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We adapt Safin’s result on powers of sets in free groups to obtain
Helfgott type growth in free products: if A is any finite subset of
a free product of two arbitrary groups then either A is conjugate
into one of the factors, or the triple product A3 of A satisfies
|A3| � (1/7776)|A|2, or A generates an infinite cyclic or infinite
dihedral group. We also point out that if A is any finite subset
of a limit group then |A3| satisfies the above inequality unless
A generates a free abelian group. This gives rise to many infinite
groups G where there exist c > 0 and δ = 1 such that any finite
subset A of G either satisfies |A3| � c|A|1+δ or generates a virtually
nilpotent group.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

When A is a finite subset (always assumed non-empty in this paper) of an abelian group then
there has long been interest in classifying when A has small doubling. Namely on being given a class
of abelian groups (say all torsion free abelian groups or all finite abelian groups) and a real number
K � 1, one wants to describe the structure of those A such that the size of A + A is at most K |A|.
However for finite subsets of non-abelian groups there were until recently very few equivalent results
(say only Freiman’s 3/2 Theorem from 1973 which gives a complete characterisation in any group G
of all finite subsets A whose double product A2 satisfies |A2| < (3/2)|A|). An issue here is that in
an infinite non-abelian group G one can have (in fact often has, see Section 4) a sequence of finite
subsets A of G with |A2| < 4|A| but |A3|/|A| → ∞ as |A| → ∞, so that control over the size of the
double product A2 does not give control of the triple product |A3| unlike in the abelian case.

A breakthrough came with the paper [7] of Helfgott, which showed that once A3 has bounded size
then so do all the higher product sets A4, A5, and so on. Indeed if A is a finite subset of any group
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and |A3| � K 2|A| then for n � 3 we have |An| � K 2(n−2)|A|. He then considered the collection of finite
groups SL(2, p) over all primes p and showed a strong growth property of triple products in this case.
Of course in general we cannot expect triple product growth for all finite subsets of a group: examples
of A such that |A3| < 3|A| would be when A is itself a finite subgroup (or consists of more than a
third of a finite subgroup), or when A is an arithmetic progression, namely it consists of consecutive
powers {xn, xn+1, . . . , xn+i} of any element x. Helfgott’s result states (using the Gowers trick as in [1])
that there are absolute constants c, δ > 0 such that if A is any generating set of G = SL(2, p) for any
prime p then either |A| � 2|G|8/9 in which case A3 = G , or |A3| � c|A|1+δ when |A| < 2|G|8/9.

There has also been interest recently in approximate groups, following [13]. Given K � 1, we say
that a finite subset A of a group G is a K -approximate group if it is symmetric, contains the identity,
and there is a subset X of G with |X | at most K such that A2 ⊆ A X . An immediate consequence
of this definition is that |A2| � K |A|, |A3| � K 2|A| and |An+1| � K n|A|, so certainly the size of all
product sets is well behaved here. Indeed there is a close connection between K -approximate groups
and sets of small tripling, because if |A3| � K 2|A| then S = (A ∪ A−1 ∪ {e})2 is an 8K 6-approximate
group by Ruzsa’a covering lemma (see [13], Lemma 3.6).

There are results on the structure of K -approximate groups, culminating in [4] which completely
characterises such subsets. As a consequence of this characterisation it is shown that there is a univer-
sal function c(K ) such that a K -approximate group A in any group G can be covered by c(K ) cosets
of a finitely generated, virtually nilpotent subgroup of G . However this function given by the proof is
completely inexplicit; indeed it is not known whether it could be polynomial in K .

However our interest here is in the existence of approximate groups inside infinite groups. Cer-
tainly any finite symmetric subset A containing the identity is a K -approximate group for some K ,
namely K = |A|. Thus in practice we fix K and ask how big subsets A of an infinite group G can be
if they are K -approximate groups, or more generally if they satisfy |A3| � K 2|A|. Moreover as there
are certainly examples using finite subgroups or arithmetic progressions, we should insist that the
subgroup 〈A〉 generated by A is not a virtually cyclic group. As our interest here is in that part of
the spectrum of groups close to free groups, we will further insist that 〈A〉 is not virtually abelian
or virtually nilpotent; indeed balls in virtually nilpotent groups also provide examples of approximate
groups.

At this point it seems that a severe dearth of examples presents itself. For instance the author
was unable to find in the literature a single case of an infinite group G and a real number K > 1
where there exist finite subsets A of G all generating non-virtually nilpotent subgroups and with
|A3| � K 2|A| but |A| unbounded. If there were no such examples then there would exist a func-
tion f (K ), possibly depending on the ambient group G , such that any K -approximate group A in
G with 〈A〉 not virtually nilpotent has |A| � f (K ). In particular A can be covered by f (K ) cosets
of the trivial subgroup. In fact examples do exist, such as the case when G is equal to the di-
rect product of the rank 2 free group F2 = 〈x, y〉 and the integers Z = 〈z〉, whereupon we can take
A = {(x, zi), (y, zi): 0 � i � N − 1} with |A3| < 12|A| and 〈A〉 = F2 ×Z but |A| = 2N . We elaborate on
this example in Proposition 4.2.

Moreover when we do have an infinite group G and a function f = fG such that |A3| � K 2|A|
implies that |A| � f (K ) for all finite subsets A of G with 〈A〉 not virtually nilpotent, we can still ask
how quickly f grows. We can make a connection here with Helfgott’s results by using the following
definition:

Definition 1.1. Given a group G , we say that G has Helfgott type growth if there exist c, δ > 0 such that
any finite subset A with 〈A〉 not virtually nilpotent satisfies |A3| � c|A|1+δ .

It is clear that if this definition is satisfied then any K -approximate group A in G with 〈A〉 not
virtually nilpotent has size at most c−1/δ K 2/δ , thus our function f above will be polynomial in K .
Moreover the application of Helfgott type growth to infinite groups G works well because we never
have to worry about the finite subset A being “most” of G and we do not have to stick to the case
when A generates G .

As for the degree of our polynomial function f , it is shown in Proposition 4.1 using an elementary
construction that if a finitely generated group G which is not virtually nilpotent has Helfgott type
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growth then δ � 1 (with the possible exception of groups having bounded exponent) so f cannot
be subquadratic here. Thus if δ = 1 holds in the above expression for some group G then it seems
reasonable to say that G has no approximate groups, because any K -approximate group contained
in G is either contained in a small (i.e. virtually nilpotent) subgroup of G or is the same order of
magnitude as those K -approximate groups formed using basic constructions.

In this paper we show that a free product of two groups has no approximate groups if the two
factors do not. We also show that limit groups have no approximate groups. More precisely, if G is
a limit group and A a finite subset then we show Helfgott type growth in that either |A3| � c|A|1+δ

for δ = 1 (thus obtaining the best possible value for δ) or 〈A〉 is free abelian. As for free products
Γ = G ∗ H where G and H are arbitrary groups, we show that either |A3| � c|A|1+δ for δ = 1 (again
best possible) or A can be conjugated into one of the factors of the free product, or 〈A〉 is infinite
cyclic or infinite dihedral. We also make the value of c explicit and it is independent of the group,
indeed we take c = 1/7776 throughout.

In [12] by Safin it was shown that in the free group F2 of rank 2 (and hence in all free groups
Fk of rank k) we have |A3| � c|A|2 for all finite subsets A, unless 〈A〉 is infinite cyclic. This was the
first example of an infinite group G with Helfgott type growth where we can take δ = 1. Of course
this will also be true for subgroups of G but a subgroup of a free group is free. In [12] the constant
c was not given but is explicit when followed through the paper and that is what we do here. Our
result mirrors this proof of Safin closely by using the normal form for free products in place of words
in the standard generators for the free group F2, but we have to work harder at the beginning (in
finding a suitable proportion of A where growth should take place) and at the end (when identifying
the subgroup generated by those sets A with small triple product, which might not be cyclic).

The proof for free products is given in Section 2, then in Section 3 we consider limit groups and
other examples of infinite groups with Helfgott type growth. Finally in Section 4 we give examples of
groups which are not virtually nilpotent and which do not have Helfgott type growth for any positive
values of c and δ. In particular there exist such examples which are free products with amalgamation
and also HNN extensions, formed using only the integers Z. Moreover these examples include all
virtually polycyclic groups and SL(3,Z). The method here is always to find finite subsets AN of a
group with 〈AN 〉 not virtually nilpotent and |AN | → ∞ but where |A3

N |/|AN | stays bounded.

