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Abstract

We extend the results of Cellini and Papi [P. Cellini, P. Papi, Ad-nilpotent ideals of a Borel subalgebra,
J. Algebra 225 (2000) 130–140; P. Cellini, P. Papi, Ad-nilpotent ideals of a Borel subalgebra II, J. Alge-
bra 258 (2002) 112–121] on the characterizations of ad-nilpotent and abelian ideals of a Borel subalgebra
to parabolic subalgebras of a simple Lie algebra. These characterizations are given in terms of elements of
the affine Weyl group and faces of alcoves. In the case of a parabolic subalgebra of a classical simple Lie
algebra, we give formulas for the number of these ideals.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let g be a complex simple Lie algebra of rank l. Let h be a Cartan subalgebra and Δ the
associated root system. We fix a system of positive roots Δ+. Denote by Π = {α1, . . . , αl} the
corresponding set of simple roots. Let V be the Euclidian space

∑l
k=1 Rαk . For each α ∈ Δ, let

gα be the root space of g relative to α.
For I ⊂ Π , set ΔI = ZI ∩ Δ. We fix the corresponding standard parabolic subalgebra:

pI = h ⊕
( ⊕

α∈ΔI ∪Δ+
gα

)
.
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An ideal i of pI is ad-nilpotent if and only if for all x ∈ i, adpI
x is nilpotent. Since any ideal

of pI is h-stable, we can deduce easily that an ideal is ad-nilpotent if and only if it is nilpotent.
Moreover, we have i =⊕α∈Φ gα , for some subset Φ ⊂ Δ+ \ ΔI .

The purpose of this paper is to characterize and to enumerate ad-nilpotent and abelian ideals
of a parabolic subalgebra.

When I = ∅, p∅ is a Borel subalgebra of g. Peterson proved that the number of abelian ideals
of p∅ is 2l . Motived by this result, Cellini and Papi, Kostant, Panyushev, Sommers and Suter
among others studied ad-nilpotent and abelian ideals of a Borel subalgebra.

In their articles [CP1] and [CP2], Cellini and Papi established different characterizations of
the set I of ad-nilpotent ideals of a Borel subalgebra. They constructed a bijection between I and
certain elements of the affine Weyl group Ŵ associated to Δ, which we shall call ∅-compatible.
These ∅-compatible elements are in turn characterized by elements of the coroot lattice. They
established also, when g is of classical type, a correspondence between ad-nilpotent ideals of g

and some diagrams. We extend here their theory to the case of parabolic subalgebras.
Fix I ⊂ Π , we establish a bijection between ad-nilpotent ideals of pI and what we call

I -compatible elements of the affine Weyl group Ŵ . We identify Ŵ with the group of affine
transformations Waff defined in [Bo] and we give a characterization of the I -compatible ele-
ments via the dimension of the intersection of the image of the fundamental alcove associated to
Waff with some affine hyperplanes of V .

Using this result, we obtain an identity (Theorem 4.7) which generalizes the result of Peterson.
This identity links the number of abelian ideals and the coefficients of the simple roots in the
highest root of Δ. This allows us to conclude that if g is of type A or C, the number of abelian
ideals of pI is 2l−�I . It also explains why this result does not hold in general.

On the other hand, the enumeration of ad-nilpotent and abelian ideals of pI , when g is of clas-
sical type, is obtained using the diagrams given in [CP1], modified, by deleting some rows and
columns and grouping together some boxes, according to the type of g. The formulas obtained
depend on the decomposition in connected components of I . Note that the formulas obtained
when g is of type A or C are nicer than the ones obtained when g is of type B or D (Theo-
rems 4.7, 5.12 and Propositions 5.18, 5.20).

This paper is organized as follows: in Section 2, we recall some results on the affine Weyl
group. In Section 3, we give different characterizations of I -compatible elements of Ŵ . The
study, in Section 4, of the volume of the intersection of some affine hyperplanes on V gives the
results stated above on abelians ideals. Section 5 deals with the enumeration of both ad-nilpotent
and abelians ideals when g is of classical type, using diagrams. We give some remarks concerning
the exceptional cases and the relations with antichains in Section 6.

2. Generalities on the affine Weyl group

We shall conserve the notations given in the introduction. In this section, we shall recall some
basic facts on the affine Weyl group associated to Δ. In particular, we need to recall two different
realizations of this group. See [Bo,CP1,K] for more details.

We fix a scalar product (.,.) on V . For α ∈ Δ, let

α∨ = 2α

(α,α)

denote the corresponding coroot. Denote by Q∨ the coroot lattice of Δ.
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Let W denote the Weyl group associated to Δ. We shall realize the affine Weyl group as a
group of automorphisms of the affine root system associated to Δ. Let V̂ = V ⊕ Rδ ⊕ Rλ. We
extend the above bilinear form on V to a non-degenerate symmetric bilinear form on V̂ , also
denoted (.,.), by setting:

(λ,λ) = (δ, δ) = (λ,V ) = (δ,V ) = 0 and (δ, λ) = 1.

Let Δ̂ = Δ + Zδ be the set of (real) affine roots. We fix the following positive root system Δ̂+ =
(Δ+ + Nδ) ∪ (Δ− + N

∗δ). We shall write α > 0 (respectively α < 0) if α ∈ Δ̂+ (respectively if
α ∈ Δ̂− = −Δ̂+). Let θ be the highest root of Δ, then Π̂ = {α0 = −θ + δ,α1, . . . , αl} is the set
of simple roots for Δ̂+.

Note that for any element β + kδ ∈ Δ̂+, we have (β + kδ,β + kδ) = (β,β) 
= 0. For all
α ∈ Δ̂+, we denote by sα the reflection of V̂ defined by

sα(x) = x − 2(α, x)

(α,α)
α

for x ∈ V̂ . The affine Weyl group Ŵ is the subgroup of Aut(V̂ ) generated by {sα;α ∈ Π̂}. Ob-
serve that w(δ) = δ for all w ∈ Ŵ , sα(λ) = λ, for all α ∈ Π and sα0(λ) = λ − 2

‖θ‖2 α0, where

‖θ‖ = √
(θ, θ).

Let τ ∈ Q∨, we define the endomorphism tτ of V̂ by:

tτ (x + aδ + bλ) = x + aδ + bλ + bτ +
(

b

2
(τ, τ ) − (x, τ )

)
δ (1)

for x ∈ V and a, b ∈ R. Let S = {tτ ; τ ∈ Q∨}, then the group Ŵ is the semi-direct product of S

by W .
Consider the Ŵ -invariant affine subspace

E = {x ∈ V̂ ; (x, δ) = 1
}= V ⊕ Rδ + λ.

Let π :E → V be the projection ax + bδ + λ �→ ax and

i :V → E,

v �→ v + λ.

For w ∈ Ŵ , we set w = π ◦w|E ◦ i. The map w �→ w defines an injective morphism of groups
from Ŵ to Aut(V ). We shall identify Ŵ with its image Waff under this map.

For α ∈ Δ, sα is the reflection sα on V associated to α, and for τ ∈ Q∨, tτ is the translation
Tτ by the vector τ on V . For α ∈ Δ+, k � 0, x ∈ V , we obtain that

s−α+kδ(x) = x − ((x,α) − k
)
α∨ = Tkα∨ ◦ sα(x),

sα+kδ(x) = x − ((x,α) + k
)
α∨ = T−kα∨ ◦ sα(x).

Thus s−α+kδ and sα+kδ are the orthogonal reflections with respect to Hα,k = {x ∈ V ; (x,α) = k}
and Hα,−k respectively. It follows that Waff is the semi-direct product of W by the group of
translations Tτ , τ ∈ Q∨.
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Observe that for v ∈ W , τ ∈ Q∨, α ∈ Δ and k ∈ Z, we have

vtτ (Hα,k) = Hv(α),k+(τ,α).

Recall that the connected components of the complement in V of
⋃

α∈Δ,k∈Z
Hα,k are called

alcoves. The group Waff acts simply transitively on the set of alcoves. We denote

C = {x ∈ V ; (αi, x) > 0 for all αi ∈ Π
}
, A = {x ∈ C; (θ, x) < 1

}
respectively the fundamental chamber and the fundamental alcove with respect to Π and Π̂ .

We shall end this section by recording the following results:

Proposition 2.1. For w ∈ Ŵ , let N(w) = {β ∈ Δ̂+;w−1(β) < 0} and denote by 
(w) the length
of any reduced expression of w.

(a) We fix a reduced expression of w = sβ1 ◦ · · · ◦ sβk
with βi ∈ Π̂ , then N(w) = {sβ1 ◦ · · · ◦

sβp−1(βp);1 � p � k}. In particular, N(w) contains a simple root.
(b) Let w1, w2 ∈ Ŵ , then N(w1) ⊆ N(w2) if and only if, there exists u ∈ Ŵ such that w2 = w1u,

and 
(w2) = 
(w1) + 
(u). In particular, w is uniquely determined by N(w).
(c) If N(w) ∩ Δ+ 
= ∅, then N(w) ∩ Π 
= ∅.

