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Abstract

I give a short proof of the following algebraic statement: in a simple vertex algebra, the underlying
Lie conformal algebra is either abelian, or it is an irreducible central extension of a simple Lie conformal
algebra. This provides many examples of non-finite simple Lie conformal algebras, and should prove useful
for classification purposes.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of vertex algebra was introduced by Borcherds in [Bo] to axiomatize algebraic
properties of the Operator Product Expansion (= OPE) of quantum fields in a (chiral) Conformal
Field Theory in dimension two. Vertex algebras were defined as vector spaces endowed with
infinitely many bilinear operations satisfying involved axioms that are now known as Borcherds
identities.

The construction of non-trivial examples of vertex algebras is a complicated matter, because
interesting known examples are very large objects—typically graded vector spaces of superpoly-
nomial growth, called Vertex Operator Algebras—and finite-dimensional instances degenerate
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into differential commutative algebra structures [Bo]. Examples of physical interest are usually
described by giving generating quantum fields, after prescribing the singular part of their OPE.
This idea can be made precise by axiomatizing the singular part of the OPE into a (Lie) conformal
algebra structure, introduced by Kac in [K]. Lie conformal algebras [DK], and their generaliza-
tions [DsK], only determine commutation properties of quantum fields, and the whole vertex
algebra can then be recovered by taking a suitable quotient of a certain universal envelope [K,L,
P,R] of the Lie conformal algebra.

The Lie conformal algebra theory has proved simpler than the vertex algebra one. On the
one hand, it is easy to construct small non-trivial examples; on the other hand, Lie conformal
algebras possess a close resemblance to Lie algebras—they are indeed Lie algebras in a suitable
pseudo-tensor category, see [BKV,BDK]—and can be treated by means of similar techniques.

It is clear that every vertex algebra is also a Lie conformal algebra: the resulting forgetful
functor is adjoint to the above-mentioned universal enveloping vertex algebra functor. Both ver-
tex algebras and Lie conformal algebras have corresponding notions of ideal and simplicity;
however, it is easier for a subspace to be an ideal with respect to the Lie conformal algebra
structure than with respect to the vertex one. The main result of the present paper is a short and
elementary proof of the quite surprising fact that the Lie conformal algebra structure underlying
a simple vertex algebra is as simple as it can be: its only ideals are central, and the whole Lie
conformal algebra is a central extension of a simple structure. Indeed the one-dimensional vector
space spanned by the vacuum element is always a central Lie conformal ideal.

The main tool employed in the paper is identity (2) whose constant (in z) part generalizes a
formula devised by Wick [W] to compute the singular OPE of normally ordered products of fields
in a free theory, which was independently mentioned in [BK] and [preD], and whose algebraic
consequences range beyond the present result.

2. Vertex algebras

Let V be a complex vector space. A field on V is a formal distribution φ ∈ (EndV )[[z, z−1]]
with the property that φ(v) ∈ V ((z)) for every v ∈ V . In other words, if

φ(z) =
∑
i∈Z

φiz
−i−1,

then φn(v) = 0 for sufficiently large n.

Definition 2.1. (See [K].) A vertex (super)algebra is a complex vector superspace V = V0 ⊕ V1

endowed with a linear parity preserving state-field correspondence Y : V → (EndV )[[z, z−1]],
a vacuum element 1 ∈ V0 and an even operator T ∈ EndV satisfying the following properties:

• Field axiom: Y(v, z) is a field for all v ∈ V .
• Locality: For every choice of a ∈ Vp(a) and b ∈ Vp(b) one has

(z − w)N
(
Y(a, z)Y (b,w) − (−1)p(a)p(b)Y (b,w)Y (a, z)

) = 0

for sufficiently large N .
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• Vacuum axiom: The vacuum element 1 is such that

Y(1, z) = idV , Y (a, z)1 ≡ a mod zV [[z]],

for all a ∈ V .
• Translation invariance: T satisfies

[
T ,Y (a, z)

] = Y(T a, z) = d

dz
Y (a, z),

for all a ∈ V .

Notice that the vector space V carries a natural C[T ]-module structure. Fields Y(a, z) are
called vertex operators, or quantum fields. Vertex algebra axioms have strong algebraic conse-
quences, among which we recall the following:

• Skew-commutativity: Y(a, z)b = (−1)p(a)p(b)ezT Y (b,−z)a.

Coefficients of quantum fields

Y(a, z) =
∑
j∈Z

a(j)z
−j−1

in a vertex algebra span a Lie (super)algebra under the commutator Lie bracket, and more ex-
plicitly satisfy—see [K, Theorem 2.3(iv)],

[a(m), b(n)] =
∑
j∈N

(
m

j

)
(a(j)b)(m+n−j), (1)

for all a, b ∈ V,m,n ∈ Z.
If A and B are subspaces of V , then we may define A · B as the C-linear span of all products

a(j)b, where a ∈ A, b ∈ B , j ∈ Z. It follows that if A and B are C[T ]-submodules of V , then
A · B is also a C[T ]-submodule of V , as by translation invariance T is a derivation of all j -
products. Notice that in this case A · B = B · A by skew-commutativity, and that A ⊂ A · V by
the vacuum axiom.

