1)| � 2. Now, inequality (7) yields that S′

1 is a field and |D(S1)| = 2.
By [2, Corollary 4], S1 is isomorphic to one of the rings Z4 or Z2[X]/(X2). Therefore Γ (S) is
a bipartite graph which is not a complete bipartite graph. Hence by [2, Theorem 11], R is iso-
morphic to one of the rings Z4 × S′

1 or Z2[X]/(X2) × S′
1. Since each of these rings has just one

non-zero nilpotent element, we find that deg(x) = 2|S′
1| − 2 in Γ (R). But deg(x̃) = |S′

1| − 1, a
contradiction. This shows that x is not nilpotent.

Since Γ (S) is a finite graph and Γ (R) � Γ (S), [2, Remark 1] implies that R is a finite ring
and so there are natural numbers r > s such that xr = xs . Assume that s is the smallest possible
natural number with this property. We claim that s = 1. If not, xr−1 − xs−1 ∈ Ann�({x, y}). We
note that x2 �= 0 and N(x) ∩ N(y) = ∅, so xr−1 − xs−1 = y. This implies that N(x) = {y} and
so N(x̃) = {ỹ}. Thus S′

1 � Z2. By [17, p. 55], there is a natural number m such that e′ = xm is
a non-trivial idempotent. Since e′y = ye′ = 0, y ∈ (1 − e′)R(1 − e′). Thus ϕ(e′) = (u′

1,0), for
some u′

1 ∈ S∗
1 . Since y2 = 0, y �= 1 − e′. Moreover, there is no edge between y and 1 − e′ in

Γ (R), so ϕ(1 − e′) = (v′
1,1), for some v′

1 ∈ S∗
1 . Now, if we define ue′ = ϕ(e′), ve′ = ϕ(1 − e′),

z̃e′ = (v′
1,0), and ze′ = ϕ−1(z̃e′), then by a similar argument given in the third paragraph of

the proof, we find that R is isomorphic to one of the rings Z2 × Z4 or Z2 × Z2[X]/(X2). Thus
from [2, Theorem 13], we conclude that S1 � Z4 or S1 � Z2[X]/(X2) and therefore deg(ỹ) = 3.
Furthermore, since each of the rings Z2 ×Z4 and Z2 ×Z2[X]/(X2) has just one non-zero nilpotent
element, we have deg(y) = 2 in Γ (R), which contradicts deg(ỹ) = 3.

Thus xr = x and so g = xr−1 is a non-trivial idempotent of R. It is straightforward to see
that Ann�(g) = Ann�(x) and Annr (g) = Annr (x). Therefore N(g) ∩ N(y) = ∅. Since xy = 0,
gy = 0. Moreover, (1 − g)Rg ⊆ Ann�(y) ∩ Annr (g), so (1 − g)Rg ⊆ {0, y}. If y ∈ (1 − g)Rg,
then (1 − g)R(1 − g) ⊆ Annr (g) ∩ Annr (y) and thus (1 − g)R(1 − g) = {0}. This implies that
gR(1 − g) ⊆ Ann�(g) ∩ Annr (y) and therefore gR(1 − g) = {0}. So R = gRg ⊕ (1 − g)Rg and
hence Ry = {0}, which contradicts that ỹ is not adjacent to all other vertices of Γ (S). This shows
that (1 − g)Rg = {0} and hence y ∈ (1 − g)R(1 − g). We have gR(1 − g) ⊆ Ann�(g)∩ Annr (y)

and thus gR(1 − g) = {0}. Hence R = R1 ⊕ R′
1, where R1 = gRg and R′

1 = (1 − g)R(1 − g).
If {0, y} � D(R′ ), then by connectivity [15, Theorem 3.2], Γ (R′ ) has at least one vertex d ′
1 1
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adjacent to y, which clearly contradicts N(g) ∩ N(y) = ∅. If D(R′
1) = {0, y}, then using [2,

Corollary 4], we find that R′
1 � Z4 or R′

1 � Z2[X]/(X2). Now, it is easily checked that if w is a
vertex of Γ (R) with N(y) ⊆ N(w), then w = y. A similar property is also valid for Γ (S), so we
conclude that |S′