Proof. For parts (a) and (b), see for example [CP1]. Let us prove (c). The case Ã1 is clear. In
the others cases, this is a direct consequence of the fact that N(w) is a “compatible” set, by
Theorem 1.3 from [CP1]. �
3. I -compatible elements in ̂W

Let I ⊂ Π and i be an ad-nilpotent ideal of pI . We set

Φi = {α ∈ Δ+ \ ΔI ;gα ⊆ i
}
.

Then i =⊕α∈Φi
gα and if α ∈ Φi, β ∈ Δ+ ∪ ΔI are such that α + β ∈ Δ+, then α + β ∈ Φi.

Conversely, set

FI = {Φ ⊂ Δ+ \ ΔI ; if α ∈ Φ, β ∈ Δ+ ∪ ΔI , α + β ∈ Δ+, then α + β ∈ Φ
}
.

Then for Φ ∈FI , iΦ =⊕α∈Φ gα is an ad-nilpotent ideal of pI .
We obtain therefore a bijection

{ad-nilpotent ideals of pI } → FI ,

i �→ Φi.

For Φ ∈ FI , we define Φ1 = Φ , Φk = (Φk−1 + Φ) ∩ Δ, for k � 2 and

LΦ =
⋃

∗

(−Φk + kδ
)
.

k∈N
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Since any ad-nilpotent ideal of pI is an ad-nilpotent ideal of the Borel subalgebra p∅ = b, we
have by [CP1] the following proposition:

Proposition 3.1. Let Φ ∈FI , then there exists a unique wΦ ∈ Ŵ such that LΦ = N(wΦ).

Thus we have the following injective map:

{ad-nilpotent ideals of pI } → Ŵ ,

i �→ wΦi
.

Recall from [CP1] the following characterization of the image of the above map when I = ∅.

Proposition 3.2. Let w ∈ Ŵ , then there exists an ideal i of b such that N(w) = LΦi
if and only if

(a) w−1(α) > 0, for all α ∈ Π .
(b) If w(α) < 0 for some α ∈ Π̂ , then w(α) = β − δ for some β ∈ Δ+.

If these conditions are verified, we say that w is Borel-compatible or ∅-compatible.

For w ∈ Ŵ , let Φw = {α ∈ Δ;−α + δ ∈ N(w)}. It follows that if w is ∅-compatible, then
Φw ⊂ Δ+.

Theorem 3.3. Let w ∈ Ŵ be Borel-compatible and I ⊂ Π . The following conditions are equiva-
lent:

(a) iΦw is an ad-nilpotent ideal of pI .
(b) sα(Φw) = Φw , for all α ∈ I .
(c) sα(LΦw) = LΦw , for all α ∈ I .
(d) N(sαw) = N(w) ∪ {α}, for all α ∈ I .
(e) w−1(α) ∈ Π̂ , for all α ∈ I .

If the hypothesis and these conditions are verified, we say that w is I -compatible.

Proof. (a) ⇒ (b). By assumption, we have Φw ∈ FI . Let β ∈ Φw , then sα(β) = β − (β,α∨)α,
hence sα(Φw) ⊂ Φw , for all α ∈ I . Moreover, since sα is an involution, we obtain that
sα(Φw) = Φw .

(b) ⇒ (c). Since w(δ) = δ, for all w ∈ Ŵ , this is clear (by induction on k or just remark that
Φk

w ∈ FI ).
(c) ⇒ (d). Let α ∈ I , by assumption, we have sα(N(w)) = N(w), hence for β ∈ N(w), we

have sα(β) ∈ N(w). So w−1sα(β) < 0 and β ∈ N(sαw). We have proved that N(w) ⊂ N(sαw).
Since �N(w) = 
(w) and 
(sαw) = 
(w) ± 1, by Proposition 2.1, we obtain that �N(sαw) =
�N(w) + 1. Moreover we have (sαw)−1(α) = w−1(−α) < 0, hence N(sαw) = N(w) ∪ {α}.

(d) ⇒ (e). Let α ∈ I . By assumption, we have N(w) ⊂ N(sαw), hence by Proposition 2.1,
there exists β ∈ Π̂ such that,

N(sαw) = N(wsβ) = N(w) ∪ {w(β)
}= N(w) ∪ {α}.

Consequently, we have w−1(α) = β ∈ Π̂ .
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(e) ⇒ (a). Let α ∈ I and assume that w−1(α) ∈ Π̂ . Let β ∈ Φw be such that β − α ∈ Δ+. We
have

w−1(−(β − α) + δ
)= w−1(−β + δ) + w−1(α) ∈ (Δ̂− + Π̂) ∩ Δ̂.

It follows that w−1(−(β − α) + δ) < 0. Moreover, w−1(−α + δ) = w−1(−α) + δ > 0 hence
α /∈ Φiw . We obtain that Φw ∈ Fαi

, for all αi ∈ I , hence Φw belongs to FI and iΦw is an ideal
of pI . �

Another characterization of ad-nilpotent ideals in b is given in [CP2] via the set D = {τ ∈
Q∨; (τ,αj ) � 1, j = 1, . . . , l and (τ, θ) � −2}. Let D̃ = {(τ, v) ∈ D × W ;vtτ (A) ⊂ C}. We can
state this characterization in the following way:

Proposition 3.4. The following map is bijective:

D̃ → {w ∈ Ŵ ,∅-compatible},
(τ, v) �→ vtτ .

Remark 3.5. In [CP2], the above correspondence is not viewed in the same way since the ele-
ments of Ŵ are written tτ v = vtv−1(τ ) instead of vtτ , for w ∈ W and τ ∈ Q∨.

Let w ∈ Ŵ be Borel-compatible, then Iw = {α ∈ Π;w−1(α) ∈ Π̂} is the unique maximal
element of {I ⊂ Π;w is I -compatible}. For τ ∈ Q∨, set

Dτ =
{ {α ∈ Π; (α, τ ) = 0} ∪ {−θ} if (θ, τ ) = −1,

{α ∈ Π; (α, τ ) = 0} if (θ, τ ) 
= −1.

Proposition 3.6. Let (τ, v) ∈ D̃, and w = vtτ ∈ Ŵ . Then v(Dτ ) = Iw . In particular, w is
I -compatible if and only if I ⊂ v(Dτ ).

Proof. Let α ∈ Iw , then

w−1(α) = t−τ v
−1(α) = v−1(α) + (v−1(α), τ

)
δ ∈ Π̂.

If w−1(α) ∈ Π , then we have v−1(α) ∈ Π and (v−1(α), τ ) = 0, hence v−1(α) ∈ Dτ . If
w−1(α) = α0, then we have v−1(α) = −θ and (θ, τ ) = −1, hence −θ = v−1(α) ∈ Dτ .

Conversely, let α ∈ Dτ ∩ Π , then vtτ (α) = v(α) ∈ Δ+, because w is Borel-compatible. Then
we have N(wsα) = N(w) ∪ {w(α)}, and by part (3) of Proposition 2.1, there exists a simple root
β ∈ Π such that β ∈ N(wsα). Since N(w) ∩ Δ+ = ∅, we obtain that w(α) = β and v(α) ∈ Iw .

Assume now that −θ ∈ Dτ . Since w is Borel-compatible, vtτ (α0) = −v(θ) ∈ Δ+. As above
we have N(wsα0) = N(w) ∪ {w(α0)}, and by part (3) of Proposition 2.1, there exists a simple
root β ∈ Π such that β ∈ N(wsα0). Since N(w) ∩ Δ+ = ∅, we obtain that w(α0) = β and
v(−θ) ∈ Iw .

We have therefore proved that v(Dτ ) = Iw , which concludes the proof. �
Let us denote Hα = Hα,0 for α ∈ Π , and Hα0 = Hθ,1. Let {ω1, . . . ,ωl} be elements of V

such that (ωi, αj ) = δij . Set n0 = 1 and let ni , i = 1, . . . , l, be the strictly positive integers such
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that θ =∑l
i=1 niαi . Let ωi = ωi/ni , i = 1, . . . , l, and ω0 = 0. Then the closure A of A is the

convex hull Conv(ω0,ω1, . . . ,ωl) of ω0, . . . ,ωl . For k ∈ N∗, the convex hull (respectively the
image by w ∈ Waff of the convex hull) of (k + 1) points in {ω0,ω1, . . . ,ωl} is called a k-face
of A (respectively of w(A)). For example, Hαi

∩ A = Conv(ω0, . . . ,ωi−1,ωi+1, . . . ,ωl) is an
(l − 1)-face of A.

We shall give yet another characterization of ad-nilpotent ideals of pI which shall be useful
in enumerating abelian ideals when g is of type A or C.

Proposition 3.7. Let w ∈ Ŵ be Borel-compatible and I ⊂ Π . Then, iΦw is an ideal of pI if and
only if for all α ∈ I , w(A) ∩ Hα is an (l − 1)-face of w(A).

Proof. Assume that w ∈ Ŵ is I -compatible. Let (τ, v) ∈ D̃ be such that w = vtτ . By Proposi-
tion 3.6, I ⊂ v(Dτ ), and v−1(α) ∈ Dτ , for all α ∈ I . Let α ∈ I , we distinguish two cases:

If v−1(α) = β ∈ Π , then (β, τ ) = 0. We obtain that

vtτ (Hβ) = Hv(β),(τ,β) = Hα.

