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1. Introduction

The notion of conformal algebra was introduced by V. Kac as a formal language describing the
singular part of the operator product expansion in two-dimensional conformal field theory (see [6,4,
7,10–12], and references therein).

In [1], Bakalov, D’Andrea and Kac develop a theory of “multi-dimensional” Lie conformal algebras,
called Lie H-pseudoalgebras. Classification problems, cohomology theory and representation theory
have been developed (see [1–3]).

In the present work, we study Lie H-pseudoalgebras from the point of view of pseudo-dual of
classical Lie H-coalgebra structures. We introduce the notions of Lie H-coalgebra and Lie H-pseudo-
bialgebra (see Section 4). In Sections 5, 6 and 7, we obtain a pseudoalgebra analog of the CYBE,
we study coboundary Lie H-pseudo-bialgebras, and a pseudoalgebra version of Manin triples and
Drinfeld’s double. Usually, in the theory of Lie H-pseudoalgebras the proofs of pseudoalgebra version
of classical results need to be carefully translated, as in the present work.

Two Lie algebras are usually associated to a Lie H-pseudoalgebra L, that is AY (L) and the annihi-
lation algebra (see [10] and Section 7 in [1]). In Section 8, using the language of Lie H-coalgebras, we
will see them as convolution algebras of certain type, obtaining a natural and conceptual construction
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of them. The definitions of these algebras in [1] are equivalent to but different from the ones pre-
sented here.

This work is a generalization to the language of Lie H-pseudoalgebras of the results obtained
in [14].

2. Preliminaries on Hopf algebras

Unless otherwise specified, all vector spaces, linear maps and tensor products are considered over
an algebraically closed field k of characteristic 0.

In this section we present some facts and notation which will be used throughout the paper. The
material in Sections 2.1 and 2.2 is standard and can be found, for example, in Sweedler’s book [15].
The material in Section 2.3 is taken from [1].

2.1. Notation and basic identities

Let H be a Hopf algebra with a coproduct �, a counit ε, and an antipode S .
We will use the standard Sweedler’s notation (cf. [15]):

�(h) = h(1) ⊗ h(2), (2.1)

(� ⊗ id)�(h) = (id⊗�)�(h) = h(1) ⊗ h(2) ⊗ h(3), (2.2)

(S ⊗ id)�(h) = h(−1) ⊗ h(2), etc. (2.3)

Observe that notation (2.2) uses the coassociativity of �. The axioms of the antipode and the counit
can be written as follows:

h(−1)h(2) = h(1)h(−2) = ε(h), (2.4)

ε(h(1))h(2) = h(1)ε(h(2)) = h, (2.5)

while the fact that � is a homomorphism of algebras translates as:

( f g)(1) ⊗ ( f g)(2) = f(1)g(1) ⊗ f(2)g(2).

Eqs. (2.4) and (2.5) imply the following useful relations:

h(−1)h(2) ⊗ h(3) = 1 ⊗ h = h(1)h(−2) ⊗ h(3). (2.6)

Since we shall work with cocommutative Hopf algebras, we recall the following important and
classical result (for the proof see [15]):

Theorem 2.1 (Kostant). Let H be a cocommutative Hopf algebra over k (an algebraically closed field of charac-
teristic 0). Then H is isomorphic (as a Hopf algebra) to the smash product of the universal enveloping algebra
U (P(H)) and the group algebra k[G(H)], where G(H) = {g ∈ H | �(g) = g ⊗ g} is the subset of group-like
elements of H, and P(H) = {p ∈ H | �(p) = p ⊗ 1 + 1 ⊗ p} is the subspace of primitive elements of H.

An associative algebra A is called an H-differential algebra if it is also a left H-module such that
the multiplication A ⊗ A → A is a homomorphism of H-modules. That is,

h(xy) = (h(1)x)(h(2) y) (2.7)

for h ∈ H , x, y ∈ A. Observe that H itself is an H-bimodule, however H is not an H-differential algebra.
Another important property of a cocommutative Hopf algebra is that the antipode is an involution,

i.e., S2 = id, which will be convenient in allowing us not to distinguish between S and its inverse.
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2.2. Filtration and topology

We consider an increasing sequence of subspaces of a Hopf algebra H defined inductively by:

Fn H = 0 for n < 0, F0 H = k
[
G(H)

]
,

Fn H = spank

{
h ∈ H

∣∣∣ �(h) ∈ F0 H ⊗ h + h ⊗ F0 H +
n−1∑
i=1

Fi H ⊗ Fn−i H

}
, n � 1.

It has the following properties (which are immediate from definitions):

(
Fm H

)(
Fn H

) ⊂ Fm+n H,

�
(
Fn H

) ⊂
n∑

i=0

Fi H ⊗ Fn−i H,

S
(
Fn H

) ⊂ Fn H .

If H is cocommutative, using Theorem 2.1, one can show that:⋃
n

Fn H = H . (2.8)

(This condition is also satisfied when H is a quantum universal enveloping algebra.) Provided that
(2.8) holds, we say that a nonzero element a ∈ H has degree n if a ∈ Fn H \ Fn−1 H .

When H is a universal enveloping algebra, we get its canonical filtration. Later in some instances
we will also impose the following finiteness condition on H :

dim Fn H < ∞ ∀n. (2.9)

It is satisfied when H is a universal enveloping algebra of a finite-dimensional Lie algebra, or its
smash product with the group algebra of a finite group.

Now let X = H∗ := Homk(H,k) be the dual of H . It inherits a multiplication defined as the dual
of the comultiplication in H . Recall that H acts (on the left) on X by the formula (h, f ∈ H , x ∈ X ):

〈hx, f 〉 = 〈
x, S(h) f

〉
. (2.10)

Then, since

h(xy) = (h(1)x)(h(2) y),

we have that X is an associative H-differential algebra (see (2.7)). Moreover, X is commutative when
H is cocommutative. Similarly, one can define a right action of H on X by

〈xh, f 〉 = 〈
x, f S(h)

〉
, (2.11)

and then we have

(xy)h = (xh(1))(yh(2)). (2.12)
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Observe that associativity of H implies that X is an H-bimodule, i.e.

f (xg) = ( f x)g, f , g ∈ H, x ∈ X . (2.13)

Let X = F−1 X ⊃ F0 X ⊃ · · · be the decreasing sequence of subspaces of X dual to Fn H , namely

Fn X = (
Fn H

)⊥ = {
x ∈ X

∣∣ 〈x, f 〉 = 0, for all f ∈ Fn H
}
.

It has the following properties:

(Fm X)(Fn X) ⊂ Fm+n X, (2.14)(
Fm H

)
(Fn X) ⊂ Fn−m X, (2.15)

and ⋂
n

Fn X = 0, provided that (2.8) holds. (2.16)

We define a topology of X by considering {Fn X} as a fundamental system of neighborhoods of 0. We
will always consider X with this topology, while H with the discrete topology. It follows from (2.16)
that X is Hausdorff, provided that (2.8) holds. By (2.14) and (2.15), the multiplication of X and the
action of H on it are continuous; in other words, X is a topological H-differential algebra.

Now, we define an antipode S : X → X as the dual of that of H :〈
S(x),h

〉 = 〈
x, S(h)

〉
. (2.17)

Then we have:

S(ab) = S(b)S(a) for a,b ∈ X or H . (2.18)

We will also define a comultiplication � : X → X ⊗̂ X as the dual of the multiplication H ⊗ H → H ,
where X ⊗̂ X := (H ⊗ H)∗ is the completed tensor product. Formally, we will use the same notation
for X as for H (see (2.1)–(2.3)), writing for example �(x) = x(1) ⊗ x(2) for x ∈ X . By definition, for
x, y ∈ X , f , g ∈ H , we have:

〈xy, f 〉 = 〈
x ⊗ y,�( f )

〉 = 〈x, f(1)〉〈y, f(2)〉, (2.19)

〈x, f g〉 = 〈
�(x), f ⊗ g

〉 = 〈x(1), f 〉〈x(2), g〉. (2.20)

We have:

S(Fn X) ⊂ Fn X, (2.21)

�(Fn X) ⊂
n∑

i=−1

Fi X ⊗̂ Fn−i X . (2.22)

If H satisfies the finiteness condition (2.9), then the filtration of X satisfies

dim XFn X < ∞ ∀n, (2.23)

which implies that X is linearly compact (see Section 6 in [1] for details).
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By a basis of X we will always mean a topological basis {xi} which tends to 0, i.e., such that
for any n all but a finite number of xi belong to Fn X . Let {hi} be a basis of H (as a vector space)
compatible with the increasing filtration. Then the set of elements {xi} of X defined by 〈xi,h j〉 = δi j
is called the dual basis of X . If H satisfies (2.9), then {xi} is a basis of X in the above sense, i.e., it
tends to 0. We have for g ∈ H , y ∈ X :

g =
∑

i

〈g, xi〉hi, y =
∑

i

〈y,hi〉xi, (2.24)

where the first sum is finite, and the second one is convergent in X .

Example 2.2. Let H = U (d) be the universal enveloping algebra of an N-dimensional Lie algebra d. Fix
a basis {∂i} of d, and for I = (i1, . . . , iN ) ∈ Z

N+ let ∂(I) = ∂
i1
1 · · · ∂ iN

N /i1! · · · iN !. Then {∂(I)} is a basis of H
(the Poincaré–Birkhoff–Witt basis). Moreover, it is easy to see that

�
(
∂(I)) =

∑
J+K=I

∂( J ) ⊗ ∂(K ). (2.25)

If {t I } is the dual basis of X , defined by 〈t I , ∂
( J )〉 = δI, J , then (2.25) implies t J tK = t J+K . Therefore,

X can be identified with the ring ON = k[[t1, . . . , tN ]] of formal power series in N indeterminates.
Then the action of H on ON is given by differential operators.

2.3. Fourier transform

(Cf. [1].) For an arbitrary Hopf algebra H , we introduce a map F : H ⊗ H → H ⊗ H , called the
Fourier transform, by the formula

F( f ⊗ g) = ( f ⊗ 1)(S ⊗ id)�(g) = f g(−1) ⊗ g(2). (2.26)

Observe that F is a vector space isomorphism with an inverse given by

F−1( f ⊗ g) = ( f ⊗ 1)�(g) = f g(1) ⊗ g(2),

since, using the coassociativity of � and (2.6), we have

F−1( f g(−1) ⊗ g(2)) = f g(−1)(g(2))(1) ⊗ (g(2))(2) = f g(−1)g(2) ⊗ g(3) = f ⊗ g.

The significance of F is in the identity

f ⊗ g = F−1F( f ⊗ g) = ( f g(−1) ⊗ 1)�(g(2)), (2.27)

which implies the next result.

Lemma 2.3. (See [1].)

(a) If {hi}, {xi} are dual bases in H and X, then

�(x) =
∑

i

xS(hi) ⊗ xi =
∑

i

xi ⊗ S(hi)x (2.28)

for any x ∈ X.
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(b) Every element of H ⊗ H can be uniquely represented in the form
∑

i(hi ⊗ 1)�(li), where {hi} is a fixed
k-basis of H and li ∈ H. In other words, H ⊗ H = (H ⊗ k)�(H).

(c) (1 ⊗ g ⊗ 1) ⊗H 1 = (g(−1) ⊗ 1 ⊗ g(−2)) ⊗H 1 ∈ (H ⊗ H ⊗ H) ⊗H k (2.29)

for all g ∈ H.

3. Lie H -pseudoalgebras

The notion of conformal algebra [10] was generalized by the notion of Lie H-pseudoalgebra in [1].
They can be considered as Lie algebras in a certain “pseudotensor” category, instead of the category
of vector spaces. A pseudotensor category [5] is a category equipped with “polylinear maps” and a
way to compose them (such categories were first introduced by Lambek [13] under the name multi-
categories). This is enough to define the notions of Lie algebra, representations, cohomology, etc.

In this section, we shall recall the example of pseudotensor category that will be used. We follow
the exposition in [1]. The proofs of all the statements in this section can be found in [1]. Let H
be a cocommutative Hopf algebra with a comultiplication �. We introduce a pseudotensor category
M∗(H) whose objects are the same objects as in Ml(H) (the category of left H-modules), but with
a non-trivial pseudotensor structure [5]. More precisely, the space of polylinear maps from {Li}i ∈ I to
M is defined by (Li, M ∈Ml(H), and I a finite non-empty set)

Lin
({Li}i∈I , M

) = HomH⊗I

(
�
i∈I

Li, H⊗I ⊗H M

)
, (3.1)

where �i∈I is the tensor product functor Ml(H)I →Ml(H⊗I ).
The symmetric group S I acts among the spaces Lin({Li}i∈I , M) by simultaneously permuting the

factors in �i∈I Li and H⊗I . This is the only place where we need the cocommutativity of H ; for
example, the permutation σ12 = (12) ∈ S2 acts on (H ⊗ H) ⊗H M by

σ12
(
( f ⊗ g) ⊗H m

) = (g ⊗ f ) ⊗H m,

and this is well defined only when H is cocommutative.
There is a generalization of the above construction for quasitriangular Hopf algebras that will not

be used in this sequel, see Remark 3.4 in [1] for details.
We introduce the following notion.

