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0. Introduction

Let g be a restricted Lie algebra over an algebraically closed field k of positive char-
acteristic p. Suslin, Friedlander, and Bendel [6] have shown that the maximal spectrum
of the cohomology of g is isomorphic to the variety of p-nilpotent elements in g, i.e.,
the so called restricted nullcone NV, (g). This variety has become an important invariant
in representation theory; for example, it can be used to give a simple definition of the
local Jordan type of a g-module M and consequently of the class of modules of constant
Jordan type, a class first studied by Carlson, Friedlander, and Pevtsova [3] in the case
of a finite group scheme. Friedlander and Pevtsova [4] have initiated what is, in the case
of a Lie algebra g, the study of certain sheaves over the projectivization, P(g), of NV,(g).
These sheaves are constructed from g-modules M so that representation theoretic in-
formation, such as projectivity of M, is encoded in their geometric properties. Explicit
computations of these sheaves can be challenging due not only to their geometric nature
but also to the inherent difficulty in describing representations of a general Lie algebra.

The purpose of this paper is to explicitly compute examples of these sheaves when
g = slp. As sly has tame representation type the category is rich enough to be interesting
but the parameterized families allow for direct computations. We also note that the
variety P(sly) over which we wish to compute these sheaves is isomorphic to P!. By a
theorem of Grothendieck locally free sheaves are all sums of twists of the structure sheaf.
This makes sl uniquely suited for such computations.

We begin in Section 1 with the case of a general restricted Lie algebra g. We will
review the definition of N,(g) and its projectivization P(g). We use this to define the
local Jordan type of a module M. We define the global operator @), associated to a
g-module M and use it to construct the sheaves we are interested in computing. We
will review theorems which not only indicate the usefulness of these sheaves but are also
needed for their computation.

In Section 2 we discuss the category of slp-modules. Our computations are based
on having, for each indecomposable slo-module, an explicit basis and formulas for the
sly action. There are four families of slo-modules and for each family we specify an
explicit basis and give formulas for the sly-action and the local Jordan type. For the Weyl
modules V(X), dual Weyl modules V' (A\)*, and projective modules Q(A) this information
was previously known but for the non-constant modules @¢ () we do not know if such an
explicit description has previously been given. We also compute the Heller shifts 2V (\)
of the Weyl modules for use in Section 4.

In Section 3 we digress from discussing Lie algebras and compute the kernels of four
particular matrices over k[s,t]. These will represent the global operators of the four
families of sl;-modules, but in this section we do not work geometrically and instead
consider these matrices to be maps of free ks, t]-modules. This section contains the bulk
of the computational effort of this paper.

In Section 4 we carry out the computations promised. Friedlander and Pevtsova have
computed ker @V()\) for the case 0 < A < 2p — 2 [4]. We compute the sheaves ker ©,,
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for every indecomposable sly-module M. We also compute .%;(V(\)) for ¢ # p and V/(\)
indecomposable using an inductive argument.

1. Jordan type and global operators for Lie algebras

We review the definition of the restricted nullcone of a Lie algebra g, the global
operator @), and local Jordan type of a g-module M, and the sheaves associated to
such an operator. Both @,; and local Jordan type can be defined for any infinitesimal
group scheme of finite height. We give the definitions only for a restricted Lie algebra
and take sly as our only example. For the general case and additional examples see
Friedlander and Pevtsova [4] or Stark [8].

Let g be a restricted Lie algebra over an algebraically closed field k of positive char-
acteristic p. This means g is a Lie algebra equipped with a p-operation (—)Pl:g — g
satisfying certain axioms. Here we merely note that for the classical subalgebras of gl,,
the p-operation is given by raising a matrix to the pth power.

Definition 1.1. The restricted nullcone of g is the set
Nop(g) = {z | zlPl = 0}

of p-nilpotent elements. This is a conical irreducible subvariety of the affine space g. We
denote by P(g) the projective variety whose points are lines through the origin in N, (g).

Example 1.2. Let g = sly and take the usual basis

0 1 0 0 1 0
e:[o o}’ f:{l o]’ and h:{o —1]'

Let {x,y,z} be the dual basis so that sly, as an affine space, can be identified with A3
and has coordinate ring k[z,y, z]. A 2 X 2 matrix over a field is nilpotent if and only if
its square

b 2L ey ]

is zero therefore, independent of p, we get that N, (sl2) is the zero locus of zy + 22.

By definition P(sly) is the projective variety defined by the homogeneous polynomial
xy + 22. Let P! have coordinate ring k[s, t]. One can check that the map 1: Pt — P(sly)
defined by [s,t] — [s? : —t? : st] is an isomorphism, thus P(sly) ~ P!.

Recall that a p-restricted partition is a weakly decreasing sequence of finitely many
integers i satisfying 0 < ¢ < p. Let &2, denote the set of all p-restricted partitions. We
write partitions using exponential notation.
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If A e M,(k) is a p-nilpotent (AP = 0) square matrix then the Jordan normal form
of A is uniquely identified by listing the sizes of its blocks in weakly decreasing order.
This yields a p-restricted partition called the Jordan type, JType(A), of the matrix A.
The Jordan type of a p-nilpotent linear operator T is the Jordan type of any matrix
representation of that operator. Note that JType(¢T') = JType(T) when ¢ € k is a
nonzero scalar.

Definition 1.3. Let M be a g-module and v € P(g). Set JType(v, M) = JType(x) where
x € Np(g) is any non-zero point on the line v and its Jordan type is that of a p-nilpotent
operator on M. The local Jordan type of M is the function

JType(—, M):P(g) = &,
so defined.

Example 1.4. Assume p > 2 and consider the Weyl module V(2), for sly. This is a
3-dimensional module where e, f, and h act via

0 2 0 0 00 2 0 0
0 0 1], 1 0 0|, and 0 0 0
0 00 0 2 0 0 0 -2

respectively. The matrix

2z 2z O
A=y 0 x
0 2y -2z

describes the action of ze +yf 4+ zh € g on V(2). One can check that if xy + 22 = 0 then
the Jordan type of A is [3]. Thus JType(—, V(2)) is the constant function v +— [3].

