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1. Introduction

Cohn–Leavitt path algebras were introduced recently, see [4,5], as generalizations of 
Leavitt path algebras, and have already been used to prove deep results, as for example, 
to give a complete answer to a question regarding a generalization of Tarski’s theorem 
(see [3]).
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Differently from Leavitt path algebras and graph C*-algebras, which have been the 
focus of intense research in the last fifteen years (see [1,2,7,8,10,14] for a few examples), 
the literature on Cohn–Leavitt path algebras is on its infancy. One may think that 
results regarding Leavitt path algebras would pass almost directly to Cohn–Leavitt path 
algebras but, in fact, the greater generality of Cohn–Leavitt path algebras allows for 
algebras that are very different from the usual Leavitt path algebras. In particular, in [5]
it is shown that any conical abelian monoid occurs as the monoid of isomorphism classes 
of finitely generated projective modules over a Leavitt algebra of a separated graph (what, 
by the results of [6], is not true for the class of Leavitt algebras of non-separated graphs). 
Actually, although Cohn–Leavitt path algebras of separated graphs incorporate the usual 
Leavitt path algebras (for a particular separation), they behave quite differently from 
the later since the range projections associated with different edges need not commute. 
So, Leavitt path algebras and Cohn–Leavitt path algebras of separated graphs do not 
share all the same properties and hence many results on Leavitt path algebras still need 
to be extended or adapted, what undoubtedly will lead to new results and techniques. In 
particular, the results of [11] regarding representations of Leavitt path algebras arising 
from branching systems still need Cohn–Leavitt path algebra versions.

Branching systems arise in many areas in mathematics, see [13], and can be used to 
produce and study representations of Leavitt path algebras (see [11]). More specifically, 
faithful representations of Leavitt path algebras can be obtained via branching systems 
and for certain graphs the study of representations, up to unitary equivalence, can be 
reduced to the study of representations arising from branching systems, see [11,13]. It is 
our goal in this paper to extend some of the results concerning representations of Leavitt 
path algebras arising from branching systems (see [11]) to Cohn–Leavitt path algebras, 
therefore contributing to a better understanding of the structure of these algebras.

We now describe precisely what we will do in this paper: In Section 2 we define 
branching systems of separated graph and show how they induce representations of 
the associated Cohn–Leavitt path algebra in the algebra of homomorphisms over the 
module of functions over a set X. Next, in Section 3, we prove the existence of branching 
systems for any separated graph via a constructive argument and use the representations 
obtained to show a few properties of elements in the Cohn–Leavitt path algebra. We focus 
on the injectivety of the representations from branching systems in Section 4. For this 
we must look into abelianized Cohn–Leavitt path algebras, since the image of the range 
projections of different edges under representations arising from branching system always 
commute, and we give some examples of separated graphs for which the representations 
of the abelianized algebra arising from the branching systems constructed in Section 3
are injective. In particular, this includes graphs with no loops where all edges have 
the same source and the range map is injective. We then finalize the section showing 
that any Cohn–Leavitt path algebra can be written as an amalgamated free product of 
Cohn–Leavitt path algebras over graphs where all edges have the same source.

Before we proceed we recall the definition of Cohn–Leavitt path algebras below.
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A separated graph is a pair (E, C) where E = (E0, E1, r, s) is a directed graph (that 
is, E0 is a set of vertices, E1 is a set of edges and r, s : E1 → E0 are the range and 
source maps), and C =

⋃
v∈E0 Cv, where each Cv is a partition of s−1(v) into pairwise 

disjoint nonempty sets, for each non-sink v. Let Cfin be the set of all finite sets Y ∈ C

and Path(E) the set of all paths in E.

Definition 1.1. (As in [5].) Let (E, C) be a separated graph, let S ⊆ Cfin and, and K
be a field. The Cohn–Leavitt algebra of the triple (E, C, S), denoted LK(E, C, S), is the 
universal K-algebra generated by a set {v : v ∈ E0}, of pairwise orthogonal idempotents, 
together with a set {e, e∗ : e ∈ E1} of elements satisfying:

(E1) s(e)e = er(e) = e for all e ∈ E1,
(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1,

(SCK1) e∗f = δe,fr(e) for all e, f ∈ Y , for each Y ∈ C,
(SCK2) v =

∑
e∈X ee∗ for every set X ∈ S ∩ Cv, for each non-sink v ∈ E0.