1| = 2. On the other hand, deg(x) = deg(g) = 3 and deg(x̃) = |S′
1|− 1 are equal,

i.e., |S′
1| = 4, a contradiction. Hence y is a unit in R′

1. This implies that deg(y) = |R1| − 1. Since
deg(ỹ) = |S1|−1, we find that |R1| = |S1|. Furthermore, deg(x) = |R′

1|−1 and deg(x̃) = |S′
1|−1

are the same, so we have |R′
1| = |S′

1|.
Let g̃ = ϕ(g). Since N(x̃) = N(g̃), the first component of g̃ is a unit in S1 and whose other

components are zero. Let Ã be the set of all vertices in Γ (S), adjacent to all neighbors of g̃ such
that their degrees are more than deg(g̃). Clearly, Ã = {(z1,0, . . . ,0) | z1 ∈ D(S1)

∗}. Also, let B̃

be the set of all vertices in Γ (S) adjacent to g̃ and adjacent to at least one of the neighbors of
g̃. Hence the first component of any vertex of B̃ is 0 and at least one of its other components is
a zero-divisor. Now, if the induced subgraphs of Γ (S) on Ã and B̃ are denoted by ΓÃ and ΓB̃,
respectively, then ΓÃ � Γ (S1) and ΓB̃ � Γ (S′

1).

Let A = ϕ−1(Ã) and B = ϕ−1(Ã). Clearly, R′∗
1 is the set of all neighbors of g in Γ (R).

Assume that a = a1 + a′
1 is an arbitrary element of A, where a1 ∈ R1 and a′

1 ∈ R′
1. So, by

the definition of A, a1 + a′
1 is adjacent to all vertices of R′∗

1 . This implies that R = Ann�(a
′
1) ∪

Annr (a
′
1). Since none of the vertices of Γ (R) is adjacent to all other vertices of the graph, a′

1 = 0.
Moreover, deg(a) > deg(g) yields that a ∈ D(R1)

∗. So we have ΓA � Γ (R1), where ΓA is the
induced subgraph of Γ (R) on A. Suppose that b = b1 + b′

1 is an arbitrary element of B, where
b1 ∈ R1 and b′

1 ∈ R′
1. Since b is adjacent to g, b1 = 0. Also, b is adjacent to at least one vertex

contained in R′∗
1 , so b ∈ D(R′

1)
∗. Thus it is evident that ΓB � Γ (R′

1), where ΓB is the induced
subgraph of Γ (R) on B.

By Γ (R) � Γ (S), we conclude that Γ (R1) � Γ (S1) and Γ (R′
1) � Γ (S′

1). Since Γ (R1) �
Γ (S1) and S1 is indecomposable, by repeating the above proof for the rings R1 and S1 instead
of the rings S and R, respectively, we find that R1 should be an indecomposable ring. Moreover,
since Γ (R′

1) � Γ (S′
1), by continuing the above method t times, we find indecomposable rings

R1, . . . ,Rt and a ring R′
t such that R � R1 × · · · × Rt × R′

t and for i = 1, . . . , t , |Ri | = |Si |
and Γ (Ri) � Γ (Si). If t < n, then |R′

t | = |S′
t | and Γ (R′

t ) � Γ (S′
t ), where S′

t = St+1 × · · · × Sn.
Since S′

t is a reduced ring and the excluding cases in [2, Theorem 17] have different orders, the
aforementioned theorem implies that R′

t � S′
t . This completes the proof. �

Remark 12. Let S be a finite decomposable ring with identity. Assume that S = S1 × · · · × Sn is
the decomposition of S in which S1, . . . , Sn are indecomposables rings. Suppose that R is a ring
with identity and ϕ :Γ (R) → Γ (S) is a graph isomorphism. Then ϕ is also a graph isomorphism
from Γ (R) to Γ (S). If R1, . . . ,Rn are those rings are obtained in the previous theorem, then
for simplification, we may suppose that R = R1 × · · · × Rn. Note that in the above proof, the
isomorphism ΓA � ΓÃ is induced by ϕ. Thus we find a bijective map

D(R1)
∗ × {0} × · · · × {0} −→ D(S1)

∗ × {0} × · · · × {0}
which preserves zero products. This shows that Γ (R1) � Γ (S1). Therefore by the proof of the
previous theorem, we conclude that Γ (Ri) � Γ (Si), for each i.