Definition 1.5. A g-module M has constant Jordan type if its local Jordan type is a
constant function.

Modules of constant Jordan type will be significant for us for two reasons. The first
is because of the following useful projectivity criterion.

Theorem 1.6. (See [7, 7.6].) A g-module M is projective if and only if its local Jordan
type is a constant function of the form v +— [p]™.

For the second note that when g is the Lie algebra of an algebraic group G, the adjoint
action of G on g induces an action on each fiber of the local Jordan type. The adjoint
action of SLy on P(sly) is transitive so we get the following.

Theorem 1.7. (See [3, 2.5].) Every rational sla-module has constant Jordan type.
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Next we define the global operator associated to a g-module M and the sheaves
associated to such an operator. Let {g1,...,gn} be a basis for g with corresponding dual
basis {x1,...,z,}. We define Oy to be the operator

Oy =71 @g1+ "+ Tn ® gn.

As an element of g* ®; g ~ Homy(g, g) this is just the identity map and is therefore
independent of the choice of basis. Now O, acts on k[N, (g)] ®x M =~ k[N, (g)]9 ™M as
a degree 1 endomorphism of graded k[N, (g)]-modules (where degz; = 1). The map of
sheaves corresponding to this homomorphism is the global operator.

Definition 1.8. Given a g-module M we define M = Op(g) ®x M. The global operator
corresponding to M is the sheaf map

Onr: M — M(1)
induced by the action of O4.

Example 1.9. We have Oq, = 2®e+y® f + 2z ® h. Consider the Weyl module V(2) from
Example 1.4. The global operator corresponding to V(2) is the sheaf map 03(5[2) —
Op(si,)(1)? defined by A. Taking the pullback through the map t:P' — P(sly) from
Example 1.2 we get that Oy (y) is the sheaf map

2st 282 0
—t2 0 s2 |08 — Op(2)%.
0 —2t2 —2st

The global operator @), is not an endomorphism but we may still compose it with
itself if we shift the degree of successive copies. Given j € N we define

ker &), = ker[Op(j —1) 00Oy (1) 0 Op],
im 6}, =im[On(~1) 00 On (1 —5) 0 On(—7)],
coker @}, = coker[O(—1) 0 -0 Opr(1 — j) 0 Onr(—4)],

so that ker 93'\4 and im 95\4 are subsheafs of M , and coker 93'\4 is a quotient of M.

To see how these sheaves encode information about the Jordan type of M recall that
the j-rank of a partition A is the number of boxes in the Young diagram of A\ that are
not contained in the first j columns. If one knows the j-rank of a partition A for all j,
then one knows the size of each column in the Young diagram of A and can therefore
recover A. Thus if one knows the local j-rank of a module M for all j then one knows
its local Jordan type.

Definition 1.10. Let M be a g-module and let v € P(g). Set rank’ (v, M) equal to the
j-rank of the partition JType(v, M). The local j-rank of M is the function
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rank’ (—, M):P(g) — Ny
so defined.

Theorem 1.11. (See [8, 5.2].) Let M be a g-module and U C P(g) an open set. The local
j-rank is constant on U if and only if the restriction coker 95\4\[] s a locally free sheaf.
When this is the case ker 93\4|U and im 9?\4|U are also locally free and rank? (v, M) =
rank im 6)5& forallveU.

We will also be interested in the sheaves %#;(M) for 1 < i < p. These were first
defined by Benson and Pevtsova [2] for kE-modules where E is an elementary abelian

p-group.
Definition 1.12. Let M be a g-module and 1 < ¢ < p an integer. Then

Fi(M) = ker ©,, Nim O},
! ~ ker©,,NimO},

The following two theorems will be used in Section 4 when calculating .%; (M) where
M is a Weyl module for sly. Both theorems were originally published by Benson and
Pevtsova [2] but with minor errors. These errors have been corrected in the given refer-
ence.

Theorem 1.13. (See [8, 3.7].) Let M be a g-module and 1 < i < p an integer. Then
Fi(M) = Fp_i(2M)(p — 7).

Theorem 1.14. (See [8, 3.8].) Let U C P(g) be open. The local Jordan type of a
g-module M is constant on U if and only if the restrictions Z;(M)|y are locally free
for all 1 < i < p. When this is the case and a; = rank .%;(M) we have JType(v, M) =
[p]®[p — 1]%-1 ---[1]% for allv € U.

2. The category of slz-modules

The calculations in Section 4 will be based on detailed information about the cate-
gory of slo-modules, which we develop in this section. The indecomposable sly-modules
have been classified, each is one of the following four types: a Weyl module V(}), its
dual V(A)*, an indecomposable projective QQ(A), or a non-constant module P¢(N). Ex-
plicit bases for the first three types are known; we will remind the reader of these formulas
and develop similar formulas for the ®¢(\). We will also calculate the local Jordan types
of these modules and the Heller shifts £2(V(A)).

We begin by stating the results for each of the four types and the classification the-
orem. Let A be a non-negative integer and write A\ = rp + a where 0 < a < p is
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the remainder of A modulo p. Each type is parametrized by the choice of A, with the
parametrization of ®¢(\) requiring also a choice of £ € P!. Also, see Stark [9] for a
diagrammatic depiction of these modules.

o The Weyl modules V'()).

Basis:  {vg,v1,...,05}
Action: ev;=(A—1i+ v
foi = (i +1)vip
hv; = (A — 2i)v;
Local Jordan type: Constant Jordan type [p]"[a + 1]

o The dual Weyl modules V' (\)*.