Following [5], LK(E, C, Cfin) is the Leavitt path algebra of the separated graph (E, C), 
and LK(E, C, ∅) is the Cohn path algebra of the graph (E, C). If Cv = s−1(v) for each 
non-sink v then LK(E, C, Cfin) is the Leavitt path algebra of the directed graph E (see 
[1,2] for Leavitt path algebras of a graph).

2. (E, C, S)-algebraic branching systems

In this section we will define (E, C, S)-algebraic branching systems associated with
a triple (E, C, S) and we will show how these (E, C, S)-algebraic branching systems 
induce representations of the associated Cohn–Leavitt path algebra, in the K algebra of 
the homomorphisms in the module of functions over a set X.

We start with the definition of an (E, C, S)-algebraic branching system:

Definition 2.1. Let (E, C) be a separated graph and S ⊆ Cfin. Let X be a set and let 
{Re}e∈E1 , {Dv}v∈E0 be families of subsets of X such that:

1. Re ∩Rd = ∅ for each d, e ∈ Y with d �= e, Y ∈ C,
2. Du ∩Dv = ∅ for each u, v ∈ E0 with u �= v,
3. Re ⊆ Ds(e) for each e ∈ E1,
4. Dv =

⋃
e∈Y Re if Y ∈ S ∩ Cv, for each non-sink v ∈ E0,

5. for each e ∈ E1, there exists a bijective map fe : Dr(e) → Re.

A set X, with families of subsets {Re}e∈E1 , {Dv}v∈E0 , and maps fe as above, is called 
an (E, C, S)-algebraic branching system, and we denote it by (X, {Re}e∈E1 , {Dv}v∈E0 ,

{fe}e∈E1), or when no confusion arises, simply by X.
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Next, fix an (E, C, S)-algebraic branching system X. Let M be the K module of all 
functions from X taking values in K and let HomK(M) denote the K algebra of all homo-
morphisms from M to M (with multiplication given by composition of homomorphisms 
and the other operations given in the usual way).

Now, for each e ∈ E1 and for each v ∈ E0, we will define homomorphisms Se, S∗
e

and Pv in HomK(M).
Let Se be defined as follows:

(Seφ)(x) =
{
φ(f−1

e (x)), if x ∈ Re

0, if x /∈ Re,

where φ is a function in M .
In order to simplify notation, in what follows we will make a small abuse of the 

characteristic function symbol and denote the above homomorphism by:

Seφ = χRe
· φ ◦ f−1

e .

In a similar fashion to what is done above, and making the same abuse of the char-
acteristic function symbol, we define the homomorphism S∗

e by

S∗
eφ = χDr(e) · φ ◦ fe,

where φ ∈ M .
Finally, for each v ∈ E0, and for φ ∈ M , we define Pv by

Pvφ = χDv
· φ,

that is, Pv is the multiplication operator by χDv
, the characteristic function of Dv.

Theorem 2.2. Let X be an (E, C, S)-algebraic branching system. Then there exists a 
representation (that is, an algebra homomorphism) π : LK(E, C, S) → HomK(M) such 
that

π(e) = Se, π
(
e∗
)

= S∗
e and π(v) = Pv,

for each e ∈ E1 and v ∈ E0.

Proof. As in [11]. �
Remark 2.3. Notice that Theorem 2.2 still holds if we change the module M of all 
functions from X to K for the module of all functions from X to K that vanish in all, 
but a finite number of points, of X.

In the next section we consider the question of existence of (E, C, S)-algebraic branch-
ing systems (and their induced representations) for any given graph E.
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3. Existence of (E, C, S)-algebraic branching systems

Let (E, C) be a countable separated graph, and S ⊆ Cfin. Next we show that there 
always exists an (E, C, S)-algebraic branching system. Our proof is constructive and one 
can actually obtain a great number of (E, C, S)-algebraic branching systems following 
the ideas below.