2. Helfgott type growth in free products

We begin with some standard facts on free products of groups, for which see [10], and periodic
words following [12] (which in turn followed [11]).

If G and H are any groups (implicitly assumed not to be the trivial group I = {id}) then the free
product G ∗ H of the factor groups G, H consists of k-tuples (x1, . . . , xk) of arbitrary length and where
either the odd xi s are taken from G − I and the even xi s from H − I or the other way around. This
tuple is referred to as the normal form of an element γ in G ∗ H but is really the definition of γ . If
k = 1 then we have the element (x) for x ∈ G − I or x ∈ H − I and we may omit the brackets. The
identity is represented by the empty tuple ∅ where k = 0.

This value of k is an important invariant of the element γ ∈ G ∗ H called the syllable length σ(γ ).
In this paper we divide (G ∗ H) − I into four disjoint sets called types. The idea is that for any γ ∈
(G ∗ H)− I we need to take into account the parity of σ(γ ) and whether the normal form of γ starts
with an element in G or an element in H (whereupon we would know in which factor the final entry
lies). This gives rise to our four types of G-even, H-even, G-odd, H-odd and the notion of an odd or
even element if we only require the parity of k.

Multiplication xy of elements x = (x1, . . . , xk) and y = (y1, . . . , yl) is given by first concatenating
to get (x1, . . . , xk)(y1, . . . , yl). If xk and y1 are in different factors (for instance if x is G-odd then this
occurs precisely when y is H-even or H-odd) then we just remove the interior brackets to obtain
this (k + l)-tuple for xy. However if say both x and y are G-odd then xk y1 is an element of G and
one of two possibilities occurs. Either xk y1 �= id in which case we say that absorption has occurred in
forming the product xy with normal form

(x1, . . . , xk−1, xk y1, y2, . . . , yl)
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and syllable length k + l − 1. Otherwise xk y1 = id and we say there is cancellation in xy. So

(x1, . . . , xk−1 y2, . . . , yl)

will be the normal form of xy if we now have absorption, that is if xk−1 y2 �= id. However we could
have further cancellation and so the normal form is found by continuing to cancel until we have
absorption (or we run out of letters in x or y).

We now follow [12] in defining periodic words, but here adapted to the free product case. A peri-
odic element y of G ∗ H is one which is of the form y = yst where s � 2, y ∈ (G ∗ H)− I and t ∈ G ∗ H ,
no cancellation or absorption occurs anywhere in forming this product, and the normal form of t is
a prefix of the normal form for y. In particular y must be an even element, and if y is G-even say
then t is G-even or G-odd (or empty). We assume throughout that y is not a proper power of some
other word, in which case we call y the period and t the tail of the periodic word y: these are both
uniquely defined. When t is empty we say that y is totally periodic.

We can also work from the right of the normal form, giving rise to the definition of a right periodic
word (or totally right periodic if h is empty) z = hzs where as before we have that z is the (unique)
right period of z and h is a (unique) suffix of z called the head of z.

A word is periodic if and only if it is right periodic (explaining why we can use the term periodic
above rather than left periodic). Moreover on taking two periodic words y1 = ys1 t1 and y2 = ys2 t2
with the same period, suppose that they also have the same right period. Then it follows that the tails
are the same, so t1 = t2. (One can picture this by placing the entries of y clockwise in turn around
a circle, starting from the top, so a word with period y corresponds to a clockwise walk from the
top that runs at least twice around this circle. As y has no rotational symmetry by minimality of the
period, we see that if the right periods of y1 and y2 coincide then the backwards walk of each word
must have started in the same place.)

Finally we need to adapt the idea of a periodic element in the case of free products, in order to
take account of odd elements. The problem is that if yst is a periodic word which is an odd element
of G ∗ H then absorption (or even cancellation) takes place when forming its square which we need
to control. Note that here the syllable length must be at least 5 because y is even, s � 2 and t �= ∅,
so the idea is that we do not worry about the first element or last element of the normal form. We
therefore need the notion of what we call here an interior periodic element. This has exactly the same
definition as before for even elements. However we say that the G-odd element y is interior periodic
if there exist g1 ∈ G and g2 ∈ G − I such that y = g1xg2 where x is G-even and periodic, so x can
be written as yst for t a prefix of y and where y and t are both G-even elements (or t is empty).
Thus y = g1 ystg2 where absorption takes place between g1 and y but no absorption or cancellation
can occur otherwise in this expression. We cannot have cancellation between g1 and y because then
y would start with an element from H . Similarly g2 �= id but we do allow g1 to be the identity, thus
interior periodic does include the definition of periodic by taking g1 = id and g2 to be the appropriate
element of G − I .

We have the corresponding definition of interior periodic words for H-odd elements too. We still
call y the period and t the tail of the interior periodic element y = g1 ystg2 as above (or tail tg2 if
tg2 is a prefix of y) and they are again uniquely defined. Similarly we also have the concept of an
interior right periodic word, which again has a well-defined right period and head. As before, a word
is interior periodic if and only if it is interior right periodic and if two interior periodic words have
the same period and right period then they have the same tail as well. These facts can be seen by
removing the first and last letters from the normal form of y, resulting in a genuine periodic word
unless s = 2 and t = ∅, but the arguments continue to hold in this case too.

We begin our proof by first adapting Lemma 1 of [12] to the free product case. Here we note the
obvious but useful fact that if we are given a finite subset A of any group Γ then the growth of A is
the same as the conjugate subset γ Aγ −1 for all γ ∈ Γ , as |An| = |γ Anγ −1| = |(γ Aγ −1)n|.

Lemma 2.1. Let A be any subset of Γ = G ∗ H. Then there exists a conjugate subset γ Aγ −1 in Γ of A with
the following property: there is no element x in G − I or in H − I such that more than half of the elements in
γ Aγ −1 have normal form (x, . . . , x−1).
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Proof. Suppose there is such an x = g in (without loss of generality) G − I , so that more than half of
the elements in A are G-odd with normal form (g, . . . , g−1). Then on forming the conjugate subset
g−1 Ag , these elements will have their syllable length reduced by 2 (but see the note below). Now
the syllable length of any other element can go up by at most 2 so the total syllable length of the
elements in A must decrease. If the conclusion of the lemma is still not satisfied then we can continue
the process of conjugating to reduce syllable length and it is clear that this process must eventually
terminate. �

Note: There is one case where the conclusion of Lemma 2.1 fails. This is if we have an element in
normal form (x, . . . , x−1) of syllable length 1. Now this can only happen if the element itself is equal
to x in G − I (say) with x of order 2, but on conjugating by x−1 we have x−1xx is still of length 1.
Thus it would be possible not to decrease the total syllable length, but only if |A| = 2k + 1 for some k
and where k + 1 elements, including x, have normal form (x, . . . , x) and the other k elements are all
H-odd. For instance consider the infinite dihedral group 〈x〉 ∗ 〈y〉 with x and y both of order 2, and

A = {
x, xyx, . . . , (xy)kx, y, yxy, . . . , (yx)k−1 y

}
.

However we only need the lemma for Theorem 2.2 and in this case the conclusions are immediately
satisfied by taking X and Y to be the G-odd and the H-odd elements.

Theorem 2.2. For any finite set A ⊆ G ∗ H there exist (not necessarily disjoint) subsets X, Y of a conjugate in
G ∗ H of A such that |X |, |Y | � (1/18)|A| and such that for any x ∈ X and y ∈ Y there is no cancellation in
xy or in yx (although there may be absorption).

Proof. We assume by conjugating that A satisfies the conclusions of Lemma 2.1 and we first divide
A into the four G-odd, G-even, H-odd and H-even subsets. If the identity is in A then its type is not
well defined, but we will place it in either of the odd subsets because cancellation does not occur
when an element is multiplied by the identity.

If either of the two even subsets has size at least |A|/18 then we are happy to take X = Y to be
that subset. We are also happy taking X to be the G-odd elements and Y the H-odd elements if both
have size |A|/18. Without loss of generality this only leaves the case where the set Godd of G-odd
elements satisfies |Godd| > (5/6)|A|. In this case we require a more delicate argument which involves
partitioning the elements in Godd into two subsets of reasonable size in order to avoid cancellation,
which will work unless a large proportion of elements in Godd have normal form (g, . . . , g−1).