Basis: {99, 01,...,0x}
Action: ed; = i0;—1
foi= (A —14)0i11
ho; = (A — 20)0;
Local Jordan type: Constant Jordan type [p]"[a + 1]

o The projectives Q(\).
Define Q(p—1) =V(p—1). For 0 < A < p—1 we define Q(A) via

Basis:  {vo,v1,...,v2p—r—2} U{wWp_r—1,Wp—x, ..., Wp_1}

Action:  ev; = —(A 41+ 1)v;—;
foi = (i + 1viga
hv; = —(A+2i + 2)v;
ew; = —(A+i+ Dw;—1 + %vi,l
fwi =G4+ Dwiypqr — %Hé_uvp
hw; = —(A 4+ 2i + 2)w;

Local Jordan type: Constant Jordan type [p]?

o The non-constant modules @, ().
Assume A > p and let € € PL.If € = [1: €] then ®¢()) is defined by

Basis:  {Wat1,Wat2,---, WA}
Action:  ew; = (i + 1)(wiy1 — (‘Z)Ei_aé)\’iwa+1)
fwi=A—i+ Dw;—
hw; = (26 — Nw;

Local Jordan type: [p]"~![p—a — 1][a + 1] at £ and [p]” elsewhere
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If £ = [0 : 1] then @¢(\) is defined to be the submodule of V() spanned by the basis
elements {vg41,Vat2,-..,Ux}. It has the same local Jordan type as above.

Theorem 2.1. (See [5].) Each of the following modules is indecomposable:

o V(A) and Q(X) for 0 < A <p.
o V(X)) and V(N)* for A = p such that pt X+ 1.
o De(N) for £ € Pt and X > p such that pt A+ 1.

Moreover, these modules are pairwise non-isomorphic, save Q(p —1) = V(p — 1), and
give a complete classification of the indecomposable restricted sly-modules.

See Benkart and Osborn [1] for the explicit bases of V(A), V(A)*, and Q(A). Theo-
rem 1.7 gives that the local Jordan type of V(A) and V(A)* is constant and it is easily
computed at ke € P(sly). Theorem 1.6 gives the local Jordan type of the Q(\) so we
need only justify the description of @¢(\) and its local Jordan type.

We recall the definition of @¢(\). Let By C SLy be the Borel subgroup of upper
triangular matrices and recall that the homogeneous space SLy /Bs is isomorphic to P*
as a variety; the map ¢: P! — SL, given by

[1:€]r—>[01 IJ and [O:I]HB ﬂ,

induces an explicit isomorphism P! =+ SLy /Bs.

Definition 2.2. (See [5].) Let #(X) be the sl-submodule of V() spanned by the vectors
{Vat1,Vat2,-..,vx}. Given £ € P! we define ®¢()) to be the sly-module ¢(£)B(N).

Observe first that @(o.1)(A\) = @(A) so in this case we have the desired description. Now
assume = [1: ¢] where € € k. As ¢(&) is invertible multiplication by it is an isomorphism
80 P¢(A) has basis {¢(£)v;}. Our basis for @¢(A) will be obtained by essentially a row
reduction of this basis, so to proceed we now compute the action of SLy on V().

Let V = k? be the standard representation of SLg, then the dual V* has basis {z,y}
(dual to the standard basis for V). The induced representation on the symmetric product
S(V*) is degree preserving and V(\) = S*(V*)*. Specifically, we let v; € V(X) be dual

A=iyt Now observe:

(2 4 -5 e

where the sum is over pairs (s,#) € N2 such that 0 < s < A — 4, 0 < t < j, and
s+t = X —1i. Such pairs come in the form (A —14 —¢,t) where ¢ ranges from max(0, j — )
to min(j, A — 4) therefore

tox
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[ ] s “‘(Zf ( A—j ) (g) Aimtyricd g ginty
j=0 t=max(0,j—1) A—i—t t g
For computing @¢(\) we will need only the following special case:
o 1] _§ i T\ itieay,
o=t L= 3 ()7 )

Proposition 2.3. Given i = qp+b, 0 < b < p, define

w; = {’U)\_i - (;){;‘qp’l))\_b ’Lfb < a

Vr—i if b> a.
Then the vectors Wat1, Wat2, - .., W form a basis of Pe(N).
Proof. We will prove by induction that for all @ + 1 <4 < A the vector spaces spanned

by {#(&)vat1,- .-, ¢(&)v;} and {weq1,...,w;} are equal. For the base case the formula
above gives ¢(&)var1 = (—1)" tw, 1 so clearly the statement is true. For the inductive
step we have that the spans of {¢({)vat1, ..., d(&)v;} and {wat1, ..., wi—1,¢(§)v;} are
equal and we may replace ¢(£)v; with the vector

i—1 .
w' = (1) p()v; — Z (—1)"7 (i_i)aijwj
Jj=a+1

without changing the span so it suffices to prove that w’ = w;. This is done by writing
w’ and w; as a linear combination of the v;’s, splitting into the cases j < A—1i, j = X\ —1,
A—1<j<rp,and rp < j < A, and checking that the coefficient of v; is the same in
each expression. O

The formulas for the action of e, f, and h on V() then translate directly to formulas
for their action on P¢ ().

Proposition 2.4. Let i =gp+b, a+ 1< i < A. Then

ew; = (1 +1) <wi+1 Oub (/\> gqua+1>

fwi = ()\ — 14 l)wi_l
hw; = (2i — Mw

where w, = wxy1 = 0 and dqp is the Kronecker delta.

Lastly we calculate that the Jordan type is as stated: [p]"~![p—a—1][a+1] at £ and [p]"
elsewhere. First note that the result holds for @(p.1j(A) by Lemma 3.5; furthermore, that
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the point [0 : 1] € P! at which the Jordan type is [p]"~![p — @ — 1][a + 1] corresponds to
the line through f € N, (slz) under the map ¢ from Example 1.2. Let ad: SLy — End(sly)
be the adjoint action of SLy on sly. As V(\) is a rational SLs-module this satisfies
ad(g)(E) -m =g-(E-(g7t-m)) for all g € SLy, E € sly, and m € V(). Along with
De(A) = @(&)Ppo:1](A) we therefore get commutativity of the following diagram:

#(&)
P (A) ————= ()

El lad&b(f))(E)

Pro:17(N) oo De(N)

Multiplication by ¢(&) is an isomorphism, so letting E range over N, (sly) we see that the
module ®¢ () has Jordan type [p]" ' [p —a — 1][a+ 1] at ad(¢(£))(f) and [p]” elsewhere.
Then we simply calculate

wo)n=| L)1 o] _Zr=[;§ 7

and observe that, as an element of P(sly), this is ¢([1 : €]).