Theorem 13. Let R and S be two finite commutative rings with identity and n,m � 2. If
Γ (Mn(R)) � Γ (Mm(S)), then n = m, |R| = |S|, and Γ (R) � Γ (S).
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Proof. It is well known that every commutative Artinian ring is isomorphic to the direct product
of finitely many local rings [5, p. 90]. Suppose that R = R1 × · · · × Rr and S = S1 × · · · × Ss ,
where Ri and Sj are finite local rings, for all i and j . We have Γ (Mn(R1) × · · · × Mn(Rr)) �
Γ (Mm(S)). For i = 1, . . . , r , since Ri is a local ring, Ri contains no non-trivial idempotent and
thus Mn(Ri) has no non-trivial central idempotent. So Mn(R1), . . . ,Mn(Rr) are indecomposable
rings. Hence by Theorem 11 and Remark 12, there exist indecomposable rings S′

1, . . . , S
′
r such

that Mm(S) � S′
1 × · · · × S′

r , |Mn(Ri)| = |S′
i |, and Γ (Mn(Ri)) � Γ (S′

i ), for all i. On the other
hand, Mm(S) � Mm(S1) × · · · × Mm(Ss). Using the Krull–Schmidt Theorem [12, (19.22)], we
have r = s and S′

i � Mm(Si), for i = 1, . . . , r . Thus, after a suitable reindexing, we may assume
that |Mn(Ri)| = |Mm(Si)| and Γ (Mn(Ri)) � Γ (Mm(Si)), for each i. Now, using Theorem 10,
we obtain that n = m, |Ri | = |Si |, and Γ (Ri) � Γ (Si), for all i. Clearly, |R| = |S| and by [3,
Theorem 4], we conclude that Γ (R) � Γ (S). The proof is complete. �
4. The zero-divisor graphs of group rings

Theorem 14. Let K and K1 be two finite fields and G,G1 be two finite groups. If Γ (KG) �
Γ (K1G1), then K � K1 and |G| = |G1|.

Proof. For simplification, let n = |G| and define ε = 2, if charK divides n; and otherwise ε =
1. Consider the element σ = ∑

g∈G g. We have (h − 1)σ = 0, for all h ∈ G. Thus σ 2 = nσ

and so deg(σ ) = |K|n−1 − ε. We claim that the maximum degree in Γ (KG) is |K|n−1 − ε.
Let a = ∑

g∈G agg be a vertex with the maximum degree in Γ (KG). By Theorem 3, there
exists an integer s, 1 � s � n − 1, such that |Ann�(a)| = |Annr (a)| = |K|s . We know that if A
is a finite-dimensional algebra over a field F and z ∈ D(A), then by considering the minimal
polynomial of z over F , we find an element z ′ ∈ A∗ such that zz ′ = z ′z = 0. This yields that
there exists an integer t , 1 � t � s, such that |Ann�(a) ∩ Annr (a)| = |K|t . Now, the maximality
of deg(a) implies that 2|K|s − |K|t − 1 � |K|n−1 − 2. Hence |K|t (|K|n−t−1 − 2|K|s−t + 1) �
1. This follows that s = n − 1. Using the fact [KG : Ann�(a)] = |KG · a|, we conclude that
dimK KG · a = 1. Thus for any element h ∈ G, there is a unique scalar λ(h) ∈ K∗ such that
ha = λ(h)a. It is easy to check that λ :G → K∗ is a group homomorphism. By considering the
coefficients of h in two sides of the latter equality we have a1 = λ(h)ah, where 1 ∈ G is identity.
Thus a = a1

∑
g∈G λ(g−1)g. Since λ is fixed on each of conjugacy classes of G, using [14,

Lemma 4.1.1], a is contained in the center of KG and hence Ann�(a) = Annr (a). Now, since
a2 = a1

∑
g∈G λ(g−1)ga = a1

∑
g∈G λ(g−1)λ(g)a = na1a, deg(a) = |K|n−1 − ε. This proves

the claim.
We proved that the set of all vertices in Γ (KG) with the maximum degree is contained in

M =
{
μ

∑
g∈G

ϕ
(
g−1)g ∣∣∣ μ ∈ K∗ and ϕ :G → K∗ is a group homomorphism

}
.

