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1. Introduction

Let U and V be two nonlocal vertex algebras. Motivated by a recent study [LS2] on regular rep-
resentations for Mobius quantum vertex algebras, a twisting operator in [LS1] was defined to be a
linear map R(x): VU — U ® V ® C((x)) satisfying

RX)(v®1)=1Q v, Rx)A1Qu)=u®1l forueU,veV,
RxD(1®Y(x2)) = (Y (x2) ® 1)R* (x1)R" (1 + x2),
Rax)(Y(x2) @ 1) = (1® Y (x2))R™(x1 — x2)R% (x1).

These conditions are stringy analogues of those for a twisting operator with associative algebras (see
[CSV,VV]). The underlying space of the twisted tensor product U ®g V associated to R(x) is UQ V,
while the vacuum vector is 1y ® 1y and the vertex operator map, denoted by Yg, is given by

YRw®v, 0 @v)=(Yu® ®Yv®)(u®R®(veu)ev)
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for u,u’ € U, v,v’ € V. It was proved in [LS1] that U ®g V is a nonlocal vertex algebra, containing
U and V canonically as subalgebras which satisfy a certain commutation relation. (If both U and V
are weak quantum vertex algebras, it was proved that U ®g V is a weak quantum vertex algebra.)
On the other hand, it was proved that if a nonlocal vertex algebra K, which is non-degenerate in
the sense of [EK], contains subalgebras U and V satisfying a certain commutation relation, then K
is isomorphic to the twisted tensor product U ®g V with respect to a twisting operator R(x). Also
established in that paper was a universal property for the twisted tensor product U ®g V, similar to
the one for the ordinary tensor product U ® V. The smash product UgV, formulated in [L4], was also
slightly generalized and realized as the twisted tensor product with respect to a canonical twisting
operator.

For associative algebras, iterating twisted tensor products was studied in [MPPO]. For three given
algebras A, B and C, and twisting maps R{:B® A— A® B, R,:C®B—->B®Cand R3:CR A —
A®C, a sufficient condition for being able to define twisting maps T1: C® (A®g, B) > (A®g, B)®C
and T2 : (BQg, ) ® A— A® (B ®g, C) associated to Ry, Rz and R3 and ensuring that the algebras
A ®rt, (B®g, () and (A ®g, B) ®r, C are equal, was given in terms of the twisting maps Ry, Ry and
R3 only. That is, they have to satisfy the hexagon equation

23p12p23 _ pl2p23pl2
R2*RI2R? = RI2RPR}2.

Furthermore, it was proved that they are enough for building an iterated twisted tensor product of
any number of factors. And a universal property and the Coherence Theorem were proved in [MPPO].
It was showed that the noncommutative 2n-planes defined by Connes and Dubois-Violette (see [CD])
could be seen as (iterated) twisted tensor products of commutative algebras.

In this paper, we study iterated twisted tensor products of nonlocal vertex algebras and of weak
quantum vertex algebras. Let U, V and W be three nonlocal vertex algebras, let Rq(x), R2(x) and
R3(x) be twisting operators for the ordered pair (U, V), (V, W) and (U, W), respectively. We show
that U, V and W can be iterated to be twisted tensor product with three factors, denote it by U Qg
V ®g, W, if R1(x), R2(x) and R3(x) satisfy the following condition

R (%1 — x2)RIZ(x1)RPE (x2) = RI2(x2) RE (x1) R} (x1 — x2),

which is stringy analogues of that listed above for iterating twisted tensor products of associative
algebras. This condition is closely related with the quantum Yang-Baxter equation (see [L2,L3]). And
we find conditions for twisting operators T1(x) : W ® (U Qg, V) = (U g, V) ® W ® C((x)) and
To(X): (VR W)®U - U® (VQr, W)® C((x)) can be split as a composition of two suitable
twisting operators. If U, V and W are weak quantum vertex algebras, it is proved that U ®g, V ®r, W
is a weak quantum vertex algebra. Furthermore, we give out some iterated twisted tensor product
nonlocal vertex algebras, isomorphic to nonlocal vertex algebra U ®g, V ®g, W, with some suitable
conditions.

We prove that the iterated twisted tensor product of three factors can be lifted to that of any
number of factors with compatible twisting operators. Also established in this paper is a universal
property for the iterated twisted tensor product Vi ®g,, V2 ®r,; - ®r,_;, V. similar to the one for
the ordinary tensor product V; ® V2 ® --- ® V,. And at last we show that a toy example of weak
quantum vertex algebra, noncommutative 2n-planes defined by Connes and Dubois-Violette, can be
realized as iterated twisted tensor product of some nonlocal vertex algebras with suitable twisting
operators.

This paper is organized as follows: In Section 2, we present some basic notions and iterated
twisted tensor product. In Section 3, we study the splitting and universal properties of iterated twisted
tensor products of nonlocal vertex algebras. In Section 4, we present n-factor iterated twisted tensor
products.
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2. Iterated twisted tensor product

In this section, first we recall the notion of twisting operator and the twisted tensor product
nonlocal vertex algebras. Then we establish a theorem to characterize the iterated twisted tensor
products of nonlocal vertex algebras.

We start by recalling the notion of nonlocal vertex algebra. A nonlocal vertex algebra (see [L1], cf.
[BK]) is a vector space V, equipped with a linear map

Y(-,x): V — Hom(V, V((x))) C (End V)[[x,x']]

Vi Y(V,X) = Z vax "1 (where v, € End V),

nez

and equipped with a vector 1 € V, satisfying the conditions that for v € V,
Y1, X)v=v, Y(v,x)1 € V[[x]] and lin})Y(V,x)l:v, (2.1)
X—
and that for u, v, w € V, there exists a nonnegative integer | such that

(X0 +x2)'Y (U, X0 +X2) Y (v, x2)w = (X0 +x2)'Y (Y (u, X0) v, x2) W (2.2)

(weak associativity).

We sometimes denote a nonlocal vertex algebra by a triple (V,Y,1), to emphasize the vertex
operator map Y and the vacuum vector 1.

Let V be a nonlocal vertex algebra. Define a linear operator D on V by

DWv)=v_1 forveV. (2.3)

Then
d
[D.Y(v,x)]=Y(Dv,x) = aY(v,x) forveV. (2.4)

Let U and V be two nonlocal vertex algebras. We have an (ordinary) tensor product nonlocal
vertex algebra U ® V, where the vacuum vector is 1 ® 1 and the vertex operator map is given by

Yuev,x)u v)=Yuu YW, x)v' foru,u eU, v,v' eV.
That is,
Yuev(®) = (Yu® ® Yv(®)o?,
where 023 is the linear operator on (U ® V)®2, defined by
cPueveu ev)=ueu evev

foru,u’eU, v,v eV.
Next, we recall from [LS1] the notion of twisting operator.
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Definition 2.1. Let U and V be nonlocal vertex algebras. A twisting operator for the ordered pair (U, V)
is a linear map

Rx):VeU—-UQ®V Q®C((x),

satisfying the following conditions:

RX(v®1) =1Qv forveV, (2.5)
RxAQ®u)=u®1l foruel, (2.6)
Rx1)(1®Y(x2)) = (Y (x2) ® 1)RZ xR (X1 + x2), 2.7)
Rx)(Y(x2) ©1) = (1® Y (x2)) R (x1 — x2)R?* (x1). (2.8)

We say that a twisting operator R(x) is invertible if R(x), viewed as a C((x))-linear map from
VRUQ®C((x) to U® V ® C((x)), is invertible. The inverse of an invertible R(x) is a C((x))-linear
map R~1(x) from U® V ® C((x)) to V ® U ® C((x)). We often consider R~!(x) as a C-linear map

R'®):U®V—>VeUC(x).
We shall need the following result of [LS1]:

Lemma 2.2. If R(x) is an invertible twisting operator for the ordered pair (U, V), then R—1(—x) is an invertible
twisting operator for the ordered pair (V, U).