Consider the map M from Godd to G × G given by sending an element (g, . . . , γ ) in normal form
to the ordered pair (g, γ −1). This also makes sense for elements in G , including the identity which
maps to (id, id). Of course G × G could be infinite but the image Im(M) is finite. Let E = {g1, . . . , gn}
be the set of elements of G that appear either as a first or second entry of Im(M). We have that n � 2
as not all elements in Godd are of the form (g, . . . , g−1) by Lemma 2.1. An obvious way to form two
subsets of Godd without cancellation between them is to divide E into two disjoint subsets E1 ∪ E2 of
roughly equal size, say E1 = {g1, . . . , g�n/2
} and E2 = {g�n/2
+1, . . . , gn}. This gives a few possibilities
for X and Y ; namely we could set X = Y to be the inverse image under M of E1 × E2, or of E2 × E1,
or we could set X to be the inverse image of E1 × E1 and Y that of E2 × E2. We are done if in any of
these three cases we have that both |X | and |Y | are at least |Godd|/15 > |A|/18. Thus we could only
fail here if the inverse images of E1 × E2, of E2 × E1 and (without loss of generality) E2 × E2 is less
than |Godd|/15. This forces M−1(E1 × E1) > (1 − 3/15)|Godd|.

In this case we transfer elements one by one from E1 to E2, thus decreasing M−1(E1 × E1) and
increasing M−1(E2 × E2), although M−1(E1 × E2) and M−1(E2 × E1) can go either way. We stop as
soon as one of these last three quantities is at least |Godd|/15 and we are done in the final two
cases. We are also done when M−1(E2 × E2) � |Godd|/15, which will occur at some point, unless
|M−1(E1 × E1)| is now less than |Godd|/15. If so, suppose we have just moved g ∈ E , where our par-
tition previously was E = F1 ∪ F2 and now is E = E1 ∪ E2 so that F1 = E1 ∪ {g} and E2 = F2 ∪ {g}.
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On doing this we have |M−1(F1 × F1)| > (4/5)|Godd| but |M−1(E1 × E1)| has dropped down to be-
low |Godd|/15, which implies M−1(F1 × F1 − E1 × E1) > (11/15)|Godd|. Now F1 × F1 − E1 × E1 =
({g} × E1) ∪ (E1 × {g}) ∪ {(g, g)} and M−1({g} × E1) is a subset of M−1(E2 × E1). Thus if the former
of these two sets has size at least (1/15)|Godd| then we are done on taking X = Y = M−1(E2 × E1).
Similarly for E1 × {g} so we are fine unless |M−1({(g, g)})| > (9/15)|Godd| > |A|/2. But this implies
that more than half the elements of A have normal form (g, . . . , g−1), which was eliminated at the
start of the proof by taking a suitable conjugate. �
Lemma 2.3. For any finite set A ⊆ Γ = G ∗ H, there exist subsets X and Y of a conjugate of A such that
|X |, |Y | � (1/36)|A|, with no cancellation in xy or yx for all x ∈ X, y ∈ Y and such that the syllable length
σ(x) � σ(y) for all x ∈ X and y ∈ Y .

Proof. Take X and Y as in Theorem 2.2 but notice they can be swapped with the same conclusion
holding. Let the elements xi and yi of each of these sets be placed in ascending order of syllable
length and set σX to be the syllable length of the median element x�(|X |+1)/2� , and the same for σY .

If σX � σY then take the first � |X |+1
2 � elements for the new set X and the last � |Y |+1

2 � for the new
set Y . If σX > σY then swap X and Y before doing the same. �

The idea now, as based on Lemma 3 in [12], is to take an element a ∈ A (usually a will be in Y )
and consider the map Fa from X × X → A3 given by (x1, x2) �→ x1ax2. If this map is injective or even
at most 2–1 then we have |A3| � (1/2)|X |2, so we examine when this fails with the aim of finding
severe restrictions on X and Y . The fact that cancellation is not taking place between elements of X
and elements of Y means that periodicity plays a big part in such restrictions, but we first need to
eliminate very short words.

Lemma 2.4. If X and Y are in Lemma 2.3 then either |A3| � (1/4)|X |2 or we can assume that all elements
in Y have syllable length at least 4.

Proof. Recall that however X and Y were obtained in Theorem 2.2 and Lemma 2.3, all elements in
X ∪ Y have the same parity, so we first deal with odd elements. Suppose there is an element in Y
with syllable length 1. Then σ(x) = 1 (or 0) for all x ∈ X ; that is (without loss of generality) X ⊆ G .
If there is any a ∈ A which is not in G then the map Fa is injective on X × X , giving |A3| � |X |2. This
is because even though there might be absorption, we can read off (x1, x2) from the front and back
of x1ax2. If however a ∈ G then we have absorption both before and after a, but now we are in the
case where (after an initial conjugation) A ⊆ G .

Now suppose we have y ∈ Y with σ(y) = 3. Then σ(x) = (0 or) 1, or 3 for all x ∈ X and so one
of these will occur for at least |X |/2 elements. Again the map F y will be injective on this subset of
X because we may have absorption but do not have cancellation and we know the syllable length of
the elements, so can recreate a pair of elements from their image. This gives |A3| � (|X |/2)2.

The argument is the same when all elements are even by replacing syllable lengths 1 and 3 with
2 and 4 respectively. Here we do not have to worry about A being conjugate into a factor. �

As we now assume that all elements in Y have syllable length at least 4, we can start to look for
periodic words.

Lemma 2.5. Let X and Y be as in Lemma 2.3 and such that all elements of Y have syllable length at least 4.
Take any y ∈ Y and consider the map

F y : X × X → Ay A given by F y(u1, u2) = u1 yu2.

If a point in Ay A has at least three preimages then y is interior periodic. Moreover when X ∪ Y does not
consist solely of odd elements of the same type, we have that y is periodic with period y and one of the first
components in these three preimages has normal form ending with y.
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In the case when all elements in X ∪ Y are odd elements of the same type, say G-odd without loss of
generality, then there is s � 2 and g ∈ G, γ ∈ G − I such that y = g ystγ for period y (a G-even element)
and t a prefix of y which is either empty or also G-even. We also have that one of the first components in these
three preimages ends with either yg−1 or ωg yg−1 , where ω is the final entry in one of the other two first
components.

Proof. Suppose u1 yu2 = v1 yv2 = w1 yw2. We will assume that all elements are G-odd with absorp-
tion but not cancellation taking place. This is because otherwise the proof is considerably easier in
that we ignore all reference to absorption, making it close to the original proof of Lemma 3 in [12]
for free groups.

We set

u1 = (a1,b1, . . . ,b j−1,a j), v1 = (c1,d1, . . . ,dk−1, ck), w1 = (γ1, δ1, . . . , δl−1, γl)

and

y = (g1,h1, . . . ,hN−1, gN) for ai, ci, γi, gi ∈ G and bi,di, δi,hi ∈ H .

Let us first assume that j = k, so that u1 and v1 have the same syllable length 2k − 1. As N > 1
(because of the condition on syllable lengths of Y ) and there is only absorption at each end, we can
equate the two normal forms for u1 yu2 = v1 yv2 to obtain ai = ci and bi = di . Thus u1 = u2 and
v1 = v2 anyway.

The same also holds if any two of j,k, l are equal so we now suppose that 2 j − 1 = σ(u1) <

2k − 1 = σ(v1) < 2l − 1 = σ(w1) � 2N − 1 = σ(y). On comparing respective entries for the element
u1 yu2 = v1 yv2, we have ck g1 = gk− j+1 and then the letters start to reoccur, so that h1 = hk− j+1,h2 =
hk− j+2, . . . which makes the sequence hi repeat after the first k − j elements. We also have the same
property for the sequence gi except that ck g1 = gk− j+1 and gN−k+ j = gNε , where ε ∈ G is the first
element in the normal form of u2. This means that the sequence

x = (ck g1,h1, g2, . . . ,hN−1, gNε)

of length 2N − 1 repeats after the first 2(k − j) elements. The same is true on replacing j with k, k
with l, ck with γl , and ε with the first element α in the normal form for v2.