Definition 3.1. An H-pseudoalgebra (or just a pseudoalgebra) is an object A in M∗(H) (i.e. a left H-
module) together with an operation μ ∈ Lin({A, A}, A) = HomH⊗H (A ⊗ A, (H ⊗ H) ⊗H A), called the
pseudoproduct.

Equivalently, an H-pseudoalgebra is a left H-module A together with a map

A ⊗ A → (H ⊗ H) ⊗H A

a ⊗ b 
→ a ∗ b = μ(a ⊗ b)

satisfying the following defining property:

H -bilinearity: For a,b ∈ A, f , g ∈ H , one has

f a ∗ gb = (
( f ⊗ g) ⊗H 1

)
(a ∗ b). (3.2)

That is, if
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a ∗ b =
∑

i

( f i ⊗ gi) ⊗H ei, (3.3)

then f a ∗ gb = ∑
i( f f i ⊗ ggi) ⊗H ei .

Definition 3.2. A Lie H-pseudoalgebra (or just a Lie pseudoalgebra) is a Lie algebra (L,μ) (with μ ∈
Lin({L, L}, L)) in the pseudotensor category M∗(H) as defined above.

In order to give an explicit and equivalent definition of a Lie H-pseudoalgebra we need to compute
the compositions μ(μ(·,·), ·) and μ(·,μ(·,·)) in M∗(H). Let a ∗ b be given by (3.3), and let

ei ∗ c =
∑
i, j

( f i j ⊗ gij) ⊗H eij. (3.4)

Then (a ∗ b) ∗ c ≡ μ(μ(a ⊗ b) ⊗ c) is the following element of H⊗3 ⊗H A:

(a ∗ b) ∗ c =
∑
i, j

( f i f i j(1)
⊗ gi f i j(2)

⊗ gij) ⊗H eij . (3.5)

Similarly, if we write

b ∗ c =
∑

i

(hi ⊗ li) ⊗H di, (3.6)

a ∗ di =
∑
i, j

(hij ⊗ li j) ⊗H dij, (3.7)

then

a ∗ (b ∗ c) =
∑
i, j

(hij ⊗ hili j(1)
⊗ lili j(2)

) ⊗H dij . (3.8)

Equivalent definition: a Lie pseudoalgebra is a left H-module L endowed with a map

L ⊗ L → (H ⊗ H) ⊗H L, a ⊗ b 
→ [a ∗ b]
called the pseudobracket, and satisfying the following axioms (a,b, c ∈ L; f , g ∈ H),

H -bilinearity:

[ f a ∗ gb] = (
( f ⊗ g) ⊗H 1

)[a ∗ b]. (3.9)

Skew-commutativity:

[b ∗ a] = −(
σ ⊗H id

)[a ∗ b], (3.10)

where σ : H ⊗ H → H ⊗ H is the permutation σ( f ⊗ g) = g ⊗ f . Explicitly, [b∗a] = −∑
i(gi ⊗ f i)⊗H ei ,

if [a ∗ b] = ∑
i( f i ⊗ gi) ⊗H ei . Note that the right-hand side of (3.10) is well defined due to the

cocommutativity of H .

Jacobi identity: [
a ∗ [b ∗ c]] − (

(σ ⊗ id) ⊗H id
)[

b ∗ [a ∗ c]] = [[a ∗ b] ∗ c
]

(3.11)

in H⊗3 ⊗H L, where the compositions [[a ∗ b] ∗ c] and [a ∗ [b ∗ c]] are defined as above.
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One can also define associative H-pseudoalgebras as associative algebras (A,μ) in the pseudotensor
category M∗(H). More precisely, a pseudoproduct a ∗ b is associative iff it satisfies

Associativity:

a ∗ (b ∗ c) = (a ∗ b) ∗ c (3.12)

in H⊗3 ⊗H A, where the compositions (a ∗ b) ∗ c and a ∗ (b ∗ c) are given by the above formulas.

Similarly, the pseudoproduct a ∗ b is commutative iff it satisfies

Commutativity:

b ∗ a = (σ ⊗H id)(a ∗ b). (3.13)

Given (A,μ) an associative H-pseudoalgebra, one can define a pseudobracket β as the commutator

[a ∗ b] = a ∗ b − (σ ⊗H id)(b ∗ a). (3.14)

Then, it is easy to check that (A, β) is a Lie H-pseudoalgebra.
The definitions of representations of Lie pseudoalgebras or associative pseudoalgebras are obvious

modifications of the usual one. For example,

Definition 3.3. A representation of a Lie H-pseudoalgebra L is a left H-module M together with an
operation ρ ∈ Lin({L, M}, M), that we denote by a ∗ c ≡ ρ(a ⊗ c), which satisfies

a ∗ (b ∗ c) − (
(σ ⊗ id) ⊗H id

)(
b ∗ (a ∗ c)

) = [a ∗ b] ∗ c (3.15)

for a,b ∈ L, c ∈ M .

Example 3.4. The (Lie) conformal algebras introduced by Kac [10] are exactly the (Lie) k[∂]-pseudo-
algebras, where k[∂] is the Hopf algebra of polynomials in one variable ∂ . The explicit relation
between the λ-bracket of [7] and the pseudobracket is:

[aλb] =
∑

i

pi(λ)ci ⇐⇒ [a ∗ b] =
∑

i

(
pi(−∂) ⊗ 1

) ⊗k[∂] ci .

Similarly, for H = k[∂1, . . . , ∂N ] we get conformal algebras in N indeterminates, see [4, Section 10].
We may say that for N = 0, H is k; then a k-conformal algebra is the same as a Lie algebra.

On the other hand, when H = k[Γ ] is the group algebra of a group Γ , one obtains the Γ -
conformal algebras studied in [9].

Example 3.5 (Current pseudoalgebras). Let H ′ be a Hopf subalgebra of H , and let A be an H ′-pseudo-
algebra. Then we define the current H-pseudoalgebra CurH

H ′ A ≡ Cur A as H ⊗H ′ A by extending the
pseudoproduct a ∗ b of A using the H-bilinearity. Explicitly, for a,b ∈ A and f , g ∈ H , we define

( f ⊗H ′ a) ∗ (g ⊗H ′ b) = (
( f ⊗ g) ⊗H 1

)
(a ∗ b)

=
∑

i

( f f i ⊗ ggi) ⊗H (1 ⊗H ′ ei),

if a ∗ b = ∑
i( f i ⊗ gi) ⊗H ′ ei . Then CurH

H ′ A is an H-pseudoalgebra which is Lie or associative when A
is so.
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An important special case is when H ′ = k: given a Lie algebra g, let Curg = H ⊗ g with the fol-
lowing pseudobracket [

( f ⊗ a) ∗ (g ⊗ b)
] = ( f ⊗ g) ⊗H

(
1 ⊗ [a,b]).

Then Curg is a Lie H-pseudoalgebra.

Now we will introduce the notion of x-products in order to reformulate the definition of a Lie
(or associative) H-pseudoalgebra in terms of the properties of the x-brackets (or products). In this
way, we obtain an algebraic structure equivalent to that of an H-pseudoalgebra, that is called an
H-conformal algebra. This formulation is analogous to the (n)-products in the setting of conformal
algebras [11], and we shall use it in the following section.

Let (L, [∗]) be a Lie H-pseudoalgebra. Recall the Fourier transform F , defined by (2.26):

F( f ⊗ g) = f g(−1) ⊗ g(2),

and the identity (2.27):

f ⊗ g = ( f g(−1) ⊗ 1)�(g(2)).

Using them, for any a,b ∈ L, we have that [a ∗ b] = ∑
i( f i ⊗ gi) ⊗H ei can be rewritten as

[a ∗ b] =
∑

i

( f i gi(−1) ⊗ 1) ⊗H gi(2)ei . (3.16)

Hence [a ∗ b] can be written uniquely in the form
∑

i(hi ⊗ 1)⊗H ci , where {hi} is a fixed k-basis of H
(cf. Lemma 2.3).

Now, we introduce another bracket [a,b] ∈ H ⊗ L defined as the Fourier transform of [a ∗ b]:

[a,b] =
∑

i

F( f i ⊗ gi)(1 ⊗ ei) =
∑

i

f i gi(−1) ⊗ gi(2)ei .

That is,

[a,b] =
∑

i

hi ⊗ ci if [a ∗ b] =
∑

i

(hi ⊗ 1) ⊗H ci . (3.17)

Then for x ∈ X = H∗ , we define the x-bracket in L as follows:

[axb] := (〈
S(x), ·〉 ⊗ id

)[a,b]
=

∑
i

〈
S(x), f i gi(−1)

〉
gi(2)ei =

∑
i

〈
S(x),hi

〉
ci, (3.18)

if [a ∗ b] = ∑
i( f i ⊗ gi) ⊗H ei = ∑

i(hi ⊗ 1) ⊗H ci .
Using properties of the Fourier transform, it is straightforward to derive the properties of the

bracket (3.17). Then the definition of a Lie pseudoalgebra can be equivalently reformulated as follows.

Definition 3.6. A Lie H-conformal algebra is a left H-module L equipped with a bracket [·,·] : L ⊗ L →
H ⊗ L, satisfying the following properties (a,b, c ∈ L, h ∈ H):
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H -sesqui-linearity:

[ha,b] = (h ⊗ 1)[a,b],
[a,hb] = (1 ⊗ h(2))[a,b](h(−1) ⊗ 1).

Skew-commutativity: If [a,b] is given by (3.17), then

[b,a] = −
∑

i

hi(−1) ⊗ hi(2)ci . (3.19)

Jacobi identity: [
a, [b, c]] − (σ ⊗ id)

[
b, [a, c]] = (

F−1 ⊗ id
)[[a,b], c

]
(3.20)

in H ⊗ H ⊗ L, where σ : H ⊗ H → H ⊗ H is the permutation σ( f ⊗ g) = g ⊗ f , and

[
a, [b, c]] = (σ ⊗ id)

(
id⊗[a, ·])[b, c],[[a,b], c

] = (
id⊗[·, c])[a,b].

One can also reformulate Definition 3.6 in terms of the x-brackets (3.18).

Definition 3.7. A Lie H-conformal algebra is a left H-module L equipped with x-brackets [axb] ∈ L for
a,b ∈ L, x ∈ X , satisfying the following properties:

Locality:

codim
{

x ∈ X
∣∣ [axb] = 0

}
< ∞ for any a,b ∈ L. (3.21)

Equivalently, for any basis {xi} of X ,

[axi b] �= 0 for only a finite number of i.

H -sesqui-linearity:

[haxb] = [axhb], (3.22)

[axhb] = h(2)[ah(−1)xb]. (3.23)

Skew-commutativity: Choose dual bases {hi}, {xi} in H and X . Then:

[axb] = −
∑

i

〈x,hi(−1)〉hi(−2)[bxi a]. (3.24)

Jacobi identity: [
ax[byc]] − [

by[axc]] = [[ax(2)
b]yx(1)

c
]
. (3.25)

We need the following important notions (see Section 10 in [1]).
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Definition 3.8. Let V and W be two H-modules. An H-pseudolinear map from V to W is a k-linear
map φ : V → (H ⊗ H) ⊗H W such that

φ(hv) = (
(1 ⊗ h) ⊗H 1

)
φ(v), h ∈ H, v ∈ V . (3.26)

We denote the vector space of all such φ by Chom(V , W ). There is a left action of H on Chom(V , W )

defined by:

(hφ)(v) = (
(h ⊗ 1) ⊗H 1

)
φ(v). (3.27)

In the special case V = W , we let Cend V = Chom(V , V ).

For example, let A be an H-pseudoalgebra and V be an A-module. Then for any a ∈ A the map
ma : V → (H ⊗ H) ⊗H V defined by ma(v) = a ∗ v is an H-pseudolinear map. Moreover, we have
hma = mha for h ∈ H .

Remark 3.9. Consider the map ρ : Chom(V , W ) ⊗ V → (H ⊗ H) ⊗H W given by ρ(φ ⊗ v) = φ(v). By
definition it is H-bilinear, therefore it is a polylinear map in M∗(H). Sometimes, we will use the
notation φ ∗ v := φ(v) and consider this as a pseudoproduct or pseudoaction.

The associated x-products are called Fourier coefficients of φ and can be written by a formula
analogous to (3.18):

φx v =
∑

i

〈
S(x), f i gi(−1)

〉
gi(2)wi, if φ(v) =

∑
i

( f i ⊗ gi) ⊗H wi . (3.28)

Remark 3.10. Observe that they satisfy a locality relation and an H-sesqui-linearity relation similar to
(3.21) and (3.23):

codim{x ∈ X | φx v = 0} < ∞ for any v ∈ V , (3.29)

φx(hv) = h(2)(φh(−1)x v). (3.30)

Conversely, any collection of maps φx ∈ Hom(V , W ), x ∈ X , satisfying relations (3.29), (3.30) comes
from an H-pseudolinear map φ ∈ Chom(V , W ). Explicitly

φ(v) =
∑

i

(
S(hi) ⊗ 1

) ⊗H φxi v,

where {hi}, {xi} are dual bases in H and X .