Theorem 3.1. Let (E, C) be a separated graph, with E0 and E1 countable, and S ⊆ Cfin. 
Then there exists an (E, C, S)-branching system X, with X ⊆ R, such that:

1. Re ∩Rf �= ∅ for each e ∈ X, f ∈ Y , and X, Y ∈ Cv with X �= Y .
2. For each X ∈ Cv \ S, 

⋃
e∈X Re � Dv.

3. For X, Y ∈ Cv \ S with X �= Y it holds that 
⋃

e∈X Re �=
⋃

f∈Y Rf .

Proof. Since E0 is countable then E0 = {vi}Ni=0, case if E0 is finite, or E0 = {vi}∞i=0. 
For each i, let Dvi be the interval [i, i + 1) ⊆ R.

From now on, fix a non-sink v ∈ E0. Since E1 is finite or countable then Cv = {Yj}Mj=1

or Cv = {Yj}j∈N, and Yj = {eji}
Kj

i=1 or Yj = {eji}∞i=1 (since each Yj is also finite or 
countable). For each Yj ∈ Cv, define Ỹj = Yj ∪{ej0} if Yj /∈ S (where ej0 is only a symbol) 
and define Ỹj = Yj if Yj ∈ S.

Our next goal is to define Re for each e ∈ s−1(v).
Partition the interval Dv into |Ỹ1| intervals closed on the left and open on the right, 

and call the intervals Ie1i where e1
i ∈ Ỹ1. For each e1

i ∈ Y1 define Re1i
= Ie1i . Note that the 

set of intervals {Ie1i : e1
i ∈ Ỹ1} is a countable set, and so we may write it as {1Ik : k ∈ N}.

Now, partition each interval 1Ik into |Ỹ2| closed on the left and open on the right 
intervals, called 1Ik

e2j
, where e2

j ∈ Ỹ2. Define, for each e2
j ∈ Y2,

Re2j
=

⋃
k∈N

1Ike2j
.

Since {1Ik
e2j

: k ∈ N, e2
j ∈ Ỹ2} is countable, we may write this set as {2Ik : k ∈ N}.

Partition each interval 2Ik into |Ỹ3| (open on the right and closed on the left) inter-
vals 2Ik

e3j
. Define, for each e3

j ∈ Y 3,

Re3j
=

⋃
k

2Ike3j
.

In general, given a partition {nIk : k ∈ N} of Dv (obtained as above), partition each 
interval nIk in |Ỹn+1| closed on the left and open on the right intervals nIkn+1 where 
ej
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en+1
j ∈ Ỹn+1. Then, for each en+1

j ∈ Yn+1, define

Ren+1
j

=
⋃
k

nIk
en+1
j

.

So, we obtain Re, for each e ∈ s−1(v). By applying this process to each non-sink 
v ∈ E0 we obtain Re for all e ∈ E1. It is not hard to see that the sets Re satisfy the 
conditions 1, 2 and 3 of the theorem.

To obtain the desired branching system, define X =
⋃

v∈E0 Dv. It is also not hard to 
see that the families {Re}e∈E1 , {Dv}v∈E0 satisfy the relations 1–4 from Definition 2.1. 
Finally, we need to obtain bijections fe : Dr(e) → Re for all e ∈ E1. Fix e ∈ E1. By the 
definition of Re, we see that Re is a union of closed on the left and open on the right 
disjoint intervals {Jk}k∈Δ, where Δ is finite or countable. Partition Dr(e) into |Δ| closed 
on the left and open on the right (disjoint) intervals Dk with k ∈ Δ. Then, for each 
k ∈ Δ, let fk : Dk → Jk be a bijective map (for example, the linear map). Now, given 
x ∈ Dr(e), then x ∈ Dk for some k ∈ Δ, and define fe(x) := fk(x). Then fe : Dr(e) → Re

is a bijective map. �
Remark 3.2. It is not hard to see in the previous proof that if X1, ..., Xn, ..., Xm are 
distinct elements of Cv with Xn+1, ..., Xm /∈ S and if ei ∈ Xi for 1 ≤ i ≤ n then

Re1 ∩ ... ∩Ren ∩
(
Dv \

⋃
e∈Xn+1

Re

)
∩ ... ∩

(
Dv \

⋃
e∈Xm

Re

)
�= ∅.