Hence w(A) ∩ Hα is an (l − 1)-face of w(A).
If v−1(α) = −θ , then (θ, τ ) = −1. We obtain that

vtτ (Hα0) = Hv(θ),(τ,θ)+1 = Hα.

Hence, w(A) ∩ Hα is an (l − 1)-face of w(A).
Conversely, let v ∈ W , τ ∈ Q∨ be such that w = vtτ ∈ Ŵ is Borel-compatible. By assumption,

for all α ∈ I , there exists β ∈ Π̂ such that w(Hβ) = Hα .
If β ∈ Π , then

vtτ (Hβ) = Hv(β),(τ,β) = Hα

hence (τ,β) = 0, and w−1(α) = ±β . Since w is Borel-compatible, we have necessarily
w−1(α) > 0, and so α ∈ v(Dτ ).

If β = α0, then

vtτ (Hα0) = Hv(θ),(τ,θ)+1 = Hα

hence (τ, θ) = −1, and w−1(α) = ±(θ − δ). Since w is Borel-compatible, we have necessarily
w−1(α) > 0, and so α ∈ v(Dτ ). We have proved that I ⊂ v(Dτ ), and by Proposition 3.6, w is
I -compatible. �

Let H∅ = V . For J ⊂ Π̂ non-empty, denote HJ =⋂α∈J Hα . By the proposition above, if w

is I -compatible, then we have w(A) ∩ HI = w(A ∩ Hw−1(I )).

4. Volume of the faces of the fundamental alcove

Recall from [CP1] and [Ko], that w ∈ Ŵ is Borel-compatible and the ideal iΦw of b is abelian
if and only if w(A) ⊂ 2A. As a consequence, we have the following remarkable result of Peter-
son: the number of abelian ideals of b is 2l . Observe that the above result says that the number
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of abelian ideals in b depends only on the rank of g. In the case of parabolic algebras, we shall
see in this section to what extent this result can be extended.

For J ⊂ Π̂ , let FJ = A ∩ HJ = Conv(ωj ;αj /∈ J ). Observe that the FJ are the faces of A.
Let w ∈ Ŵ , if w(A) ∩ HJ is an (l − �J )-face of w(A), then we shall call w(A) ∩ HJ an
(l − �J )-alcove of HJ .

Proposition 4.1.

(a) Let w ∈ Ŵ and I ⊂ Π , if w(A) ⊂ 2A and w(A) ∩ HI is an (l − �I)-alcove of HI , then w is
I -compatible.

(b) Let I ⊂ Π and w,w′ ∈ Ŵ be I -compatible. If w(A) ⊂ 2A, w′(A) ⊂ 2A and w(A) ∩ HI =
w′(A) ∩ HI , then w = w′.

Proof. (a) Let w ∈ Ŵ and I ⊂ Π be of cardinality r . If w(A) ⊂ 2A, then w is Borel-compatible
and the ideal iΦw is abelian.

Set N = l − r + 1. Since w(A) ∩ HI is an (l − r)-alcove of HI , there exist N vertices
ωi1, . . . ,ωiN of A such that w(ωi1), . . . ,w(ωiN ) belong to w(A) ∩ HI .

There exist r distinct reflecting affine hyperplanes H ′
1, . . . ,H

′
r of the form Hα , for α ∈ Π̂ , such

that
⋂r

j=1 H ′
j contains ωi1, . . . ,ωiN . For j = 1, . . . , r , HI ∩w(H ′

j ) contains w(ωi1), . . . ,w(ωiN ).
Since the dimension of HI is N − 1, it follows that HI ⊂ w(H ′

j ).
The hyperplane HI is defined by the equations (x,α) = 0 for all α ∈ I , it follows that w(H ′

j )

is an hyperplane of the form Hβ,0, where β is a linear combination of elements of I .
Assume that β /∈ I . Then, the intersection of Hβ,0 with the closure of the fundamental cham-

ber C is of dimension at most l −2. Since by construction Hβ,0 contains an (l −1)-face of w(A),
and w(A) ⊂ C, we obtain a contradiction. It follows that β ∈ I .

Set w = vtτ . We then have that for each β ∈ I :

w−1(Hβ,0) = Hv−1(β),(τ,v−1(β)) = Hα

for some α ∈ Π̂ . If α ∈ Π , then v−1(β) = ±α and (τ, v−1(β)) = 0. Since w is Borel-compatible,
we obtain that w−1(β) = α.

If α = α0, we obtain that v−1(β) = ±θ and (τ, v−1(β)) = ±1. Since w is Borel-compatible,
we finally obtain that w−1(β) = α0. Thus, w−1(I ) ⊂ Π̂ , and w is I -compatible as required.

(b) Let I ⊂ Π and w,w′ ∈ Ŵ be I -compatible. Let α ∈ I , then w is I \ {α}-compatible.
It follows by Proposition 3.7 that w(A) ∩ HI\{α} is an (l − �I + 1)-alcove of HI\{α} and it is
the convex hull of w(A) ∩ HI and a vertex of HI\{α} ∩ w(A), which is not in HI ∩ w(A). In
the same way w′(A) ∩ HI\{α} is an (l − �I + 1)-alcove of HI\{α} and it is the convex hull of
w′(A) ∩ HI and a vertex of HI\{α} ∩ w′(A), which is not in HI ∩ w(A). Since w(A) ⊂ 2A, there
is a unique vertex in HI\{α} satisfying these conditions. So, w(A)∩HI\{α} = w′(A)∩HI\{α} and
by induction, we have w(A) = w′(A). Hence w = w′. �

Let F ′
J = 2A ∩ HJ = Conv(2ωj ;αj /∈ J ). It is clear that F ′

J is a union of (l − �J )-alcoves
of HJ . Let

AbI = {w ∈ Ŵ ; iΦw is an abelian ideal of pI }.
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By the above proposition and by Proposition 3.7, we obtain the following result:

Theorem 4.2. Let I ⊂ Π , then the map w �→ w(A) ∩ HI is a bijection between AbI and the set
of all the (l − �I)-alcoves of F ′

I .

Remark 4.3. The above theorem can be viewed as a generalization of Peterson’s result.

In order to determine �AbI , we are reduced to computing the volume of the (l − �I)-alcoves
of F ′

I . Furthermore, to compute the volume of the (l − �I)-alcoves of F ′
I , it suffices to compute

the volume of the (l − �I)-faces of A.
Let d(x,Hα) denote the distance from x ∈ V to the affine hyperplane Hα , for α ∈ Π̂ . For B a

k-alcove, let Volk(B) be the k-volume of B . By [Be], the volume of the fundamental alcove is

Voll (A) = 1

l
× d(0,Hα0) × Voll−1(Fα0).

Since the projection of 0 on Hα0 is θ

‖θ‖2 , we have d(0,Hα0) = 1
‖θ‖ . We obtain that Voll (A) =

1
l‖θ‖Voll−1(Fα0). Moreover, by [CLO],

Voll (A) = 1

l! |ω1 ∧ · · · ∧ ωl |.

Let D = |ω1 ∧ · · · ∧ ωl |, then

Voll−1(Fα0) = D

(l − 1)!n0‖θ‖. (2)

To compute the (l − 1)-volume of the faces Fαi
, i = 1, . . . , l, we compute the l-volume of the

convex hull of ({ω1, . . . ,ωl} \ {ωi}) ∪ { αi‖αi‖ }. Thus, we have:

Voll−1(Fαi
) = 1

(l − 1)!
∣∣∣∣ω1 ∧ · · · ∧ αi

‖αi‖ ∧ · · · ∧ ωl

∣∣∣∣.
Since αi =∑l

k=1(αi, αk)ωk ,

Voll−1(Fαi
) = D

(l − 1)!ni‖αi‖. (3)

We have therefore computed the (l − 1)-volume of the (l − 1)-faces of A. In particular, we
have:

Lemma 4.4. Let αi , αj ∈ Π̂ , be such that (αi, αi) = (αj ,αj ), then:

niVoll−1(Fj ) = nj Voll−1(Fi).

This lemma also appears as Proposition 26 in [Sut]. We shall generalize this result. For I ⊂ Π̂ ,
let nI = 1 if I = ∅, and nI =∏α ∈I ni otherwise. We shall prove the following result:
i
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Proposition 4.5. Let I ⊂ Π and w ∈ Ŵ be such that w−1(I ) = J ⊂ Π̂ . Then, we have:

nI Voll−�J (FJ ) = nJ Voll−�I (FI ).

To prove this proposition, we need the following technical lemma:

Lemma 4.6. Let I ⊂ Π be such that �I � l − 1. Let w ∈ Ŵ be such that w−1(I ) = J ⊂ Π̂ . Let
αj be any element of J if α0 /∈ J , and αj = α0 if α0 ∈ J . Set αi = w(αj ). Then we have:

nid(ωi,HI ) = njd(ωj ,HJ ).

Proof. The result is clear if J = ∅. We may therefore assume that 1 � �J � l − 1.

Step 1: Assume that α0 ∈ J . We shall determine the distance d(ω0,HJ ).
Let J0 be the connected component of J containing α0. Set r = �J0.
If J0 = {α0}, then the projection of 0 on HJ is θ

‖θ‖2 . Therefore, the distance d(ω0,HJ ) is 1
‖θ‖ .