Now if 2(k − j) and 2(l − k) are both at least N then 2(l − j) � 2N , but we know 1 � j, l � N
which is a contradiction. Thus suppose that 2(k − j) < N . Then x is periodic so we can write x = ysτ
for s � 2 and with no cancellation, where τ is a prefix of y. We also have that σ(y) divides 2(k − j).
Now y is a G-even element and τ is G-odd. Consequently we can say that y = c−1

k xε−1, where we

have absorption, and we take g = c−1
k in the statement of the lemma. The same holds if 2(l − k) < N

except that now y = γ −1
l xα−1 and g = γ −1

l , thus either way we conclude that the element y is
interior periodic.

For the final part, first suppose that 2(l − k) � 2(k − j). We then compare the entries of w1 yw2
and v1 yv2 from the (2k − 1)th place to the (2l − 1)th place. This tells us that the element w1 is such
that

(. . . , γk, δk, . . . , γl−1, δl−1, γl) = (
. . . , ck g1,h1, . . . , gl−k,hl−k, gl−k+1 g−1

1

)
.

As γl = g−1, we have that the normal form of w1 ends in yg−1 when 2(l − k) is a proper multiple of
the period of x. However if the period is exactly 2(l − k) then y starts with the element γl g1, so γk is
equal to ck g(γl g1).

Otherwise we have 2(k − j) � 2(l − k) and we replace w1 yw2 and v1 yv2 in the above argument
with v1 yv2 and u1 yu2 respectively. �
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Our aim now is to show that we have Helfgott type growth of the triple product A3, unless all
elements in Y are (interior) periodic with the same period.

Corollary 2.6. Let X and Y be as in Lemma 2.5. If there exists y ∈ Y which is not interior periodic, or y is
interior periodic and equal to yst (for X ∪ Y not all odd elements of the same type) or g ystγ (when X ∪ Y is
G-odd) and there is no element in X which ends y (in the first case) or ηyg−1 for some η ∈ G (in the second
case) then |A3| � (1/2592)|A|2 .

Proof. On taking such a y, we have by Lemma 2.5 that the map F y is at most 2 to 1, so |A3| �
(1/2)|X |2 and |X | � (1/36)|A|. �
Proposition 2.7. Let X and Y be as in Lemma 2.5. Then either the triple product set XY X has size at least
(1/7776)|A|2 or all elements of Y are interior periodic with the same period.

Proof. Again we assume that all elements are G-odd, with the other case being covered by replacing
interior periodic with periodic. We suppose that we have two elements y1 and y2 in Y such that
y1 = g1 y1

s1 t1γ1 and y2 = g2 y2
s2 t2γ2 for s1, s2 � 2.

If there is a subset B1 of X containing no elements ending in g−1
1 and such that |B1| � 1/2|X |

then we can apply Lemma 2.5 to the map F y1 but with domain restricted to B1 × X , whereupon
we conclude that |A3| � (1/2)|B1||X | � (1/4)|X |2 � (1/4)(|A|/36)2. The same statement holds for the
equivalent subset B2 so we are left with over half of the elements in X ending in g−1

1 , and over
half ending in g−1

2 . Consequently there is something in the intersection which means that in fact
g1 = g2 = g say. We now assume that the periods y1 and y2 are distinct and define similar sets S1
and S2 where

S1 = {
x ∈ X: x does not end ηy1 g−1 for some η ∈ G

}

and the same for S2. Now in a similar fashion to before, we have that if |S1| � (1/3)|X | then we can
again apply Lemma 2.5 to the map F y1 but this time with domain S1 × X , thus |A3| � (1/2)|S1||X | �
(1/6)|X |2 � (1/6)(|A|/36)2. The equivalent statement holds for S2 so we are left with the complement
S ′

1 of S1 in X having |S ′
1| > (2/3)|X | and where every element of |S ′

1| ends ηy1 g−1 for some η ∈ G .
Now it appears that η varies over S ′

1 but another appeal to Lemma 2.5 using F y1 with domain S ′
1 × X

tells us that either |A3| � (1/2)|S ′
1||X | � (1/3)|X |2 or something in |S ′

1| ends in either y1 g−1 or
ωg y1 g−1, where ω is the last entry in some other element in S ′

1. But this is always g−1 thus every-
thing in S ′

1 does in fact end y1 g−1.
The same argument tells us that the complement S ′

2 of S2 consists solely of elements ending
y2 g−1, and both S ′

1 and S ′
2 consist of over two thirds of X . Thus the intersection is not empty, but

now this means that one of these sets will be contained in the other. Thus we have a set S consisting
of over two thirds of X where every element in S ends with both these expressions. Consequently
we may as well conjugate by g so that every element in S now ends with both y1 and y2, and with
the new Y containing y1

s1 t1γ1 and y2
s2 t2γ2, where we have changed γi by postmultiplying with g .

We have now reached a position where we can essentially follow [12], Lemmas 2, 5 and 6, for the
remainder of this proof. As y1 �= y2, we cannot have σ(y1) = σ(y2) so say σ(y1) < σ(y2) without
loss of generality. Let T be the subset of (this new) S consisting of words in S which end y2

2.
However the elements in T also end in y1. Take some x ∈ T and let n � 1 be such that x ends in y1

n

but not in y1
n+1. Now take some other x′ ∈ T . If σ(y1

n) < σ(y2
2) then x′ also ends in y1

n . However
we cannot have σ(y1

n) � σ(y2
2) because then y2

2 also ends in y1
2 at least, and this element is right

periodic with two different right periods y1 and y2. However we can now swap the roles of x and x′
to conclude that all elements of T end in y1

n and none end y1
n+1.

We use Lemma 2.5 again (but now in the case where absorption does not occur) with Y replaced
by the equal sized set y1

nY and we take the map F v1 where v1 = y1
n y1, with domain T y1

−n × X .
As nothing in the first factor ends in y1, we have that |(T y1

−n)v1 X | � (1/2)|T ||X |. However we now
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do the same with Y replaced by y2Y and where the map is now F v2 for v2 = y2 y2 with domain
T ′ y2

−1 × X , where T ′ is the complement of T in S . Lemma 2.5 also tells us that |T ′ y2
−1 v2 X | �

(1/2)|T ′||X | because no word in T ′ y2
−1 ends in y2 and v2 has period y2. Hence |T y1 X | � (1/2)|T ||X |

and |T ′ y2 X | � (1/2)|T ′||X |. Now we must have either T or T ′ having size at least |S|/2, with both
subsets contained in X and y1, y2 ∈ Y thus |XY X | � (1/4)|S||X | � (1/6)|X |2 � (1/7776)|A|2. �
Corollary 2.8. Let X and Y be as in Lemma 2.5. Then either the triple product set XY X has size at least
(1/7776)|A|2 or every y in Y is interior periodic of the form yst (when X ∪ Y is not all odd elements of the
same type) or g ystγ (when X ∪ Y is G-odd), where g, y, t, γ are all independent of y.

Proof. As usual we only treat the second case. By Proposition 2.7 we have that if the inequality fails
then all elements of Y are of the form g ystγ for fixed y and the proof gives that g is fixed too,
although s � 2, t and γ can vary across Y . But we can now run the whole argument from Lemma 2.5
in the opposite direction, meaning that we examine the end of elements in Y and the beginning of
elements coming from the second factor of X in the domain of F y . This will tell us that either the
appropriate inequality is satisfied or all elements in Y are interior right periodic, so that they are of
the form g0rzsγ0, where now γ0 and the right period z are independent of y, although s � 2, the
suffix r of z and g0 can vary with y. Putting these facts together gives us our conclusion. �

We now have enough information to turn interior periodic elements into elements that are gen-
uinely periodic.

Lemma 2.9. Let X and Y be as in Corollary 2.8, with all elements of X ∪ Y being G-odd. Then either the triple
product set XY X has size at least (1/7776)|A|2 , or |Y 3| � (1/1296)|A|2 , or we can conjugate A so that all
elements y of Y are periodic of the form yst, for period y and tail t independent of y.

Proof. By applying Corollary 2.8 we can assume that all elements yi in Y are equal to g ysi tγ . Let
y = (g1,h1, . . . , gN ,hN) and t = (g1,h1, . . . , gk,hk) for 0 � k � N − 1. We now consider |Y 2| directly
and we have |A3| � |Y 3| � |Y 2|. On taking any yi, y j ∈ Y and forming yi y j we look for the γ gg1
term in the product. This spoils the periodicity, allowing us to recover si, s j then yi and y j which
implies that |Y 2| � |Y |2, unless one of two cases occurs. The first is that γ gg1 = gk+1 so that the
periodicity is not broken at that place. But it will be in the very next entry, unless h1 = hk+1, and
then we require g2 = hk+2 and so on. On repeating this argument through the whole period, we end
up with g1 = gk+1 as well thus implying that γ g is the identity. Now γ and g are constant so all
elements in Y are of the form g ystg−1 with only s varying.