Next we show that each element of M has maximum degree. Obviously, it is sufficient to prove
that for any homomorphism ϕ :G → K∗, the vertex xϕ = ∑

g∈G ϕ(g−1)g has the maximum
degree. Since [KG : Ann�(xϕ)] = |KG · xϕ |, it is enough to show that dimK KG · xϕ = 1. For
any element h ∈ G, we have

hxϕ = ϕ(h)
∑

ϕ
(
(hg)−1)(hg) = ϕ(h)xϕ.
g∈G
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This follows that KG · xϕ = K · xϕ , as desired. Define an equivalence relation ∼ on M as
x ∼ y if N(x) \ {y} = N(y) \ {x}. Suppose that ϕ1, ϕ2 :G → K∗ are two distinct homomor-
phisms and c is an element of G such that ϕ1(c) �= ϕ2(c). This implies that n � 3. We have
1 − ϕ1(c

−1)c ∈ N(xϕ1) \ N(xϕ2). Thus for any two vertices x, y ∈ M, we have x ∼ y if and
only if there exists ν ∈ K∗ such that x = νy. Hence every equivalence class of ∼ has |K∗| el-
ements. Since Γ (KG) � Γ (K1G1), |K∗| = |K∗

1 | and therefore K � K1. Now, by considering
the maximum degrees of graphs Γ (KG) and Γ (K1G1), we find that |G| = |G1|. The proof is
complete. �

Next, we require to state the beautiful following theorem. We recall that for each group ring
KG, the augmentation ideal of KG is defined to be

ω(KG) =
{∑

g∈G

λgg ∈ KG

∣∣∣ ∑
g∈G

λg = 0

}
.

Theorem B. (See [9, Theorem 5.2].) Let K be a finite field and G be a finite group which is
not Abelian. Then for every element x ∈ KG, Ann�(x) = Annr (x), if and only if |K| = 2r and
G � Q × H , where r is an odd integer, Q = {±1,±i,±j,±k} is the group of the quaternions,
and H is an Abelian group whose order divides 2m − 1, for some odd integer m.

To prove the next theorem, we also need the following lemma that appeared in [10, Corol-
lary 14] for K � Zp .

Lemma 15. Let K be a finite field and G be a cyclic p-group with p = charK . Then for any d ,
0 � d � |G|, KG has exactly one ideal of dimension d over K .

Proof. If |G| = n, then KG � K[X]/(Xn − 1). Since K[X] is a principle ideal ring and n is a p-
power, Xn − 1 = (X − 1)n and so every ideal of K[X]/(Xn − 1) has the form ((X − 1)t )/(Xn − 1)

for some t , 0 � t � n. This proves the lemma. �
Theorem 16. Let K1,K2 be two finite fields and G1,G2 be two finite groups such that
Γ (K1G1) � Γ (K2G2). Then if G1 is an Abelian group so does G2.

Proof. By Theorem 14, K1 � K2. Thus, in the sequel, we assume that these fields are the same
and we denote them by K . Note that for every vertex v in Γ (KG1), deg(v) = |Ann�(v)| − ε,
where ε = 1 or 2. Therefore, for any vertex x of Γ (KG2), at least one of the numbers deg(x)+1
or deg(x) + 2 is a power of p = charK . Moreover, by the same argument given in the proof of
Theorem 14, for any element x ∈ D(KG2)

∗, Ann�(x) ∩ Annr (x) �= {0}. Also, we know that for
any element x ∈ D(KG2)

∗, deg(x) = |Ann�(x)| + |Annr (x)| − |Ann�(x)∩ Annr (x)| − ε, where
ε = 1 or 2. Hence |Ann�(x)| + |Annr (x)| − |Ann�(x) ∩ Annr (x)| is a p-power. This obviously
yields that |Ann�(x)∩ Annr (x)| = |Ann�(x)| or |Ann�(x)∩ Annr (x)| = |Annr (x)|. On the other
hand, Theorem 3 implies that |Ann�(x)| = |Annr (x)|. Thus, for any element x ∈ KG2, we have
Ann�(x) = Annr (x).