Now assume that J0 
= {α0}. Then, J0 \ {α0} contains one or two roots β such that (β, θ) 
= 0.
Set J0 = {β1, . . . , βr }, α0 = βk and VJ0 =⊕βi∈J0\{α0} Rβi .

First of all, assume that J0 \ {α0} contains only one root βt such that (βt , θ) 
= 0. Let γt ∈ VJ0

be such that (γt , βt ) = 1 and (γt , βi) = 0 for all βi ∈ J0 \ {βt , βk}. Let μt = (‖θ‖2(1 − (γt ,θ)
2 ))−1

and β = μt(θ − (θ,βt )γt ). Then, we have (β,α) = 0 for all α ∈ J0 \ {α0} and

(β, θ) = μt

[‖θ‖2 − (θ,βt )(γt , θ)
]= μt‖θ‖2

[
1 − (γt , θ)

2

]
= 1.

For all x ∈ HJ , we have (γt , x) = 0, and so

(β − x,β) = μt

(
θ − (θ,βt )γt , β − x

)
= μt

[
(θ,β) − (θ, x)

]
= 0.

We have proved that β is the projection of ω0 in HJ . It follows that by taking any x ∈ HJ , we
have d(ω0,HJ )2 = ‖β‖2 = (x,β) = μt(x, θ) = μt .

Since I ⊂ Π and J = w−1(I ) and I have the same Dynkin diagram, we have by a case by
case consideration that J0 is of type Ar , Cr , or Dr .

If J0 is of type Ar , then by renumbering the roots βi , the Dynkin diagram of J0 is of the form:

�

k

�

1

�

2

� � � �

r − 2

�

r − 1

�

Then t = 1, and take

γt = 2

r‖β1‖2

(
(r − 1)β1 + (r − 2)β2 + · · · + βr−1

)
.

So (γt , θ) = r−1
r

, and we have

μt = 2r

2
. (4)
(r + 1)‖θ‖
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If J0 is of type Cr , then the Dynkin diagram of J0 is of the form:

�

k

> �

1

�

2

� � � �

r − 2

�

r − 1

�

Again t = 1, and take

γt = 2

r‖β1‖2

(
(r − 1)β1 + (r − 2)β2 + · · · + βr−1

)
.

So (γt , θ) = 2(r−1)
r

, and we have

μt = r

(r + 1)‖θ‖2
. (5)

If J0 is of type Dr , then the Dynkin diagram of J0 is of the form:

�

��

1

�
��

��

2

�

3

� � � �

r − 2

�

r − 1

�
��

k

or of the form:

�

��

r − 2

�

k

�

1

�

2

� � � �
��

��

r − 3

�
��

r − 1

�

In the first case we have t = 2, and we take

γt = 2

r‖β2‖2

(
(r − 2)β1 + 2(r − 2)β2 + 2(r − 3)β3 + · · · + 2βr−1

)
.

Thus (γt , θ) = 2(r−2)
r

, and we have

μt = r

2‖θ‖2
. (6)

In the second case, we have t = 1 and we take

γt = 1
2
(2β1 + 2β2 + · · · + 2βr−3 + βr−2 + βr−1).
‖β1‖
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Thus we have

μt = 2

‖θ‖2
. (7)

Assume now that J0 contains two roots α such that (α, θ) 
= 0. Then the Dynkin diagram of
J0 is of type Ar and these two roots are βk−1, βk+1:

�

1

� � � �

k − 1

�

k

�

k + 1

� � � �

r − 1

�

r

�

Let η,η′ ∈ VJ0 be such that (η,βk−1) = 1 = (η′, βk+1) and (η,βi) = 0 (respectively (η′, βi) = 0)

for all βi ∈ J0 \ {βk−1, βk} (respectively βi ∈ J0 \ {βk,βk+1}). Let μ = (‖θ‖2(1 − (η+η′,θ)
2 ))−1

and β = μ(θ − ((θ,βk−1)η + (θ,βk−1)η
′)). Then we have (β,α) = 0 for all α ∈ J0 \ {α0} and

(β, θ) = μ
[‖θ‖2 − ((θ,βk−1)η + (θ,βk−1)η

′, θ
)]= 1,

(β − x,β) = μ
(
θ − ((θ,βk−1)η + (θ,βk−1)η

′), β − x
)= 0

for all x ∈ HJ . We obtain that β is the projection of 0 on HJ . Take

η = 2

k‖βk−1‖2

(
(k − 1)βk−1 + (k − 2)βk−2 + · · · + β1

)
,

η′ = 2

(r − k + 1)‖βk+1‖2

(
βr + 2βr−1 + · · · + (r − k)βk+1

)
then (η + η′, θ) = k−1

k
+ r−k

r−k+1 . We obtain that:

d2(ω0,HJ ) = ‖β‖2 = μ = 2k(r − k + 1)

n2
0(r + 1)‖θ‖2

. (8)

Observe that the formulas (4) and (8) generalize the formula obtained when J0 = {α0}. Let
k be the position of α0 ∈ J0, then we can sum up the above results in the following table, when
1 � �J � l − 1:

Table 1

J0 Ar Cr Dr Dr

t = 2 t = 1

d(ω0,HJ )2 2k(r−k+1)

n2
0(r+1)‖θ‖2

r

n2
0(r+1)‖θ‖2

r

2n2
0‖θ‖2

2
n2

0‖θ‖2

Step 2: Assume that J ⊂ Π . Let αj ∈ J . We shall determine the distance d(ωj ,HJ ).
We have HJ = Vect(ωt ; t such that αt /∈ J ) ⊂ HJ\{αj } ⊂ V . Let H⊥

J = {x ∈ V ; (x,ωt ) = 0
for all t such that αt /∈ J }, then H⊥

J = Vect(αt ;αt ∈ J ), and dim(H⊥
J ∩ HJ\{αj }) = 1. Since

HJ\{αj } ∩ H⊥
J =

{
x =

∑
τtαt ; (x,β) = 0 for all β ∈ J \ {αj }

}
,

αt∈J
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there exists γ ∈ V such that HJ\{αj } ∩H⊥
J = Vect(γ ), and (γ,αj ) 
= 0. Thus, we have HJ\{αj } =

HJ ⊕ Cγ . It follows that there exists μ ∈ C
∗ such that ωj + μγ ∈ HJ .

Let Jj be the connected component of J which contains αj . Set Jj = {β1, . . . , βr }, with
αj = βk . Set VJj

=⊕βj ∈Jj
Rβj . We may choose γ such that (γ,αj ) = 1 and (γ,α) = 0 for all

α ∈ Jj \ {αj }. Since (ωj + μγ,αj ) = 0, we obtain that μ = − 1
nj

, and hence

d(ωj ,HJ ) = ‖γ ‖
nj

, (9)

where γ depends only on the position of αj in the Dynkin diagram of Jj .
Finally, we need to compute explicitly d(ωj ,HJ ) in some particular cases. We use the num-

bering of [TY, Chapter 18].
If Jj = Ar , take

γ = 2

(r + 1)‖βk‖2

[
(r − k + 1)β1 + 2(r − k + 1)β2 + · · ·

+ (k − 1)(r − k + 1)βk−1 + k(r − k + 1)βk + k(r − k)βk+1 + · · · + kβr

]
.

If Jj = Cr , and k = r , take

γ = 2

‖βr‖2

(
β1 + 2β2 + · · · + (r − 1)βr−1 + r

2
βr

)
.

If Jj = Dr , take

γ = 1

‖βr‖2

[
β1 + 2β2 + · · · + (r − 2)βr−2 + 1

2

[
(r − 2)βr−1 + rβr

]]
if k = r,

γ = 1

‖βr‖2

[
β1 + 2β2 + · · · + (r − 2)βr−2 + 1

2

[
rβr−1 + (r − 2)βr

]]
if k = r − 1,

γ = 1

‖β1‖2
[2β1 + 2β2 + · · · + 2βr−2 + βr−1 + βr ] if k = 1.

In these particular cases, we obtain the following result:

Table 2

Jj Ar Cr Dr Dr

k = r k = r − 1, r k = 1

d(ωj ,HJ )2 2k(r−k+1)

n2
j
(r+1)‖αj ‖2

r

n2
j
(r+1)‖αj ‖2

r

2n2
j
‖αj ‖2

2
n2
j
‖αj ‖2

Final step: We are now in a position to prove the lemma. Let Ii be the connected component
of I containing αi . If J ⊂ Π , then we have the result by (9), since αj and αi have the same
position in the Dynkin diagram of Jj and Ii respectively.

If α0 ∈ J , then the connected component J0 of J containing α0 is of the type Ar , Cr , or Dr .
Again since w−1(α0) and α0 have the same position in the respective Dynkin diagram, we obtain
the result by inspecting the correspondence between Tables 1 and 2. �
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Proof of Proposition 4.5. The case �I = 0 is trivial since in this case, FI = FJ = A.
Let I ⊂ Π . Let us proceed by induction on �I . If �I = 1, the result is proved in Lemma 4.4.