The other case is if there were cancellation completely, so that γ gg1 = id. But then the previous
term is now hkh1, again spoiling the periodicity which should give the term hk unless this cancels too.
Again we repeat this argument, requiring cancellation at every stage until we have gone backwards
through the whole period. Then the cancellation required at this point tells us that gk+1 g1 = id.
But putting this together with γ gg1 = id means that for y = g ystγ we have g−1 yg = ysτ where
τ = (g1,h1, . . . , gk,hk, γ g). Now γ g = gk+1 so τ is a prefix of y. �

We are now able to characterise those subsets with a small triple product, although this is harder
than in the free group case because we must deal with infinite dihedral groups. We now start to
consider the subset Y AY of A3 and we will first assume that the elements of Y have empty tail.

Theorem 2.10. Suppose that Y is a subset of Γ = G ∗ H such that all elements yi of Y are totally periodic
with the same period, so of the form ysi for si � 2. Then for any a ∈ Γ either |Y aY | = |Y |2 or a and Y together
generate an infinite cyclic or infinite dihedral subgroup of Γ .

Proof. Let us assume all elements of Y are G-even and we will set y = (g1,h1, . . . , gN ,hN ). If a is
G-even then there is no cancellation or absorption in forming yiay j , so we have that |Y aY | � |Y |2 by
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recognising the periodicity, unless a is itself periodic with period y (or a is either y or ∅). But we can
assume a is not in the cyclic subgroup generated by y, or else 〈a, Y 〉 is an infinite cyclic subgroup.

Now suppose that a is G-odd. We will adopt a similar argument to that in the last lemma, where
we look for periodicity to establish injectivity of (yi, y j) �→ yiay j . We set a = (a1,b1, . . . ,bM−1,aM),
so the ai are in G − I and the bi in H − I . We begin by supposing that a1 �= g1 so that the periodicity
is broken in the very first place of a. Then on forming ysi ays j for various integers si and s j , we see
that we can again recover si and s j by looking for a1 unless either of two possibilities occur. The first
is that there is cancellation on the right of a when calculating ysi ays j such that all entries of a are
removed except a1, whereupon absorption takes place with the relevant entry of ys j , changing a1 into
g1 and with the uncancelled part of ys j being (h1, g2, . . . ,hN ) followed by y to some smaller power.
But this would require that a1 times the first entry of y is g1, implying that a1 is the identity.

The other possibility is that a1 cancels completely with the appropriate entry gk of ys j . In fact this
can occur but now the start of ysi ays j reads ysi−1(g1,h1, . . . , gN ,hNhk) for some k between 1 and N .
This allows us again to detect periodicity unless there is further cancellation between hN and hk .
But this argument can be repeated, thus we require further cancellation between gN and gk+1, hN−1
and hk+1 (where all subscripts are taken modulo N), and so on until we have run through a period
whereupon g1 and gN+k = gk cancel too. But this means that a1 is equal to g1 after all.

We can now argue that if M > 1 then b1 = h1 as well, by considering yiay j = g1zsi (b2, . . . ,

bM−1)aM g1zs j g−1
1 , where z = (h1, g2, . . . ,hN , g1). The b2 entry destroys periodicity unless it disap-

pears or is changed, so some cancellation is needed in the above expression for yiay j . But this can
only occur initially between aM and g1 (apart from at the very end which merely takes away the
final g1), and on removing aM g1 we are back in the above case on swapping G and H .

Consequently we can continue this argument to conclude that if a is a G-odd element of A such
that |Y aY | < |Y |2 then a = ykt for some k � 0 and t equal to a prefix (g1,h1, . . . ,hn−1, gn) of y for
some 1 � n � N . We may as well assume here that a = t because removing powers of y from the
front of a will not change the group 〈y,a〉.

Next we move on to when a is H-even and we will show that |Y aY | < |Y |2 can only occur
when a is a negative power of y. If a begins with h−1

N then we can conjugate to get hN ysi h−1
N =

(hN , g1, . . . ,hN−1, gN )si for the elements of Y and replace a with hNah−1
N , so now the elements in

Y are all H-even and a is G-even thus we are back in the same position on swapping G and H . Of
course there could be further cancellation but at some point this process must stop if a is not a power
of y. Now that there is no cancellation in forming ya for the new y and a, we can follow the same
argument as for G-odd elements above where we look to see whether the first element of a spoils
the periodicity. This time we find that either the first entry of a cancels with hN in the absorption
case or is the identity in the cancellation case. But both of these are contradictions.

The final type to consider is when a is H-odd, but this is the same argument as the G-odd case,
only with the words running the other way when G and H are swapped. Consequently we conclude
that we can have |Y aY | < |Y |2 here but only when a = r yk for some k � 0 and r equal to a suffix
(hn, gn+1, . . . , gN ,hN) of y for some 1 � n � N . However in this case we have that 〈y,a〉 = 〈y, t〉 for
t = (g1,h1, . . . ,hn−1, gn).

Thus if a is such that |Y aY | < |Y |2 but a /∈ 〈y〉 then we have seen that we can take a =
(g1,h1, . . . ,hn−1, gn) in all cases. But from before we must also have cancellation between ysi a and
ys j of at least a complete period. This gives us that

(hn, gn+1, . . . , gN ,hN , g1, . . . ,hn−1, gn) and (g1,h1, . . . , gN ,hN)

cancel completely, so are inverses (where all subscripts are modulo N). Let us set (x1, x2, . . . ,

x2N−1, x2N ) = (g1,h1, . . . , gN ,hN) so that we have

(x2n, x2n+1, . . . , x2N−1, x2N , x1, . . . , x2n−2, x2n−1) = (
x−1

2N , x−1
2N−1, . . . , x−1

2 , x−1
1

)
.

This implies that xn and xN+n (where we now work modulo 2N) are self-inverse elements so both are
of order 2, and we have xi = x−1

2n−i otherwise. Now we are interested in the group generated by t and
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t−1 y and these two elements are (x1, x2, . . . , x2n−1) and (x2n, x2n+1, . . . , x2N ). Under our equations,
we see that the first element is a conjugate of xn and the second of xN+n . Thus we have an infinite
group generated by two elements of order 2, which must therefore be the infinite dihedral group. �

We are not quite done for the case when the elements of Y are all totally periodic, because al-
though we have obtained our conclusion for the group generated by Y and any a ∈ A, we do not yet
know what happens when we throw in all elements of A.

Proposition 2.11. Suppose that Y is a subset of Γ = G ∗ H such that all elements of Y are totally periodic
with the same period. Then for S any finite subset of Γ = G ∗ H, we have that either there exists a ∈ S with
|Y aY | = |Y |2 or 〈S, Y 〉 is an infinite cyclic or infinite dihedral group.

Proof. We are done by the proof of Theorem 2.10 apart from one case. This is when Y is contained
inside the cyclic group C = 〈y〉 for the even element y = (x1, x2, . . . , x2N ) and there is always n be-
tween 1 and N such that each a in S − C is of the form (x1, x2, . . . , x2n−1) without loss of generality.
Now n could well vary with a, but whenever this occurs we have xi and x2n−i are inverse pairs for
all i between 1 and 2N . If we think of a regular 2N-gon P having vertices labelled x1, x2, . . . , x2N in
order then any element a defines an axis through the opposite vertices xn and xN+n of P , and pairs
of elements xi, x2n−i which are swapped by reflection in this axis are inverse to each other.

Now let us take all such axes obtained from the various a and consider the dihedral group D thus
generated. The reflections in the first two axes, through (say) the vertices xk, xN+k and xk+r, xN+k+r
where r divides N , generate the whole of D . In particular consider the elements α = (x1, x2, . . . , x2k−1)

and β = (x1, x2, . . . , x2k+2r−1). By the dihedral symmetry these are conjugates of xk and xk+r respec-
tively and so are both of order two. Now any a of the form (x1, . . . , x2n−1) must be represented by an
axis in D and so n = k + mr for some integer m depending on n. But as xi remains the same element
under adding multiples of 2r to the suffix, because this corresponds to a rotational symmetry which is
the product of two reflections and so the inverse has been taken twice, we have that all the elements
(x1, . . . , x2k+2mr−1) represented by axes are given by α,β,βαβ,βαβαβ, . . . for m = 0,1,2,3, . . . . Now
(βα)N/r = y so that all of S and Y is contained inside the infinite dihedral group 〈α,β〉. Moreover
any subgroup of the infinite dihedral group is itself infinite dihedral or infinite cyclic. �

We can now finish our main result.