An ideal of V is a C[T ]-submodule I ⊂ V such that V · I ⊂ I . We will say that a vertex
algebra is simple if its only ideals are trivial.

Remark 2.1. In order for a subspace A ⊂ V to be an ideal, it suffices to check that A · V ⊂ A:
then A is indeed a C[T ]-submodule of V , as a(−2)1 = T a; moreover, skew-commutativity gives
V · A = A · V ⊂ A.

3. Conformal algebras

Definition 3.1. (See [DK].) A Lie conformal (super)algebra is a Z/2Z-graded C[∂]-module R =
R0 ⊕ R1 endowed with a parity preserving C-bilinear product (a, b) �→ [aλb] ∈ R[λ] satisfying
the following axioms:
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(C1) [aλb] ∈ R[λ],
(C2) [∂aλb] = −λ[aλb], [aλ∂b] = (∂ + λ)[aλb],
(C3) [aλb] = −(−1)p(a)p(b)[b−∂−λa],
(C4) [aλ[bμc]] − (−1)p(a)p(b)[bμ[aλc]] = [[aλb]λ+μc],

for every choices of homogeneous elements a, b, c ∈ V , p(r) ∈ Z/2Z denoting the parity of the
homogeneous element r .

Any vertex (super)algebra V can be given a C[∂]-module structure by setting ∂ = T . Then
defining

[aλb] =
∑
n∈N

λn

n! a(n)b

endows V with a Lie conformal (super)algebra structure. Indeed, (C1) follows from the field
axiom, (C2) from translation invariance, (C3) from skew-commutativity, and (C4) from (1). For
the sake of simplicity, in all that follows the super- prefix will not be explicitly mentioned, but
tacitly understood.

If A and B are subspaces of a Lie conformal algebra R, then we may define [A,B] as the C-
linear span of all λ-coefficients in the products [aλb], where a ∈ A, b ∈ B . It follows from axiom
(C2) that if A and B are C[∂]-submodules of R, then [A,B] is also a C[∂]-submodule of R.
Notice that in this case [A,B] = [B,A] by axiom (C3). A Lie conformal algebra R is solvable
if, after defining

R0 = R, Rn+1 = [
Rn,Rn

]
, n � 0,

we find that RN = 0 for sufficiently large N . R is solvable iff it contains a solvable ideal S such
that R/S is again solvable. Solvability of a non-zero Lie conformal algebra R trivially fails if
R equals its derived subalgebra R′ = [R,R]. An ideal of a Lie conformal algebra R is a C[∂]-
submodule I ⊂ R such that [R,I ] ⊂ I . If I, J are ideals of R, then [I, J ] is an ideal as well. An
ideal I is said to be central if [R,I ] = 0, i.e., if it is contained in the center Z = {r ∈ R | [rλs] = 0
for all s ∈ R} of R. A Lie conformal algebra R is simple if its only ideals are trivial, and R is not
abelian, i.e., [R,R] 	= 0.

Notice that, when V is a vertex algebra, we should distinguish between ideals of the vertex
algebra structure and ideals of the underlying Lie conformal algebra. Indeed, ideals of the vertex
algebra are also ideals of the Lie conformal algebra, but the converse is generally false, as it can
be seen by observing that C1 is always a central ideal of the Lie conformal algebra structure, but
it is never an ideal of the vertex algebra.

In order to avoid confusion, we will denote by V Lie the Lie conformal algebra structure un-
derlying a vertex algebra V .

4. A Poisson-like generalization of the Wick formula

The following formula—which is similar to (3.3.7) and (3.3.12) in [K]—relating the vertex
and Lie conformal algebra structures is the key tool in the present paper.
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Proposition 4.1. If a, b, c are homogeneous elements of the vertex algebra V , then:

[
aλY (b, z) c

] = eλzY
([aλb], z)c + (−1)p(a)p(b)Y (b, z)[aλc]. (2)

Proof. Multiply both sides of (1) by λmz−n−1/m!, then add up over all m ∈ N, n ∈ Z. Applying
both sides to c ∈ V proves the statement. �
Lemma 4.1. Let U ⊂ V be vector spaces, and p(λ), q(λ) be elements of V ((z))[λ]. If all coeffi-
cients of

eλzp(λ) + q(λ)

lie in U((z)), then the same is true for the coefficients of p(λ).

Proof. If m and n are the degrees of p and q as polynomials in λ, we write

p(λ) =
m∑

i=0

pi(z)λ
i, q(λ) =

n∑
j=0

qi(z)λ
j .