Toward a contradiction, suppose that G2 is not Abelian. Using Theorem B, p = 2 and there
exists an Abelian group B with odd order such that G2 � Q×B . Clearly, KG2 can be considered
as the group rings of the group Q over the ring KB . Also, by Maschke’s Theorem [12, (6.1)] and
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the Wedderburn–Artin Theorem [12, (3.5)], there are finite fields E1, . . . ,Em such that KB �
E1 × · · · × Em. This yields that KG2 � (KB)Q � (E1 × · · · × Em)Q � E1Q × · · · × EmQ. By
Theorem 14, |G1| = |G2| and since G1 is Abelian, then there exist two Abelian groups H and
C such that G1 � H × C, |C| = |B| and |H | = 8. With a similar argument, there are finite fields
F1, . . . ,Fn such that KG1 � F1H × · · · × FnH . Hence

Γ (F1H × · · · × FnH) � Γ (E1Q × · · · × EmQ).

We know that for every finite field F and any p-group P with p = charF , the group ring FP

is a local ring [12, (19.10)]. Thus Theorem 11 and the Krull–Schmidt Theorem [12, (19.22)]
imply that Γ (F1H) � Γ (E1Q). By Theorem 14, F1 � E1 and we assume that these fields are
the same and denote them by T and note that charT = 2. Moreover, since H is an Abelian group
of order 8, H is isomorphic to one of the groups Z8, Z2 × Z4, or Z2 × Z2 × Z2.

First suppose that H � Z8. By Lemma 15, it is not hard to see that for every two distinct
vertices u and v in Γ (T H) with the same degrees, N(u) \ {v} = N(v) \ {u}. On the other hand,
there exists a ring automorphism of T Q which maps i to j, so deg(1 + i) = deg(1 + j) in Γ (T Q).
But we have (1 + i)3 ∈ N(1 + i) \N(1 + j), a contradiction. Next assume that H � Z2 ×Z2 ×Z2.
Since each element of H has order 2 and D(T H) = ω(T H) [12, (8.8)], for any x ∈ D(T H)

we have x2 = 0. This yields that the degree of any vertex of Γ (T H) is even. But (1 + i)2 �= 0,
so deg(1 + i) in Γ (T Q) is odd, a contradiction. Finally, suppose that H � Z2 × Z4. To obtain
a contradiction, we show that the number of vertices of even degrees in Γ (T H) and Γ (T Q) is
|T |6 − 1 and |T |4 − 1, respectively. For this, we should find the number of all elements with
squares 0 in the rings T H and T Q. If( ∑

g∈Z2×Z4

λgg

)2

= 0,

then (
λ2

(0,0) + λ2
(0,2) + λ2

(1,0) + λ2
(1,2)

)
(0,0) + (

λ2
(0,1) + λ2

(0,3) + λ2
(1,1) + λ2

(1,3)

)
(0,2) = 0.

This implies that λ(0,0) + λ(0,2) + λ(1,0) + λ(1,2) = 0 and λ(0,1) + λ(0,3) + λ(1,1) + λ(1,3) = 0.
So dimT {x ∈ T H | x2 = 0} = 6, as desired. Now, assume that the square of the element a =∑

g∈Q λgg ∈ T Q is 0. The coefficient of −1 on the left side of the equality a2 = 0 is

λ1λ−1 + λ−1λ1 + λ2
i + λ2−i + λ2

j + λ2−j + λ2
k + λ2−k = 0.

Since D(T Q) = ω(T Q) [12, (8.8)],
∑

g∈Q λg = 0. Hence the above equality implies that λ1 =
λ−1. Moreover, the coefficient of i on the left side of the equality a2 = 0 is

λ1λi + λ−1λ−i + λiλ1 + λ−iλ−1 + λjλk + λ−jλ−k + λkλ−j + λ−kλj = 0.