Assume that l > �I > 1 and that the claim is true for �I − 1. Let αj be any element of J if
α0 /∈ J , and αj = α0 if α0 ∈ J . Set αi = w(αj ). Then, we have by Lemma 4.6,

nJ Voll−�I (FI ) = nJ (l − �I + 1)Voll−�I+1(FI\{αi }) × 1

d(ωi,HI )

= nj (l − �I + 1)
nI

ni

Voll−�I+1(FJ\{αj }) × ni

njd(ωj ,HJ )

= nI (l − �I + 1)Voll−�I+1(FJ\{αj }) × 1

d(ωj ,HJ )

= nI Voll−�I (FJ ).

Finally, the result is clear if �I = l since in this case FI (respectively FJ ) is a single point. �
Observe that for I ⊂ Π , F ′

I = 2FI , so

Voll−�I

(
F ′

I

)= 2l−�I Voll−�I (FI ). (10)

We obtain a generalization of Peterson’s result:

Theorem 4.7. Let I ⊂ Π , then

1

nI

∑
w∈AbI

nw−1(I ) = 2l−�I .

Proof. Let I ⊂ Π and w ∈ Ŵ . By Propositions 3.7 and 4.1, then∑
w∈AbI

Voll−�I

(
w(A) ∩ HI

)= Voll−�I

(
F ′

I

)
.

Observe that for w ∈ AbI we have w(A) ∩ HI = w(Fw−1(I )), and Voll−�I (w(Fw−1(I ))) =
Voll−�I (Fw−1(I )). So by Proposition 4.5 and by (10), we obtain that

∑
w∈AbI

nw−1(I )

nI

Voll−�I (FI ) = 2l−�I Voll−�I (FI ).

Thus, we have the result. �
Theorem 4.8. Let I ⊂ Π , if g is of type Al or Cl , then the parabolic subalgebras pI have exactly
2l−�I abelian ideals.

Proof. If g is of type Al or Cl , the numbers ni , for i = 0, . . . , l, depends only on the length of αi .
It follows that for any w ∈ AbI , nI = nw−1(I ). So by Theorem 4.7, we obtain the result. �
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Remark 4.9. The fact that the integers ni , for i = 0, . . . , l, depends only on the length of αi is
false when g is not of type A or C. Indeed, Theorem 4.8 is false in general. For example, in B3,
the parabolic subalgebra p{α1} has only 3 abelian ideals. We shall see in the next section another
way to count the number of abelian ideals in cases B and D.

5. Enumeration of ideals via diagrams

In this section, we shall determine, via diagram enumeration, the number of ad-nilpotent (re-
spectively abelian) ideals of pI , for I ⊂ Π , when g is simple and of classical type. We shall use
the numbering of simple roots of [TY, Chapter 18].

Recall the following partial order on Δ+: α � β if β − α is a sum of positive roots. Then it is
easy to see that Φ ∈F∅ if and only if for all α ∈ Φ,β ∈ Δ+, such that α � β , then β ∈ Φ . When
g is of type A, B , C or D, we can display the positive roots into a diagram of suitable shape, as
in [CP1]. Then, they established a bijection between elements of F∅ and certain subdiagrams.

Let I ⊂ Π . In order to adapt this construction in the parabolic case pI , we shall use a similar
construction, but our diagram will depend not only on the type of g, but also on I .

Let I ⊂ Π and γ,β ∈ Δ+. We say that β
I→ γ if there exists η ∈ I such that β +η = γ . Define

an equivalence relation on Δ+ \ΔI : for I ⊂ Π , γ ∼I β if there exist β1, . . . , βs ∈ Δ+ \ΔI such
that

(i) β = β1, γ = βs ,

(ii) either βi
I→ βi+1 or βi+1

I→ βi , for i = 1, . . . , s − 1.

As the standard Levi factor of pI acts in a reductive way on the nilpotent radical, the fact
that two roots β,γ are ∼I equivalent means that gα and gβ are in the same simple submod-
ule.

Let X be the type of g. The idea is to start by displaying the positive roots Δ+ in a dia-
gram TX of a suitable shape as in [CP1]: that is, we assign to each box labeled (i, j) in TX ,
a positive root ti,j . The shape and the filling of TX are chosen such that we obtain a bijection
between elements of F∅ and the northwest flushed subdiagrams, henceforth nw-diagrams, of TX

(in type D, we need to include also nw-diagrams modulo a permutation of certain columns).
Then, for I ⊂ Π , we delete the boxes containing elements of ΔI . Observe that the set of boxes
of the same equivalent class is connected. Therefore, we can regroup into a big box all the roots
of the same equivalent class. We obtain a new diagram denoted by T I

X . Then, we count the nw-
diagrams of T I

X (again in type D, we need to count also nw-diagrams modulo a permutation of
certain columns), which are clearly in bijection with the elements of FI .

5.1. Type Al

If g is of type Al , then TAl
is a diagram of shape [l, l − 1, . . . ,1]. The label (i, j) means a

box in the ith row and the j th column. The boxes (i, j) of TAl
are filled by the positive roots

ti,j = αi + · · · + αl−j+1, 1 � i, j � l. For example, for l = 5, we have:
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l︷ ︸︸ ︷
t1,1 t1,2 t1,3 t1,4 t1,5

t2,1 t2,2 t2,3 t2,4

t3,1 t3,2 t3,3

t4,1 t4,2

t5,1

Let I ⊂ Π . We first delete the boxes containing elements of ΔI . Then, we regroup the equivalent
classes of ∼I proceeding simple root by simple root: for each αi ∈ I , we regroup the (l − i +1)th
and the (l − i + 2)th columns if i 
= 1, and the rows i, i + 1 if i 
= l, on TAl

. At the end, we obtain
that T I

Al
is a diagram of shape [l − �I, l − �I − 1, . . . ,1]. For example, for A5 and I = {α2, α3},

we have:

l︷ ︸︸ ︷
t1,1 t1,2 t1,3 t1,4 t1,5

t2,1 t2,2

t3,1 t3,2

t4,1 t4,2

t5,1

Let Cl = 1
l+1

(2l
l

)
denote the lth Catalan number.

Proposition 5.1. Let I ⊂ Π . Let SI
Al

be the set of all nw-diagrams of T I
Al

. Then, the cardinality

of SI
Al

is Cl−�I+1.

Proof. Let I ⊂ Π , then T I
Al

if of shape [l − �I, l − �I − 1, . . . ,1], so by [S, 8, 6.19 vv.], we

obtain that the cardinality of the set of nw-diagrams of T I
Al

is Cl−�I+1. �
5.2. Type Cl

Definition 5.2. Let p,q be two integers such that q � p. Let Tp,q be the (shifted) diagram of
shape [p + q − 1,p + q − 3, . . . , p − q + 1] arranged in the following way:

q

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p+q−1︷ ︸︸ ︷

︸ ︷︷ ︸
p−q+1
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If g is of type Cl , then TCl
is the diagram Tl,l , and the boxes (i, j) of TCl

are filled by the
positive roots ti,j , where

ti,j =
{

αi + · · · + αj−1 + 2(αj + · · · + αl−1) + αl, 1 � j � l − 1,

αi + · · · + α2l−j , l � j � 2l − 1.

Let I ⊂ Π , we first delete the boxes containing elements of ΔI . Then, we regroup the equivalent
classes of ∼I proceeding simple root by simple root: for each αi ∈ I \ {αl}, we first regroup
column 2l − i and column 2l − i + 1 if i 
= 1, then we regroup the ith and (i + 1)th columns and
also the ith and (i + 1)th rows on TCl

. If αl ∈ I , we regroup also the columns l and l + 1. We
obtain at the end that T I

Cl
is a diagram of shape Tl−�I,l−�I if αl /∈ I and of shape Tl−�I+1,l−�I , if

αl ∈ I .
By [Pr], we obtain directly that the number of nw-diagram of Tp,q is

(
p+q

p

)
. Consequently, we

have the following proposition:

Proposition 5.3. Let I ⊂ Π . Let SI
Cl

be the set of all nw-diagrams of T I
Cl

. Then, the cardinality

of SI
Cl

is

(l − �I + 1)Cl−�I if αl /∈ I, and
l − �I + 2

2
Cl−�I+1 if αl ∈ I.

5.3. Type Bl and Dl

Let I ⊂ Π . Assume that g is of type X = Bl or Dl . Then the shape of T I
X is more complicated

than in the case A or C, so we need more combinatorial results on diagrams.

Definition 5.4. Let p,q be two integers such that q � p. Let T ′
p,q be the diagram of q rows of

the shape [p,p − 1, . . . , p − q + 1] arranged in the following way:

q

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p︷ ︸︸ ︷

Proposition 5.5. Let p,q be two integers such that q � p. Then, the number of nw-diagrams of
T ′

p,q is

T ′
p,q = (p + q + 1)!(p − q + 2)

q!(p + 2)! .
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Proof. Let Dp,q be the set of nw-diagrams of T ′
p,q . We shall proceed by induction on q . If q = 1,

then T ′
p,1 is

p︷ ︸︸ ︷
so we have

�Dp,q = T ′
p,q = p + 1 = (p + q + 1)!(p − q + 2)

q!(p + 2)! .