Remark 3.3. In [3], Definition 6.10, the notion of (E, C)-dynamical systems for finite 
bipartite separated graphs was introduced. These are examples of (E, C, S) algebraic 
branching systems, where the sets are topological compact Hausdorff spaces and the 
functions are homeomorphisms. The authors in [3] show that, for a finite bipartite sepa-
rated graph, there exits a universal (E, C)-dynamical system, which, among other things, 
is a key ingredient to describe abelianized Leavitt path algebras as crossed products.

Example 3.4. The graph of this example is a graph with 4 edges, without loops, and with 
injective range, as follows:

�v0 ��

�

�������

�

�
�

�
��

�������
�v4

e3

e4

e2

e1

v1

v2

v3

Let X1 = {e1, e2} and X2 = {e3, e4}, and let S = {X2}. We follow the proof of the 
previous theorem to obtain Dvi and Rej . Set Dvi = [i, i +1) for 0 ≤ i ≤ 5. To obtain Rej , 
proceed as follows:
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• Since X1 /∈ S, partition the interval [0, 1) into 3 intervals,

[0, 1) =
[
0, 1

3

)
∪
[
1
3 ,

2
3

)
∪
[
2
3 , 1

)
.

Define Re1 = [0, 13 ) and Re2 = [ 13 , 
2
3 ).

• Since X2 ∈ S, partition the 3 intervals into 2 intervals, as follows:
[
0, 1

3

)
=

[
0, 1

6

)
∪
[
1
6 ,

1
3

)
,

[
1
3 ,

2
3

)
=

[
1
3 ,

1
2

)
∪
[
1
2 ,

2
3

)
,

[
2
3 , 1

)
=

[
2
3 ,

5
6

)
∪
[
5
6 , 1

)
.

Define

Re3 =
[
0, 1

6

)
∪
[
1
3 ,

1
2

)
∪
[
2
3 ,

5
6

)

and

Re4 =
[
1
6 ,

1
3

)
∪
[
1
2 ,

2
3

)
∪
[
5
6 , 1

)
.

By Remark 3.2, since X1 /∈ S, for h ∈ X2 it holds that Rh ∩ (Dv0 \
⋃

e∈X1
Re) �= ∅. 

For example (if h = e3) Re3 ∩ (Dv0 \
⋃

e∈X1
Re) = [ 23 , 

5
6 ). �

Theorem 3.1 together with Theorem 2.2 guarantees that every Cohn–Leavitt path 
algebra of separated graphs LK(E, C, S) of a countable graph E may be represented in 
HomK(M). Let us summarize this result in the following corollary:

Corollary 3.5. Given a triple (E, C, S), with E countable, there exists a homomorphism 
π : LK(E, C, S) → HomK(M) such that

π(v)(φ) = χDv
.φ, π(e)(φ) = χRe

.φ ◦ f−1
e and π

(
e∗
)
(φ) = χDr(e) .φ ◦ fe

for each φ ∈ M , where M is the K module of all functions from X taking values in K, 
X is a (possible unlimited) interval of R, and Re and Dv are as in Theorem 3.1.

Corollary 3.6. In the algebra LK(E, C, S) it holds that:

1. e �= 0 for each e ∈ E1,
2. v �= 0 for each v ∈ E0,
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3. e∗f �= 0 for each e ∈ X, f ∈ Y , X, Y ∈ Cv with X �= Y ,
4. for each finite set X ∈ Cv \ S,

∑
e∈X

ee∗v =
∑
e∈X

ee∗ = v
∑
e∈X

ee∗

but 
∑

e∈X ee∗ �= v,
5. for each finite sets X, Y ∈ C \ S it holds that 

∑
e∈X ee∗ �=

∑
f∈Y ff∗.

Proof. Consider the homomorphism π : LK(E, C, S) → HomK(M) as in the previous 
corollary. Since π(v)(φ) = χDv

· φ for each φ ∈ M then π(v) �= 0, for each v ∈ E0 and so 
v �= 0 in LK(E, C, S). Moreover, π(e)π(e∗)(φ) = XRe

· φ, and so π(e) �= 0 and also e �= 0
in LK(E, C, S).