Corollary 2.12. Given any finite set A of the free product Γ = G ∗ H, we have that either A is conjugate into
one of the factors, or |A3| � (1/7776)|A|2 , or 〈A〉 is infinite cyclic or infinite dihedral.

Proof. We follow through the results of this section, first applying Theorem 2.2 and Lemma 2.3 to
obtain subsets X, Y of (a conjugate of) A. Then Lemma 2.4 tells us that either |A3| � (1/5184)|A|2,
or A is conjugate into one of the factors, or we can apply Lemma 2.5, Corollary 2.6, Proposition 2.7,
Corollary 2.8 and Lemma 2.9 to X and Y . We conclude that either |A3| � (1/7776)|A|2 or we can
further conjugate A so that all elements of Y are periodic with the same period y and tail t . If t
is empty then Proposition 2.11 gives us that either |A3| � (1/1296)|A|2 or 〈A〉 is infinite cyclic or
infinite dihedral.

For the case where Y = {ysi t} with tails, let us set E = {ysi } without the tail. Thus Y = Et and
|E| = |Y |. First note that the elements in Y 2 are of the form ysi t ys j t , which will have the same
cardinality as if the final t was missing. Now let Z be the set of all a in (our final conjugate of)
A along with the identity. We can regard t Z as S and E as Y in Proposition 2.11, which tells us that
either there is a ∈ A (or equal to the identity) with |EtaE| = |Y |2 thus |A3| � |Y aY | � (1/36)2|A|2, or
the subgroup generated by E and t Z is infinite cyclic or infinite dihedral. But as t ∈ t Z , this is the
same as the subgroup generated by t, E and A, which in turn contains 〈A〉. �

Therefore we have a full understanding of growth in a free product if we understand growth of
subsets in the factors: for instance:
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Corollary 2.13. Let Γ = G1 ∗ · · · ∗ Gn be a free product of groups where the factor groups Gi are all virtually
cyclic, or all virtually abelian, or all virtually nilpotent. Then for any finite subset A of Γ , we have that |A3| �
(1/7776)|A|2 unless the subgroup 〈A〉 is virtually cyclic, respectively virtually abelian, respectively virtually
nilpotent.

A particular case of this is the free product of finite groups and Z:

Corollary 2.14. Let Γ = G1 ∗ · · · ∗ Gn be any free product of groups where each Gi is either finite or equal
to Z. Then for any finite subset A of Γ , we have that |A3| � (1/7776)|A|2 unless the subgroup 〈A〉 is finite or
infinite cyclic, or (when one of the groups Gi has even order) is equal to the infinite dihedral group C(2)∗ C(2).

In particular this gives that |A3| � (1/7776)|A|2 for any finite subset A of a Fuchsian group F
(a non-elementary discrete subgroup of PSL(2,R)) which is not cocompact, because any finitely gen-
erated subgroup of F is a free product of (finite or infinite) cyclic groups. Thus this applies to the
modular group PSL(2,Z) = C(2) ∗ C(3), with A satisfying our growth condition unless 〈A〉 is cyclic or
equal to C(2) ∗ C(2). This growth estimate improves a result in [11] which states that for this group
we have an unspecified d > 0 such that |A3| � |A|2/(log|A|)d .

3. Other groups with Helfgott type growth

Historically the first group (or infinite sequence of groups) that was thought of as being most
“free-like”, after free groups themselves and free products, was probably the surface group S g , which
is the fundamental group of the closed orientable surface of genus g � 2. One would surely hope that
this group also demonstrates Helfgott type growth, but it is not a free product (for instance see [9],
Chapter II, Proposition 5.14). It is both an amalgamated free product and an HNN extension, but we
will see in the next section that in general neither of these constructions give rise to groups with
Helfgott type growth.

However the proof that S g has Helfgott type growth, with the same growth expression as in Sec-
tion 2, follows once we expand our interest to a wider class of groups. In fact the proof is surprisingly
easy provided the right choice of groups is made.

Definition 3.1. Let C be a class of groups. A group G is fully residually C if for any list of k distinct
elements g1, g2, . . . , gk ∈ G , we have a surjective homomorphism θ from G to a group in C such that
the images θ(g1), θ(g2), . . . , θ(gk) are distinct.

If C is the class of free groups then we say that G is fully residually free. Such a group will be torsion
free and subgroups of fully residually free groups are also fully residually free. This property implies
that of being residually free but is stronger in general: for instance the direct product G = Fk × Z is
residually free, but any homomorphism from G to a non-abelian free group would send the generator
z of Z to the identity. Thus if k � 2 and x, y are non-commuting elements of Fk then on taking the
identity, z and the commutator [x, y], we cannot satisfy the above definition. In fact B. Baumslag
shows in [2] that if a group G is finitely generated then it is fully residually free if and only if it is
residually free and does not contain F2 ×Z as a subgroup.

Finitely generated fully residually free groups are also known as limit groups and are important in
a number of areas, for instance logic and topology. Indeed recent results indicate that limit groups
have a very strong claim to be the smallest naturally defined class of torsion free groups properly
containing the free groups Fk .

The following result is now almost immediate.

Corollary 3.2. Let G be a fully residually free group and let A be any finite subset of G. Then either |A3| �
(1/7776)|A|2 or 〈A〉 is a free abelian subgroup of G.

Proof. We assume that 〈A〉 is non-abelian, because a finitely generated abelian subgroup of a torsion
free group is free abelian. List the elements of A as {a1,a2, . . . ,an} and assume that a1 and a2 do not
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commute. Now find a surjective homomorphism θ : G �→ F where F is free and the images of the set
A ∪ {[a1,a2], id} are distinct. As θ([a1,a2]) is not the identity, we set S = θ(A) with |S| = n and note
that 〈S〉 is non-abelian (and free as it is a subgroup of F ). Next we apply Corollary 2.12 to S in F (or
in 〈S〉 if F is infinitely generated) to obtain |S3| � (1/7776)n2. But the triple product S3 is equal to
θ(A3) so the triple product A3 must be at least as big. �
Corollary 3.3. If S g is the fundamental group of a closed orientable surface of genus g � 2 and A is any finite
subset of S g then either |A3| � (1/7776)|A|2 or 〈A〉 is infinite cyclic.

Proof. By [3] S g is a limit group, and it does not contain Z×Z. �
In fact the same proof allows an immediate generalisation of Corollary 3.2: suppose C is a class

of groups all having Helfgott type growth for the same c and δ where there is n ∈ N such that every
virtually nilpotent subgroup of a member of C is nilpotent with class at most n. Then any group
which is fully residually C has Helfgott type growth for this c, δ.

We finish this section by mentioning other groups shown in the literature to have Helfgott type
growth. In [6], which follows closely Helfgott’s original method, Helfgott type growth was established
for SL(2,C) with unspecified c, δ > 0 unless 〈A〉 is finite or metabelian (note not virtually abelian
as claimed there: see the example after Proposition 4.2). This was apparently generalised in [14],
Theorem 4.2, which replaces C by any characteristic zero integral domain D and which gave the
exceptions as 〈A〉 is finite or metabelian. However this is actually the same result because if we
embed D into its field of fractions F, we have that a finitely generated subgroup of SL(2,F) is a
subgroup of SL(2,C), by embedding Q(x1, . . . , xn) into C, where x1, . . . , xn are the matrix entries of
a generating set. Now this need not be true if our group G is infinitely generated but c, δ > 0 are
absolute constants, and so will apply to any A by working in 〈A〉.