Given U , V , W three H-modules, and assuming that U is finite (i.e. finitely generated as an H-
module), there is a unique polylinear map (see [1, Lemma 10.1]):

μ ∈ Lin
({

Chom(V , W ),Chom(U , V )
}
,Chom(U , W )

)
in M∗(H), denoted as μ(φ ⊗ ψ) = φ ∗ ψ , such that

(φ ∗ ψ) ∗ u = φ ∗ (ψ ∗ u) (3.31)
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in H⊗3 ⊗H W for φ ∈ Chom(V , W ), ψ ∈ Chom(U , V ), u ∈ U . More precisely, φ ∗ ψ is given in terms
of the x-products φxψ by the following formulas

(φxψ)y(v) = φx(2)

(
ψyx(−1)

(v)
) =

∑
i

φxi

(
ψy(hi S(x))(v)

)
. (3.32)

In the special case U = V = W (finite), we obtain a pseudoproduct μ on Cend V , and an action
ρ of Cend V on V . More precisely, for any finite H-module V , the above pseudoproduct provides
Cend V with the structure of an associative H-pseudoalgebra and V has a natural structure of a
Cend V -module given by φ ∗ v ≡ φ(v).

Moreover, for an associative H-pseudoalgebra A, giving a structure of an A-module on V is equiv-
alent to giving a homomorphism of associative H-pseudoalgebras from A to Cend V .

Let gc V be the Lie H-pseudoalgebra obtained from the associative one Cend V by the construction
given by (3.14). Then V is a gc V -module. In general, for a Lie H-pseudoalgebra L, giving a structure
of an L-module on a finite H-module V is equivalent to giving a homomorphism of Lie H-pseudo-
algebras from L to gc V .

If V is a free H-module of finite rank, one can give an explicit description of gc V as follows.

Proposition 3.11. (See [1, Proposition 10.3].) Suppose that V = H ⊗ V 0 , where H acts trivially on V 0 and
dim V 0 < ∞. Then gc V is isomorphic to H ⊗ H ⊗ End V 0 , where H acts by left multiplication on the first
factor, and the pseudobracket in gc V is given by:

[
( f ⊗ a ⊗ A) ∗ (g ⊗ b ⊗ B)

] = ( f ⊗ ga(1)) ⊗H (1 ⊗ ba(2) ⊗ AB)

− ( f b(1) ⊗ g) ⊗H (1 ⊗ ab(2) ⊗ B A). (3.33)

When V = H ⊗ kn , we will denote gc V by gcn .

Remark 3.12. Given a Lie H-pseudoalgebra L, and U , V finite L-modules, the formula (a ∈ L, u ∈ U ,
φ ∈ Chom(U , V ))

(a ∗ φ)(u) = a ∗ (φ ∗ u) − (
(σ ⊗ id) ⊗H id

)
φ ∗ (a ∗ u) (3.34)

provides Chom(U , V ) with the structure of an L-module. In particular when V is the base field k, we
have the following definition.

Definition 3.13. Given a finite module M over a Lie pseudoalgebra L, define de (pseudo-)dual module
of M as

M∗ = Chom(M,k), (3.35)

where k is a trivial L-module with h · 1 = ε(h)1 for all h ∈ H .

4. Duality and pseudo-bialgebras

In this section we extend some results for Lie conformal algebras obtained in [6] and [13]. Observe
that Lemma 2.3 and the arguments that produced (3.16) show that the action a ∗ m (a ∈ L, m ∈ M)
can be written

a ∗ m =
∑

( f i ⊗ gi) ⊗H mi =
∑

( f i gi(−1) ⊗ 1) ⊗H gi(2)mk ∈ (H ⊗ H) ⊗H M, (4.1)

i i
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hence, the action a ∗ m (a ∈ L, m ∈ M) can be written uniquely in the form
∑

i(hi ⊗ 1) ⊗H ci , where
{hi} is a fixed k-basis of H .

Let (L, [∗]) be a Lie pseudoalgebra, and M and N be L-modules. We endow the ordinary tensor
product of the underlying H-modules with an L-module structure. Recall that the action of H in
M ⊗ N is given by the coproduct, namely, if h ∈ H , m ∈ M and n ∈ N:

h · (m ⊗ n) = �(h)(m ⊗ n) = h(1)m ⊗ h(2)n.

Lemma 4.1. The H-module M ⊗ N is an L-module with the following action (a ∈ L, m ∈ M and n ∈ N):

a ∗ (m ⊗ n) =
∑

k

(hk ⊗ 1) ⊗H (mk ⊗ n) +
∑

l

(
h′

l ⊗ 1
) ⊗H (m ⊗ nl), (4.2)

if

a ∗ m =
∑

k

(hk ⊗ 1) ⊗H mk ∈ (H ⊗ H) ⊗H M

and

a ∗ n =
∑

l

(
h′

l ⊗ 1
) ⊗H nl ∈ (H ⊗ H) ⊗H N.

Proof. First of all we have to show the H-bilinearity of the action defined in (4.2). Observe that, in
general, using (2.27) and the H-linearity of M , we have ( f , g ∈ H, a ∈ L and m ∈ M)

f a ∗ gm = (
( f ⊗ g) ⊗H 1

)
(a ∗ m) =

∑
k

( f hk ⊗ g) ⊗H mk

=
∑

k

( f hk g(−1) ⊗ 1) ⊗H g(2)mk.

Therefore, using the cocommutativity of H , (2.27) and (4.2),

f a ∗ g(m ⊗ n) = f a ∗ (g(1)m ⊗ g(2)n)

=
∑

k

( f hk g(−1) ⊗ 1) ⊗H (g(2)mk ⊗ g(3)n)

+
∑

l

(
f h′

l g(−2) ⊗ 1
) ⊗H (g(1)m ⊗ g(3)nl)

=
∑

k

( f hk g(−1) ⊗ 1)�(g(2)) ⊗H (mk ⊗ n)

+
∑

l

(
f h′

l g(−1) ⊗ 1
)
�(g(2)) ⊗H (m ⊗ nl)

=
∑

k

( f hk ⊗ g) ⊗H (mk ⊗ n) +
∑

l

(
f h′

l ⊗ g
) ⊗H (m ⊗ nl)

= (
( f ⊗ g) ⊗H 1

)(
a ∗ (m ⊗ n)

)
, (4.3)

proving the H-bilinearity.
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To prove that M ⊗ N is an L-module we will introduce the following notation that simplifies (4.1):
for a ∈ L and m ∈ M , we denote

a ∗ m =
∑
(a,m)

(
ha,m ⊗ 1

) ⊗H ma = (
ha,m ⊗ 1

) ⊗H ma, (4.4)

where we avoided the sum that is implicitly understood. With this notation, we have that (4.2) can
be rewritten as

a ∗ (m ⊗ n) = (
ha,m ⊗ 1

) ⊗H (ma ⊗ n) + (
ha,n ⊗ 1

) ⊗H (m ⊗ na). (4.5)

Thus, by the composition rule

a ∗ (
b ∗ (m ⊗ n)

) = (
ha,mb ⊗ hb,m ⊗ 1

) ⊗H
(
(mb)a ⊗ n

)
+ (

ha,n ⊗ hb,m ⊗ 1
) ⊗H (mb ⊗ na)

+ (
ha,m ⊗ hb,n ⊗ 1

) ⊗H (ma ⊗ nb)

+ (
ha,nb ⊗ hb,n ⊗ 1

) ⊗H
(
m ⊗ (nb)a

)
. (4.6)

Similarly, interchanging the roles of a and b in (4.6),

(
(σ ⊗ id) ⊗H id

)(
b ∗ (

a ∗ (m ⊗ n)
))

= (
ha,m ⊗ hb,ma ⊗ 1

) ⊗H
(
(ma)b ⊗ n

) + (
ha,m ⊗ hb,n ⊗ 1

) ⊗H (ma ⊗ nb)

+ (
ha,n ⊗ hb,m ⊗ 1

) ⊗H (mb ⊗ na) + (
ha,n ⊗ hb,na ⊗ 1

) ⊗H
(
m ⊗ (na)b

)
.

Then,

a ∗ (
b ∗ (m ⊗ n)

) − (
(σ ⊗ id) ⊗H id

)(
b ∗ (

a ∗ (m ⊗ n)
))

= (
ha,mb ⊗ hb,m ⊗ 1

) ⊗H
(
(mb)a ⊗ n

) − (
ha,m ⊗ hb,ma ⊗ 1

) ⊗H
(
(ma)b ⊗ n

)
+ (

ha,nb ⊗ hb,n ⊗ 1
) ⊗H

(
m ⊗ (nb)a

) − (
ha,n ⊗ hb,na ⊗ 1

) ⊗H
(
m ⊗ (na)b

)
. (4.7)

On the other hand, if [a ∗ b] = ∑
(hi ⊗ 1) ⊗H ei , by the composition rules (3.5),

[a ∗ b] ∗ (m ⊗ n) = (
hi

(
hei ,m

)
(1)

⊗ (
hei ,m

)
(2)

⊗ 1
) ⊗H (mei ⊗ n)

+ (
hi

(
hei ,n

)
(1)

⊗ (
hei ,n

)
(2)

⊗ 1
) ⊗H (m ⊗ nei ). (4.8)

Now, using the fact that M and N are L-modules themselves, it is immediate to check that the first
summand in (4.8) corresponds exactly with the first two in (4.7), and similarly with the remaining
ones, finishing the proof. �

Let M be an L-module. Using the arguments that produced (3.16) and Lemma 2.3, observe that if
f ∈ M∗ and m ∈ M , then f (m) can be uniquely written as (g f ,m ⊗ 1) ⊗H 1. We have the following
useful result (cf. Proposition 6.1 in [6]).
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Proposition 4.2. Let M and N be two L-modules. Suppose that M has finite rank as an H-module. Then
M∗ ⊗ N � Chom(M, N) as L-modules, where the correspondence φ : M∗ ⊗ N → Chom(M, N) is given by[

φ( f ⊗ n)
]
(m) = (

1 ⊗ S(g f ,m)
) ⊗H n, (4.9)

if f ∈ M∗ , m ∈ M, n ∈ N and f (m) = (g f ,m ⊗ 1) ⊗H 1 ∈ (H ⊗ H) ⊗H k.

Proof. Let us check that φ( f ⊗ v) ∈ Chom(M, N). Since f ∈ M∗ = Chom(M,k), using (2.27) combined
with (2.5), and recalling that the H-module structure of k is given via the counit, we have that
f (hm) = ((1 ⊗ h) ⊗H 1)( f (m)) = (g f ,m ⊗ h) ⊗H 1 = (g f ,mh(−1) ⊗ 1) ⊗H ε(h(2)) = (g f ,m S(h) ⊗ 1) ⊗H 1,
for all m ∈ M and h ∈ H . Thus, by (2.18),

[
φ( f ⊗ n)

]
(hm) = (

1 ⊗ S
(

g f ,m S(h)
)) ⊗H n = (

1 ⊗ hS(g f ,m)
) ⊗H n

= (
(1 ⊗ h) ⊗H 1

)((
1 ⊗ S(g f ,m)

) ⊗H n
)

= (
(1 ⊗ h) ⊗H 1

)[
φ( f ⊗ n)

]
(m).

Now, we will check that this identification given via φ is H-linear. By the H-module structure of the
tensor product of modules and (2.6), we have that

[
φ
(
h( f ⊗ n)

)]
(m) = [

φ(h(1) f ⊗ h(2)n)
]
(m) = (

1 ⊗ S(h(1)g f ,m)
) ⊗H h(2)n

= [(
1 ⊗ S(g f ,m)

)(
1 ⊗ S(h(1))

)
�(h(2))

] ⊗H n

= (
h ⊗ S(g f ,m)

) ⊗H n = (
(h ⊗ 1) ⊗H 1

)[
φ( f ⊗ n)

]
(m)

= [
hφ( f ⊗ n)

]
(m).