Thus we now have a complete description of the indecomposable sly-modules. We
finish this section with one more computation that will be needed in Section 4: The
computation of the Heller shifts £2(V'(\)) for indecomposable V' (\). Note that V(p—1) =
Q(p — 1) is projective so 2(V(p — 1)) = 0. For other V' (\) we have the following.

Proposition 2.5. Let A = rp + a be a non-negative integer and 0 < a < p its remainder
modulo p. If a #p—1 then 2(V(X)) =V((r+2)p—a—2).

Proof. This will be a direct computation. We will determine the projective cover f: P —
V(A) and then set f(x) = 0 for an arbitrary element x € P. This will give us the
relations determining ker f = 2(V(\)) which we will convert into a basis and identify
with V((r +2)p —a — 2).

The indecomposable summands of P are in bijective correspondence with the in-
decomposable summands (all simple) of the top of V(A), i.e. V(A)/rad V(A). This
correspondence is given as follows, if m;:V(A) — V(a) is the projection onto a
summand of the top of V(\) then the projective cover ¢,:Q(a) — V(a) factors
through 7.

Q(a) V(a)

N
N
N
fq NN Tq
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The map f;:Q(a) — V(X) so defined is the restriction of f: P — V() to the sum-
mand Q(a) of P.
The module V() fits into a short exact sequence

0= Vp—a—-2)"" 5 V() = V()®t -0
where 7 has components 7, for ¢ =0,1,...,r. Each m,: V(X)) = V(a) is given by

WF+{W—W ifgp<i<apta
0 otherwise.

Hence the top of V()) is V(a)®"*1 and P = Q(a)® ™!. The map f, is uniquely deter-
mined up to a nonzero scalar and is given by

p—i—1 . ,
v; > —(a+1)2< a+1 >v(q_1)p+a+i+1 ifo<i<p—a—2,
-1
w; — (—1)7te “ V(g—1)ptatitl ifp—a—-1<i<p-1
i+ta+1l—p a=up ’
v; — 0 ifp—a—1<i<p—1,
. 1_
vi = (1) (e +1)° (l ta i 1 p) Vg-1)ptati+l HP<i<2p—a—2.
a

This gives f = [fo f1 -+ fr]. To distinguish elements from different summands
of Q(a)®™ 1 let {v4.0,v4.1,--sVg2p—a—2} U {Wgp—a—1,Wgp—a,Wqp—1} be the basis of

the gth summand of Q(a)®"*!. Then any element of the cover can be written in the

form

T 2p—a—2 p—1
q=0 =0 i=p—a—1
for some ¢ ;,dq,; € k. Applying f gives

P& p—i—1
—(a+1)? Z ( )Cq,i”(ql)p+a+i+1

= a+1

P e t+a+1—0p
_1)etl 1)2 -
HED e X0 L

) Cq,iV(g—1)p+a+it+1
i=p

p—1 -1
4 a
+ E (_1)(1“( > dg,iV(q—1)p+ati+1 |-

i—pa1 t+a+1-p

Observe that 0 < i <K p—a—2andp<i<2p—a—2givea+1<a+i+1<p—1
and p+a+1<a+i+ 1< 2p— 1 respectively, whereas p —a —1 < i < p— 1 gives
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p<La+i+1l<p+ta. Lookmg modulo p we see that the basis elements v(y_1)p1a+i+1, for
0<g<randp—a—1<i<p—1,arelinearly independent. Thus f(x) = 0 immediately
yields d, ; = 0 for all ¢ and i.

Now rearranging we have

r—1p—a—2 . .
oftt+a+1 p—i—1
) = Z Z [(1) ( i )Cq,i+p+ ( a+1 )Cq+1,i:| Vgp+a+1+i
q=0 =0

so the kernel is defined by choosmg cgi,for0<g<r—1land 0 <i<p—a—2,such
p—i—1
that (—1)* (HGH)Cq ivp + (P atl )Cq-l,-l + = 0. Note that Eﬂil; = (—=1)%"! so the above

equation simplifies to ¢4 i1+p = 41,4 Thus for 0 <@ < (r + 2)p — a — 2 the vectors

V0, if0<e<p,
o — d Vab T Va1peo fl<gsr, 0Sbsp—-a-—2,
‘ Vg,b fl<g<rp—a—-1<b<p,
Vr b ifg=r+1, 0<b<p—a—2

form a basis for the kernel, where ¢ = gp + b with 0 < b < p the remainder of i
modulo p. It is now trivial to check that the sly-action on this basis is identical to that
of V((r+2)p—a—2). O

3. Matrix theorems

In this section we determine the kernel of four particular maps between free
k[s,t]-modules. The first map is given by the matrix M.(\) € M,,(k[s,t]) defined be-
low. For convenience we index the rows and columns of this matrix using the integers
a+1l,a+2,...,\

is? ifi=j+1
(26 — a)st ifi=j
M:(N)ij = (i — a)t? ifi=j—1
—(a+ 1)(2)5‘”’52 if (i,7) = (0,qp+ a)
0 otherwise.

Proposition 3.1. The kernel of M.(\) is a free k[s,t]-module (ungraded) of rank r whose
basis elements are homogeneous of degree p —a — 2.