Then in [11] it was shown that for the free group F2 there is (an unspecified) d > 0 such that
|A3| � |A|2/(log|A|)d unless 〈A〉 is infinite cyclic (or |A| = 1). Thus although this does not give δ = 1
for growth in F2, it does so for every δ < 1. After that we have Safin’s result on free groups which
was the only example up till now with δ = 1. Actually this result in [11] is also shown to hold
for virtually free groups G (with infinite cyclic replaced by virtually cyclic) but now d will depend
on G: consider virtually free groups of the form G = F2 × N when N is a finite group. On taking
A = {(x,n), (y,n): n ∈ N} for F2 = 〈x, y〉, we have that 〈A〉 contains a copy of F2 with |A| = 2|N| but
|A3| = 8|N|. Thus although G has Helfgott type growth with δ = 1 by Proposition 3.4 below, we see
by increasing N that there is no absolute c, δ > 0 (nor d in the above expression) that will work for
all virtually free groups. We do not know if we can always take δ = 1 (but necessarily varying c) for
all virtually free groups. Similarly if G is virtually a surface group, such as the triangle groups, then G
has Helfgott type growth by Corollary 3.3 and Proposition 3.6 below but again we do not know if we
can take δ = 1.

There are two further basic constructions, both involving finite normal subgroups, which allow us
to obtain new groups with Helfgott type growth from old ones. If G has Helfgott type growth then of
course arbitrary quotients of G need not possess this property, as every group is a quotient of a free
group. However we do have:

Proposition 3.4. If N is a finite normal subgroup of the infinite group G such that G/N has Helfgott type
growth then G has Helfgott growth for the same δ but c replaced by c/(|N|1+δ). Conversely if G has Helfgott
type growth then so does G/N, again with the same δ but now with c replaced by c|N|δ .

Proof. This is a bit like Corollary 3.2. On being given a finite subset A of G with H = 〈A〉 not virtually
nilpotent and taking the image π(A) = AN/N of A under the natural homomorphism from G to G/N ,
we have that π(H) = 〈π(A)〉 is isomorphic to H/(H ∩ N) and so is also not virtually nilpotent. (As H
is finitely generated here, a quick way of showing this is to note that the virtually polycyclic group
H is residually finite so we can find a finite index subgroup L of H intersecting S = H ∩ N only in
the identity, thus the virtually nilpotent subgroup L = L/(L ∩ S) ∼= L S/S of H/S is also a finite index
subgroup of H .) Thus |A3| � |π(A3)| � c|π(A)|1+δ but |π(A)| � |A|/|N|.
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As for the other way round, on taking S ⊆ G/N with 〈S〉 not virtually nilpotent, let A ⊆ G map
injectively onto S under π and consider the subset AN of G with |AN| = |A||N|. Certainly π(AN) = S
so 〈AN〉 cannot be virtually nilpotent. Therefore |(AN)3| � c|AN|1+δ but |A3N| = |S3||N| by counting
preimages, and normality of N tells us that (AN)3 = A3N . �

This allows us to give the best possible δ and a specific c > 0 for SL(2,Z), improving the results in
[6] and [11] for this group.

Corollary 3.5. The group SL(2,Z) has Helfgott type growth with δ = 1 and c = 1/31 104.

Proof. The quotient PSL(2,Z) of SL(2,Z) = C4 ∗C2 C6 satisfies Corollary 2.12 and the kernel has
size 2. �

In fact this argument works whenever we have an amalgamated free product G = A ∗N B of groups
A and B where the amalgamated subgroup N is finite and normal in both A and B . This is because N
is then normal in G (as A ∪ B generates G) and G/N is then isomorphic to the free product A/N ∗ B/N ,
so Corollary 2.12 applies here.

Moreover if we want further examples with δ = 1 or some other δ > 0 then we can take a finite
collection of groups known to have Helfgott type growth along with the minimum δ for these groups,
then form their free product Γ which will not reduce δ by Corollary 2.12. We can then do other
things, for instance any G with G/N = Γ for N a finite normal subgroup will also have Helfgott type
growth with the same δ, and then we can form more free products and so on.

It is immediate that a subgroup H of a group G with Helfgott type growth also has Helfgott type
growth with the same c, δ. What does not seem so neat is the converse when H has finite index in G .
Here we show that this is true, although we do not know whether we can always preserve the value
of δ.

Proposition 3.6. If H has Helfgott type growth and has index n in G then G also has Helfgott type growth.

Proof. On taking A ⊆ G with 〈A〉 not virtually nilpotent, which we first assume is symmetric with e,
and K � 1 such that |A3| = K 2|A|, we have a ∈ A such that |A ∩ aH | � |A|/n by the pigeonhole
principle. Now 〈A〉 ∩ H has index at most n in 〈A〉 and so is also not virtually nilpotent. Consequently
there is a generating set for 〈A〉 ∩ H with word length at most 2n − 1 in terms of the elements of A
(this result, which is sometimes called the Shalen–Wagreich lemma and is occasionally rediscovered,
in fact follows immediately from Reidemeister–Schreier rewriting). Thus on setting B = A2n−1 ∩ H we
have that 〈B〉 is not virtually nilpotent, with a−1 A ∩ H ⊆ B by the symmetry of A, thus |B| � |A|/n.

We now introduce L � 1 where |B3| = L2|B|, implying that |B| � c−1/δ L2/δ where H has Helfgott
type growth for this c and δ. Then

L2|B| = ∣∣B3
∣∣ �

∣∣A6n−3
∣∣ � K 12n−10|A| � nK 12n−10|B|

so L2 � nK 12n−10. Thus |A| � (cn−1−δ)−1/δ K (12n−10)/δ , giving tripling of symmetric subsets. In general
we set S = A ∪ A−1 ∪ {e} so that 8|A3| � |S3| and |S| � |A|, giving Helfgott type growth in G with c
replaced by cn−(1+δ)/8 and δ replaced by δ/(6n − 5). �
4. Groups without Helfgott type growth

We first show that δ = 1 is the best possible value for a group with Helfgott type growth, with the
exception of one particular class of groups.

Proposition 4.1. If G has Helfgott type growth for some c > 0 and δ > 1 then either G is locally virtually
nilpotent or G has bounded exponent.



J.O. Button / Journal of Algebra 389 (2013) 61–77 75
Proof. If all finitely generated subgroups of G are virtually nilpotent then G vacuously has Helfgott
type growth for any c, δ > 0. Otherwise let H = 〈g1, . . . , gl〉 be a subgroup of G that is not virtually
nilpotent. We take xN to be an element of G with infinite order, or order at least 2N , and set A =
{g1, . . . , gl, xN , x2

N , . . . , xN
N }. Thus N � |A| � N + l with H � 〈A〉 but a quick count reveals that |A2| �

2(l + 1)N − 2 + l2. This means that |A3| � |A||A2| < 2(l + 1)N(N + l) + l2(N + l) so Helfgott type
growth would imply that the right hand side of this inequality is always greater than cN1+δ . We now
let N → ∞ to get a contradiction if δ > 1. �

Note that the existence of finitely generated infinite groups with bounded exponent is highly non-
trivial. We have a result on this in [8] using model theory: Corollary 4.18 states that there is a function
f (K , e) such that if G is any group with exponent dividing e and A is a K -approximate group in G
then there exists a subgroup H of G such that A and H are contained in f (K , e) left cosets of each
other. In particular let us take the examples of Ol’shanskiĭ where for a sufficiently large prime p
we have a 2 generator infinite group G(p) of exponent p such that the only proper non-trivial sub-
groups are cyclic of order p. Then this result implies that any K -approximate group A in G(p) has
|A| � pf (K , p) so it could happen that G(p) has Helfgott type growth if f were polynomial in K .
However this function is not given explicitly.

We now discuss examples of groups without Helfgott type growth. First we elaborate on our
comment in the introduction that balls in virtually nilpotent groups always provide examples of ap-
proximate groups. Here a ball in a finitely generated group G is just Sn for some n ∈ N where S is
a finite symmetric subset containing e and generating G . By a result of Bass, if G is virtually nilpo-
tent then there is C, c,d > 0 such that cnd � |Sn| � Cnd for all n, thus on taking A = Sn we have
|A| → ∞ but |A3|/|A| � C3d/c. Conversely if in a finitely generated group G there is S and λ � 1
such that |S3n| � λ|Sn| for all n then |S3n | � λn|S|, giving |Sm| � ms|S| for m = 3n (and s = log3λ). By
an extension of Gromov’s famous theorem on polynomial growth due to Van der Dries and Wilkie,
if the sequence |Sn| has a subsequence with polynomial growth then G is virtually nilpotent. (In fact
even if |S3n′ | � λ|Sn′ | for infinitely many n′ , we obtain the same conclusion from the results of [4] by
following the proof of Theorem 1.13: this is because S2n′

is a μ-approximate group for μ depending
only on λ and arbitrarily high n′ .)