Now, we will show that φ is a morphism of L-modules. To keep simple expressions, we shall use the
notation introduced in (4.4) and Remark 3.9. Therefore, we consider φ( f ⊗ n) ∗ m := [φ( f ⊗ n)](m)

and since we have already shown the H-bilinearity, it is actually a polylinear map, therefore using
the composition rule (3.5) and the action (4.5), we have

φ
(
a ∗ ( f ⊗ n)

) ∗ (m) = (
ha, f ⊗ 1 ⊗ S(g fa,m)

) ⊗H n + (
ha,n ⊗ 1 ⊗ S(g f ,m)

) ⊗H na, (4.10)

if fa ∗ (m) = (g fa,m ⊗ 1) ⊗H 1 and a ∗ ( f ⊗ n) = (ha, f ⊗ 1) ⊗H ( fa ⊗ n) + (ha,n ⊗ 1) ⊗H ( f ⊗ na).
On the other hand, by (3.34), (3.5) and (3.8),

[
a ∗ φ( f ⊗ n)

] ∗ (m) = a ∗ ((
1 ⊗ S(g f ,m)

) ⊗H n
)

− (
(σ ⊗ id) ⊗H id

)[
φ( f ⊗ n)

] ∗ ((
ha,m ⊗ 1

) ⊗H ma
)

= (
ha,n ⊗ 1 ⊗ S(g f ,m)

) ⊗H na

− (
(σ ⊗ id) ⊗H id

)((
1 ⊗ ha,m(g f ,ma)(−1) ⊗ (g f ,ma )(−2)

) ⊗H n
)

= (
ha,n ⊗ 1 ⊗ S(g f ,m)

) ⊗H na

− (
ha,m(g f ,ma)(−1) ⊗ 1 ⊗ (g f ,ma )(−2)

) ⊗H n. (4.11)

Now, comparing (4.10) and (4.11), it is enough to show that

−(
ha, f ⊗ 1 ⊗ S(g fa,m)

) ⊗H n = (
ha,m(g f ,ma )(−1) ⊗ 1 ⊗ (g f ,ma)(−2)

) ⊗H n. (4.12)
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But this follows from two different ways to compute (a ∗ f )(m). By (3.34) and (2.29), we have that

(a ∗ f )(m) = −(
(σ ⊗ id) ⊗H id

)(
f ∗ ((

ha,m ⊗ 1
) ⊗H ma

))
= −(

(σ ⊗ id) ⊗H id
)((

g f ,ma ⊗ ha,m ⊗ 1
) ⊗H 1

)
= −(

ha,m ⊗ g f ,ma ⊗ 1
) ⊗H 1

= −(
ha,m(g f ,ma )(−1) ⊗ 1 ⊗ (g f ,ma )(−2)

) ⊗H 1 (4.13)

and by notation (4.4) and (2.29),

(a ∗ f )(m) = (
ha, f (g fa,m)(1) ⊗ (g fa,m)(2) ⊗ 1

) ⊗H 1

= (
ha, f ⊗ 1 ⊗ S(g fa,m)

) ⊗H 1,

hence (4.12) follows. Now we have to prove the injectivity. Suppose that for all m ∈ M we have
0 = φ(

∑
i f i ⊗ ni)(m) = ∑

i(1 ⊗ S(g fi ,m)) ⊗H ni . Then g fi ,m = 0 for all m ∈ M , since S is bijective.
Therefore f i = 0 for all i.

It remains to prove that φ is surjective. Let g ∈ Chom(M, N) and M = ⊕n
i=1 Hmi . Then there exist

hij ∈ H and nij ∈ N such that g(mi) = ∑
j(1 ⊗ hij) ⊗H nij . Now, we define f i j ∈ M∗ by f i j(mk) =

[(S(hij)⊗ 1)⊗H 1]δik . Then g = φ(
∑

i, j f i j ⊗nij) since φ(
∑

i, j f i j ⊗nij)(mk) = ∑
i, j δik(1 ⊗hij)⊗H nij =∑

j(1 ⊗ hkj) ⊗H nkj = g(mk), finishing our proof. �
As a motivation for the definition of H-coalgebra and pseudo-bialgebra, we used the cohomology

theory of pseudoalgebras developed in [1], in order to get to the right notion of cocycle that will be
the compatibility condition between pseudobracket and coproduct. See Section 5.1, for a brief review
of the basics of this theory.

We have the following definition:

Definition 4.3. A Lie H-coalgebra R is an H-module, endowed with an H-homomorphism

δ : R →
∧2

R

such that

(I ⊗ δ)δ − τ12(I ⊗ δ)δ = (δ ⊗ I)δ, (4.14)

where τ12 = (1,2) ∈ S3.

This is nothing but the standard definition of a Lie coalgebra, compatible with the H-module
structure of R .

In this section we will give the answer to the following natural question: Does the “dual” of one
structure produce the other, at least in finite rank? The answer is given by Theorem 4.5, below. But
first we will need the following definition.

Definition 4.4. Let L be a finite free H-module with basis {ai}n
i=1. The dual basis of {ai}n

i=1 in L∗ is
defined by the set {a j}n

j=1, where each a j ∈ L∗ = Chom(L,k) is given by

ai ∗ (a j) = (1 ⊗ 1) ⊗H δi j. (4.15)
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It is easily checked that, with this definition {a j}n
j=1 is a linearly independent set such that H-

generates L∗ .

Theorem 4.5.

(a) Consider L = ⊕N
i=1 Hai a finite free Lie H-pseudoalgebra, with pseudobracket given by

[ai ∗ a j] =
N∑

k=1

(
hij

k ⊗ li j
k

) ⊗H ak.

Let L∗ = Chom(L,k) = ⊕N
i=1 Hai be the dual of L where {ai} is the dual basis corresponding to {ai}.

Define δ : L∗ → L∗ ⊗ L∗ as follows:

δ
(
ak) =

∑
i, j

S
(
hij

k

)
ai ⊗ S

(
li j
k

)
a j (4.16)

and extend it H-linearly, i.e. δ(hak) = �(h)δ(ak). Then (L∗, δ) is a Lie H-coalgebra.
(b) Conversely, let (R, δ) be a finite Lie H-coalgebra. Then the left H-module R∗ = Chom(R,k) is a Lie H-

conformal algebra with the x-brackets defined by

[ fx g]y(r) =
∑

fx(2)
(r(1))g yx(−1)

(r(2)) (4.17)

with f , g ∈ R∗ , r ∈ R and x, y ∈ X = H∗ , where δ(r) = ∑
r(1) ⊗ r(2) .

Proof. (a) Due to the skew-commutativity of the pseudobracket of L, [ai ∗ a j] = ∑
k(h

ij
k ⊗ li j

k ) ⊗H ak =
−∑

k(l
ji
k ⊗ h ji

k ) ⊗H ak = −(σ ⊗H id)[a j ∗ ai]. Then we have that

δ
(
ak) =

∑
i, j

S
(
hij

k

)
ai ⊗ S

(
li j
k

)
a j

= −
∑
i, j

S
(
l ji
k

)
ai ⊗ S

(
h ji

k

)
a j

= −σ
(
δ
(
ak)),

showing that δ(ak) ∈ ∧2
(L). Now we have to check the co-Jacobi condition for δ. Using the notation

[ai ∗ a j] = ∑
k(h

ij
k ⊗ li j

k ) ⊗H ak and the composition rules (3.5) and (3.8), together with the Jacobi
identity in L,

0 = [
ai ∗ [a j ∗ al]

] − (σ ⊗ id)
[
a j ∗ [ai ∗ al]

] − [[ai ∗ a j] ∗ al
]

=
∑
k,s

(
hik

s ⊗ h jl
k

(
lik
s

)
(1)

⊗ l jl
k

(
lik
s

)
(2)

) ⊗H as −
∑
k,s

(
hil

k

(
l jk
s

)
(1)

⊗ h jk
s ⊗ lil

k

(
l jk
s

)
(2)

) ⊗H as

−
∑
k,s

(
hij

k

(
hkl

s

)
(1)

⊗ li j
k

(
hkl

s

)
(2)

⊗ lkl
s

) ⊗H as. (4.18)

Now,
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(id ⊗ δ)
(
δ
(
as)) = (id ⊗ δ)

(∑
i,k

S
(
hik

s

)
ai ⊗ S

(
lik
s

)
ak

)
=

∑
i,k, j,l

S
(
hik

s

)
ai ⊗ �

(
S
(
lik
s

))(
S
(
h jl

k

)
a j ⊗ S

(
l jl
k

)
al)

=
∑

i, j,k,l

(
(S ⊗ S ⊗ S)

(
hik

s ⊗ h jl
k

(
lik
s

)
(1)

⊗ l jl
k

(
lik
s

)
(2)

))(
ai ⊗ a j ⊗ al).

Similarly,

−τ12(id ⊗ δ)
(
δ
(
as)) = −

∑
i, j,k,l

(
(S ⊗ S ⊗ S)

(
hil

k

(
l jk
s

)
(1)

⊗ h jk
s ⊗ lil

k

(
l jk
s

)
(2)

))(
ai ⊗ a j ⊗ al)

and

(δ ⊗ id)
(
δ
(
as)) =

∑
i, j,k,l

(
(S ⊗ S ⊗ S)

(
hij

k

(
hkl

s

)
(1)

⊗ li j
k

(
hkl

s

)
(2)

⊗ lkl
s

))(
ai ⊗ a j ⊗ al).

Therefore comparing with (4.18), we have that δ satisfies the co-Jacobi condition, namely,

(id⊗ δ)
(
δ
(
as)) − τ12(id⊗ δ)

(
δ
(
as)) − (δ ⊗ id)

(
δ
(
as)) = 0.

(b) We define our candidate for the pseudobracket in R∗ in terms of its Fourier coefficients (cf.
formula (9.21) in [1] or (3.32)):

[ fx g]y(r) = fx(2)
(r(1))g yx(−1)

(r(2)) =
∑

i

fxi (r(1))g y(hi S(x))(r(2)),

where {hi} and {xi} are dual bases in H and X respectively. The H-sesqui-linearity properties of
[ fx g]y(r) with respect to x and y are tedious but straightforward.

By properties (2.14), (2.21), (2.22) of the filtration {Fn X}, if y ∈ Fn X , then yx(−1) ∈ Fn X for all x ∈ X .
Thus by locality of g , it follows that for each fixed x ∈ X , r ∈ R there is an n such that [ fx g]y(r) = 0
for y ∈ Fn X . Therefore, by Remark 3.10, for each x ∈ X we have that [ fx g] ∈ Chom(R,k).

In order to see that [ f ∗ g] is well defined, we need to check that [ fx g] satisfies locality, i.e. for
each f , g ∈ R∗ there exists n ∈ N such that [ fx g] = 0 for all x ∈ Fn X . By the locality of f and g ,
for each term of δ(r) = ∑

r(1) ⊗ r(2) , there are n1 and n2 such that fx(2)
(r(1)) = 0 if x(2) ∈ Fn1 X , and

g yx(−1)
(r(2)) = 0 if yx(−1) ∈ Fn2 X . Thus taking n big enough and using (2.22) we have that x(2) or x(−1)

belongs to Fn(X). Since we have that yFn X ⊆ Fn X for all y ∈ X , then we conclude that for each r ∈ R
there exists n such that [ fx g]y(r) = 0 for all y ∈ X and for all x ∈ Fn X .

Since R is finite, we can choose an n that works for all r belonging to a set of generators
of R over H . Now the H-sesqui-linearity of [ fx g]y(r) with respect to y (for fixed x) implies that
[ fx g]y(r) = 0 for all y and r. Hence [ fx g] = 0 for x ∈ Fn X .

To finish our proof, we need to check the skew-commutativity (3.24) and the Jacobi iden-
tity (3.25) for (4.17). In order to see the skew-commutativity we need to proof that [ fx g] =
−∑〈x,hi(−1)

〉hi(−2)
[gxi f ]. Evaluating the right-hand side of this equation in r and using the skew-

symmetry of δ, we have that

−
∑

〈x,hi(−1)
〉hi(−2)

[gxi f ]y(r) = −
∑

〈x,hi(−1)
〉[gxi f ]yhi(−2)

(r)

= −
∑

〈x,hi(−1)
〉gxi(2)

(r(1)) f(yhi(−2)
)xi(−1)

(r(2))

=
∑

〈x,hi(−1)
〉 f(yhi )xi (r(1))gxi (r(2)).
(−2) (−1) (2)
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Since [ fx g]y(r) = fx(2)
(r(1))g yx(−1)

(r(2)), in order to prove the skew-commutativity is enough to
show that

∑
〈x,hi(−1)

〉((yhi(−2)
)xi(−1)

⊗ xi(2)

) = x(2) ⊗ yx(−1). (4.19)

For k, l ∈ H , we have

∑
〈x,hi(−1)

〉((yhi(−2)
)xi(−1)

⊗ xi(2)

)
(k ⊗ l)

=
∑

〈x(1),hi(−1)
〉〈x(2),1〉((yhi(−2)

)xi(−1)
⊗ xi(2)

)
(k ⊗ l) by (2.20 )

=
∑

〈x(−1),hi(1)
〉〈x(2),1〉〈(yhi(−2)

)xi(−1)
,k

〉〈xi(2)
, l〉

=
∑

〈x(−1),hi(1)
〉〈x(2),1〉〈(yhi(−2)

),k(1)

〉〈xi(−1)
,k(2)〉〈xi(2)

, l〉 by (2.19 )

=
∑

〈x(−1),hi(2)
〉〈x(2),1〉〈(k(−1) y),hi(1)

〉〈xi(1)
,k(−2)〉〈xi(2)

, l〉
by (2.10), (2.11 ), (2.17 ) and cocommutativity of H

=
∑〈

(k(−1) y)x(−1),hi
〉〈x(2),1〉〈xi,k(−2)l〉 by (2.19 ) and (2.20)

= 〈
(k(−1) y)x(−1),k(−2)l

〉〈x(2),1〉 by (2.24 ).