Proof. The strategy is as follows: First we will determine the kernel of M.(\) when
s, s, t]-modules. We do this by exhibiting a basis Hy,..., H,
via a direct calculation. Then by clearing the denominators from these basis elements
we get a linearly independent set of vectors in the k[s, t]-kernel of M.(\). We conclude
by arguing that these vectors in fact span, thus giving an explicit basis for the kernel

considered as a map of k[s

of M.(\) considered as a map of k[s, t]-modules.
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To begin, s is a unit in ks, %7 t] so over this ring the kernel of M_()) is equal to the
kernel of the matrix %M. (\) with (i,j)th entry

i ifi=j+1,
(2 —a)x if i = j,
S%ME()\)U =1 (i—a)x? iti=75-1,
@+ 1)()e it (i,5) = (0,qp+ ),
0 otherwise,
where © = . Let f = [fax1 fagz -+ fa]" be an arbitrary element of the kernel.

Given i = gp+ b where 0 < b<pand a+1 <7<\ we claim that

S _p
fom (GO 1 (DT e (1)
p—b—1
for some choice of hy, ..., h, € k[s, %, t] and h,1 = 0. Moreover, any such choice defines
an element f € k[s, L, #]"” such that SM.(A\)f C[* 0 --- 0] holds.

The proof of this claim is by completely elementary methods, we induct up the rows
of 3 M.(\) observing that the condition imposed by each row in ZM.(\)f = 0 ei-
ther determines the next f; or is automatically satisfied allowing us to introduce a free
parameter (the h;).

For the base case plugging i = A into Eq. (1) gives f) = f). The condition imposed
by the last row in S%Mg()\)f =0isafa—1+axfy =0s0if a # 0 then f\_1 = —zf\ and
if @ = 0 then this condition is automatically satisfied. The formula, when a = 0, gives
frp—1 = —zf\ + h, so we take this as the definition of h,.

Assume the formula holds for all f; with j > > a + 1 and that these f; satisfy the
conditions imposed by rows i + 2,i +3,..., A of 5 M.(\)f = 0. First assume i + 1 # 0
in k or equivalently b # p — 1 where ¢ = gp + b and 0 < b < p. Then the condition

(i + 1)fz + (21 —a+ 2)17fi+1 + (Z —a+ 1)$2f¢+2 =0

imposed by row i 4+ 1 can be taken as the definition of f;. Observe that

-1
141

(D' 2i—a+2)+ (-1 2(i—a+1)) = (-1)*"

so fi = (—1)*~"x*~" f\ + (terms involving h;). For the h; terms there are two cases. First
assume b < p — 2. Then the expression

1;11 ((—1)”+1(2¢ —a+2) (p;i;f; 1) + (=12 —at 1) <p ;i;f; 2))

reduces to (—l)b(gf‘g:i’). Putting these together,
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e ta—b
(RN G (R e

as desired. Next assume b = p — 2 so that fi1o = f(g41)p. The coefficient of hqio
in f(g41)p involves the binomial (’;t‘f) As 0 €< a < p— 1 there is a base p carry in
(p—1) + (a + 1) = p+ a, thus this binomial is zero and the h; terms of f; are

-1)r . a+1 a+2
(i—l—)l (21a+2)( 0 >xhq+1(1)b< ) )xhq+1

as desired. Hence the induction continues when i + 1 # 0 in k.

Now assume ¢ + 1 = 0 in k; equivalently, b = p — 1. Then the condition imposed
by row i +1 = (q+ 1)p is —azf(q41)p — ax® f(g+1)p41 = 0. If @ = 0 then this is auto-
matic. If @ > 0 then there is a base p carry in (p —2) + (a + 1) = p+ a — 1, hence
T fq+1)p + T f(g+1)p+1 = 0 (the fy terms cancel and the binomial is zero). So in either
case the condition above is automatic. The formula for f; when ¢ = ¢gp + (p — 1) is
fi = (=1)r—a=Dptatiy(r—g-T)ptatiy 4 hq41 so we take this as the definition of hgiq
and the induction is complete.

Now f must have the given form for some choice of hq,...,h, and any such choice
gives an element f such that M. () [ is zero in all coordinates save the top (a +1). If
f € ker 5 M_()) then the (a + 1)th coordinate of % M(\)f is

(@ +2)z fasr + 2% farz — (a + 1) Z (;) €% fap+a = 0.
g=1

In (a+2)xfas1 + 2% fayo the h; terms are

R (e R e

and the coefficient of the h; term in fg,1, involves the binomial (p_g _1) which is zero.
Thus this imposes a condition only on fy, and this condition is

i(fl)qp (;) Equg(rq)p] fr=0.

q=0

(~1)" " (a+1)

Note that z = E is algebraically independent over k in kls, %,t] and by hypothesis
a4+ 170 in k. As we are working in an integral domain we have f) = 0.

As the hq,...,h, can be chosen arbitrarily this completes the determination of the

1
) g0
basis elements are given by taking the coefficients of these h,. Let H, be the basis element

kernel of M.()\), considered as a map of k[s, <, t]-modules. It is free of rank r and the
that corresponds to h,. I claim that sP~%"2H,, for 1 < ¢ < r, is a basis for the kernel
of M.()), considered as a map of k[s, t]-modules.

First note that H, is supported in coordinates (¢ + 1)p — 1 through ¢p + a + 1.
These ranges are disjoint for different H, therefore the sP~~2H, are clearly linearly
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independent. Let f € k[s,t]"” be an element of the kernel of M. (). Then as an element
of k[s,1,t] we have that f is in the kernel of 2 M.(\) and can write f = > g=1CaHy,
where ¢, € ks, 1,¢]. The ((¢+1)p — 1)th coordinate of f is ¢, hence ¢, € k[s, t]. Also the
(gp+a+1)th coordinate of fis (—1)P~22( p-1 )cq@P~?~2 and the binomial coefficient in

p—a—2

p—a—2

that expression is nonzero in k so ¢,2?~ %2 € k[s, t]. In particular, s must divide ¢,

: — op—a—2_./ / — T / p—a—2
so write ¢, = s cy for some cj, € k[s,t]. We now have f =3 _, ;s H, so the
sP~*"2H, span and are therefore a basis. Each H, is homogeneous of degree 0 so each

sP~*"2H, is homogeneous of degree p —a — 2. O

The second map we wish to consider is given by the matrix B(\) € M1 (k[s,t])
defined by

—it? ifi=j+1
(AN=2i)st ifi=j
B(A)ij = e e
AN=1i)s* ifi=j-1
0 otherwise,
where the rows and columns of this matrix are indexed using the integers 0,1,..., \.