In the following, we combine (2.7) and (2.8) into one condition.

Lemma 2.3. In the definition of the notion of twisting operator, the conditions (2.7) and (2.8) can be replaced
by

Rx1)(Y (x2) ® Y (x2))
= (Y(x2) ® Y (x2)) R (x1 — x2) R (x1)R** (x1)R? (x1 + x2). (2.9)
Proof. For v e V, u,u’ € U, using (2.6) we have
R&xD(Y(x2) @ Y(x))(1®@v@ueu)=Rx)(ve Y, x)u'),

(Y(x2) ® Y (x2))R? (x1 — %) R (x) R* x)DRZ (1 + x) (1@ v @ u @ u')
=(Y(x2) ® 1)REB xR (X1 +x2) (v U ).

Then we get (2.7). Similarly, for v, v’ € V, u € U, using (2.5) we have
R&D(Y(x2) @ Y(x2))(v®V ®1®u) = R(x1)(Y (v, x2)v' ®u),

(Y(x2) ® Y (x2)) R® (x1 — x) R (x)R* (x)RP (x1 + %) (v ® V @ 1@ u)
= (1®Y(x)R"?x1 —x)R¥ (x)) (v ® V' ® u).

Then we obtain (2.8).
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Now we prove (2.9). For v,v' € V, u,u’ € U, using (2.7) and (2.8) we get

Rx)(Y(x2) @ Y(x)) (v VvV @uau)
=Rx)N(1®Yx))(Y(v.x2)V @uau)
=(Y(x) ® NYRE xR (11 +x) (Y(x2) @ 1@ 1) (v® vV @ ueu')
= (Y2 @ HRZx)(1® Y (x2) ® NRZx)DRZ(x1 +x2) (v @V @ u @)
=(Yx2)®1)(1®1®Yx2))RZ 1 — x)R* )R (x)RB(x1 +x2) (v V @ u )
= (Y(x2) ® Y (x2))R® (x1 — )R (x)R* x)RZ (1 + x) (v @ V @ u @ ).
This proves (2.9). O

We now present the twisted tensor product from [LS1].

Theorem 2.4. Let U, V be nonlocal vertex algebras and let R(x) be a twisting operator of the ordered pair
(U, V). Set

YR() = (Y(X) ® Y (%) R (=x). (2.10)

Then (U®V, Ygr,1®1), denoted by U ®g V, carries the structure of a nonlocal vertex algebra, which contains
U and V canonically as nonlocal vertex subalgebras.

Let U, V and W be nonlocal vertex algebras, let

Ri): VU —-UQ®V ®C((x),
Rox):WQV —>VeWeC((x),
R3x) WU —->U®W QC((x)

be twisting operators for the ordered pairs (U, V), (V, W) and (U, W), respectively. Define the oper-
ators

T1(X) = RSP ORPX) : W & (U @, V) — (U @k, V) ® W ® C((x)),
T2(x) = RIZ(0R3 () : (V @, W) @ U — U @ (V ®g, W) ® C((x)).

It is natural to ask if these operators are twisting operators. In the following theorem, we present
necessary and sufficient conditions for making this happen.
The following is our main result of this section.

Theorem 2.5. Let U, V and W be nonlocal vertex algebras, let R1(x), R2(x) and R3(x) be twisting operators
for the ordered pairs (U, V), (V, W) and (U, W), respectively. Then the following conditions are equivalent:

(1) T1(x) = RB(x)RI%(x) is a twisting operator.

(2) T2(x) = RI2(x)R%3(x) is a twisting operator.

(3) The twisting operators R1(x), R2(x) and R3(x) satisfy the following compatibility condition (called the
hexagon equation):

R2 (X1 — x)RIZ(x1)RB (x2) = R2(x2) R (x1)RI% (1 — X2). (211)
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Furthermore, if all the three conditions are satisfied, then the nonlocal vertex algebras U ®t, (V ®g, W) and
(U ®r, V) ®r, W are equal. In this case, we will denote this nonlocal vertex algebra by U ®g, V ®g, W,

which contains U, V and W canonically as nonlocal vertex subalgebras.

Proof. We only prove the equivalence between (1) and (3). The proof of the equivalence between (2)
and (3) is similar to the proof of the equivalence between (1) and (3), given below, so we omit it.
Suppose that the hexagon equation is satisfied. In order to prove that T;(x) is a twisting operator,

we have to prove the following relations:

Tix(w®11)=119w forweW,
T1x)(AQuev)=u®vel foru®velU®g, V,
T1(x1)(1® YR, (x2)) = (Y&, (x2) ® 1) T2 (x1) T{% (x1 + x2),

T1x)(Y(x2) ©101) = (1® 18 Y(x2))T12(x1 — x2)TE (7).

For (2.12), from (2.5) we have

Ti0w®181) =RP®RF O (W18 1)
=REm1we1)

For (2.13), from (2.6) we get
T1I0A®u®v) =RZPMRFZ®AQUSV)

=RE®Mu®1eV)
=uU®veIl

To prove (2.14), for u,u’ e U, v,v' € V, w € W, using (2.7) we have

Tix)(1®@ Yg, () (wQuaveu @ V)
=RZxDRPx)N(10Y(x) @Y ()R (—x)(wRu@veu @)

=RPx)(Y(2) ® 18 Y(x2)) R xR (%1 + ) RPF (—x)(w @u@ v @ u' ® v')

(2.12)
(2.13)
(2.14)
(2.15)

= (Y(x2) ® Y(x2) ® 1)RP> (x1)R3* (%1 + x2)R3’ X)) R3* (1 + X)) R (—x) (W @u@ v e u' ®@ V')

=(Y(x2) ® Y(x2) ® )R’ k) R3* (%1 + x)RP (xR (—x2)RE(x1 + ) (w@u@veu' ®v),

(Yr, () @ NTP )T (%1 +x2) (W@ u@veu @v')

=(Y(x2) ® Y(x2) ® 1)RE (—=x2) R (x)R3* (x1)R3> (%1 + x)RE(x1 + ) (w @U@ v U ® V)

= (Y(x2) ® Y (x2) ® 1)RS> X1)RP (—x2) R3* (x1)RF> (11 + x)RYP (1 + x2) (W@ u@ v @ u' ® V).

By the hexagon equation, we obtain (2.14).
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Concerning (2.15), foru e U, ve V, w, w' € W, using (2.8) we get

TixD)(Yx2) ®@1@1)(wew @uev)
=REx)RPx)(Yx) @10 1)(w@w u®v)
=REXN(18Y(x) ® NREZX —x)REx)(W e w @uev)
=(1®1®Y(x2))R3 (%1 — x2)R3* xR (%1 —x)RP x) (W@ W @u V),

(181 YE)) T X1 —x)TPx)(W R W @u v)
=(1®1®Yx))T12(x1 — )R xDRE (WO W @ue V)
=(1®1®Y(x))R3>(x1 — x)RY (%1 — x)R* xDRP ) (w @ W @ u @ v).

It is evident that (2.15) holds.