The expression eλzp(λ) + q(λ) is a power series in λ, and the coefficient multiplying λN is
independent of q(λ) if N > n. If also N � m, it equals

m∑
i=0

zN−i

(N − i)!pi(z) = zN

m∑
i=0

1

(N − i)! · pi(z)

zi
.

If all λ-coefficients of eλzp(λ) + q(λ) lie in U((z)), then

m∑
i=0

1

(N − i)! · pi(z)

zi
∈ U((z))

for all sufficiently large N . However, the (m+ 1)× (m+ 1) matrix whose (i, j)-entry is 1/(N +
j − i)! is non-singular,2 hence

pi(z)

zi
∈ U((z)),

thus showing that p(λ) ∈ U((z))[λ]. �
2 Its determinant can be computed by induction, and is easily showed to be equal to m!(m−1)!(m−2)! . . .3!2!1!/((N +

m)!(N + m − 1)! . . .N !).
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5. A simplicity argument

Theorem 5.1. Let V be a vertex algebra, and I ⊂ V a subspace. Then [I,V ] is an ideal of V .

Proof. Choose a ∈ I , b, c ∈ V . The linear span of all coefficients of [aλY (b, z)c], when a ∈ I ,
b, c ∈ V equals [I,V ·V ] = [I,V ]. By Lemma 4.1 applied to (2), all coefficients of Y([aλb], z)c,
a ∈ I , b, c ∈ V lie in [I,V ], thus [I,V ] · V ⊂ [I,V ]. Then Remark 2.1 ensures that [I,V ] is an
ideal of V . �
Corollary 5.1. Let V be a simple vertex algebra. Then either V Lie is abelian, or it is an irre-
ducible central extension of a simple Lie conformal algebra.

Proof. Let I be a proper ideal of V Lie. Then [I,V ] ⊂ I is a proper ideal of V , forcing [I,V ] = 0
by simplicity. Thus all proper ideals of V Lie lie in the center Z of V Lie, hence either V Lie = Z,
or V Lie/Z has no non-trivial ideal; in the former case V Lie is abelian.

In the latter, [V,V ] is a non-zero ideal of V , hence V = [V,V ]. Then V Lie is not solvable, as
it equals its derived subalgebra, so V Lie/Z cannot be abelian, and is therefore simple. As V Lie

equals its derived algebra, it is an irreducible central extension. �
Remark 5.1. Corollary 5.1 can be used, along with the classification [DK] of finite simple (purely
even) Lie conformal algebras and a known characterization of irreducible central extensions of
the Virasoro Lie conformal algebra, to show that all simple (purely even) vertex algebra structures
on a finitely generated C[∂]-module are abelian, i.e. have a trivial underlying Lie conformal
algebra structure. From this it follows that if V is a finite vertex algebra, then V Lie is solvable.

A more detailed investigation of such finite vertex algebras can show that V Lie is indeed
nilpotent, as soon as V contains no element a such that Y(a, z)a = 0.3 Such claims are proved
in a separate paper [D].

Remark 5.2. Let V be a vertex algebra, and assume that whenever a subspace U ⊂ V is invariant
under the action of coefficients of all quantum fields, then U is a C[∂]-module, and therefore an
ideal. This happens, for instance, if ∂ = T is a coefficient of some quantum field, e.g., in a
(conformal) Vertex Operator Algebra, where T = L−1.

By a Schur Lemma argument, one may then show that if the vertex algebra V is simple
and countable-dimensional—as it is always the case when V is a Z-graded vector space with
finite-dimensional homogeneous components—then the only central elements in the underlying
Lie conformal algebra are scalar multiples of the vacuum element. Then V Lie is an irreducible
central extension of a simple Lie conformal algebra by the one-dimensional ideal C1.

Remark 5.3. If R is an irreducible central extension of a simple Lie conformal algebra by a one-
dimensional center C1, and a grading is given on R which is compatible with its Lie conformal
algebra structure, then there exists at most one simple vertex algebra structure compatible with
the same grading, in which 1 is the vacuum element. Indeed, the universal enveloping vertex
algebra of R has a unique maximal graded ideal, which must intersect R trivially because of the
vacuum axiom, and of the simplicity of R/C1.

3 This is analogous to demanding that a commutative algebra possess no nilpotent elements.
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This provides a strategy for finding simple vertex algebras, by first looking for simple Lie
conformal algebra structures and their possible central extensions R, and then checking whether
the unique simple quotient of the universal enveloping vertex algebra is R or a larger space. This
strategy might become effective for families of Lie conformal algebras for which a classification
of simple objects is likely to be achieved, e.g., under a polynomial growth or a finite Gelfand–
Kirillov dimension assumption [X,Z1,Z2]. Recall that no Vertex Operator Algebra of physical
interest is of this kind, as the presence of a Virasoro field forces superpolynomial growth.
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