Item 3 follows by item 1 of the previous theorem. In fact, note that π(e)π(e∗)π(f)×
π(f∗)(φ) = χRe∩Rf

·φ, and since Re∩Rf �= ∅ (for e ∈ X, f ∈ Y , X, Y ∈ Cv and X �= Y ) 
then π(e)π(e∗)π(f)π(f∗) �= 0, and so e∗f �= 0.

Let us prove item 4. The equalities

∑
e∈X

ee∗v =
∑
e∈X

ee∗ = v
∑
e∈X

ee∗

follow by (E1) and (E2) from the definition of LK(E, C, S), and 
∑

e∈X ee∗ �= v follows 
from the second item of the previous theorem.

To prove item 5, let X, Y ∈ C be finite sets with X �= Y . If X ∈ Cu and Y ∈ Cv

(u �= v) then

∑
e∈X

ee∗
∑
f∈Y

ff∗ =
∑
e∈X

ee∗uv
∑
f∈Y

ff∗ = 0,

and since 
∑

e∈X ee∗ �= 0 then 
∑

e∈X ee∗ �=
∑

f∈Y ff∗. If X, Y ∈ Cv then the inequality ∑
e∈X ee∗ �=

∑
f∈Y ff∗ follows from the third item of the previous theorem. �

4. Injectivity and the amalgamated free product structure

The representations introduced in the previous sections are adaptations of the repre-
sentations introduced and studied in [11,12,9] and [13] to the separated graph case. But, 
contrary to what happened to Leavitt algebras, for most graphs, representations arising 
from branching systems on separated graphs cannot be faithful, since for edges e and f
in different sets of a partition of a vertex v, we always have that SeS

∗
e commute with 

SfS
∗
f , but this in general is not true in the algebra. In order to present some examples 

of injective representations we have then to look at the abelianized algebra, which is a 
quotient of LK(E, C, S).
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Definition 4.1. (As in [3].) Let (E, C) be a separated graph. The abelianized Cohn–
Leavitt algebra, denoted by ALK(E, C, S) is the quotient of the Cohn–Leavitt algebra 
LK(E, C, S) by the ideal J generated by all the elements λλ∗ββ∗ − ββ∗λλ∗, where λ, β
belong to the multiplicative semigroup generated by E1 ∪ (E1)∗.

Remark. Notice that any representation π of LK(E, C, S) arising from a branching sys-
tem, as in Theorem 2.2, is automatically a representation of ALK(E, C, S), since for each 
β, γ in the multiplicative semigroup generated by E1 ∪ (E1)∗, π(γγ∗) and π(ββ∗) are 
multiplication operators in HomK(M), and so π(γγ∗)π(ββ∗) − π(ββ∗)π(γγ∗) = 0.

Next we show that, for a class of graphs, any representation of ALK(E, C, S) arising 
from a branching system as in Theorem 3.1 is faithful. More specifically we will consider 
countable graphs with no loops where all edges have the same source and the range map 
is injective. An example of such a graph was given in Example 3.4.

In order to proceed we need to recall the description of a basis for LK(E, C, S). This 
was done in [5] by P. Ara and K.R. Goodearl. For the graphs in question, a basis for 
LK(E, C, S) consists of the set B of paths of the form

α := μe∗1e2e
∗
2 . . . en−1e

∗
n−1enν

∗,

such that α is C separated and reduced with respect to S (and μ and ν are allowed to 
have length zero). Notice that for the case in mind the source of all edges is a vertex v, and 
so α is C-separated iff ei and ei+1 are in different sets X, Y ∈ Cv for all i. Furthermore, 
α is reduced with respect to S iff for each X ∈ S, an edge eX has been selected and 
eie

∗
i �= eXe∗X , for all i, or if α is equal to an edge e, a ghost edge e∗ or a vertex.
We can now prove the faithfulness of our representations, but first we need the fol-

lowing lemma.