Now we assume Tj(x) is a twisting operator, satisfying the conditions (2.12), (2.13), (2.14) and
(2.15). It is enough to apply (2.14) to an element of the form w ® 1® v @ u ® 1 in order to recover
the hexagon equation for a generic element w ® v ® u of the tensor product W ® V ® U. For u € U,
veV, weW, we have

TixD(1Q@ YR, () (WR1Qveu®el)
= (Y(x2) ® Y(x2) ® 1)RY> (x1)R3*(x1 + x2) RS> (xR (—x)R3* (11 + %) (W @ 1@ v QU ® 1)

= (Y(x2) ® Y(x2) ® 1)R3> (x1)R3* (%1 + x)RF xR (—x) Q1@ W@ vRU® 1),

(YR, x2) @ NTE )T+ ) (w1 veue1)
= (Y(x2) ® Y (x2) ® 1)R’ (1) R (—x2) R3* (x1 )RS (x1 + x)R¥ (1 +x) (W@ 1@ vRU®1)
= (Y(x2) ® Y(x2) ® 1)RP (xR (—x)R3* x)RFP (11 + x)(1@wR@ v uel).

Then we have

(Y(x2) ® Y(x2) ® )R> (x1)R3* (x1 + %) R (xR (—x) (1@ W R veu®1)
=(Y(x2) ® Y(x2) ® 1)R3’ x1)RT (—x2)R3* xRS (X1 + %) 1@ W@ v Ru1).

Thus by the injectivity of vertex operator and (2.5), we get

RB(x1 — x2)RZ(xDRP (x2)(w ® v @ u) = RIZ(x)RE (xR (x1 —x)(w @ v @ 1)

foranyueU,veV and we W.

To finish the proof, assume that the three equivalent conditions are satisfied. To see that the non-
local vertex algebras U ®r, (V ®Qr, W) and (U ®g, V) ®r, W are equal, it is enough to expand the
expression of the vertex operators

Y1, = (Y(X) ® Y, (%) T3 (—x)
= (Y0 ® Y, ®)RT (—0)R3*(—x)

=(Y®) ®Y(X) ® Y(X))R3 (—x)RT* (=) R3*(—x),
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Y1, = (YR, (0 ® Y(%) TP (—x)
= (Yr,®) ® Y(X))RS’ (—0)R3*(—x)
=(Y® ®Y(®) ® Y(X)RT (=R (—0)R3*(—x),

and realize that they are exactly the same application. Furthermore, for u,u’ € U, as R3(—x)(1®u’) =
U®1 Ri(—x)AQu)=u'"®1 and R2(—x)(1®1) =1® 1, we have

Yr,u®1®1,x)U' 11)
=(Y®O®YX®®Y®)RY(—0RP(—0R (—n(ue1eler lel)

= Y(u,x)ul R1R1.

It follows that the map u e U~ u®1®1cU ® V ® W is a one-to-one homomorphism of nonlocal
vertex algebras. Similarly, the maps ve Vi1 v®1clUQ@VIWand weWrH1Q1Q w e
U®V ®W are one-to-one homomorphisms of nonlocal vertex algebras. This concludes the proof. O

Remark 2.6. If we take U, V and W to be the same nonlocal vertex algebra V, and take Rq(x), Ry (x)
and R3(x) to be the same twisting operator R(x), the hexagon equation (2.11) becomes

RB(x1 — x)RZ(x1)RZ (x2) = R (x2) RZ (x1) R (x1 — x2). (2.16)

It is well known that the relation (2.16) is equivalent to the quantum Yang-Baxter equation

SPx)SBx+ 28212 =82S + 20812 (x), (217)
with S(x) = R(x)o.

We identify each element u of U with the element u ® 1® 1 of U ®g, V ®g, W, identify each
element v of V with 1@ v®1 of U ®g, V ®r, W and identify each element w of W with 1®1Q@ w
of U ®R1 |74 ®R2 W.

Lemma 2.7. The D-operator for U ®g, V ®gr, W is given by

Dr=D®1®1+19DP®1+1®1QD,

where the three D’s denote the D-operators of U, V and W, respectively. Furthermore, we have

Yr,, 0)v, Y1, (v, x)w, Y1, (W, x)w € (U ®r, V ®r, W)IIxI], (2.18)
Yr,(v,0)u = eXPr Y1,(=X)R1(=x)(v @ u), (2.19)
Y1, (W, x)v =e*PTY1, (=X)Ra(—x) (W @ V), (2.20)
Y1,(w, x)u = e*PT Y1, (—=x)R3(—x)(W @ 1) (2.21)

foruelU,veV,weW.
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Proof. Let uc U, v e V, w € W. From definition we have

Resyx 2Y1r, @ ve@w,x)(10181)
=Resyx 2(Y() @ Y(0) ® Y (1)) R (—0RP (—0R (0 u@vewe11®1)
= Resxx_z(Y(u, 01QY (v, x)1QY(w,x)1)

=PR11+10DPR1+101QD)(UQ VI W). (2.22)

ForueU,veV,by R3(—x)(1®u)=u®1 and Ry(—x)(1®1) =1® 1, we have

Yr,w,x)v= (Y ®Y (X ®YX)RP(—x)RF ()R (01121910 ve1)

=Y, 01®v®1e Uk, Ver, WK (2.23)

Similarly, we can prove Yr,(v,x)w, Yr1,(u,x)w € (U ®g, V ®r, W)[[X]].
Llet ueU, v,/ €V.As R3(x)1 @1 =11, Ri¥A1 1N =1®1, R,X(1®Vv)=v®1 and
(2.23), we have
EPTY T, (=0)R1 (=0 (v @ u)
=EPY(0 P @eP)RP(—(ve1ue1)
=(1®Y@W@NRFA(—(voue1e1)
=(Y®OYX®YX)RP(—0RP(—0RF (-010ve19u®1e1)

=Yr,(v,X)u.
We can prove (2.20) and (2.21) in the same way. O

Next we study iterated twisted tensor product U ®g, V ®g, W with U, V and W weak quantum
vertex algebras.
First we recall the notion of weak quantum vertex algebra from [L2].

Definition 2.8. A weak quantum vertex algebra is a nonlocal vertex algebra V which satisfies S-locality
in the sense that for u, v € V, there exist

u® v0ev,  fimeC) (=1,..r

(finitely many) such that

@1 = x) Y W xD)Y (v, x0) = (1 —x2)* Y fitka = x0)Y (v x2) Y (u®, x7) (2.24)

i=1

for some nonnegative integer k.
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The following basic facts can be found in [L2]:

Proposition 2.9. Let V be a nonlocal vertex algebra and let

u,v,u® v® ey, fix)eC(x) @(=1,...,1).

Then the S-locality relation (2.24) is equivalent to

X1 —X X2 — X
xal(S( L 2)Y(u,)q))((v,xz)—)(51(8( 2 L
Xo —X0

) > fit=x0)Y (vO, x2) Y (u®, x1)
i=1

=x2’18<x1X_XO>Y(Y(u,xo)v,xz) (2.25)
2

(the S-Jacobi identity), and it is also equivalent to
r . .
Y, x)v=eTY " fi(=xy(v®, —x)u? (2.26)
i=1
(the S-skew symmetry).

Remark 2.10. From definition, a nonlocal vertex algebra V is a weak quantum vertex algebra if and
only if there exists a linear map

SK:VRV->VeVRC(x)
satisfying the condition that for u, v € V, there exists k € N such that
x1 — )Y xD(1@Y (X)) u®v e w)
=1 — )Y () (180 Y(x1))S2 (X —x1)(v @ u @ w) (2.27)
for every w € V, or equivalently,
Y)W ®v)=ePY(—x)S(—x) (v Qu). (2.28)
The following is lifted from [LS1]:

Proposition 2.11. Let U and V be weak quantum vertex algebras and let R(x) be an invertible twisting oper-
ator for (U, V). Then U ®g V is a weak quantum vertex algebra.