Proposition 3.2. The kernel of B(X) is a free k[s,t]-module of rank r + 1. There is one
basis element that is homogeneous of degree A and the remaining are homogeneous of
degree p — a — 2.

Proof. The proof is very similar to the proof of Proposition 3.1. We start by finding the
kernel of the matrix % B()\) whose entries are given by

iz ifi=j+1
1 A—20)x ifi=j
FBO = e
s A—i ifi=75-1
0 otherwise
with z = % Let f=[fo fi -+ fx]'bean arbitrary element of the kernel. We induct

down the rows of the matrix to show that if ¢ = gp + b, where 0 < b < p then

—i A—i +a—b —b—
faoi = (=)t g—i—(—l)b(i_b_l)xp b=1p,

where h,. = 0.

For the base case ¢ = A in the formula gives fy = g so we take this as the definition
of g. The condition imposed by the first row is axg + af; = 0 so if @ # 0 then f; = —zg.
The formula gives f; = —zg + (—1)% — 1(£f;)xp’ah,. = —xg so these agree. If a = 0
then the condition is automatically satisfied and the formula gives f; = —xg + h,_1 so
we take this as the definition of h,_.
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For the inductive step assume the formula holds for fo, fi,..., fi—1 and that these f;
satisfy the conditions imposed by rows 0,..., A —i — 2. The condition imposed by row
A—i—1is

(b—a+1)afrio+(2b—a+2)zfria+ (b+1)fri=0.

If b < p — 2 then we can solve this for f)_; and we find that it agrees with the formula
above (for the h; terms the computation is identical to the one shown in Proposition 3.1).
Ifb=p—2weget fr; = (—1) "zrig— (aJ{Q)a:hq as desired. Finally if b = p — 1 then
b+ 1 =0 in k so the condition is —az?fr_i—2 — azfr_i—1 = 0 and this is automatically
satisfied (the formulas are the same as in Proposition 3.1 again). Thus no condition is
imposed on fy_; so we take the formula fy_; = (—1)*~'2*~%g + h, as the definition
of hg. This completes the induction.

For the final row to be A — i — 1 we must choose i = —1 and therefore are in the case
where b+ 1 = 0 and the condition is automatically satisfied. The rest of the proof goes
as in Proposition 3.1, except that there is no final condition forcing g = 0. If we let G
and Hy, ..., H,_; be the basis vectors corresponding to g and hg, ..., h,._; then the H,
are linearly independent as before. The first (0th) coordinate of G is 1 while the first
coordinate of each H, is 0 therefore G is not in their span and adding it gives a basis
for the kernel. The largest power of x in G is A in the last coordinate and the largest
power of z in Hy is p — a — 2 in the (A — gp — a + 1)th coordinate. These basis vectors
lift to basis vectors of the kernel as a k[s, t]-module and are in degrees A and p —a — 2
as desired. O

Before we move on to the third map, let us first prove the following lemma which will
be needed in Proposition 4.2.

Lemma 3.3. Assume 0 < X\ < p. Then the (i, j)th entry of B(A\)? is contained in the one
dimensional space ks Ti—igA—iti,

Proof. Let b;; be the (i, 7)th entry of B()\). The (i,j)th entry of B(\)* is given by

(B()\))‘)ij = Z biny brnyny *+ bny_yj

Mn1,MN2,...,Nx—1

and from the definition of B(A) we have

bijEkSZ ifj—i:L
bij € kst if j—i=0,
bij € kt? ifj—i=—1,

bi; =0 otherwise.



62 J. Stark / Journal of Algebra 407 (2014) 46—67

So any given term bjn,bn n, - -bp,_,; in the summation can be nonzero only if the
(A+1)-tuple (ng,n1,...,ny) is a walk from ng = i to ny = j, i.e. each successive term of
the tuple must differ from the last by at most 1. One shows by induction that for such
a walk we have byyn,bnyny ** bn,,_1n, € ks Tm=nogm=nm+n0 The base case m = 1 is
given by the three cases above for b,,,,,, and one easily checks that the formula gives kt2,
kst, or ks? as needed. For the inductive step assume the statement holds for m—1 so that

c k.sm—1+nm71—notm—l—nm71+nob

bnom o .bn'm.7277f'm.71bn'm.fln'm. Mo — 1M *

The three relevant cases to consider are n,, = ny—1+ 1, %m_1,7m_1 — 1 and in each one
easily verifies the statement. Now when m = A this gives

brgnyOnyng * by _1ny € LA Tra—nogA—natno _ p Ati—igh—jti

and completes the proof. O

The third map we wish to consider is B’(\) € M,,(k[s,t]) defined to be the rpth
trailing principal minor of B(\), i.e., the minor of B(\) consisting of rows and columns
a+1l,a+2,...,\

Proposition 3.4. The kernel of B'(\) is a free k[s,t]-module (ungraded) of rank r whose
basis elements are homogeneous of degree p —a — 2.

Proof. The induction from the proof of Proposition 3.2 applies giving

i A—i +a—-0 b
f)\—i: (71)/\ ZL')\ g+(1)b(2;_b_1>zp b 1hq

for 0 < i < rp. All that is left is the condition —(a + 2)x fa11 — fat2 = 0 from the first
row of % B’()). Substituting in the formulas we get (—1)**!(a + 1)2®"2g = 0 which
forces g = 0. Thus as a basis for the kernel we get Hy,...,H.—1. O

Before we move on to the final map, let us first prove the following lemma which was
needed in Section 2.