Since (hy)x(−1) ⊗ x(2) = h(1)(yx(−1)) ⊗ h(2)x(2) , we get

〈
(k(−1) y)x(−1),k(−2)l

〉〈x(2),1〉 = 〈
k(−1)(1)

(yx(−1)),k(−2)l
〉〈k(−1)(2)

x(2),1〉
= 〈yx(−1),k(1)(1)

k(−2)l〉〈x(2),k(1)(2)
〉 by (2.10)

= 〈yx(−1), l〉〈x(2),k〉 by (2.4) and (2.5),

proving the identity in (4.19). To finish, we still have to check the Jacobi identity. We have that

[
fx[g yl]]z(r) − [

g y[ fxl]]z(r) = fx(2)
(r(1))[g yl]zx(−1)

(r(2)) − g y(2)
(r(1))[ fxl]zy(−1)

(r(2))

= fx(2)
(r(1))g y(2)

(r(2)(1)
)l(zx(−1))y(−1)

(r(2)(2)
)

− g y(2)
(r(1)) fx(2)

(r(2)(1)
)l(zy(−1))x(−1)

(r(2)(2)
) (4.20)

and

[[ fx(2)
g]yx(1)

l
]

z(r) = [ fx(2)
g](yx(1))(2)

(r(1))lz(yx(1))(−1)
(r(2))

= fx(2)(2)
(r(1)(1)

)g(yx(1))(2)x(2)(−1)
(r(1)(2)

)lz(yx(1))(−1)
(r(2)). (4.21)

Due to the co-Jacobi condition of δ given in (4.14), comparing (4.20) and (4.21), it is enough to show
that

x(2)(2)
⊗ (yx(1))(2)x(2)(−1)

⊗ z(yx(1))(−1) = x(2) ⊗ y(2) ⊗ (zx(−1))y(−1)

= x(2) ⊗ y(2) ⊗ (zy(−1))x(−1). (4.22)
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Due to the commutativity and associativity of X , the last equality is immediate. Since �(xy) =
x(1) y(1) ⊗ x(2) y(2) , we have

x(2)(2)
⊗ (yx(1))(2)x(2)(−1)

⊗ z(yx(1))(−1)

= (1 ⊗ y(2) ⊗ zy(−1))(x(2)(2)
⊗ x(1)(2)

x(2)(−1)
⊗ x(1)(−1)

)

= x(2) ⊗ y(2) ⊗ (zx(−1))y(−1),

proving the first equality of (4.22) and finishing our proof. �
Motivated by the definition of the differential of a 1-cochain in the reduced complex of a Lie

H-pseudoalgebra [1, Section 15.1], we introduce the following notion.

Definition 4.6. A Lie H-pseudo-bialgebra is a triple (L, [∗], δ) such that (L, [∗]) is a pseudoalgebra,
(L, δ) is an H-coalgebra and they satisfy the cocycle condition:

a ∗ δ(b) − (σ ⊗H 1)b ∗ δ(a) = δ
([a ∗ b])

for all a and b in L.

Example 4.7. Let (g, [ , ], δ) be a Lie bialgebra. Now, it is easy to check that the pseudoalgebra Curg =
H ⊗ g has a natural Lie pseudo-bialgebra structure given by:

δ( f ⊗ a) = f · δ(a),

for f ⊗ a ∈ Curg. But not all the bialgebra structures on Cur(g) are of this form, as it is shown in the
next example.

Example 4.8. Consider the rank 2 solvable Lie pseudoalgebra

Lp = Ha ⊕ Hb,

with ∗-bracket (extended by skew-symmetry and sesqui-linearity) given by

[a ∗ a] = 0 = [b ∗ b], [a ∗ b] = (p ⊗ 1) ⊗H b,

where p ∈ H . We shall not consider the most general case where p ⊗ 1 is replaced by α ∈ H ⊗ H . We
do not plan to give an exhaustive classification of Lie pseudo-bialgebra structures on L p , instead, we
shall study pseudo-bialgebra structures on L p whose underlying coalgebra structure comes from the
dual of a solvable Lie pseudoalgebra Lh , with h ∈ H . That is, fix h ∈ H , then by applying Theorem 4.5
to Lh we obtain a Lie H-coalgebra structure on Lh by taking δh : Lh → ∧2 Lh given by

δh(a) = 0, δh(b) = S(h)a ⊗ b − b ⊗ S(h)a.

By a simple computation it is possible to show that δh is a Lie pseudo-bialgebra structure on L p if
and only if

(S ⊗ 1)�
(

S(h)p
) = −(1 ⊗ S)�

(
S(h)p

)
. (4.23)

In the special case of p = 1, we have that L p � Cur(T2) where T2 is the 2-dimensional Lie algebra
considered in Examples 2.2 and 3.2 in [8]. In this case every h satisfying (4.23) produces a non-
isomorphic Lie pseudo-bialgebra structure in Cur(T2), obtaining pseudo-bialgebra structures that do
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not come from bialgebra structures in T2 as in the previous example. Moreover, in order to see how
different is the situation from the classical case, observe that if h satisfies (4.23) and S(h) = −h (which
is the case if h ∈ g ⊂ U(g) = H), then δh = d(1 ⊗H r), where r = 1

2 (a ⊗ ha − ha ⊗ a) (cf. (5.2) and (5.4)
below), showing that there are coboundary structures δ = dr (see next section for the definition) in
Cur(T2) with δ(a) = 0 and such structures are not present in the Lie algebra T2 (see Example 3.2
in [8]).

Example 4.9. Recall that gc1 can be identified with H ⊗ H with pseudobracket defined as follows
(see (3.33)):[

( f ⊗ a) ∗ (g ⊗ b)
] = ( f ⊗ ga(1)) ⊗H (1 ⊗ ba(2)) − ( f b(1) ⊗ g) ⊗H (1 ⊗ ab(2)),

for f ⊗ a and g ⊗ b in H ⊗ H . By straightforward computations, it is possible to show that given
r = ( f ⊗ 1) ∧ (g ⊗ 1) ∈ gc1 ∧gc1,

δr(1 ⊗ a) = ( f a(1))(−1) · ((( f a(1))(2) ⊗ a(2)

) ∧ (g ⊗ 1)
) − f(−1) · (( f(2) ⊗ a) ∧ (g ⊗ 1)

)
+ (ga(1))(−1) · (( f ⊗ 1) ∧ (

(ga(1))(2) ⊗ a(2)

)) − g(−1) · (( f ⊗ 1) ∧ (g(2) ⊗ a)
)

gives a Lie pseudo-bialgebra structure on gc1. This is an example of coboundary Lie pseudo-bialgebra
defined in the following section and it is a generalization of an example given in [13].

Remark 4.10. The examples presented here show that this theory is richer than the classical Lie
bialgebra theory. We are far from classification results in this context. Observe that it is not known if
a conformal version or a pseudoalgebra version of Whitehead’s lemma holds for Cur(g).

5. Coboundary Lie pseudo-bialgebras

In this section we study a very important class of Lie pseudoalgebras, for which the H-coalgebra
structure comes from a 1-coboundary.

5.1. Cohomology of pseudoalgebras

For the sake of completeness, we shall review some of the definitions given in Section 15 of [1].

5.1.1. The complexes C•(L, M)

As before, H is a cocommutative Hopf algebra. Let L be a Lie H-pseudoalgebra and M be an L-
module.

By definition, Cn(L, M), n � 1, consists of all

γ ∈ HomH⊗n
(
L⊗n, H⊗n ⊗H M

)
(5.1)

that are skew-symmetric. Explicitly, γ has the following defining properties (cf. (3.9), (3.10)):

H -polylinearity: For hi ∈ H , ai ∈ L,

γ (h1a1 ⊗ · · · ⊗ hnan) = (
(h1 ⊗ · · · ⊗ hn) ⊗H 1

)
γ (a1 ⊗ · · · ⊗ an).

Skew-symmetry:

γ (a1 ⊗ · · · ⊗ ai+1 ⊗ ai ⊗ · · · ⊗ an)

= −(σi,i+1 ⊗H id)γ (a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an),

where σi,i+1 : H⊗n → H⊗n is the transposition of the i-th and (i + 1)-st factors.
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For n = 0, we put C0(L, M) = k ⊗H M � M/H+M , where H+ = {h ∈ H | ε(h) = 0} is the augmenta-
tion ideal. The differential d : C0(L, M) = k ⊗H M → C1(L, M) = HomH (L, M) is given by:(

d(1 ⊗H m)
)
(a) =

∑
i

(id ⊗ε)(hi)mi ∈ M (5.2)

if a ∗ m = ∑
i hi ⊗H mi ∈ H⊗2 ⊗H M , for a ∈ L, m ∈ M .

For n � 1, the differential d : Cn(L, M) → Cn+1(L, M) is given by

(dγ )(a1 ⊗ · · · ⊗ an+1)

=
∑

1�i�n+1

(−1)i+1(σ1→i ⊗H id)ai ∗ γ (a1 ⊗ · · · ⊗ âi ⊗ · · · ⊗ an+1)

+
∑

1�i< j�n+1

(−1)i+ j(σ1→i,2→ j ⊗H id)

× γ
([ai ∗ a j] ⊗ a1 ⊗ · · · ⊗ âi ⊗ · · · ⊗ â j ⊗ · · · ⊗ an+1

)
, (5.3)

where σ1→i is the permutation hi ⊗h1 ⊗· · ·⊗hi−1 ⊗hi+1 ⊗· · ·⊗hn+1 
→ h1 ⊗· · ·⊗hn+1, and σ1→i, 2→ j
is the permutation hi ⊗ h j ⊗ h1 ⊗ · · · ⊗ hi−1 ⊗ hi+1 ⊗ · · · ⊗ h j−1 ⊗ h j+1 ⊗ · · · ⊗ hn+1 
→ h1 ⊗ · · · ⊗ hn+1.

In (5.3) we also use the following conventions. If a ∗ b = ∑
i f i ⊗H ci ∈ H⊗2 ⊗H M for a ∈ L, b ∈ M ,

then for any f ∈ H⊗n we set:

a ∗ ( f ⊗H b) =
∑

i

(1 ⊗ f )
(
id ⊗�(n−1)

)
( f i) ⊗H ci ∈ H⊗(n+1) ⊗H M,

where �(n−1) = (id⊗· · ·⊗ id⊗�) · · · (id⊗�)� : H → H⊗n is the iterated comultiplication (�(0) := id).
Similarly, if γ (a1 ⊗ · · · ⊗ an) = ∑

i gi ⊗H vi ∈ H⊗n ⊗H M , then for g ∈ H⊗2 we set:

γ
(
(g ⊗H a1) ⊗ a2 ⊗ · · · ⊗ an

)
=

∑
i

(
g ⊗ 1⊗(n−1)

)(
� ⊗ id⊗(n−1)

)
(gi) ⊗H vi ∈ H⊗(n+1) ⊗H M.

Note that (5.3) holds also for n = 0 if we define �(−1) := ε.
The fact that d2 = 0 is most easily checked using the same argument as in the usual Lie algebra

case. The cohomology of the resulting complex C•(L, M) is called the reduced cohomology of L with
coefficients in M and is denoted by H•(L, M) (cf. [4]).

Remark 5.1. Note that the cocycle condition for the cocommutator δ : L → ∧2 L in the definition of an
H-coalgebra is indeed the condition that δ is a 1-cocycle of L with coefficients in

∧2 L in the reduced
complex.

5.2. Definitions and conformal CYBE

Among all the 1-cocycles of L with values in
∧2 L, we have 1-coboundaries δ that come from the

differential of an element r ∈ ∧2 L, that is

δr(a) = (
d(1 ⊗H r)

)
(a), (5.4)

for all a ∈ L, cf. (5.2).
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Definition 5.2. A coboundary Lie pseudo-bialgebra is a triple (L, [∗], r), with r ∈ L ⊗ L, such that
(L, [∗], δr) is a Lie pseudo-bialgebra. In this case, the element r ∈ L ⊗ L is said to be a coboundary
structure.

Now, we can state one of the main results of this article.

Theorem 5.3. Let L be a Lie pseudoalgebra and μ : H ⊗(L ⊗ L) → L ⊗ L given by μ(h⊗m⊗n) = �(h)(m⊗n).
Let r = ∑

i ai ⊗ bi ∈ L ⊗ L. The map δr : L → L ⊗ L given by (a ∈ L)

δr(a) = (
d(1 ⊗H r)

)
(a) =

∑
i

μ
([a,ai] ⊗ bi + σ12

(
ai ⊗ [a,bi]

))
,

is the cocommutator of a Lie pseudo-bialgebra structure on L if and only if the following conditions are satisfied:

(1) the symmetric part of r is L-invariant, that is:

δr+r21(a) = 0,

where r12 = ∑
i bi ⊗ ai ;

(2) μ3
(
a · [[r, r]]) = 0

where μ3(h ⊗ m ⊗ n ⊗ p) = ((� ⊗ 1)�(h))(m ⊗ n ⊗ p), the dot action is the action analogous to the
bracket defined in (3.17) and[[r, r]] = μ3

−1

([a j,ai] ⊗ b j ⊗ bi
) − μ4−2

(
ai ⊗ [a j,bi] ⊗ b j

) − μ2−3

(
ai ⊗ a j ⊗ [b j,bi]

)
, (5.5)

where μl
−k means that the element of H that appears in its argument in the k-th place acts via the an-

tipode on the element of L located in the l-th entry.