From Proposition 2.11, we immediately have:

Proposition 2.12. Let U, V and W be weak quantum vertex algebras, let R1(x), R2(x) and R3(x) be invertible
twisting operators for the ordered pairs (U, V), (V, W) and (U, W), respectively, such that

R2(x1 — x) R (x1)RP (x2) = RIZ(x2) R (x1)RI* (1 — x2).

Then U ®r, (V ®g, W) and (U ®g, V) ®1, W are isomorphic weak quantum vertex algebras, with twisting
operators T2(x) = R3*(x)R1%(x) and Ty (x) = R12(x)R%3 (x), respectively.
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3. Splitting and universal properties

In this section we study the splitting property of twisting operators T1(x) and T»(x). Then we
establish a universal property and give a characterization of the iterated twisted tensor product. Fur-
thermore, we discuss the isomorphic relations of some iterated twisted tensor product nonlocal vertex
algebras.

A natural question that arises is whether we have a twisting operator T1(x) : W ® (U Qg, V) —
(U ®g, V) ® W ® C((x)), it splits as a composition of two suitable twisting operators.

Theorem 3.1 (Right splitting). Let U, V and W be nonlocal vertex algebras, let R1(x) : V QU - U RV ®
C((x) and T1(x) : W ® (U ®g, V) = (U ®g, V) ® W @ C((x)) be twisting operators. The followings are

equivalent:

(1) There exist twisting operators R;(x) : WV — VW QC((x)) and R3(x) : WU — U W Q C((x))
such that

T1(x) = R (ORI (). (31)
(2) The twisting operator T (x) satisfies the (right) splitting conditions:
TI0WeUe)cUeheW eC(x), (3.2)
TIG(W®A®V))S(1® V)W & C((x). (33)
Proof. Using (2.5), (2.6) and the definition of T1(x), we have (3.2) and (3.3) directly.
Now we assume that the twisting operator T (x) satisfies the right splitting conditions (3.2) and

(3.3). By (3.3), the operator R(x) : W@V — V® W ® C((x)) given as the unique C-linear map such
that

(YO ®19 )R XoPe=T1x(10YX) ®1)
is well defined, as
RPOARWR®V) =YX @18 )R 0118w e V)
=(Y®®181)RFx®oPc w1018 Vv)

=Ti0(1YXR1)(we1’1® V)
=T1iRWwWe1ev) e V) W ® C((x)

for ve V, w € W. Then we have

RyX)(w@v)e VW QC((x).

From the fact that Ty (x) is a twisting operator from W ® (U g, V) to (U Qg, V) @ W @ C((x)), it is
immediately deduced that also R (x) is a twisting operator.
Using (2.12), we have

REMA®wWRD=Ti0we1e1) =113 w,
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thus

Ro(X)(w®1) =1Q w.

Using (2.13), we get

REMNAI®1vV)=T1x)(1018v)=18v®1,

then

Ro(x)(1®v)=v®1.

By R1(x)(v®1)=1® v, we have

Tix)(1®@ YR, (x2))(W®1Q@vR1® V)
=T1x)(1®Y(x) @ Y(x2))RP'x)(w®1®ve1® V)
=Tix)(1®Y(X) @Y (X)) (WR1®110Vve V)
=Tix)(W®1QY(v,x)V')
=REN(1®WRY(v.x)V)
=RFPx(1010Yx)) (10w veV),

(Yr,(x2) @ )TEx)T? (01 +x)(w®1R@ve 1 V)
= (Yr,(2) @ TP xDRP X1 + ) (1w R v @ 1) V)
=(Yx) ®Y(x) @ 1)RP xR (1 +x) (1010w ve V)
—(1®YX) @ )RIAX)RE 1 +x) (10w ve V),

then

Rox)(1® Y (x2)) = (Y (x2) ® 1)RE (x1) R (x1 + x2).
And we have

Tix)(Y(x) ®@1@1)(weow @1® V)
=Ti(x)(Y(W, x2)w' @1Q V)
=R N1 Y (W, )W ® V)
—RPa(18Y(x) @ 1)(1owe w ®v),

(1®1®YE))Tx —x)TE DWW @11 V)
=(1®1®Yx))T{12(x1 — )R xD(w@10w @ V)
=(191®Y(x)RS(x1 — )R (1@ W W ® V),
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thus

Ro(x1)(Y (x2) ® 1) = (1 ® Y (x2)) R (x1 — x2)R3> (x1).

Analogously, we can define R3(x) : W ® U - U ® W ® C((x)) as the unique C-linear map such
that

oPREPW(1©18YW)=Ti0(1818YWX),
which is also a well defined twisting operator, by (3.2), as we have
oRPMWou®1)=0RP®(1®10YX)(wouela1)

=Ti0(1R1YX)Wweuelel)
=Tix)wRueDeU 1) W ®C((x)

for ue U, w e W. Then

Rzsx)(w®u) eU® W ® C((x)).
Using (2.12), we have
1919w=T10WR18 1) =0c2RPMOW®131),
that is, RI20(w®1®1) =19 w®1, then
Rz(x)(w®1) =1 w.
By (2.13), we get
u®11=TiNA®ue 1) =cREAQuUe ),
that is, RI20)(1®u®1) =u®1®1, then
R:(x)AQu)=u®1.
By Ri(x)(1®u) =u ® 1, we have
o2T1(x1)(1® Y, () (wRue1®u' ®1)
=0PTix)(1®Y () @ Y(x))(wouau ®191)
=0®Tix)(10YX)®1)(woueu ®1)

=023a23R;2(X1)(1 Y @) (weueu ®1)
=REZx)(19Yx) o) (woueu ®1),
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o (YR, x2) @ NTP DT +x)(WRu1Qu' ®1)
=02(Yr,(x2) @ )T (x1)0PRPEx1 +x) (WU 10U ®1)
=02(Y(x2) ® Y(x2) ® 1)RP (x2)0 ®R3* ()0 PRP (1 +x)(w@ue1@u' ©1)
= (Y(2) ® 18 Y (x2))0 0P RP ()0 PR3 )0 PR (1 + x0) (W@ u@ 101 ©1)
=(Y(x2) ®1®Y(x))RP xR (X1 +x)(w@ueu ®111)
=(Y(x2) @ 1@ 1)RF xR (X1 +x2)(w@ueu' ®1),

thus

REZx)(1®Y(x2) = (Y(x2) ® 1)RE )R (x1 + x2).
And we get
BT (Y(x) @10 1) (wew @uel)

=0BoBRE@)(Yx) ®101)(wew @u®l)
=REZx)(Yx)®101)(wew @uael),

cB1®1®YX))T2(x1 —x)TE D (WO W @u®1)
1®Y(x) ®1)0*0BT?(x1 —x)0*RExDN (W W @u®1)
RY(H)Q 1)034023023R%2 (x1 — x2)0 >R xD(wew euel)

1
=(
= (1®Y(x) @ )R¥(x1 —x)RPxD(wew @ue1),

then

RZ(Y(x2) ®1) = (1® Y (x2))R32(x1 — x2)RZ* (x1).

Now we only have to check that Tq(x) = R%3 (x)R;Z(x). Using R1(x)(1®1) =1® 1 and the defini-
tions of R»(x) and R3(x), we have

xlzigjo T1x)(1® Yr, () (W RU1®1® V)
= lim T1x1)(1® Y (x2) ® Y (x2))RI* x2)(w @u®1®1® v)
=x12iLnOT1(x1)(1 QY)Y (X)) (WRuU®1®11® V)
=x121210 Tix)(W® YU, x)1® Y(1,x2)v)
:xlziino Tix)(W® Y (U, x)1® V)

=Tix)(wRuv),
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Jim (Yr, (2) @ )T 6T (X1 + 1) (W QU@ 1818 V)
2>

- Xlziglo(YRl %) @ 1)TE X))o PREZE (G +x)(WRuUR1018 V)

= xiiEo(Y(XZ) ®Y(x2) @ )RP(x) TP (x1)0 R (x1 + ) (WRu®R1®1® V)
= Xlziglo(Y(Xﬁ @Y%) ®1)02 ()T (x1)0BREZ (X1 + 1) (W RuUR181® V)
=R xR x1)(Ww @u @ v).