Lemma 4.2. Let (E, C, S) be a separated graph, where all edges have the same source, v0, 
and the range map is injective. Let π be the representation of ALK(E, C, S) arising from 
the branching system defined in Theorem 3.1. Let x ∈ ALK(E, C, S) be a nonzero linear 
combination of elements of the form x = γ0v0 +

∑N
j=1 γje

j
1(e

j
1)∗ . . . ejnj

(ejnj
)∗, where eji

are edges and γ0, ..., γN ∈ K. Then π(x) �= 0.

Proof. First note that we may suppose, for each j, that eji and ejk are C-separated for 
each i �= k (otherwise (eji )∗e

j
k = 0). Moreover, we may suppose that {ei1, ..., eini

} �=
{ej1, ..., ejnj

} for i, j ∈ {1, ..., N} with i �= j and also that for each j, ej1(e
j
1)∗ . . . ejnj

(ejnj
)∗

is reduced with respect to S (that is, for all i, j and for each X ∈ S, we may assume that 
eji �= eX (where eX ∈ X has been previously selected to obtain B) by replacing eXe∗X
by v0 −

∑
e∈X\{eX} ee

∗ if necessary).
If γj = 0 for each 1 ≤ j ≤ N then π(x) = γ0π(v0) = γ0(1v0) �= 0. So, suppose γj �= 0

for each 1 ≤ j ≤ N .
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Let X1, ..., Xm ∈ Cv0 be the subsets which contain some edge eji , for 1 ≤ j ≤ N and 
1 ≤ i ≤ nj .

Case 1: Suppose γ0 �= 0.
For each 1 ≤ k ≤ m, define yk as follows: if Xk is infinite, let yk = eke

∗
k where ek �= eji

for each 1 ≤ j ≤ N and 1 ≤ i ≤ nj ; if Xk is finite and Xk ∈ S, let yk = eXk
e∗Xk

(where eXk
e∗Xk

has been selected to form B); and if Xk is finite and Xk /∈ S, let yk =
v0 −

∑
e∈Xk

ee∗. So, for each eji ∈ Xk it holds that eji (e
j
i )∗yk = 0. In particular, for each 

1 ≤ j ≤ N and 1 ≤ i ≤ nj ,

eji
(
eji
)∗
y1...ym = 0

(recall that yp and yq commute in ALK(E, C, S)) and therefore, for each 1 ≤ j ≤ N ,

ej1
(
ej1
)∗
...ejnj

(
ejnj

)∗
y1...ym = 0.

So, by multiplying the equality

x = γ0v0 +
N∑
j=1

γje
j
1
(
ej1
)∗

. . . ejnj

(
ejnj

)∗

by y1...ym we obtain

xy1...ym = γ0v0y1...ym = γ0y1...ym,

and then

π(xy1...ym) = γ0π(y1....ym) = γ0π(y1)...π(ym).

Since π(yk) = 1Rek
for some ek ∈ Xk or π(yk) = 1Dv0\

⋃
e∈Xk

Re
, then, by Remark 3.2, 

π(y1)...π(ym) �= 0. So, we have π(x)π(y1...πm) = π(xy1...ym) = γ0π(y1...ym) �= 0, and 
then π(x) �= 0.

Case 2: Suppose γ0 = 0.
Choose some t, 1 ≤ t ≤ N , such that nt ≤ nj for all 1 ≤ j ≤ N . For each 1 ≤ k ≤ m

define yk as follows: if eti ∈ Xk for some 1 ≤ i ≤ nt define yk = eti(eti)∗, and otherwise 
define yk as in Case 1. Since {ej1, ..., ejnj

} �= {et1, ..., etnt
} for each j �= t then there is a

1 ≤ i ≤ nj such that eji �= etl for all 1 ≤ l ≤ nt. Let k be such that eji ∈ Xk. Then 
eji (e

j
i )∗yk = 0. As in Case 1,

ej1
(
ej1
)∗
...ejnj

(
ejnj

)∗
y1...ym = 0

for each 1 ≤ j ≤ N with j �= t, and then

xy1...ym = γte
t
1
(
et1
)∗
...etn

(
etn

)∗
y1...ym.
t t



D. Gonçalves, D. Royer / Journal of Algebra 422 (2015) 413–426 423
Since for each 1 ≤ i ≤ nt the element eti(eti)∗ equals to some yk then

et1
(
et1
)∗
...etnt

(
etnt

)∗
y1...ym = y1...ym,

and so

xy1...ym = γty1...ym.