Consequently we see that virtually nilpotent groups will always have finite subsets, indeed natu-
rally defined finite subsets at that, which possess small tripling thus showing why we require virtually
nilpotent subgroups to be removed from the definition of Helfgott type growth.

But what about examples of other approximate groups? For instance in the introduction to [4]
eight examples of how to construct approximate groups are given but all of these generate virtually
nilpotent groups. We can adapt the basic idea in Proposition 4.1 so we start by examining it in more
detail. We see that A3 is made up of eight different types of product, according to whether we
choose an element gi or a power xi

N in each of the three places. It is also clear that the sizes of

seven of these eight types are each linear in N but the interesting point is the size of {xi
N gkx j

N }
for 1 � i, j � N and 1 � k � l, which will determine whether |A3|/|A| stays bounded as N → ∞.
For instance we mentioned in the introduction the case of Fn × Z which is the only example of a
non-virtually nilpotent group without Helfgott type growth given so far. It might seem that this is a
particular manifestation of the direct product but in fact it is much more general.

Proposition 4.2. If G is a group possessing an element z of infinite order such that its centraliser C(z) in
G contains a finitely generated subgroup which is not virtually nilpotent then G does not have Helfgott type
growth.

Proof. If H is such a subgroup (which contains z without loss of generality) then extend {z} to a
finite generating set {z,h1, . . . ,hl} of H where no hi is in 〈z〉. Thus the set AN = {z, . . . , zN ,h1, . . . ,hl}
of size N + l has 〈AN 〉 = H and any element in A3

N of the form zihk z j can be written as hkzi+ j , thus
|A3

N |/|AN | is bounded. �
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Continuing this theme, suppose that in a group G we can take x of infinite order and g such
that 〈x, g〉 is not virtually nilpotent. On setting A = {g, x, x2, . . . , xN } we can examine the subset
{xi gx j: 1 � i, j � N} of A3. If this achieves its maximum size of N2 then we obtain sets A with 〈A〉
not virtually nilpotent and |A2| < 4|A| but |A3|/|A| → ∞ as N → ∞, which was mentioned in the
introduction. Otherwise a collision occurs, namely there exist (i, j) �= (k, l) such that xi gx j = xk gxl .
Now i = k gives rise to a contradiction on the order of x and similarly we see that j �= l. Thus we
have the relation gx j−l g−1 = xk−i holding in our group G , suggesting the famous family in combina-
torial group theory of Baumslag–Solitar groups BS(m,n) for integers m,n �= 0 which are defined by
the presentation 〈x, g|gxm g−1 = xn〉. Indeed it can be shown using normal forms (although we give a
much more general result below in Theorem 4.3) that if a group G contains a Baumslag–Solitar group
BS(m,n) where |m|, |n| are not both equal to 1 (or even the image of a Baumslag–Solitar group where
x has infinite order and such that the image is not virtually nilpotent) then G does not have Helfgott
type growth, because |A3

N | < (10 + |m| + |n|)|AN | for the set AN above.
The reason for excluding the group BS(±1,±1) is because it is either Z × Z or has Z × Z as an

index 2 subgroup, so is virtually nilpotent. Otherwise BS(m,n) is not virtually nilpotent, indeed if
neither |m| nor |n| is equal to 1 then BS(m,n) contains a non-abelian free group. The interesting case
is when |m| = 1, say m = 1 without loss of generality, but |n| �= 1 as then BS(1,n) is metabelian but
not virtually nilpotent. Moreover BS(1,n) is linear, in fact is a subgroup of SL(2,C) on taking

x =
(

1 1
0 1

)
and y =

( √
n 0

0
√

1/n

)

so is also a subgroup of SL(2,R) for n � 2 and is even in SL(2,Q) when n is a square. We mention
this because in [6] it is claimed that SL(2,C) has Helfgott type growth with the exception of virtually
abelian subgroups, but on putting n = 4 in these matrices we have that the set AN in BS(1,4) from
above satisfies |AN |3 < 15|AN | even though 〈AN 〉 is not virtually abelian. The correct statement is that
there is Helfgott type growth away from metabelian and finite subgroups, as shown in Theorem 4.2
of [14].

We now give our generalisation of these examples.

Theorem 4.3. Suppose that V is a finitely generated, virtually nilpotent, infinite subgroup of G. If there is g ∈ G
and a finite index subgroup W of V such that gW g−1 � V but 〈g, V 〉 is not virtually nilpotent then G does
not have Helfgott type growth.

Proof. Let v1, . . . , vr be a transversal for W in V and let S be a finite symmetric generating set for
W containing e. We set An = {g, v1, . . . , vr, Sn} and X = {g, v1, . . . , vr} so that 〈An〉 = 〈g, V 〉 is not
virtually nilpotent and |An| → ∞ because W is infinite. Therefore we are done on showing |A3

n|/|An|
is bounded. As in our examples earlier in this section, we need only check |Sn X Sn| as the other seven
subsets have size at most S3n , with cnd � |Sn| � Cnd because W is virtually nilpotent.

On extending S to a generating set U for V , we also have b, B > 0 such that bnd � |Un| � Bnd .
Now there exists a positive integer k which is independent of n such that for all s ∈ S and x ∈ X
we have xsx−1 ∈ U k by taking the maximum of the word lengths of these conjugates with respect
to U , as xsx−1 is always in V . Thus for all n ∈ N and x ∈ X we have xSnx−1 ⊆ Unk and Sn ⊆ Un , so
SnxSn ⊆ Un(k+1)x. This gives |SnxSn|/|Sn| � (Bnd(k + 1)d)/(cnd) thus |Sn X Sn| < (B/c)(k + 1)d|An|. �
Corollary 4.4. A virtually polycyclic group G does not have Helfgott type growth (unless it is virtually nilpo-
tent).

Proof. If G is virtually nilpotent then it has Helfgott type growth from the definition. Otherwise by
dropping to a finite index subgroup we can assume there is

{e} = Gn � Gn−1 � · · · � G0 = G with Gi/Gi+1 ∼= Z.
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Let j be the largest integer such that G j is not virtually nilpotent then G j+1 is finitely generated,
virtually nilpotent and infinite. On taking g ∈ G j which projects onto a generator of G j/G j+1 we have
that gG j+1 g−1 = G j+1 but G j = 〈g, G j+1〉 is not virtually nilpotent so Theorem 4.3 applies. �
Corollary 4.5. The group SL(3,Z) does not have Helfgott type growth.

Proof. The polycyclic group Z2 �α Z with Z2 = 〈x, y〉 and Z = 〈t〉 given by txt−1 = α(x) =
x2 y, tyt−1 = α(y) = xy is not virtually nilpotent because no non-identity element has a centraliser
of finite index but embeds in SL(3,Z) (and in fact also in SL(2,C) via Theorem 5.1 of [5]) via

x =
⎛
⎝ 1 1 0

0 1 0
0 0 1

⎞
⎠ , y =

⎛
⎝ 1 0 1

0 1 0
0 0 1

⎞
⎠ , t =

⎛
⎝ 1 0 0

0 1 −1
0 −1 2

⎞
⎠ . �

Note that this gives genuinely different examples of approximate groups (for instance, if g is an
element of infinite order in SL(3,Z) then its centraliser is virtually nilpotent so Proposition 4.2 does
not apply). We also obtain from Theorem 4.3 the Baumslag–Solitar examples mentioned earlier by
taking V = 〈x〉 and W = 〈xm〉. In fact if neither |m| nor |n| is equal to 1 then BS(m,n) does satisfy the
conditions of Proposition 4.2 but the centraliser of any element in BS(1,n) is abelian (though it need
not be finitely generated abelian) so this is not covered by Proposition 4.2.

Baumslag–Solitar groups are fundamental examples of HNN extensions in that the base and amal-
gamated subgroups are just copies of Z. As for amalgamated free products, we can similarly form the
group 〈x, y|x2 = y3〉 which is not virtually nilpotent; indeed it is the fundamental group of the tre-
foil knot. Now the infinite order element z = x2 = y3 is central (as it commutes with both x and y),
so this group does not have Helfgott type growth by applying either Proposition 4.2 or Theorem 4.3.
Moreover if we are to find further examples with Helfgott type growth, we must only look at groups
where our two results do not apply. We finish with two questions on particular groups of this type.

1. Do all word hyperbolic groups have Helfgott type growth?
2. Is there a soluble (but not locally virtually nilpotent) group with Helfgott type growth?
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