By (2.14), we get

T1(x) = R22 (YR ().
This concludes the proof. O

Of course, there exists an analogous left splitting theorem, that we state for completeness, and
whose proof is analogous to the former one.

Theorem 3.2 (Left splitting). Let U, V and W be nonlocal vertex algebras, let R;(x) : W QV - VW ®
C((x)) and T2(x) : (V ®r, W) Q U — U ® (V ®r, W) ® C((x)) be twisting operators. The followings are
equivalent:

(1) There exist twisting operators R1(x) : VU - UQ®V Q C((x)) and R3(x) : W QU — U QR W ® C((x))
such that T(x) = RI2(0)RP (x).
(2) The twisting operator T, (x) satisfies the (left) splitting conditions:

T,(0)(1O@W)QU) CU® (1 W)®C((x), (34)
T0((VeDHRU)CU®(Ve1)eC(X). (3.5)

The iterated twisted tensor product nonlocal vertex algebra U ®g, V ®g, W has a universal prop-
erty just as the ordinary iterated tensor product U ® V ® W does (cf. [FHL,LL]).

Theorem 3.3. Let U, V, W be nonlocal vertex algebras and let R1(x), Ry (x) and R3(x) be twisting operators for
(U, V), (V,W)and (U, W) respectively, T (x) be a twisting operator for (U, V ®g, W). Let K be a nonlocal
vertex algebra and let Y1 : U — K, ¥ : V — K, ¥3 : W — K be any homomorphisms of nonlocal vertex
algebras, satisfying the conditions that forue U,ve V,we W,

Y (¥2(v), )3 (w), Y (y1 (), X) (¥2(v) 1 93(w)) € K[[x]], (3.6)
Y () (W2 ® Y1) =€ PY (—x) (Y1 ® Y2)R1(—), (3.7)
Y () (W3 ® ¥2) =€ PY (—x) (Y2 ® ¥3)Ra(—x), (3.8)
Y (X (3 ® Y1) =Y (—x) (Y1 ® ¥3)R3(—X). (3.9)

Then the linear map ¥ : U ®t, (V Qr, W) — K, defined by

YUu®vw)=y1-1¥2(v)-1y3(w) foruel, veV, weW

is a homomorphism of nonlocal vertex algebras, which extends 1, ¥, and 3 uniquely.
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Proof. For ue U, veV, we W, as Y(Y2(v),x)¥3(w), Y1 (1), x)(Y2(v)_1¥3(w)) € K[[x]] by as-
sumption, we have

YU ®V®w)=Resyx 'Y (1(u), x) (Y2 (v)_1¥3(W))
Z)ELH%Y(% W), X) (Y2(V)—193(w)).
It is clear that the linear map ¥ extends 1, ¥ and 3. It is also clear that y(1®1® 1) =1. To
prove that i is a homomorphism of nonlocal vertex algebras, we must prove
Y(Yr,u@veaw,x)u v ew)) =Y yuevew),x)yu v ew) (3.10)

for u,u’ €U, v,v' € V, w,w' € W. Through the homomorphisms v, ¥ and 3, K can be regarded
as a U-module, a V-module and a W-module, respectively. Then, for v, u e U, veV, we W, we
have

Yv(Yr,( ®1®1,%)u®vew))

(Y (x0) ® Yk, (%0)) T3 (—x0) (' ®1® 10U ® v @ W))
(Y(%0) ® Yr,(x0)) (' @u @118 v W)

(Y(x0) ® Y(x0) ® Y (x0)) R (x0) (' @ u®1®1® v © w))
(Y ®Y(x0)®Y(x0)(t'@ue1®vel1ew))
(Yx)®1@1) (' Q@uavew))

=y
=y
=y
=y
=y
V(Y (' x)u®@vew)

(
(
(
(
(
(

= lim ¥ (4 (¥ (&' x0)u1), ) Y2V) -1 93(w)

= lim y( (U, x0)u, ) Y2 (V)_1 3 (W)

= lim Y(u’,xo +X)Y (U, X)y2(V)_193(W)

= lim ¥ (y1 (u'), X0 +X)Y (1), X) Y2 (V)1 Y3 (W)
=Y (Y1 (), X0) Y1 (W) —1¥2(V) 193 (w).

This shows that (3.10) holds with u @ vw=u®1Q1.
We next show that (3.10) also holds with u @ v w=1® v ® 1. We have

v(Y,(1®V e1L,x)uevew))
Y(X) ® YR, ®))TX(-0(10V ®10ueve w))

(1
v ((
Y (Y ® YR, ®)RP (=R (-0 (10 V @1Que Vv e w))
v((
v ((

YO ®YX) QYR)RP(—0RP(—0(18V 9ue1eve w))
YORYRNRYW)RP(—0)(1®V eueve1e w))

=y (1YW NRPEF(—0(VRueve w))

= lim Ye) (18 Y () (1 @ ¥2 DRPP(=0(V' @u® (Y2(v)1y3(w)). (311
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With the assumption (3.7), from [L2] (Proposition 5.2), there exists a nonnegative integer k such that

(%2 — X)kY(l/fz(V’),X)Y(Ih W), x2) (Y2(V)—193(w))
= —0"Y () (1® Y)W ®v2 @ DRIZ(X —x)(V @ u® (y2(V)_1¥3(W))).

Noticing that Ri(x)(v' ® u) € U ® V ® C((x)), we may replace k with a bigger integer so that
*R1(x)(vV' @ u) € U® V ® C[[x]] also holds. Then
YY1V 1), X)yuevew)
= XlimO(Xz - X)"Y(llfz(V’), X)Y (Y1 (), x2) (Y2 (V) _193(W))
2%

= lim (x; - Y (x2) (1@ Y(0) (W1 @ 2 ® DRI (2 — 0 (v @ u ® (Y2(v)_193(W)))
X)—

= (0" Im Y0) (19 Y00) (1 @ ¥2 ® DR (=0)(v @ u @ (V2 (v)-193(W)).

Thus

Y(y(1®Ve1)x)yuevew)
= Jlim Ye) (18 Y (M) (1 @ v2 DRZ(=x) (V' @ u® (Y2(v)-193(w))).