Proof. From now on we will use the following notation: For a and b in L,

[a ∗ b] = (
ha,b ⊗ 1

) ⊗H ca,b ∈ (H ⊗ H) ⊗H L.

Since r = ∑
i ai ⊗ bi ∈ L ⊗ L, by (4.2)

a ∗ r = (
ha,ai ⊗ 1

) ⊗H (ca,ai ⊗ bi) + (
ha,bi ⊗ 1

) ⊗H (ai ⊗ ca,bi ).

Thus

δr(a) = (
d(1 ⊗H r)

)
(a)

= (
ha,ai · (ca,ai ⊗ bi) + ha,bi · (ai ⊗ ca,bi )

)
= μ

([a,ai] ⊗ bi + σ12
(
ai ⊗ [a,bi]

))
, (5.6)

where we set μ(h ⊗ m ⊗ n) = �(h)(m ⊗ n) for all h ∈ H and m and n in L, and [a,b] ∈ H ⊗ L is the
Fourier transform of [a ∗ b] (cf. (3.17)).

It is clear that the skew-symmetry of δ is equivalent to condition (1) in the statement of the
theorem. Now
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(δr ⊗ id)δr(a) = (δr ⊗ id)
(
ha,ai · (ca,ai ⊗ bi) + ha,bi · (ai ⊗ ca,bi )

)
= ha,ai

(1) δr(ca,ai ) ⊗ ha,ai
(2) bi + ha,bi

(1) δr(ai) ⊗ ha,bi
(2) ca,bi

= ha,ai · (δr(ca,ai ) ⊗ bi
) + ha,bi · (δr(ai) ⊗ ca,bi

)
= ha,ai · (hca,ai ,a j · (cca,ai ,a j ⊗ b j) ⊗ bi + hca,ai ,b j · (a j ⊗ cca,ai ,b j ) ⊗ bi

)
+ ha,bi · (hai ,a j · (cai ,a j ⊗ b j) ⊗ ca,bi + hai ,b j · (a j ⊗ cai ,b j ) ⊗ ca,bi

)
= μ1

(
μ3,4

2

([[a,ai],a j
] ⊗ b j ⊗ bi

)) + μ2
(
μ1,4

3

(
a j ⊗ [[a,ai],b j

] ⊗ bi
))

+ μ3
(
μ2,3

1

([ai,a j] ⊗ b j ⊗ [a,bi]
)) + μ3

(
μ1,3

2

(
a j ⊗ [ai,b j] ⊗ [a,bi]

))
,

where μr,s
k means that the element of H that appears in its argument in the k-th place acts on the

elements of L ⊗ L formed by the elements in the r and s-th entries, and then relocated in its original
places, omitting k-th place. For example μ1,4

2 (m ⊗ f ⊗ n ⊗ p ⊗ g) = f(1)m ⊗ n ⊗ f(2) p ⊗ g , with m, n
and p in L and f , g in H . Similarly, μk represents the action of the element of H in the k-th place
acting in the element of L ⊗ L ⊗ L formed by the remaining elements in its argument.

Now, we can write down the twelve terms in
∑

c.p.(δr ⊗ id)δr(a), where
∑

c.p. stands for cyclic
permutations of the factors in L ⊗ L ⊗ L. Namely∑

c.p.

(δr ⊗ id)δr(a) = μ1
(
μ3,4

2

([[a,ai],a j
] ⊗ b j ⊗ bi

))
(5.7)

+ μ2
(
μ1,4

3

(
a j ⊗ [[a,ai],b j

] ⊗ bi
))

(5.8)

+ μ3
(
μ2,3

1

([ai,a j] ⊗ b j ⊗ [a,bi]
))

(5.9)

+ μ3
(
μ1,3

2

(
a j ⊗ [ai,b j] ⊗ [a,bi]

))
(5.10)

+ μ2
(
μ4,5

3

(
bi ⊗ [[a,ai],a j

] ⊗ b j
))

(5.11)

+ μ3
(
μ2,5

4

(
bi ⊗ a j ⊗ [[a,ai],b j

]))
(5.12)

+ μ1
(
μ4,5

3

([a,bi] ⊗ [ai,a j] ⊗ b j
))

(5.13)

+ μ1
(
μ3,5

4

([a,bi] ⊗ a j ⊗ [ai,b j]
))

(5.14)

+ μ3
(
μ1,5

4

(
b j ⊗ bi ⊗ [[a,ai],a j

]))
(5.15)

+ μ1
(
μ3,5

2

([[a,ai],b j
] ⊗ bi ⊗ a j

))
(5.16)

+ μ2
(
μ1,5

4

(
b j ⊗ [a,bi] ⊗ [ai,a j]

))
(5.17)

+ μ2
(
μ2,5

1

([ai,b j] ⊗ [a,bi] ⊗ a j
))

. (5.18)

On the other hand, by the skew-commutativity in (3.19) we have that

μ3
(
a · [[r, r]]) = μ3

(
a · (μ3

−1

([a j,ai] ⊗ b j ⊗ bi
)

− μ4−2

(
ai ⊗ [a j,bi] ⊗ b j

) − μ2−3

(
ai ⊗ a j ⊗ [b j,bi]

)))
= −μ1

(
μ3,4

2 (F ⊗ id ⊗ id⊗ id)
([

a, [ai,a j]
] ⊗ b j ⊗ bi

))
(5.19)

+ μ2
(
μ2,5

1

([ai,a j] ⊗ [a,bi] ⊗ b j
))

(5.20)

+ μ3
(
μ3

−1

([a j,ai] ⊗ b j ⊗ [a,bi]
))

(5.21)
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+ μ1
(
μ4,5

3

([a,ai] ⊗ [bi,a j] ⊗ b j
))

(5.22)

+ μ2
(
μ4,5

3 (id⊗F ⊗ id ⊗ id)
(
a j ⊗ [

a, [b j,ai]
] ⊗ bi

))
(5.23)

+ μ3
(
μ1−2

(
a j ⊗ [b j,ai] ⊗ [a,bi]

))
(5.24)

+ μ1
(
μ3,5

4

([a,ai] ⊗ a j ⊗ [bi,b j]
))

(5.25)

− μ14
3

(
ai ⊗ (

id⊗ρ(bi)
)
μ2,3

1

([a,a j] ⊗ b j
))

(5.26)

+ μ3
(
μ2,5

4

(
id ⊗ id⊗F ⊗ id

)(
ai ⊗ a j ⊗ [

a, [bi,b j]
]))

, (5.27)

where F is the Fourier transform defined in (2.26) and ρ(b)(a) = [a,b] for all a and b in L. Now, the
study of the sum of both equations is divided in several steps.

First, observe that (5.9)+ (5.21)= 0. Indeed, using the skew-symmetry introduced in (3.19), if
[a j,ai] = ha j ,ai ⊗ ca j ,ai we get

μ3
(
μ2,3

1

([ai,a j] ⊗ b j ⊗ [a,bi]
)) = −μ3

(
μ2,3

1

(
h

a j,ai

(−1) ⊗ h
a j,ai

(2) ca j ,ai ⊗ b j ⊗ [a,bi]
))

= −μ3
(
h

a j,ai

(−1)(1)
h

a j,ai

(2) ca j ,ai ⊗ h
a j,ai

(−1)(2)
b j ⊗ [a,bi]

)
= −μ3

(
ca j ,ai ⊗ S

(
ha j,ai

)
b j ⊗ [a,bi]

)
= −μ3

(
μ3

−1

([a j,ai] ⊗ b j ⊗ [a,bi]
))

.

Similarly, we have (5.10) + (5.24) = 0.
Interchanging the indices i and j and using the Jacobi identity (3.20), we have that (5.7) + (5.19)

is

μ1
(
μ3,4

2

([[a,ai],a j
] ⊗ b j ⊗ bi

)) − μ1
(
μ3,4

2 (F ⊗ id ⊗ id⊗ id)
([

a, [ai,a j]
] ⊗ b j ⊗ bi

))
= −μ1

(
μ3,4

2

(
(F ◦ σ ⊗ id⊗ id ⊗ id)

([
ai, [a,a j]

] ⊗ b j ⊗ bi
)))

= −μ1
(
μ3,5

2

([[a,a j],ai
] ⊗ b j ⊗ bi

))
. (5.28)

Now, using the invariance property of part (1) of this theorem, and (5.28), we obtain that (5.16) +
(5.28) is

μ1
(
μ3,5

2

([[a,ai],b j
] ⊗ bi ⊗ a j

)) − μ1
(
μ3,5

2

([[a,a j],ai
] ⊗ b j ⊗ bi

))
= μ1

(
μ3,5

2

([[a,a j],bi
] ⊗ b j ⊗ ai + [[a,a j],ai

] ⊗ b j ⊗ bi
))

= −μ3
(
μ1,5

4

(
bi ⊗ b j ⊗ [[a,a j],ai

] + ai ⊗ b j ⊗ [[a,a j],bi
]))

:= (A) + (B).

It is easy to see that (A) + (5.15) = 0, hence it remains to cancel (B).
Now, recall that ρ(x)(y) = [y, x] for all x and y in L, then using again the invariance of part (1),

we get that (5.13) + (5.22) is

μ1
(
μ4,5

3

([a,bi] ⊗ [ai,a j] ⊗ b j
)) + μ1

(
μ4,5

3

([a,ai] ⊗ [bi,a j] ⊗ b j
))

= μ1
(
μ4,5

3

(
id ⊗ρ(a j) ⊗ id

)([a,bi] ⊗ ai ⊗ b j + [a,ai] ⊗ bi ⊗ b j
))

= μ3,4
2

{((
id⊗ρ(a j)

)
μ2,3

1

([a,bi] ⊗ ai + [a,ai] ⊗ bi
)) ⊗ b j

}
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= −μ3,4
2

{((
id ⊗ρ(a j)

)
μ1,3

2

(
bi ⊗ [a,ai] + ai ⊗ [a,bi]

)) ⊗ b j
}

= −μ2
(
μ4,5

3

(
bi ⊗ [[a,ai],a j

] ⊗ b j + ai ⊗ [[a,bi],a j
] ⊗ b j

))
:= (D) + (C).

It is obvious that (D) + (5.11) = 0, hence it remains (C).
Similarly, we have that (5.14) + (5.25) is

μ1
(
μ3,5

4

([a,bi] ⊗ a j ⊗ [ai,b j]
)) + μ1

(
μ3,5

4

([a,ai] ⊗ a j ⊗ [bi,b j]
))

= μ1
(
μ3,5

4

(
id⊗ id⊗ id ⊗ρ(b j)

)([a,bi] ⊗ a j ⊗ ai + [a,ai] ⊗ a j ⊗ bi
))

= μ2,4
3

{((
id ⊗ id⊗ρ(b j)

)
μ2,4

1

([a,bi] ⊗ a j ⊗ ai + [a,ai] ⊗ a j ⊗ bi
))}

= −μ2,4
3

{((
id ⊗ id⊗ρ(b j)

)
μ1,4

3

(
bi ⊗ a j ⊗ [a,ai] + ai ⊗ a j ⊗ [a,bi]

))}
= −μ3

(
μ2,5

4

(
bi ⊗ a j ⊗ [[a,ai],b j

] + ai ⊗ a j ⊗ [[a,bi]b j
]))

:= (F ) + (E)

and it is obvious that (F ) + (5.12) = 0, hence it remains (E). In a similar way, it is easy to see that

(5.18) + (5.20) = μ2
(
μ2,5

1

([ai,b j] ⊗ [a,bi] ⊗ a j + [ai,a j] ⊗ [a,bi] ⊗ b j
))

= −μ2
(
μ1,5

4

(
a j ⊗ [a,bi] ⊗ [ai,b j] + b j ⊗ [a,bi] ⊗ [ai,a j]

))
:= (H) + (G),

and we have (G) + (5.17) = 0, hence it remains (H).
By a simple computation it is easy to see that (5.8) + (5.23) + (C) = 0 by Jacobi identity (3.20).

Now, we can write, using skew-symmetry and invariance property,

(5.26) + (B) + (H) = μ3
(
ai ⊗ (

id ⊗ρ(bi)
)
μ1,3

2

(
a j ⊗ [a,b j]

))
. (5.29)

Finally, a simple computation shows that (5.27) + (E) + (5.29) = 0 by Jacobi identity, and it is easy
to check that we have canceled all the terms, finishing the proof. �
Definition 5.4. A quasitriangular Lie pseudo-bialgebra is a coboundary Lie bialgebra (L, [ ∗ ], r) with
r ∈ L ⊗ L such that

(1) [[r, r]] = 0 mod(H+ · (L ⊗ L ⊗ L)), where H+ is the augmentation ideal,
(2) r is L-invariant, namely δr+r21 (a) = 0.