Assume that q > 1 and the claim is true for q − 1. For 1 � k � p − q + 1, let

Sk = {S ∈ Dp,q; (q, k) ∈ S and (q, k + 1) /∈ S
}
.

Then, �Sk = T ′
p−k,q−1 and L =⋃p−q+1

k=1 Sk is the set of nw-diagrams containing at least a box in
the last row of T ′

p,q . Since Dp,q is the disjoint union of Dp,q−1 and L, we obtain that:

T ′
p,q = T ′

p,q−1 + �L =
p−q+1∑

i=0

T ′
p−i,q−1

=
p∑

k=q−1

T ′
k,q−1 =

p∑
k=q−1

(k + q)!(k − q + 3)

(q − 1)!(k + 2)!

= (p + q + 1)!(p − q + 2)

q!(p + 2)!

where the last equality is a simple induction on p � q . �
Definition 5.6. Let p � q be two positive integers and 1 � l1 < l2 < · · · < ls � q + 1 be some
other integers. Denote by Tp,q(l1, l2, . . . , ls) the new diagram obtained by adding to Tp,q the
boxes (li , li − 1), for 1 � i � s. For example, T5,4(2,4) is:

q

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p+q−1︷ ︸︸ ︷
×

× ︸ ︷︷ ︸
p−q+1

where the added boxes are marked with a ×.
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Proposition 5.7. Let p � q be two positive integers and 1 � l1 < l2 < · · · < ls � q + 1 be some
other integers, then the number of nw-diagrams of Tp,q(l1, l2, . . . , ls) is(

p + q

p

)
+

s∑
j=1

T ′
p+q−lj ,lj −1.

Proof. Let Dp,q(l1, . . . , ls) be the set of nw-diagrams of Tp,q(l1, . . . , ls) and Dp,q(l1, . . . , ls) be
its cardinality. Let bs = (ls , ls − 1). Set

E = {S ∈ Dp,q(l1, . . . , ls);bs /∈ S
}
,

F = {S ∈ Dp,q(l1, . . . , ls);bs ∈ S and S \ {bs} ∈ E
}
,

G = {S ∈ Dp,q(l1, . . . , ls);bs ∈ S and S \ {bs} /∈ E
}
.

Then, we have clearly Dp,q(l1, . . . , ls) = �E + �F + �G.
If S ∈ F , then S contains all the boxes north-west of bs and the other boxes of S are strictly

north-east of bs , so there exists a bijection between F and the set of nw-diagrams of T ′
p+q−ls ,ls−1.

For the example in Definition 5.6, if S ∈ F , S is a nw-diagram of:

ls

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p+q−1︷ ︸︸ ︷

bs

containing bs . Hence it suffices to count the nw-diagrams of the subdiagram strictly north-east
of bs :

ls−1

⎧⎪⎪⎨⎪⎪⎩

p+q−ls︷ ︸︸ ︷

So by Proposition 5.5, the cardinality of F is T ′
p+q−ls ,ls−1.

If S ∈ G, then S \ {bs} is a nw-diagram of T where T = Tp,q if s = 1 and T =
Tp,q(l1, . . . , ls−1) if s > 1. So the cardinality of G is the cardinality of the set of nw-diagrams in
T minus the cardinality of the set H of nw-diagrams having at most ls − 1 rows. Observe that
the elements of H correspond to those of E. Hence, (by [Pr])

�G =
{Dp,q(l1, . . . , ls−1) − �E if s > 1,(

p+q
p

)− �E if s = 1.

The result now follows easily by induction on s. �
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Notations 5.8. Fix I ⊂ Π . Let I1, . . . , Is be the connected components of I of cardinality
r1, . . . , rs respectively. For each connected component Ij , set mj = min{i;αi ∈ Ij }. Without
loss of generality, we shall assume that m1 < m2 < · · · < ms .

If g is of type Bl , then TBl
is Tl,l and the boxes (i, j) of TBl

are filled by the positive roots ti,j ,
where

ti,j =
{

αi + · · · + 2(αj+1 + · · · + αl), 1 � j � l − 1,

αi + · · · + α2l−j , l � j � 2l − 1.

As before, for I ⊂ Π , we delete the boxes containing elements of ΔI . For j = 1, . . . , s, set

lj = mj −
j−1∑
k=1

rk. (11)

Regroup the equivalent classes of ∼I proceeding simple root by simple root: for each αi ∈ I \
{αl}, we first regroup rows i and i + 1 and if i 
= 1, we regroup column 2l − i and column
2l − i + 1, then the columns i − 1 and i. If αl ∈ I , we also regroup the columns l − 1, l and l + 1.
We obtain that T I

Bl
is a diagram of shape Tl−�I,l−�I (l1, . . . , ln), where the li are defined as above

and, n = s − 1 if αl ∈ I and n = s if αl /∈ I . For example, for B5 and I = {α2, α3, α5}, we have:

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7 t1,8 t1,9

t2,2 t2,3 t2,4 t2,5 t2,6

t3,3 t3,4 t3,5 t3,6

t4,4 t4,5 t4,6

←→
b1

It follows from Proposition 5.7 that:

Proposition 5.9. Let I ⊂ Π be of cardinality r . Let SI
Bl

be the set of all nw-diagrams of T I
Bl

.

Then, the cardinality of SI
Bl

is

(l − r + 1)Cl−r +
n∑

j=1

T ′
2(l−r)−lj ,lj −1

where n = s − 1 if αl ∈ I , and n = s otherwise.

If g is of type Dl , then TDl
is Tl,l−1, and the boxes (i, j) of TDl

are filled by the positive
roots ti,j , where

ti,j =
⎧⎨⎩

αi + · · · + 2(αj+1 + · · · + αl−2) + αl−1 + αl, 1 � j � l − 2,

αi + · · · + αl−2 + αl, j = l − 1,

α + · · · + α , l � j � 2l − 1.
i 2l−j
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For I ⊂ Π , we first delete the boxes containing elements of ΔI . For j = 1, . . . , s, set

lj =
{

mj −∑j−1
k=1 rk if j 
= s or Is 
= {αl},

mj −∑j−1
k=1 rk − 1 if j = s and Is = {αl}.

(12)

Regroup the equivalent classes of ∼I proceeding simple root by simple root: for each αi ∈ I \
{αl−1, αl}, we first regroup the rows i and i + 1 and if i 
= 1, we regroup column 2l − i − 1 and
column 2l − i, and then the columns i − 1 and i.

If αl−1 ∈ I , but αl /∈ I , then we regroup the columns l − 2, l − 1 and columns l, l + 1.
If αl ∈ I , but αl−1 /∈ I , then we first reverse the columns l − 1 and l, and then we regroup the

(new) columns l − 2, l − 1 and columns l, l + 1.
If {αl−1, αl} ⊂ I , then we regroup the four columns l − 2, l − 1, l and l + 1.
We obtain that if {αl−1, αl} 
⊂ I , then T I

Dl
is a diagram of shape Tl−�I,l−�I−1(l1, . . . , ls), where

the li are defined as above. If {αl−1, αl} ⊂ I , then T I
Dl

is a diagram of shape Tl−�I,l−�I (l1, . . . ,

ls−1).
In the following examples, we denote by i the simple root αi and by i2 the element 2αi . We

consider, X = D5 and I is respectively {α1, α2, α5} and {α2, α4, α5}:

1223245 123245 12345 1234 1235 123

23245 2345 234 235 23

345 34 35 3

4

←→ b1

b2

1223245 123245 12345 1235 1234 123 12 1

23245 2345 235 234 23

345 35 34 3

←→
b1

Definition 5.10. For a subdiagram L of T I
Dl

, we shall denote by L• the set of boxes of L obtained
from L by exchanging columns l − r − 1 and l − r (respectively l − r and l − r + 1) if α1 /∈ I

(respectively if α1 ∈ I ).
If L• is a nw-diagram of T I

Dl
, then we say that L is a •-nw-diagram of T I

Dl
.

Proposition 5.11. Let I ⊂ Π be of cardinality r . Let SI
Dl

be the set of nw-diagrams of T I
Dl

if
{αl−1, αl} ∩ I 
= ∅, and be the union of the set of nw-diagrams and the set of •-nw-diagrams of
T I

Dl
if {αl−1, αl} ∩ I = ∅. Then, the cardinality of SI

Dl
is

(i)
(
3(l − r) − 2

)
Cl−r−1 +

s∑
j=1

T ′
2(l−r)−lj −1,lj −2 + T ′

2(l−r)−lj −1,lj −1, if t = 0,

(ii)
l − r + 1

2
Cl−r +

s∑
T ′

2(l−r)−lj −1,lj −1, if t = 1,
j=1
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(iii) (l − r + 1)Cl−r +
s−1∑
j=1

T ′
2(l−r)−lj ,lj −1, if t = 2,

where t = �({αl−1, αl} ∩ I ).

Proof. Assume first that {αl−1, αl} ∩ I = ∅. Note that, the elements of FI are in bijection with
the subdiagrams S of T I

Dl
= Tl−r,l−r−1(l1, . . . , ls) such that either S or S• is a nw-diagram. Let

E1 = the set of nw-diagrams of T I
Dl

,

E2 = (the set of •-nw-diagrams of T I
Dl

) \ E1.