Combining this with (3.11) we obtain

v(Yr,(1V L) uevew)=Y(y[1eVv ®1).x)yuevew),

proving that (3.10) holds with u @ vw=19v®1.
At last we show that (3.10) also holds with u @ v® w=1® 1® w. We have
v(Yr,(1®10w, x)u®vew))
=Y (YR ® YR, )T (-0 (1010W Quavew))
=y (Y ® Yr, 0)RP (—0R* (01018 W uevew))
=Y (YO ®Y(® ®YX)RPZ(—0)RP (R} (0 (1819w ueve w))
=y (1®1®YX)RE(—0RE(W ouevew))
= lim lim Y(xz)( RYx))(191QYX)

X]*)O 2>

(Y1 @ VY2 ® Y3 ® Y3)RS (—ORF (1) (W @ue v e w). (3.12)

With the assumption (3.8) and (3.9), from [L2] (Proposition 5.2), there exists a nonnegative integer k
such that

(x1 — 0K — Y (Y3 (W), %) Y (V1 (), x2) Y (¥2(v), x1) Y3 (w)
=x -0 -0 Yx)(10Yx) (1010 YX)
W1 ® Y2 @ Y3 ®Y3IRP (1 —RP (X — ) (W Quevew).
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Noticing that R3(x)(Ww' ®u) e UQ W ® C((x)) and Ry (x)(W ® V) C V ® W ® C((x)), we may replace k
with a bigger integer so that X*R3(x)(w®u) € U® W @ C[[x]] and xR, (x)(W ® V) C V @ W & C[[x]]
also hold. Then

0*Y(y(1010w), )y uevew)

= lim lim (x; — x)X(xy — x)kY(llf3 (W), %)Y (Y1 (), x2) Y (Y2(v), X1) ¥3(w)

x1—>0x,—0

= lim_lim (x; =0 —0*Y x2)(1® Y (1)) (1® 1® Y (%))

x1—>0x,—0
W1 ® V2 ® Y3 ® Y3)RP (X1 —0RE(x —0) (W @ue Ve w)
= (—x)% lim0 limOY(xz)(l RY(x1))(1®1®Y®X)
X1—>0Xxp—

(Y1 ® Y2 ® Y3 ® Y3)RS (=R (=) (W QU v @ w).

Thus

Yv(1010w).x)yu®vew)
= lim 1'210Y(x2)(1 RY(x))(1®11YW)

x1—>0x2
W1 ® V2@ Y3 ® P3RS (—0RP(—)(W @udvew).
Combining this with (3.12) we obtain
Y(Y,(1010 W, )ue@vew)=Y(¥(1810w),)yuevew),

proving that (3.10) holds with u® v® w=1®1® w. Since U ®g, V ®g, W as a nonlocal vertex
algebra is generated by the subset U U V U W, it follows that ¥ is a homomorphism of nonlo-
cal vertex algebras from U ®g, V ®g, W to K. The uniqueness assertion is clear as u@ v @ w =
wW®11)_11ve1_111w) foruel,veV,weW. O

The following is a characterization of U ®g, V ®g, W in terms of U, V, W, Ry(x), R2(x) and R3(x).
The proof is analogous to that of Proposition 2.9 in [LS1].

Proposition 3.4. Let U, V, W, R1(x), R2(x) and R3(x) be given as in Theorem 3.3, and let K be a nonlocal
vertex algebra which contains U, V and W as subalgebras, satisfying

Y (2 (v), X) Y3 (w), Y (1 ), X) (Y2 (V) 193 (w)) € KK,

Y (%) (W2 ® Y1) =ePY (=) (Y1 @ Y2)R1(—x),

Y (0 (3 ® ¥2) = PY (=) (Y2 ® ¥3)Ra(—x),

YO W3 ® Y1) =ePY (=0 (1 @ Y3)R3(—x)

forueU,veV,we W.Assume that K as a nonlocal vertex algebra is generated by U UV UW and that U as
a U-module is irreducible and of countable dimension (over C). Then the linear map 6 : U ®g, V Qr, W — K,
definedby 0(u®v@w)=u_1v_1wforueU,v eV, weW,isanonlocal vertex algebras isomorphism.

Recall from Lemma 2.2 that for any invertible twisting operator R, (x) for the ordered pair (V, W),
then R2_1(—x) is an invertible twisting operator for the ordered pair (W, V). Furthermore, we have:
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Lemma 3.5. Let U ®g, V ®r, W be an iterated twisted tensor product nonlocal vertex algebra, let Ry(x) be
an invertible twisting operator for (V, W), such that

Ry(x)(w®v)eV W ®Cl[[x]] (3.13)

forveV,weW.Then U ®g, W ®p-
2
nonlocal vertex algebra.

(%) V carries the structure of an iterated twisted tensor product

Proof. Since U g, V ®g, W is an iterated twisted tensor product nonlocal vertex algebra, from The-
orem 2.5 we know that the hexagon equation holds:

R2Z(y1 — y2)RYP(y1)RP (y2) = RIZ(y2)RP (YR (y1 — y2).

Using the invertibility of Ry (x), we have

REZGDRB )Ry (1 — y2) = (R, ) (1 — y2)R2(y2)RB (y1). (314)

Taking y1 =x3, y2 = %1 in (3.14) and by (3.13), we get

(R31) (=x1 + x)R2(x1)RZ (x2) = R (x2)RB (x1) (R 1) * (—x1 + x2).

By Theorem 2.5, we know that U ®g; W ®- V carries the structure of an iterated twisted ten-
2

1
(=x)
sor product nonlocal vertex algebra with twisting operators T} (x) = (R, )?>(=x)R1%(x) and T} (x) =
REZ®R?(x). O

The following result gives out the relation between two iterated twisted tensor product nonlocal
vertex algebras U ®g, V ®g, W and U ®g, W ®R71(_X) V.
2

Proposition 3.6. Let U ®g, V ®g, W be an iterated twisted tensor product nonlocal vertex algebra, let Ry (x)
be an invertible twisting operator for (V, W) such that

Ra(x)(w@v)e VW ®C[xI], (3.15)
RyI(v@w) e W ®V @CIIx] (316)

1x V — U ®g, V Qr, W, defined by

forv eV, w e W.Then the linear map ¢ : U Qg, W ®R;
YURWRV)=u_1w_1v (inUQ®g, V®g, W)
forueU,veV,weW,isanonlocal vertex algebra isomorphism.
Proof. With the assumption (3.15), we get
Y _ 45 23 34
7, (W, X)v = (Y(x) RYX ® Y(x))R2 (=) RT"(—X)R3* () (131w R1evel)
=(1910YX)RFP(01®wRve1) e (U g, V &k, W)IIXI,

and
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Yo, (u, ) (w-1v) = lim (Y(X) ® Y (0 ® Y () RS> (—0RP (—0R3H (—0R3(—x2)
X)—

C(URTRIRTIRIWRV)
= limO(Y(x) @18 1R (—x)u®1ewev)
X)—

€ (U ®r, V ®r, W)IIXII

foruelU,veV,weW.
From Lemma 2.7 we have

Yr,(w. 0)u =e*PTYr, (—x)R3(—x)(Ww @ u),
Yr,(v, x)u = e*PTY 1, (=) R1 (—X) (v @ u).
And we can easily have
Yr,v,0w=(Y® ®Y (X ® Y(®))R3 (—0)REP ()R (—0n10ve1810130 w)
=Y@WeYMEY®)119vea11Qw)
=1Y(v,x)1Qw

=P (Y(=0®Y (-0 ®Y(—1)1R1818vew®1)
= DTy, (R () (v @ w).
By Theorem 3.3, ¢ is a nonlocal vertex algebra homomorphism. Clearly, ¥ |y =1, ¥|yv =1 and

¥lw = 1. On the other hand, now we consider U ®g; W ®p-1._,, V. With the assumption (3.16), we
2
get

Yo (vow=(Y® @YX ®Y®)(Ry) P (—0RE (R (-n1018ve1awa 1)
=(1818YX)(R;) WA vewe 1) e U dr W1, VIXIL
and

Vi, @ 0 aw) = Jim (Y0 @ Y00 ® Y () (Ry ') RP (0 R0 (Ry ) ()

C(URTRTIR1IR} VR W)
= lim (Y0 818 DR ue1evew)
22—

€ (U @R, W &1y VIIXI]

foruelU,veV,weW.
From Lemma 2.7 we also have

Y1, (v, 0u =PV (=R (=) (v @ ),

Y, (W, 0u = eXPr Y1, (=0R3 (=) (W @ u).