6. Pseudo Manin triples

Let V be an H-module. A bilinear pseudo-form on V is a k-bilinear map 〈 , 〉 : V × V → (H ⊗ H)⊗H k
such that

〈hv, w〉 = (
(h ⊗ 1) ⊗H 1

)〈v, w〉,
〈v,hw〉 = (

(1 ⊗ h) ⊗H 1
)〈v, w〉 for all v, w ∈ V , h ∈ H .
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We call a bilinear pseudo-form symmetric if

〈v, w〉 = (σ ⊗H 1)〈w, v〉 for all v, w ∈ V .

A bilinear pseudo-form in a Lie pseudoalgebra L is called invariant if〈[a ∗ b], c
〉 = 〈

a, [b ∗ c]〉 (6.1)

for all a,b, c ∈ L, where the usual composition rules of polylinear maps are applied in (6.1).
Given a bilinear pseudo-form on an H-module V , we have a homomorphism of H-modules,

φ : V → V ∗ = Chom(V ,k), v 
→ φv , given as usual by

(φv) ∗ w = 〈v, w〉, v ∈ V .

Now, suppose that a bilinear pseudo-form satisfies that 〈v, w〉 = 0 for all w ∈ V , implies v = 0.
Then φ gives an injective map between V and V ∗ , but not necessarily surjective.

Following [13], a bilinear pseudo-form is called non-degenerate if φ gives an isomorphism between
V and V ∗ .

Definition 6.1. A (finite rank) pseudo Manin triple is a triple of finite rank Lie pseudoalgebras (L, L1, L0),
where L is equipped with a non-degenerate invariant symmetric bilinear pseudo-form 〈 , 〉 such that

1. L1, L0 are Lie pseudosubalgebras of L and L = L0 ⊕ L1 as H-module;
2. L0 and L1 are isotropic with respect to 〈 , 〉, that is 〈Li, Li〉 = 0 for i = 0,1.

Theorem 6.2. Let L be a Lie pseudoalgebra free of finite rank. Then there is a one-to-one correspondence
between Lie pseudo-bialgebra structures on L and pseudo Manin triples (R, R1, R0) such that R1 = L.

Proof. Given a Lie pseudo-bialgebra L, we construct a pseudo Manin triple in the following way: we
set R1 = L, R0 = L∗ with the Lie pseudoalgebra structure given by the dual of the coalgebra structure
in L, R = L ⊕ L∗ , and take the non-degenerate symmetric bilinear pseudo-form in R given by

〈a + f ,b + g〉 = f ∗ (b) + (σ ⊗H id)g ∗ (a),

for all a,b ∈ L and f , g ∈ L∗ . Now, observe that the invariance of the bilinear form uniquely de-
termines the bracket on L ⊕ L∗ , namely: let {ei}n

i=1 be an H-basis of R1 and let {e∗
i }n

i=1 be the
corresponding dual basis in R0 � R∗

1 and set

[ei ∗ e j] =
∑

k

(
hij

k ⊗ li j
k

) ⊗H ek and
[
e∗

i ∗ e∗
j

] =
∑

k

(
f i j
k ⊗ gij

k

) ⊗H e∗
k .

Due to the invariance of the bilinear form, we have

〈[
e∗

i ∗ e j
]
, el

〉 = 〈
e∗

i , [e j ∗ el]
〉 = ∑

k

(
1 ⊗ h jl

k ⊗ l jl
k

) ⊗H δik

= (
1 ⊗ h jl

i ⊗ l jl
i

) ⊗H 1 = ((
l jl
i

)
(−2)

⊗ h jl
i

(
l jl
i

)
(−1)

⊗ 1
) ⊗H 1

=
〈∑

s

((
l js
i

)
(−2)

⊗ h js
i

(
l js
i

)
(−1)

) ⊗H e∗
s , el

〉

and
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〈[
e j ∗ e∗

i

]
, e∗

k

〉 = 〈
e j,

[
e∗

i ∗ e∗
k

]〉 = ∑
l

(
1 ⊗ f ik

l ⊗ gik
l

) ⊗H δ jl

= (
1 ⊗ f ik

j ⊗ gik
j

) ⊗H 1 = ((
gik

j

)
(−2)

⊗ f ik
j

(
gik

j

)
(−1)

⊗ 1
) ⊗H 1

=
〈∑

s

((
gis

j

)
(−2)

⊗ f is
j

(
gis

j

)
(−1)

) ⊗H es, e∗
k

〉
.

Hence, using skew-symmetry, we have

[
e∗

i ∗ e j
] =

∑
s

((
l js
i

)
(−2)

⊗ h js
i

(
l js
i

)
(−1)

) ⊗H e∗
s −

∑
r

(
f ir

j

(
gir

j

)
(−1)

⊗ (
gir

j

)
(−2)

) ⊗H er . (6.2)

It remains to show that this is indeed a Lie pseudoalgebra bracket. Let us first check the Jacobi iden-
tity, namely we have to show that

0 = [
e∗

p ∗ [ei ∗ e j]
] − (

(σ ⊗ id) ⊗H id
)[

ei ∗ [
e∗

p ∗ e j
]] − [[

e∗
p ∗ ei

] ∗ e j
]

together with a similar relation involving two e∗ ’s and one e. Expanding it, using (6.2) and the com-
position rules (3.5) and (3.8), we get

0 =
∑
s,k

[(
lks
p

)
(−1)

⊗ hij
k

(
hks

p

(
lks
p

)
(−2)

)
(1)

⊗ li j
k

(
hks

p

(
lks
p

)
(−2)

)
(2)

] ⊗H e∗
s

−
∑
k,r

[
f pr
k

(
g pr

k

)
(−1)

⊗ hij
k

(
g pr

k

)
(−2)(1)

⊗ li j
k

(
g pr

k

)
(−2)(2)

] ⊗H er

+
∑
s,n

[(
l js
p
)
(−1)

(
lin
s

)
(−1)(1)

⊗ hin
s

(
lin
s

)
(−2)

⊗ h js
p
(
l js
p
)
(−2)

(
lin
s

)
(−1)(2)

] ⊗H e∗
n

−
∑
m,s

[(
l js
p
)
(−1)

(
f sm

i

(
gsm

i

)
(−1)

)
(1)

⊗ (
gsm

i

)
(−2)

⊗ h js
p
(
l js
p
)
(−2)

(
f sm

i

(
gsm

i

)
(−1)

)
(2)

] ⊗H em

+
∑
r,m

[
f pr

j

(
g pr

j

)
(−1)

(
lir
m

)
(1)

⊗ hir
m ⊗ (

g pr
j

)
(−2)

(
lir
m

)
(2)

] ⊗H em

+
∑
s,n

[(
lis
p

)
(−1)

(
l jn
s

)
(−1)(1)

⊗ his
p

(
lis
p

)
(−2)

(
l jn
s

)
(−1)(2)

⊗ h jn
s

(
l jn
s

)
(−2)

] ⊗H e∗
n

−
∑
m,s

[(
lis
p

)
(−1)

(
f sm

j

(
gsm

j

)
(−1)

)
(1)

⊗ his
p

(
lis
p

)
(−2)

(
f sm

j

(
gsm

j

)
(−1)

)
(2)

⊗ (
gsm

j

)
(−2)

] ⊗H em

+
∑
r,m

[
f pr

i

(
g pr

i

)
(−1)

(
l jr
m

)
(1)

⊗ (
g pr

i

)
(−2)

(
l jr
m

)
(2)

⊗ h jr
m

] ⊗H em. (6.3)

The coefficients of e∗ in (6.3) give a relation equivalent to the Jacobi identity of L, and it is easy
to see (after renaming some variables) that the coefficients of e in (6.3) give a relation equivalent to
(6.9) which is up to the identification

H ⊗ H ⊗ H ⊗H H → H ⊗ H ⊗H H ⊗ H

f ⊗ l ⊗ h ⊗H g 
→ l ⊗ h ⊗H S( f ) ⊗ g (6.4)
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the 1-cocycle condition of the cobracket in L (see (6.9) below). In a similar way, the other Jacobi
identity in L ⊕ L∗ is equivalent to (6.9) and the Jacobi identity of L∗ .

Conversely, let (R, R1, R0) be a pseudo Manin triple. The non-degenerate pseudo-form 〈 , 〉 induces
a non-degenerate pairing R0 ⊗ R1 → H that produces an isomorphism R∗

1 � R0 as H-modules, and
hence a Lie pseudoalgebra structure on R∗

1. Denote by δ the Lie coalgebra structure induced on R1 by
Theorem 4.5. We have to show that (R1, [∗], δ) is a Lie pseudo-bialgebra and hence R0 is its dual Lie
pseudo-bialgebra. Therefore, we have to check the cocycle condition

0 = δ
([a ∗ b]) − (σ ⊗H id)

(
b ∗ δ(a)

) − a ∗ δ(b). (6.5)

In order to do this, let {ei}n
i=1 be an H-basis of R1 and let {e∗

i }n
i=1 be the dual basis in R0 � R∗

1. Set,
as before,

[ei ∗ e j] =
∑

s

(
hij

s ⊗ li j
s
) ⊗H es and

[
e∗

i ∗ e∗
j

] =
∑

s

(
f i j

s ⊗ gij
s
) ⊗H e∗

s .

By definition (see Theorem 4.5),

δ(ek) =
∑
i, j

S
(
hij

k

)
ei ⊗ S

(
li j
k

)
e j.

Thus, we have

δ
([e j ∗ el]

) =
∑
r,s,t

(
h jl

r ⊗ l jl
r
) ⊗H

(
S
(

f st
r

)
es ⊗ S

(
gst

r

)
et

)
=

∑
r,s,t

((
h jl

r ⊗ l jl
r
) ⊗H

(
S
(

f st
r

) ⊗ S
(

gst
r

)))(
(1 ⊗ 1) ⊗H (es ⊗ et)

)
. (6.6)

On the other hand

e j ∗ δ(el) =
∑
k,t,s

(
h js

k

(
S
(

f st
l

)
l js
k

)
(−1)

⊗ 1
) ⊗H

((
S
(

f st
l

)
l js
k

)
(2)

ek ⊗ S
(

gst
l

)
et

)
+

∑
n,t,s

(
h jt

n
(

S
(

gst
l

)
l jt
n

)
(−1)

⊗ 1
) ⊗H

(
S
(

f st
l

)
es ⊗ (

S
(

gst
l

)
l jt
n

)
(2)

en
)

=
∑
k,t,s

(
h js

k

(
S
(

f st
l

)
l js
k

)
(−1)

⊗ 1
) ⊗H

((
S
(

f st
l

)
l js
k

)
(2)

ek ⊗ S
(

gst
l

)
et

)
+

∑
n,t,s

(
h jt

n
(

S
(

gst
l

)
l jt
n

)
(−1)

⊗ 1
) ⊗H

(
S
(

f st
l

)
es ⊗ (

S
(

gst
l

)
l jt
n

)
(2)

en
)

(6.7)

and

(σ ⊗H id)
(
e j ∗ δ(e j)

) =
∑
k,t,s

(
1 ⊗ hls

k

(
S
(

f st
j

)
llsk

)
(−1)

) ⊗H
((

S
(

f st
j

)
l js
k

)
(2)

ek ⊗ S
(

gst
j

)
et

)
+

∑
n,t,s

(
1 ⊗ hlt

n

(
S
(

gst
j

)
lltn

)
(−1)

) ⊗H
(

S
(

f st
j

)
es ⊗ (

S
(

gst
j

)
lltn

)
(2)

en
)
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=
∑
k,t,s

(
1 ⊗ hls

k

(
S
(

f st
j

)
l js
k

)
(−1)

) ⊗H
((

S
(

f st
j

)
llsk

)
(2)

ek ⊗ S
(

gst
j

)
et

)
+

∑
n,t,s

(
1 ⊗ hlt

n

(
S
(

gst
j

)
lltn

)
(−1)

) ⊗H
(

S
(

f st
j

)
es ⊗ (

S
(

gst
j

)
lltn

)
(2)

en
)
. (6.8)

By taking the coefficients of (1 ⊗ 1) ⊗H (ep ⊗ eq) in (6.6), (6.7) and (6.8), the cocycle condition (6.5)
becomes (after renaming subindexes)

∑
r

(
h jl

r ⊗ l jl
r
) ⊗H

(
S
(

f pq
r

) ⊗ S
(

g pq
r

))
=

∑
s

(
h js

p
(

S
(

f sq
l

)
l js
p
)
(−1)

⊗ 1
) ⊗H

((
S
(

f sq
l

)
l js
p
)
(2)

⊗ S
(

gsq
l

))
+

∑
r

(
h jr

t

(
S
(

g pr
l

)
l jr
t

)
(−1)

⊗ 1
) ⊗H

(
S
(

f pr
l

) ⊗ (
S
(

g pr
l

)
l jr
t

)
(2)

)
−

∑
s

(
1 ⊗ hls

p

(
S
(

f sq
j

)
l js
p
)
(−1)

) ⊗H
((

S
(

f sq
j

)
llsp

)
(2)

⊗ S
(

gsq
j

))
−

∑
r

(
1 ⊗ hlr

i

(
S
(

g pr
j

)
llri

)
(−1)

) ⊗H
(

S
(

f pr
j

) ⊗ (
S
(

g pr
j

)
llri

)
(2)

)
, (6.9)

which is equivalent under the identification (6.4) to the coefficients of et in (6.3), that is, the Jacobi
identity on R = R1 ⊕ R0 � R1 ⊕ R∗

1, finishing the proof. �
7. Pseudo Drinfeld’s double

The correspondence between pseudo-bialgebras and pseudo Manin triples gives us a Lie pseudoal-
gebra structure on L ⊕ L∗ if L is a pseudo-bialgebra. In fact, a more general result is true.