So SI
Dl

= E1 ∪ E2 (disjoint union). By Proposition 5.7, we have:

�E1 = l − r + 1

2
Cl−r +

s∑
j=1

T ′
2(l−r)−lj −1,lj −1.

On the other hand, the number of elements of E2 is �E1 − �F , where F is the set of elements of
E1 having columns l − r − 1 and l − r (respectively l − r and l − r + 1) of the same length if
α1 /∈ I (respectively if α1 ∈ I ).

Clearly, the number of elements of F is exactly the number of nw-diagrams of the diagram
obtained from T I

Dl
by removing the (l − r)th (respectively (l − r + 1)th) column if α1 /∈ I (re-

spectively if α1 ∈ I ). So, by Proposition 5.7,

�F = (l − r)Cl−r−1 +
s∑

j=1

T ′
2(l−r)−lj −2,lj −1.

We obtain therefore the result since we have the equality:

T ′
2(l−r)−lj −1,lj −1 − T ′

2(l−r)−lj −2,lj −1 = T ′
2(l−r)−lj −1,lj −2.

If αl−1 or αl ∈ I , then there is no column reversing. Then the result follows from Proposi-
tion 5.7 according to the shape of T I

Dl
. �

As in [CP1], we have clearly a bijection between FI and SI
X . It follows from Propositions 5.1,

5.3, 5.9, 5.11, that we have:

Theorem 5.12. Let I ⊂ Π of cardinality r , X be the type of g and s, lj as defined in 5.8, (11)
and (12).

If X = Al , then

�FI = Cl−r+1.
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If X = Bl , then

�FI = (l − r + 1)Cl−r +
n∑

j=1

T ′
2(l−r)−lj ,lj −1,

where n = s − 1 if αl ∈ I , and n = s otherwise.
If X = Cl , then

�FI =
{

(l − r + 1)Cl−r if αl /∈ I,
l−r+2

2 Cl−r+1 if αl ∈ I.

If X = Dl , then

�FI =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l−r+1

2 Cl−r +∑s
j=1 T ′

2(l−r)−lj −1,lj −1 if �{αl−1, αl} ∩ I = 1,

(l − r + 1)Cl−r +∑s−1
j=1 T ′

2(l−r)−lj ,lj −1 if {αl−1, αl} ⊂ I,

(3(l − r) − 2)Cl−r−1
+∑s

j=1 T ′
2(l−r)−lj −1,lj −2 + T ′

2(l−r)−lj −1,lj −1 otherwise.

5.4. Abelian ideals

We have already determined in Theorem 4.8 the number of abelian ideals for type A and C.
We shall now enumerate the abelian ideals of pI using diagrams when g is of type B or D.
Observe that a similar argument could be used to enumerate abelian ideals in type A and C.

Definition 5.13. Let p be a positive integer and Rp be the diagram of shape [p,p − 1, . . . ,1]
arranged in the following way:

p︷ ︸︸ ︷ ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
p

Proposition 5.14. The number of nw-diagrams of Rp is 2p .

Proof. We shall proceed by induction on p. If p = 1, the result is clear. Assume that p > 1 and
the claim is true for p − 1. Let b be the box (1,p) and

E = the set of nw-diagrams of Rp which do not contain b,

F = the set of nw-diagrams of Rp which contain b.

Then, the number of nw-diagrams of Rp is �E + �F . Furthermore, by the induction hypothesis,
we have �E = 2p−1 = �F , and we obtain the result. �
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Definition 5.15. Let p be a positive integer and 1 � l1 < l2 < · · · < ls � p+1 be some other inte-
gers. Denote by Rp(l1, l2, . . . , ls) the new diagram obtained by adding to Rp the boxes (li , li −1),
for 1 � i � s. For example, R4(3):

p︷ ︸︸ ︷
×

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
p

Proposition 5.16. Let p be a positive integer and 1 � l1 < l2 < · · · < ls � p + 1 be some other
integers, then the number of nw-diagrams of Rp(l1, l2, . . . , ls) is

2p +
s∑

j=1

(
p

lj − 1

)
.

Proof. Let Dp(l1, . . . , ls) be the set of nw-diagrams of Rp(l1, . . . , ls) and Dp(l1, . . . , ls) be its
cardinality. Let bs = (ls , ls − 1). Set

E = {S ∈ Dp(l1, . . . , ls);bs /∈ S
}
,

F = {S ∈ Dp(l1, . . . , ls);bs ∈ S and S \ {bs} ∈ E
}
,

G = {S ∈ Dp(l1, . . . , ls);bs ∈ S and S \ {bs} /∈ E
}
.

Then we have clearly Dp(l1, . . . , ls) = �E + �F + �G.
If S ∈ F , then S contains all the boxes north-west of bs and the other boxes of S are strictly

north-east of bs , so there exists a bijection between F and the set of nw-diagrams of T where T

is a diagram whose shape is a rectangle containing p − lj + 1 columns and lj − 1 rows. For the
example in Definition 5.15, if S ∈ F , S is a nw-diagram of:

p︷ ︸︸ ︷
bs

⎫⎪⎪⎬⎪⎪⎭ l1

containing bs . Hence it suffices to count the nw-diagrams of the rectangular subdiagram strictly
north-east of bs :

p−l1+1︷ ︸︸ ︷ }
l1−1
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So by [Pr] the cardinality of F is
(

p
lj −1

)
.

If S ∈ G, then S \ {bs} is a nw-diagram of L where L = Rp if s = 1 and L = Rp(l1, . . . , ls−1)

if s > 1. So the cardinality of G is the cardinality of the set of nw-diagrams in L minus the
cardinality of the set H of nw-diagrams having at most ls − 1 rows. Observe that the elements of
H correspond to those of E. Hence, by Proposition 5.14

�G =
{
Dp,q(l1, . . . , ls−1) − �E if s > 1,

2p − �E if s = 1.

The result now follows easily by induction on s. �
Let Fab

I = {Φ ∈FI ; iΦ is abelian}. If S is a subdiagram of a diagram, let

τS
h = max

{
k; (h, k) ∈ S

}
,

so (h, τS
h ) is the right most box in the hth row of S.

Proposition 5.17. Assume that g is of type Bl . Let I ⊂ Π be of cardinality r . Consider Φ ∈ FI

and S its corresponding nw-diagram in T I
Bl

. Then Φ ∈Fab
I if and only if

(a) τS
1 � l − r if α1 ∈ I ,

(b) τS
1 + τS

2 � 2(l − r) − 1 if α1 /∈ I .

Proof. Let S0 be the corresponding nw-diagram of Φ in T ∅
Bl

, then by [CP1], we have Φ ∈ Fab
∅

if and only if τ
S0
1 + τ

S0
2 � 2l − 1.

If α1 ∈ I , then τ
S0
1 = τ

S0
2 . The regrouping process reduces the number of columns on the left

of column l of T ∅
Bl

by one for each simple root in I \ {α1}. It follows that Φ ∈Fab
I if and only if

τS
1 � l − r .

The argument is similar for the case α1 /∈ I . �
Proposition 5.18. Assume that g is of type Bl . Let I ⊂ Π be of cardinality r , and l1, . . . , ls be as
defined in (11). Then we have:

�Fab
I =

{
2l−r +∑n

j=1 2
(
l−r−1
lj −1

)
if α1 /∈ I,

2l−r−1 +∑n
j=1

(
l−r−1
lj −1

)
if α1 ∈ I,

where n = s if αl /∈ I and n = s − 1 if αl ∈ I .

Proof. Recall that T I
Bl

is of shape Tl−r,l−r (l1, . . . , ln), where n = s if αl /∈ I and n = s − 1 if
αl ∈ I .

Let Φ ∈ FI and S be the nw-diagram of T I
Bl

corresponding to Φ .

Assume that α1 ∈ I , then l1 = 1. By Proposition 5.17, S is in the left-hand half of T I
Bl

, so it is
a nw-diagram of Rl−r−1(1, . . . , ln). We then obtain the result by Proposition 5.16.

Assume that α1 /∈ I . Let E be the set of nw-diagrams of T I
Bl

associated to elements of Fab
I .

Set
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P = {S ∈ E; τS
1 � l − r − 1

}
,

Q = {S ∈ E; τS
1 > l − r − 1

}
.

Then, we have �E = �P + �Q.
If S ∈ P , then S is included in the left-hand half of T I

Bl
, so

�P = 2l−r−1 +
n∑

j=1

(
l − r − 1

lj − 1

)

by Proposition 5.16.
For i = l − r, . . . ,2(l − r) − 1, let Qi = {S ∈ Q; τS

1 = i} and Pi = {S ∈ P ; τS
1 = 2(l − r) −

1 − i}. We then have:

Q =
2(l−r)−1⋃

i=l−r

Qi and P =
2(l−r)−1⋃

i=l−r

Pi .

For i = l − r, . . . ,2(l − r) − 1, we have an obvious bijection between Pi and Qi given by the
adding or removing of boxes (1,2(l − r) − i), . . . , (1, i). Therefore �P = �Q and the result
follows. �
Proposition 5.19. Assume that g is of type Dl . Let I ⊂ Π be of cardinality r . Consider Φ ⊂ FI

and SΦ its corresponding subdiagram in T I
Dl

. Set S = SΦ if SΦ is a nw-diagram and S = S•
Φ if

S•
Φ is a nw-diagram. Then Φ ∈ Fab

I if and only if

(a) τS
1 � l − r if α1 ∈ I ,

(b) τS
1 + τS

2 � 2(l − r) − 2 if α1 /∈ I .