Lemma 3.5. Let s,t € k so that B'(\) € M, (k).

(1] ifs=t=0,
JType(B'(N)) =} [p)" *p—a—1[a+1] ifs=0, t#0,
o s £0.

Proof. If (s,t) = (0,0) then B’(\) is the zero matrix. If s = 0 and ¢ # 0 then B’()\) only
has non-zero entries on the sub-diagonal and we need only read the block sizes. Using
the row numbering from B(A) the zeros on the sub-diagonal occur at rows p, 2p, ..., rp.
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Thus the first block is size p —a — 1, followed by r — 1 blocks of size p, and the last block
is size a + 1.

Now assume s # 0. There are exactly r(p — 1) non-zero entries on the super-diagonal
and no non-zero entries above the super-diagonal therefore rank B'(\) > r(p — 1). But
this is the maximal rank that a nilpotent matrix can achieve and such a matrix has
Jordan type [p]". O

The final map we wish to consider is given by the matrix C(\) € M1 (k[s, t]) defined
by
(i—A—1)t% ifi=j+1

—2)st  ifi=j

(A
CNi =1 ;. N L
(i+1)s ifi=j5-1
0 otherwise,
where the rows and columns of this matrix are indexed using the integers 0,1,..., \.

Proposition 3.6. The kernel of C(X\) is a free k[s,t]-module (ungraded) of rank r + 1
whose basis elements are homogeneous of degree a.

Proof. Let f = [fo fi -+ fa]" be an arbitrary element of the kernel of £C())
whose entries are given by

(i—A—1)z2 ifi=j+1

1 A—20)x ifi=j

—CN)iy = ( ) L

s 1+1 ifi=45-1
0 otherwise

with = % We show by induction that if ¢ = ¢gp+b and 0 < b < p then f; =
(—-1)® (2‘) 2°h,. For the base case the formula gives fo = hg so we take this as the definition
of hg. The condition imposed by row 1 is —Azfy + fi = 0 which gives f; = —zhg as
desired.

For the inductive step assume the formula holds for indices less then ¢ and the con-
dition imposed by all rows of index less than ¢ — 1 is satisfied. The condition imposed
by row i — 1is (i — A — 2)22f; o + (A —2i +2)xf;_1 +if; = 0. If i # 0,1 in k then one
checks directly that f; = (—l)b(i)xbhq as desired. If i = 0 in k then

. . A A

(i—=A=2)22fi o+ (AN =2+ 2)zf;iy = {(p B 2) + (p B 1)} (A+2)xPhy_q.
But a +1 # 0 so (pil) = 0 and if (piQ) # 0 then A+ 2 = 0. In any case the above
expression is 0 so the condition is automatically satisfied. The formula gives f; = hq
so we take this as definition. Finally assume ¢ = 1 in k. Then we have f; = (A +

1) (pil)xp“'lhq_l — Azhg = —(i‘)xhq as desired. This completes the induction.
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We know that the given formulas for f; satisfy the conditions imposed by all rows
save the last, whose condition is —x2 f\_1 — Az fy = 0. We have Az f) = (—=1)A\z*1h,.. If
a=0then 2%fy_; = (=1)P~! (pil):r:pﬂhr,l = 0 and A = 0 so this conditions is satisfied.
If a # 0 then 22f\_1 = (=1)* taz® th, so 22fr_1 + Mo fy = (=1)*(\ — a)z* T h, = 0
and the condition is again satisfied so we have found a basis. If H, is the basis vector
associated to h, then the smallest and largest powers of  in H, are 0 in coeflicient gp
and a in coefficient gp 4 a. By the usual arguments the H, lift to a basis for the kernel
of C'(X) that is homogeneous of degree a. O

The final map we want to consider is parametrized by 0 < a < p— 1. Given such an a,
let D(a) € My, (k[s,t]) be the block matrix

B(2p—a—2) D'(a)

Dla) = 0 B(a)t

where D’(a) and B(a)' are as follows. The matrix D’(a) is a (2p—a— 1) x (a+ 1) matrix
whose (7, j)th entry is

as® fi—j=p—a—2
D'(a)ij = { -4t if (4,5) = (p.a)
0 otherwise.

The matrix B(a)! is produced from B(a) by taking the transpose and then swapping
the variables s and t.

Proposition 3.7. The inclusion of k[s,t]*?=%~1 into k[s,t]?? as the top 2p —a — 1 coordi-
nates of a column vector induces an isomorphism ker B(2p — a — 2) ~ ker D(a).

Proof. As D(a) is block upper-triangular with B(2p — a — 2) the top most block on the
diagonal it suffices to show that every element of ker D(a) is of the form [ ] with respect
to this block decomposition. That is, we must show that if f =[fo fi -+ fop—1]'is
an element of ker D(a) then f; =0 for all 2p —a — 1 < i < 2p — 1. Obviously it suffices

to prove this for ;5 D(a) over k[s,t, 1] so let z = £.

We start by proving that fs,_1 = 0. There are two cases, first assume that a +2 =0
in k. Then row p of t%D(a) has only one nonzero entry, a a—_}_l in column 2p — 1, thus
fap—1 = 0. Next assume that a 42 < p. Then the induction from Proposition 3.2 applies
torows p+1,...,2p—a—2 and gives f; = (—1)*Fig?P=a=271f) . oforp <i<2p—a—2.
The condition imposed by row p is —(a+2)zf, — (a+2)2? fpi1+ %Hfgp_l = 0. But note
that the induction gave us f, = —x fp4+1 so this simplifies to
have fgpfl =0.