J. Sun / Journal of Algebra 381 (2013) 233-259 253

And we also have

Yrw. v = (Y 8 Y0 © V() (Ry ) R (-0RP (010 w9 191910 V)
=(YORYNRY®)(181ewe1018V)
=10Y(w,)1QvV
=ePT(Y (0@ Y(-0)®Y(—x)(1®101weVve1)
=ePTY (=0)R2(=0) (W @ V).

By Theorem 3.3, there is a nonlocal vertex algebra homomorphism ¢ : U ®g, V Qr, W — U ®g,
w ®r=1(_y) V such that p(u®v@w)=u_jv_iw forueU, veV, we W.Because ¥ o¢ and ¢ o
2

are nonlocal vertex algebra homomorphisms preserving both U, V and W element-wise, it follows
that ¥ o =1 and ¢ o ¥ = 1. Therefore, v is a nonlocal vertex algebra isomorphism. O

Next we will discuss the relation between two iterated twisted tensor product nonlocal vertex

algebras U ®g, V ®g, W and V ®p-1(x) UQ®ry W.

Lemma 3.7. Let U ®@g, V ®r, W be an iterated twisted tensor product nonlocal vertex algebra, let R1(x) be

an invertible twisting operator. Then V ® p—1 (=%) U ®gr,; W carries the structure of an iterated twisted tensor
1

product nonlocal vertex algebra.

Proof. Since T,(x) is a twisting operator, from Theorem 2.5 we have

R2Z(y1 — y2) R ()R (y2) = RI2(y2)RZ (y1)RZ (y1 — y2).

Using the invertibility of Rq(x), we get

REG)RE (1 — y2) (RN (r2) = (RT) 2 (v RE (y1 — y2) R (y1).

Taking y1 =x1 —x2 and y, = —x,, we have

RE (1 — xR (RTD? (—x2) = (R7)  (=x) RE (1) R (%1 — x2).

1(_y U ®rs W carries the structure of an iterated twisted

tensor product nonlocal vertex algebra with twisting operators T (x) = R§3(X)R%2(x) and TJ(x) =
RYHZ(0RE®. O

By Theorem 2.5, we know that V &
1

Remark 3.8. Compared with Lemma 3.5, here we do not need the following assumption

Rix(veu)elU®V ®Cl[x]]

forueU,velV.
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Similarly, we have:

Proposition 3.9. Let U ®g, V ®g, W be an iterated twisted tensor product nonlocal vertex algebra and let
R1(x) be an invertible twisting operator for (U, V) such that

Ri(veu)eU® V ®CI[x]], (3.17)
R7'ev)eVeU®C(x])] (3.18)

forueU, veV.Thenthelinearmap ¢ : V ®- U®r; W — U®g, V®r, W, defined by
1

Y(=x)
e(v@uW)=v_1uw (inUQ®g, V ®g, W)
forueU,veV,weW,isanonlocal vertex algebra isomorphism.
From Propositions 3.6 and 3.9, we immediately have:

Corollary 3.10. Let U ®g, V ®r, W be an iterated twisted tensor product nonlocal vertex algebra, let u € U,
veV,weW.

(1) If R2(x) and R3(x) are invertible twisting operators, and satisfying (3.15), (3.16) and

R3x)(w®u) e U® W ® C[[x]], R;l(x)(u RwW)eW U R C[[x]]. (3.19)

Then W ®R;1 (%)

U®g, VQgr, W.
(2) If R1(x) and R3(x) are invertible twisting operators, and satisfying (3.17), (3.18) and (3.19). Then V Qg,
w ®R;1 (%) U carries the structure of a nonlocal vertex algebra, which is isomorphic to U @, V Qg, W.

(3) If R1(%), R2(x) and R3(x) are invertible twisting operators, and satisfying (3.15)-(3.19). Then W ® (=)
2
Vv ®pr-1(_x U carries the structure of a nonlocal vertex algebra, which is isomorphic to U ®g, V ®g, W.
1

U ®g, V carries the structure of a nonlocal vertex algebra, which is isomorphic to

4. N-factors iterated twisted tensor products

In this section, we construct a twisted tensor product of any number of factors. The way to prove
this is mainly using induction. Then we state the universal property for the twisted tensor product of
any number of factors.

Lemma 4.1. Let V1, V3, ...,V be nonlocal vertex algebras, let Rjj(x) : V; @ Vi — V; ® V; ® C((x)) be
twisting operators for every 1 < i < j <n, such that for any i < j < k the twisting operators R;j(x), R ji(x)

and Ry, (x) satisfying the hexagon equation, let T,’:I_Ln(x) = Ril_%fl (x)R?3(x) be twisting operators defined by

Ty 12X (Vo1 ®Ry_y, Vi) ® Vi — Vi ® (Vi1 @R,y Vi) ® C((X))

fori=1,...,n—2.Then for every 1 <i < j <n — 2, the twisting operators R;;(x), T,L]’n(x) and T,’;fl’n(x)
satisfy the hexagon equation.

Proof. For u" 1 € V,_1, u" € Vp, ul € Vi, u' e Vi, 1<i < j<n, using the compatibilities of Rij(x),
Rjn_1(x) and R;,_1(x), and of R;j(x), Rj,(x) and R;,(x), we have
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RIZ00) Ty )2 (), ) P — ) (0" @ u”" @ u! @ u)
= RI20)(Ti_1 ) P xR (11 — ) RE (01 — x) (1" @ u" @ ) @ u)
=RIF ()R _ (xR ()R (1 —x2)R5 (1 —x) (u" ' @ u" @ u! @ u')
=RIF ()R (xR} (1 = xRy (x)R3 (1 — %) (u" ' @ u" @ u! @ u')
=RP_ (1 — x)RI2_{ (x)RT )RS (x1)R3 (1 — %) (u" ' @ u" @ u! @ u')
=R (1 —x)RI2 (xR — x2)RZ xR x) (0" @ u" @ u! @ u')
)

=RP_ (x1 = x) R (x1 = x)R{% (DR )R (x) (0" @ u" @ u! @ u!
= (T4—1,n)23(x1 _XZ)(Tril—],n) (X1)R Y)W Tou" @ul @u).
This concludes the proof. O
Now we present the main result of this section.

Theorem 4.2 (Coherence Theorem). Let V1, ..., V;, be nonlocal vertex algebras, let Rjj(x) : V; @ Vi = V; ®
Vi ® C((x)) be twisting operators for every 1 <i < j <n, such thatfor any i < j < k the twisting operators

Rij(x), Rji(x) and Rik(x) satisfy the hexagon equation, and let T, -1 ](x) be twisting operators defined by

Ti_ 1 ;0 =R>Z_JORP®): (Via®r_,; V) ®Vi—> Vi (Vi ®kr,_,; V) ® C((X)
fori <j—-2
Ti 1 ;0 =RE@R?Z, ;) :Vi® (Vi1 ®r_,,; V) = (Vi1 @k, Vi) ® Vi ® C((X))
forizj+1.
Then for every i,k ¢ {j — 1, j} the twisting operators Ry (x), T?q.j(x) and T}iw(x) satisfy the hexagon

equation. Furthermore, for any 1 <i < n the (inductively defined) twisted tensor product nonlocal vertex
algebras

Vi®Ry  ®Risi, Vi ®ri-2. (Vie1 ®ri_y; Vi) ®ri+1. Vie1 ORisrih2 = ORprn Vi

are all equal.