Proof. If I = ∅, set S = S0, then by [CP1], we have Φ ∈Fab
∅ if and only if τ

S0
1 + τ

S0
2 � 2l − 2.

Assume that α1 ∈ I , then τ
S0
1 = τ

S0
2 . The regrouping process reduces the number of columns

of the left of column l of T ∅
Dl

by one for each simple root in I \ {α1}. It follows that Φ ∈ Fab
I if

and only if τS
1 � l − r .

The argument is similar for the case α1 /∈ I . �
Proposition 5.20. Assume that g is of type Dl . Let I ⊂ Π be of cardinality r and l1, . . . , ls be as
defined in (12). Set t = �({αl−1, αl} ∩ I ). If α1 ∈ I , then the cardinality of Fab

I is:

(i) 2l−r − 2l−r−2 +
s∑

j=1

[
2

(
l − r − 1

lj − 1

)
−
(

l − r − 2

lj − 1

)]
, if t = 0,

(ii) 2l−r−1 +
s∑

j=1

(
l − r − 1

lj − 1

)
, if t = 1,

(iii) 2l−r−1 +
s−1∑(

l − r − 1

lj − 1

)
, if t = 2.
j=1
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If α1 /∈ I , then the cardinality of Fab
I is:

(iv) 2l−r +
s∑

j=1

2

(
l − r − 1

lj − 1

)
, if t = 0,

(v) 2l−r−1 + 2l−r−2 +
s∑

j=1

(
l − r − 1

lj − 1

)
+

s−1∑
j=1

(
l − r − 2

lj − 1

)
, if t = 1,

(vi) 2l−r + 2
s−1∑
j=1

(
l − r − 1

lj − 1

)
, if t = 2.

Proof. We proceed as in the case of type Bl but here, we need to take into account column
reversing.

Recall that if t = 0 or 1, T I
Dl

is of shape Tl−r,l−r−1(l1, . . . , ls) and if t = 2, T I
Dl

is of shape
Tl−r,l−r (l1, . . . , ls−1).

Let Sab
I be the set of subdiagrams of T I

Dl
corresponding to elements of Fab

I . The shape of

elements of Sab
I is conditioned by Proposition 5.19. Let

E1 = the set of nw-diagrams in Sab
I ,

E2 = (the set of •-nw-diagrams in Sab
I

) \ E1.

Consider Φ ∈ Fab
I and S its corresponding subdiagram in Sab

I .
First assume that α1 ∈ I , then l1 = 1. If S ∈ E1, by Proposition 5.19, S is in the left-hand half

of T I
Dl

, so it is a nw-diagram of Rl−r−1(1, . . . , ln), where n = s if t = 0,1 and n = s − 1 if t = 2.
Hence, by Proposition 5.16, we have

�E1 = 2l−r−1 +
n∑

j=1

(
l − r − 1

lj − 1

)
.

If t 
= 0, there is no column reversing, so E2 = ∅. If t = 0, the number of elements of E2 is
�E1 − �(F ∩ E1), where F is the set of nw-diagrams of T I

Dl
having columns l − r and l − r + 1

of the same length.
Clearly, the number of elements of F is exactly the number of nw-diagrams of the diagram

obtained from T I
Dl

by removing the (l − r + 1)th column. So, by Proposition 5.19, the set of
elements which are in F ∩ E1 is in bijection with the set of nw-diagrams of Rl−r−2(1, . . . , ls).
So by Proposition 5.16, we obtain:

�F = 2l−r−2 +
s∑

j=1

(
l − r − 2

lj − 1

)
.

We obtain therefore the result.
Now assume that α1 /∈ I . Set
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P = {S ∈ E1; τS
1 � l − r − 1

}
,

P̃ = {S ∈ E1; τS
1 � l − r − 2

}
,

Q = {S ∈ E1; τS
1 > l − r − 1

}
.

Then, we have �E1 = �P + �Q.
First assume that t = 0 or 1. If S ∈ P , then S is included in the left-hand half of T I

Dl
, so by

Proposition 5.16, we have

�P = 2l−r−1 +
s∑

j=1

(
l − r − 1

lj − 1

)
.

For i = l − r, . . . ,2(l − r) − 2, let Qi = {S ∈ Q; τS
1 = i} and P̃i = {S ∈ P ; τS

1 = 2(l − r) −
2 − i}. We then have:

Q =
2(l−r)−2⋃

i=l−r

Qi and P̃ =
2(l−r)−2⋃

i=l−r

P̃i .

For i = l − r, . . . ,2(l − r) − 2, we have an obvious bijection between P̃i and Qi given by the
adding or removing of boxes (1,2(l − r) − i), . . . , (1, i). Therefore �P̃ = �Q and by Proposi-
tion 5.16, we have

�P̃ = 2l−r−2 +
s∑

j=1

(
l − r − 2

lj − 1

)
.

If t = 1, there is no column reversing, so we have the result. If t = 0, then the number of elements
of E2 is �E1 − �F , where F = E1 ∩ {•-nw-diagrams of Sab

I }. By Proposition 5.19, we have
F = Q∪ P̃ , so by the consideration above, we have �F = 2�Q. It follows that �E1 +�E2 = 2�P .

For the last case t = 2, the shape of T I
Dl

is Tl−r,l−r (l1, . . . , ls−1). If S ∈ P , then S is included

in the left-hand half of T I
Dl

, so by Proposition 5.16, we have

�P = 2l−r−1 +
s−1∑
j=1

(
l − r − 1

lj − 1

)
.

We have E2 = ∅, and Qi is defined for i = l − r, . . . ,2(l − r) − 1. Set Pi = {S ∈ P ; τS
1 =

2(l − r) − 1 − i}. We then have:

Q =
2(l−r)−1⋃

i=l−r

Qi and P =
2(l−r)−1⋃

i=l−r

Pi .

As above, for i = l − r, . . . ,2(l − r) − 1, we have an obvious bijection between Pi and Qi given
by the adding or removing of boxes (1,2(l − r) − i), . . . , (1, i). Therefore �P = �Q and the
result follows. �
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Remark 5.21. All the results above depend on the numbering of simple roots.

6. Remarks

6.1. Exceptional types

In the exceptional types E, F and G, the number of ad-nilpotent and abelian ideals has been
determined by using GAP 4.

The following tables give the cardinality of FI and AbI for the types F4 and G2. The subset
I of Π is described by the symbol • in the Dynkin diagram without arrow.

I �FI �AbI I �FI �AbI

◦ ◦ ◦ ◦ 105 16 • ◦ ◦ ◦ 24 6

◦ • ◦ ◦ 35 12 ◦ ◦ • ◦ 32 10

◦ ◦ ◦ • 49 9 • • ◦ ◦ 10 5

• ◦ • ◦ 8 4 • ◦ ◦ • 12 4

◦ • • ◦ 14 7 ◦ • ◦ • 14 6

◦ ◦ • • 10 4 • • • ◦ 4 3

• • ◦ • 5 3 • ◦ • • 3 2

◦ • • • 3 2 • • • • 1 1

where we use the following orientation for the Dynkin diagram of F4:

�

1

�

2

> �

3

�

4

�

I �FI �AbI I �FI �AbI

◦ ◦ 8 4 • ◦ 3 2

◦ • 4 3 • • 1 1

where we use the following orientation for the Dynkin diagram of G2:

�

1

< �

2

�

6.2. Relation with antichains

For Φ ∈ F∅, let

Φmin = {β ∈ Φ;β − α /∈ Φ, for all α ∈ Δ+}
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be the set of minimal roots of Φ , also called an antichain of (Δ+,�), see [P]. It is clear that each
antichain corresponds to an element of F∅ and vice versa.

By a similar proof as in [P], we obtain the following proposition:

Proposition 6.1. Let I ⊂ Π be of cardinality r and Φ ∈FI , then we have �Φmin � l − r .

Proof. Let I ⊂ Π be of cardinality r and Φ ∈ FI . Set Γ = Φmin ∪ I = {γ1, . . . , γt }. Let
γi, γj ∈ Γ , then γi − γj /∈ Δ by the definition of Φmin and the fact that Φ ∈ FI . Thus the
angle between any pair of distinct elements of Γ is non-acute and since all the γi ’s lie in an
open half space of V , they are linearly independent. Consequently, we have �Γ � r , and hence
�Φmin � l − r . �
Remarks 6.2.

(i) Recall from [CP1], that an antichain Γ ⊂ Δ+ is of cardinality l if and only if Γ = Π .
This result has no equivalence in the general parabolic case. For example, in B2, the set
Φ = {α1 + 2α2} is an ad-nilpotent ideal of pα1 such that Φmin = Φ and �Φmin = 1.

(ii) Let g be of type Al . Let I ⊂ Π be of cardinality r and Φ ∈ FI , then it is possible to show
that �Φmin = l − r if and only if Φmin = Π \ I .
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