Now the condition imposed by the last row of D(a) gives fop—2 = axfop—1 = 0. By
induction the ith row gives —if; 1 = (2i +a + 2)af; + (i + a + 2)2%fi,1 = 0, hence
fie1 =0, for p—a < i < 2p — 2 and this completes the proof. O

%_Hfgp_l = 0 and again we
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4. Explicit computation of ker @,, and F;(V(\))

In this final section we carry out the explicit computations of the sheaves ker©,,,
for every indecomposable slp-module M, and .%#;(V (X)) for i # p. Friedlander and
Pevtsova [4, Proposition 5.9] have calculated the sheaves ker QV(A) for Weyl mod-
ules V(A) such that 0 < A < 2p — 2. Using the explicit descriptions of these modules
found in Section 2 we can do the calculation for the remaining indecomposable modules
in the category.

Theorem 4.1. Let A = rp + a with 0 < a < p the remainder of A modulo p. The kernel
bundles associated to the indecomposable sla-modules from Theorem 2.1 are

Proof. Assume first that £ = [1 : ¢]. Then using the basis from Section 2 we get that the
matrix defining Og, () has entries

ix ifi=754+1
(2i —a)z ifi=j
(Oae(n)ij = 4 (a—i)y ifi=j—1
@+ )()err i (i) = (O.qp + a)
0 otherwise.

Pulling back along the map ¢: P* — P(sly) from Example 1.2 corresponds with extending
scalars through the homomorphism

% — k[s, 1] (z,y,2) = (s, =12, st).
Thus the matrix of Og, (x) becomes the matrix M (A) from Proposition 3.1 and we see
that the kernel is free. A basis element, homogeneous of degree m, spans a summand
of the kernel isomorphic to k[s,t][—m]. By definition the Opi-module corresponding
to k[s,t][-m] is Opi1(—m) so the description of the kernel translates directly to the
description of the sheaf above.

The remaining cases are all identical. The modules V/(A), @(o.1)(A), V(A)*, and Q(a)
give the matrices B(\), B'(X), C(X), and D(a) whose kernels are calculated in Proposi-
tions 3.2, 3.4, 3.6, and 3.7 respectively. 0O

Next we compute .%;(V (X)) for any i # p and any indecomposable V(X). The proof
is by induction on r in the expression A = rp + a. For the base case we start with
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V(M) a simple module, i.e., = 0. Note that for the base case we do indeed determine
Fp(V (X)), it is during the inductive step that we lose i = p.

Proposition 4.2. If 0 < A < p then

ker@vo\) ifi=A+1
0 otherwise.

A1) = {

Proof. First note that V(\) has constant Jordan type [A + 1] so Theorem 1.14 tells us
that when ¢ # X + 1 the sheaf .%#;(V())) is zero.

For i = A + 1 recall from the previous proof that the map Oy (y) of sheaves is given
in the category of k[s, t]-modules by the matrix B(X). The (A 4+ 1)th power of a matrix
of Jordan type [A + 1] is zero so the entries of B(A\)**! are polynomials representing
the zero function. As k is algebraically closed B(A\)*! = 0 and therefore @{\/J(“/\l) =0.In
particular im 05, ) C ker Oy, so the definition of Fy41(V())) gives

ker QV()\) Nim @\/\/(,\)

 ker QV(A) Nim @"\,4('/\1)

Fa+1(V(V) = im Oy (2)

We have a short exact sequence of k[s, t]-modules

ker B(A
0 — im B(A)® — ker B(\) — % —
If we show that the quotient ker B(\)/im B(\)* is finite dimensional then by Serre’s
theorem and Eq. (2) this gives a short exact sequence of sheaves

0= Zi(V(N) = kerOyy =0 =0

and completes the proof.

To show that ker B(\)/im B(A)* is a finite dimensional module note that from
B(MAM! = 0 we get that the columns of B(\)* are contained in the kernel of B(\)
which, in Proposition 3.2 we determined is a free k[s,t]-module with basis element
G =[s =1t ... (=D *]'. We also know by Lemma 3.3 that the first entry
in the jth column of B(\)? is st”rjt)\*j for some c; € k, so the jth column must there-
fore be ¢;s7t* 77 G. The columns of B(\)* range from j = 0 to j = A so this shows that
G times any monomial of degree ) is contained in the image of B(\)*. Thus the quotient
ker B()\)/im B(\)? is spanned, as a vector space, by the set of vectors of the form G times
a monomial of degree strictly less than A. There are only finitely many such monomials
therefore ker B()\)/im B(\)? is finite dimensional and the proof is complete. O

Now for the inductive step we will make use of Theorem 1.13, but in a slightly different
form. Note that the shift in Theorem 1.13 is given by tensoring with the sheaf Op(sy,)(1)
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associated to the shifted module km[;”fzz} [1]. Likewise we consider Op1(1) to be the sheaf

associated to k[s, t][1]. Pullback through the isomorphism ¢: P! — P(sly) of Example 1.2
yields ¢*Op(s1,) (1) = Op1(2). Consequently, Theorem 1.13 has the following corollary.

Corollary 4.3. Let M be an sly-module and 1 < i < p. With twist coming from P! we
have

Fi(M) ~ Fp_i(2M)(2p — 2i).

Observe that ¢ # p in the theorem; this is why our calculation of .%,(V (X)) for A < p
does not induce a calculation of .%#,(V(\)) when A > p.

Theorem 4.4. If V(\) is indecomposable and i # p then

Op: (=) ifi=A+1 (mod p)

0 otherwise.

Z (V) ~ {

Proof. Let A = rp+a where 0 < a < p is the remainder of A modulo p. We prove the result
by induction on r. The base case r = 0 follows from Theorem 4.1 and Proposition 4.2.
For the inductive step assume r > 1. By hypothesis the formula holds for rp — a — 2
and by Proposition 2.5 we have 2V (rp — a — 2) = V(XA). Applying Corollary 4.3 we get
Fi (V) =Fp_i(V(rp—a—2))(—2i). If i = a+1 then F,11(V(N)) = Fp_ao1(V(rp—
a—2))(—2a—2) = Op1(—A) whereasif i #a+1thenp—i#p—a—1so Fp_;(V(rp—
a —2)) = 0. This completes the proof. 0O
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