Theorem 7.1. Let L be a free finite rank Lie pseudo-bialgebra and let (L ⊕ L∗, L, L∗) be the associated pseudo
Manin triple. Then there is a canonical Lie pseudo-bialgebra structure on L ⊕ L∗ such that the inclusions

L ↪→ L ⊕ L∗ ←↩
(
L∗)op

into the two summands are homomorphisms of Lie pseudo-bialgebras, that is δL⊕L∗ = δL − δL∗ . Moreover,
L ⊕ L∗ is a quasitriangular Lie pseudo-bialgebra.

The Lie pseudo-bialgebra L ⊕ L∗ is called the pseudo Drinfeld double of L and is denoted by DL.

Proof. Let {ei}n
i=1 be an H-basis of L and let {e∗

i }n
i=1 be the corresponding dual basis in L∗ . Suppose,

as before, that

[ei ∗ e j] =
∑

s

(
hij

s ⊗ li j
s
) ⊗H es and

[
e∗

i ∗ e∗
j

] =
∑

s

(
f i j

s ⊗ gij
s
) ⊗H e∗

s .

Let r = ∑n
i=1 ei ⊗ e∗

i ∈ L ⊗ L∗ ⊂ DL ⊗ DL be the canonical element corresponding to I ∈
Chom(L, L) � L ⊗ L∗ (see Proposition 4.2), where I(a) = (1 ⊗ 1) ⊗H a. Now, let us verify that
δL⊕L∗ := δL − δL∗ = d(1 ⊗H r). Using (6.2) and (5.6), we have
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(
d(1 ⊗H r)

) ∗ e j =
∑
i,k

(
h ji

k

(
l ji
k

)
(−1)

)
(1)

(
l ji
k

)
(2)

ei ⊗ (
h ji

k

(
l ji
k

)
(−1)

)
(2)

e∗
i

−
∑
i,s

(
h js

i

(
l js
i

)
(−2)

(
l js
i

)
(−1)(−1)

)
(1)

ei

⊗ (
h js

i

(
l js
i

)
(−2)

(
l js
i

)
(−1)(−1)

)
(2)

(
l js
i

)
(−1)(2)

e∗
s

+
∑
r,i

((
gir

j

)
(−2)

(
gir

j

)
(−1)(−1)

(
f ir

j

)
(−1)

)
(1)

ei

⊗ ((
gir

j

)
(−2)

(
gir

j

)
(−1)(−1)

(
f ir

j

)
(−1)

)
(2)

(
f ir

j

)
(2)

(
gir

j

)
(−1)(2)

er

=
∑
i,r

S
(

f ir
j

)
ei ⊗ S

(
gir

j

)
er

= δL(e j).

Similarly, by using Theorem 4.5 with (6.2), and then skew-symmetry, we get

(
d(1 ⊗H r)

) ∗ e∗
j =

∑
s,i

(
lis

j

)
(−1)(1)

(
lis

j

)
(−2)(−1)(1)

(
his

j

)
(−1)(1)

(
his

j

)
(2)

(
lis

j

)
(−2)(2)

e∗
s

⊗ (
lis

j

)
(−1)(2)

(
lis

j

)
(−2)(−1)(2)

(
his

j

)
(−1)(2)

e∗
i

−
∑
r,i

(
f jr

i

)
(1)

(
g jr

i

)
(−1)(1)

(
g jr

i

)
(−2)(−1)(1)

(
g jr

i

)
(−2)(2)

er

⊗ (
f jr

i

)
(2)

(
g jr

i

)
(−1)(2)

(
g jr

i

)
(−2)(−1)(2)

e∗
i

+
∑
i,k

(
f ji
k

)
(1)

(
g ji

k

)
(−1)(1)

ei ⊗ (
f ji
k

)
(2)

(
g ji

k

)
(−1)(2)

(
g ji

k

)
(2)

e∗
k

=
∑
i,s

S
(
lis

j

)
e∗

s ⊗ S
(
his

j

)
e∗

i

= −
∑
s,i

S
(
hsi

j

)
e∗

s ⊗ S
(
lsi

j

)
e∗

i

= −δL∗
(
e∗

j

)
.

It remains to see that r gives us a quasitriangular structure (recall Definition 5.4). Using (5.5), we have

[[r, r]] = μ3
−1

([e j, ei] ⊗ e∗
j ⊗ e∗

i

) − μ4−2

(
ei ⊗ [

e j, e∗
i

] ⊗ e∗
j

) − μ2−3

(
ei ⊗ e j ⊗ [

e∗
j , e∗

i

])
=

∑
k, j,i

((
l ji
k

)
(2)

ek ⊗ (
l ji
k

)
(1)

S
(
h ji

k

)
e∗

j ⊗ e∗
i

+ ei ⊗ (
l jk
i

)
(−1)(2)

e∗
k ⊗ (

l jk
i

)
(−1)(1)

(
l jk
i

)
(2)

S
(
h jk

i

)
e∗

j

− ei ⊗ (
f ik

j

)
(2)

(
gik

j

)
(−1)(2)

ek ⊗ (
f ik

j

)
(1)

(
gik

j

)
(−1)(1)

(
gik

j

)
(2)

e∗
j

− ei ⊗ (
gki

j

)
S
(

f ki
j

)
ek ⊗ (

gki
j

)
e∗

j

)
.

(1) (2)
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Now, the last two terms cancel out by skew-symmetry (after interchanging the summation indices j
and k). Then, it is easy to see, using skew-symmetry, that [[r, r]] = 0 mod H+ · (L ⊗ L ⊗ L), since[[r, r]] =

∑
k, j,i

[(
l ji
k

)
(2)

ek ⊗ (
l ji
k

)
(1)

S
(
h ji

k

)
e∗

j ⊗ e∗
i

+ ei ⊗ ((
l jk
i

)
(−1)

)
(2)

e∗
k ⊗ ((

l jk
i

)
(−1)

)
(1)

(
l jk
i

)
(2)

S
(
h jk

i

)
e∗

j

]
=

∑
k, j,i

[((
l ji
k

)
(2)

⊗ (
l ji
k

)
(1)

S
(
h ji

k

) ⊗ 1
) + (

1 ⊗ S
(
l jk
i

) ⊗ S
(
hij

k

))](
ek ⊗ e∗

j ⊗ e∗
k

)
=

∑
k, j,i

[((
l ji
k

)
(2)

⊗ (
l ji
k

)
(1)

S
(
h ji

k

) ⊗ 1
) − (

1 ⊗ S
(
h ji

k

) ⊗ S
(
l ji
k

))](
ek ⊗ e∗

j ⊗ e∗
k

)
=

∑
k, j,i

[(
l ji
k

)
(1)

− ε
((

l ji
k

)
(1)

)
1
](

1 ⊗ S
(
h ji

k

) ⊗ (
l ji
k

)
(2)

)(
ek ⊗ e∗

j ⊗ e∗
k

)
,

and ((l ji
k )(1) − ε((l ji

k )(1))1) ∈ H+ . Finally, by similar computations, it is possible to verify that

μ2
(
ei ∗ (r + r21)

) = μ2

(
ei ∗

(∑
j

e j ⊗ e∗
j + e∗

j ⊗ e j

))
= 0,

finishing the proof. �
8. AY (L) and the annihilation algebra

A Lie algebra is usually associated to a Lie pseudoalgebra L, that is the annihilation algebra, see
Remark 7.2 in [1]. In this section, using the language of H-coalgebras, we will see it as a convolution
algebra of certain type, obtaining a more natural and conceptual construction. The definition of this
algebra in [1] is equivalent to but different from the one presented here.

Here we will recall the definition of the annihilation algebra of a pseudoalgebra. Let Y be a
commutative associative H-differential algebra with a right action of H , and let L be a Lie H-pseudo-
algebra. We provide Y ⊗ L with the following structure of a left H-module:

h(x ⊗ a) = xh(−1) ⊗ h(2)a, h ∈ H, x ∈ Y , a ∈ L.

Then define a Lie pseudobracket on Y ⊗ L by the formula:[
(x ⊗ a) ∗ (y ⊗ b)

] =
∑

i

( f i(1) ⊗ gi(1)) ⊗H
(
(x fi(2))(ygi (2)) ⊗ ei

)
, (8.1)

if [a ∗ b] = ∑
i( f i ⊗ gi) ⊗H ei . It is easy to check that (8.1) is well defined and endows Y ⊗ L with the

structure of a Lie H-pseudoalgebra. Now, we define the Lie algebra

AY (L) = (Y ⊗ L)/H+(Y ⊗ L),

with bracket

[x ⊗ a, y ⊗ b] =
∑

i

ε( f i (1))ε(gi(1))
(
(x fi (2))(ygi(2)) ⊗ ei

)
=

∑
(x fi)(ygi) ⊗ ei .
i
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In the case H = k[∂], Y = k[t, t−1], ∂ = −∂t , the Lie k[∂]-pseudoalgebra Y ⊗ L (i.e.: in the classical
conformal algebra case) is known as an affinization of the conformal algebra L (see [10]).

Now, take Y = X = H∗ . Recall that X has a right H-module structure given by

〈x · h, f 〉 = 〈
x, S(h) f

〉
,

with h, f ∈ H and x ∈ X .

Definition 8.1. The Lie algebra A(L) ≡AX (L) is called the annihilation algebra of the pseudoalgebra L.

Now, we can give an interpretation of AY (L), as a convolution algebra.

Theorem 8.2. Let L be a free finite Lie pseudoalgebra, let (L∗, δ) be the corresponding Lie H-coalgebra. Then
there is an isomorphism of Lie algebras

AY (L) � HomH
(
L∗, Y

)
with the bracket in the space of homomorphisms given by

[ f , g] = m ◦ ( f ⊗ g) ◦ δ,

where m stands for the multiplication in Y .

Proof. Let us define the map

φ : (Y ⊗ L)H+(Y ⊗ L) → HomH
(
L∗, Y

)
x ⊗ a 
→ φ(x ⊗ a)

such that for all f ∈ L∗

φ(x ⊗ a)( f ) = x · (li S(hi)
)

if f (a) = ∑
i(hi ⊗ li) ⊗H 1. It is straightforward to check that this map is well defined and φ(x ⊗ a) ∈

HomH (L∗, Y ).
Let’s check that φ is injective. Consider an H-base set for L, namely {ei}. Assume that

φ(
∑

i xi ⊗ ei) = 0. This means that φ(
∑

i xi ⊗ ei)( f ) = 0 for all f ∈ L∗ . Suppose that there exists
xi0 �= 0 and take f ∈ L∗ such that f (ei) = (1 ⊗ 1) ⊗H δi,i0 . In this case φ(

∑
i xi ⊗ ei)( f ) = xi0 = 0

which is a contradiction.
Now, consider an H-basis { f i}n

i=1 of L∗ , and α ∈ HomH (L∗, Y ). Set α( f i) = ∑
j xi jhi j , thus it is easy

to check that

φ

(∑
i, j

xi j ⊗ hijei

)
( fk) = α( fk),

for all k, proving surjectivity.
Finally it remains to show that this is a Lie algebra homomorphism. As always, consider {ei} a

basis for L and {e∗
i } the corresponding dual basis for L∗ . Thus, if [en ∗ em] = ∑

i(h
nm
i ⊗ lnm

i ) ⊗H ei , we
have



34 C. Boyallian, J.I. Liberati / Journal of Algebra 372 (2012) 1–34
φ
([x ⊗ en, y ⊗ em])(e∗

k

) = φ

(∑
i

(
xhnm

i

)(
ylnm

i

) ⊗ ei

)(
e∗

k

)
= (

xhnm
k

)(
ylnm

k

)
.

On the other side,[
φ(x ⊗ en),φ(y ⊗ em)

](
e∗

k

) = (
m ◦ (

φ(x ⊗ en) ⊗ φ(y ⊗ em)
) ◦ δ

)(
e∗

k

)
=

∑
s,t

m
(
φ(x ⊗ en)

(
S
(
hst

k

)
e∗

s

) ⊗ φ(y ⊗ em)
(

S
(
lst
k

)
e∗

t

))
=

∑
s,t

m
(
δn,s

(
x · hst

k

) ⊗ δm,t
(

y · lst
k

))
= (

xhnm
k

)(
ylnm

k

)
,

finishing the proof. �
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