This follows that (λj + λ−j)(λk + λ−k) = 0. Similarly, by considering the coefficients j and k
on two sides of the equality a2 = 0, we find that (λi + λ−i)(λj + λ−j) = 0 and (λi + λ−i)(λk +
λ−k) = 0. On the other hand, (λi + λ−i) + (λj + λ−j) + (λk + λ−k) = 0, so we conclude that
λi = λ−i, λj = λ−j, and λk = λ−k. Therefore |{x ∈ T Q | x2 = 0}| = |T |4 and the proof is com-
plete. �
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Theorem 17. Let K1 and K2 be two finite fields and G1,G2 be two finite groups such that
Γ (K1G1) � Γ (K2G2). If G1 is a cyclic group, then G1 � G2.

Proof. By Theorem 14, K1 � K2 and thus we may suppose that these fields are the same and
we denote them by K . Also, by Theorem 16, G2 is Abelian. Hence if p = charK and P1,P2 are
Sylow p-subgroups of G1,G2, respectively, then there are two subgroups P̃1 ⊆ G1 and P̃2 ⊆ G2
of orders coprime to p such that G1 � P1 × P̃1 and G2 � P2 × P̃2. By Maschke’s Theorem [12,
(6.1)] and the Wedderburn–Artin Theorem [12, (3.5)], we may write KP̃1 � F1 × · · · × Fn and
KP̃2 � E1 ×· · ·×Em, where all Fi and Ej are fields. This yields that KG1 � F1P1 ×· · ·×FnP1
and KG2 � E1P2 ×· · ·×EmP2. Hence Γ (F1P1 ×· · ·×FnP1) � Γ (E1P2 ×· · ·×EmP2). Since
all FiP1 and EjP2 are local rings [12, (19.10)], Theorem 11 and the Krull–Schmidt Theorem [12,
(19.22)] imply that n = m and, after a suitable reindexing, Γ (FiP1) � Γ (EiP2), for i = 1, . . . , n.
Using Theorem 14, for any i, Fi � Ei and so KP̃1 � KP̃2. We know that a finite group G is
cyclic if and only if G contains no two distinct subgroups of the same order. Combining this fact
and a result by Perlis and Walker [9, Theorem 2.2], it is not hard to see that P̃2 is a cyclic group.
But |P̃1| = |P̃2|, so we deduce that P̃1 � P̃2.

By Theorem 14, we have |G1| = |G2|. Therefore to continue the proof, we assume that P1 and
P2 are non-trivial subgroups. By F1 � E1, we may suppose that these fields are the same and we
denote them by T . We have Γ (T P1) � Γ (T P2). Using Lemma 15, it is easily checked that for
every two distinct vertices u and v in Γ (T P1), if deg(u) = deg(v), then N(u) \ {v} = N(v) \ {u}.
Assume that H is a subgroup of P2 and let σH = ∑

h∈H h ∈ T P2. If Λ is a right transversal for
H in P2, then by [14, Lemma 3.1.2], we have

Ann�(σH ) =
{ ∑

g∈P2

λgg

∣∣∣ ∑
h∈H

λhx = 0, for all x ∈ Λ

}
.

We note that charT divides |H |, so σ 2
H = |H |σH = 0 and therefore deg(σH ) = |T ||P2|−[P2 :H ]−2

in Γ (T P2). To complete the proof, since |P1| = |P2|, it is enough to show that P2 is cyclic.
Suppose that H1 and H2 are two proper subgroups of P2 with |H1| = |H2|. The relations
Γ (T P1) � Γ (T P2) and deg(σH1) = deg(σH2) imply that N(σH1) \ {σH2} = N(σH2) \ {σH1}. As-
sume that there exists an element h1 ∈ H1 \H2. Since P2 is Abelian, for any element g ∈ P2 \H1,
it is straightforward to check that g − gh1 ∈ N(σH1) \ N(σH2), a contradiction. Thus H1 ⊆ H2
and so H1 = H2. Hence P2 contains no two distinct subgroups of the same order and so P2 is
cyclic, as desired. Since G1 and G2 are two cyclic groups of the same order, G1 � G2 and hence
the proof is complete. �
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