Proof. As our hypothesis, we assume that we have n — 1 nonlocal vertex algebras Uy, ..., Uy_1, with
twisting operators Q;j(x): Uj @ Uj — U; @ Uj ® C((x)) for every 1<i < j<n—1, and such that for
any i < j <k the twisting operators Q;j(x), Q jx(x) and Q;(x) satisfying the hexagon equation, then
we can construct the iterated twisted tensor product Uy ®q,, U2 ®q,; -** ®0,_5,1 Un—1-

From Theorem 2.5, we know that the map

Th 120 =RI2_JORE®) : (Va1 ®R,_1, Vi) ® Vi— Vi ® (Vi1 @k, Vi) ® C((%)

are twisting operators for 1 <i<n — 2. By Lemma 4.1, we have n — 1 nonlocal vertex algebras

Vi,....Vy—2 and V1 ®g,_q, Vn with w twisting operators R;j(x), Tn 1n(x) and Tn 1n(x)
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satisfying the hexagon equation for every 1 <i < j<n—2. So we can apply the induction hypothesis
and build the nonlocal vertex algebra

V1®Ryy ORyqnz Vn—2 ®T::fn (V-1 ®Ry_y, Vi)-
Using Theorem 2.5, we have

Vi ®T3:12n (V-1 ®ORy_1.n Vi) =(Vn-2 QORy—2.n-1 Vi—1) ®mn Va,

n—-2,n—1
thus we can group together any two consecutive factors. This concludes the proof. O

As a consequence of this theorem, we can lift the universal property for the twisted tensor product
of any number of factors, which is analogous to Theorem 3.3 and the proof is similar.

Theorem 4.3. Let V1, ..., V, be nonlocal vertex algebras, let R;j(x) be twisting operators for (V;, V;) for
1 <i < j<n,suchthat forany i < j < k the twisting operators R;j(x), R j(x) and R (x) satisfy the hexagon

equation. Let K be any nonlocal vertex algebra and let v; : Vi — K be any homomorphisms, satisfying the
conditions that for v e Vi, 1 <i<j<n,

Y (Y (V1) )9 (V). Y (Yn2 (v 72), %) (Yna (V) 9 (V7).
o Y (V) ) (2 (V) v (V) (V) € KL
YO (¥ @ i) =Y (=) (i ® ¥ Rij (—x).
Then the linear map ¥ : V1 ®Ry, ** ®Ry_pn_1 V-1 ®Ry_1, Vn = K, defined by
y(v'evie @ vh) =y1(v')_v2(v?)_ - vn(v") forvieVi1<i<n
is a homomorphism of nonlocal vertex algebras, which extends v; uniquely, for 1 <i <n.

Next, using the rest of this section we present a toy example. We show that the weak quantum
vertex algebras associated with the noncommutative 2n-planes defined by Connes and Dubois-Violette
in [CD] can be realized as iterated twisted tensor products of nonlocal vertex algebras. And this weak
quantum vertex algebra is very similar with the quantum vertex algebra of Zamolodchikov-Faddev
type studied in [KL].

Definition 4.4. Let [ be a positive integer and let Q = (ql'j)i‘, =1 be a complex matrix such that
qii =¢qijqji =1 for1<i, j<L (41)
Define Aq to be the associative algebra with identity (over C) with generators
Xin, Yi,n (i=1,...,1,ne?),
subject to relations
XimXjn=qijXjnXim,  YimYjin=qij¥inYim,  XimYjn=¢;i¥jnXim (4.2)

fori,j=1,....,, m,neZ.
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Let {e1,...,e;} denote the standard Z-basis of Z!. It is straightforward to see that Ag is a Z-
graded algebra with the grading defined by

deg Xim =e;j, degYim=—e;, for1<i<I, meZ. (4.3)
Set
Ag = Xim, Yjnli,j=1,....,1, mn>0),
Ag = Xim, Yjnli, j=1,....1, m,n <0),
which are Z!-graded subalgebras of Ag.
A vector w in an Agq-module W is called a vacuum vector if Aaw =0, and an Ag-module W

equipped with a vacuum vector which generates W is called a vacuum Aq-module.
Set

Vo= AQ/(AQAE) , (4.4)
a left Ag-module, and set
1=1+ (Ag4y) € V.

Clearly, 1 is a vacuum vector and Vq equipped with 1 is a vacuum .4q-module.
For 1 <i <], set

u(i) = Xi,—l‘l? V(i) = Yi,_11 (S VQ (45)
and set
X =) Xipx™" Vi =) Yipx " e Ag[[x.x71]]. (4.6)
nez nez

Now we endow Vq with the structure of a weak quantum vertex algebra (cf. [KL]).

Theorem 4.5. Let Q = (qij)1<i,j<i be a complex matrix such that q;; = 1 and q;;qji =1 for 1 <i, j <1, let
Aq be the associative algebra associated with Q and let Vo be the universal vacuum Aq-module. There exists
a (unique) weak quantum vertex algebra structure on Vg with 1 as the vacuum vector such that

Y(u® %) =X, YO, x)=Yix fori=1,...,1L

Let W be any Aq-module satisfying the condition that for any w e W, Xi nw =Y; mw =0 for 1 <i <land
for m sufficiently large. Then there exists a (unique) Vo-module structure on W with

Ywu®,x) =X, Yw(vO.x)=Yix fori=1,...,1
Conversely, any Vo-module W is an Aq-module with

Xi(0) = Yw (u®, %), Yi) =Yw (v x) fori=1,...,1L
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Furthermore, similar with Proposition 3.8 in [KL], we have:

Proposition 4.6. Let V be any nonlocal vertex algebra and let 4 be any map from {u®, v® |i=1,... I} to
V such that

for1 <1, j <l Then there exists a unique nonlocal vertex algebra homomorphism from Vg to V, extending .

For each 1 <i <, neZ, the algebra Ay, (associated with 1 x 1 matrix g;;) generated by the
elements X;, and Y;, is commutative and is isomorphic to C[X;n, Y; ], which is a polynomial al-
gebra. Let V;; be the universal vacuum module constructed from .Ag;. From Theorem 4.5, we know
that Vj; is a nonlocal vertex subalgebra of Vgq. In the following we show that Vg can be realized as
the iterated twisted tensor products of Vj;, by suitable twisting operators R;j(x) for the ordered pair
(Vii, Vijp, for 1<i< j <L

The following is straightforward:

Lemma 4.7. Let V;, nonlocal vertex subalgebras of Vq, be the universal vacuum Ag,, -module for 1 <i <. Let
Rij(x) be a linear map defined by

Rij(0): Vi ® Vii— Vi @ Vug) - u v - viP1eul - ullvd ... v

k—1
gl P OuD VO D1 ul) v v @)

foru®, v® e vy, u® v eV, 1<i < j<I Then Ryj(x) is an invertible twisting operator for the ordered
pair (Vi;, Vi), for 1<i< j<lL

From Theorem 2.4 we have:

Proposition 4.8. Let R;;(x) be the twisting operator of the ordered pair (V;;, V j;). Set

Yr; (0 =(Y(0) ® Y(x))R (—x) (4.8)
Then (Vii ®g;; Vjj, Yr;» 1® 1) carries the structure of a nonlocal vertex algebra, for 1 <i < j <.

Let Vj;, Vjj and Vy, be nonlocal vertex subalgebras of Vg, let R;j(x), Rjx(x) and Rj(x) be the
twisting operators for (Vij, Vjj), (Vjj, Vie) and (Vij, Vi) respectively, defined in Lemma 4.7, for 1 <
i < j<k<I We can directly check that R;j(x), Rji(x) and R (x) satisfy the hexagon equation. From
the Coherence Theorem we get:

Proposition 4.9. The nonlocal vertex algebra V is isomorphic to the iterated twisted tensor product nonlocal
vertex algebra V11 ®Ry, V22 ®Rys -+ ®Ry_1y Vi
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