Then it follows, as in Case 1, that π(x) �= 0. �
Theorem 4.3. Let (E, C, S) be a separated graph, where all edges have the same source, v0, 
the range map is injective and E has no loops. Then the representation π of ALK(E, C, S)
arising from the branching system in Theorem 3.1 is faithful.

Proof. Let x ∈ ALK(E, C, S) be a nonzero element. By [5, 2.7],

x = γ0v0 +
k∑

j=1
γjαj

where αj ∈ B for each j, and since the unique paths in E are the edges, then αj =
μj(ej1)∗e

j
2(e

j
2)∗ . . . e

j
nj−1(e

j
nj−1)∗ejnj

ν∗j for each j, where each eji is an edge and each νj
and each μj has length zero or is an edge. We will show that π(x) �= 0.

First notice that, since the set of finite sums of vertices is a set of local units for 
ALK(E, C, S), there exists vertices v and w such that vxw �= 0.

Suppose v �= v0 and w = v0. By hypothesis, there exists only one edge e such that 
r(e) = v. Writing v = e∗e we obtain that vαj �= 0 only if |μj | = 0 and ej1 = e, and since 
w = v0 then αjw �= 0 only if νj = ejnj

. Then

0 �= vxw =
∑

j:vαjw �=0

γje
∗ej2

(
ej2
)∗

. . . ejnj

(
ejnj

)∗
= e∗

∑
j:vαjw �=0

γjee
∗ej2

(
ej2
)∗

. . . ejnj

(
ejnj

)∗
.

By the previous lemma,

π

( ∑
j:vαjw �=0

γjee
∗ej2

(
ej2
)∗

. . . ejnj

(
ejnj

)∗) �= 0

and so

0 �= π

( ∑
j:vαjw �=0

γjee
∗ej2

(
ej2
)∗

. . . ejnj

(
ejnj

)∗) = π(evxw) = π(e)π(v)π(x)π(w),

and so π(x) �= 0.
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The cases v �= v0 and w �= v0, v = v0 and w = v0, v = v0 and w �= v0 follow in a 
similar way and are left to the reader. �

We finalize the paper showing that the Cohn–Leavitt path algebra of a separated graph 
can be written as an amalgamated free product, with a common subset of idempotents, 
of Cohn–Leavitt path algebras over graphs where all edges have the same source.

So, let (E, C, S) be a triple as in Definition 1.1. For each X ∈ C consider the directed 
graph EX = (E0

X , X, r, s), where E0
X is a copy of E0, that is, E0

X = {vX : v ∈ E0}, and 
abusing the notation, r, s are the range and source maps of E restricted to X. Notice 
that all edges in EX have the same source. Define, for each X ∈ C, AX as the universal 
K-algebra generated by {e, e∗ : e ∈ X} ∪E0

X with relations given by:

1. the elements of E0
X are pairwise orthogonal idempotents,

2. er(e) = e = s(e)e and r(e)e∗ = e∗ = e∗s(e), for all e ∈ X,
3. e∗f = δe,fr(e), for all e, f ∈ X,
4. vX =

∑
e∈X ee∗, if X ∈ S and vX = s−1(X).

Notice that if X ∈ S, or if X is infinite, then AX is the Leavitt path algebra of the 
directed graph EX . In particular, if S = Cfin then each AX is a Leavitt path algebra.

Now let A be the free product of the K-algebras AX , and let I be the two sided ideal 
of A generated by the set {vX − vY : X, Y ∈ C; v ∈ E0}. The quotient algebra A/I is 
called the amalgamated free product of {AX}X∈C with common subset E0.

With the above in mind, we obtain the following proposition, which is similar to a 
result obtained in [4], in the context of C∗-algebras of separated graphs.

Proposition 4.4. The Cohn–Leavitt path algebra LK(E, C, S) of the triple (E, C, S) is 
K-isomorphic to the amalgamated free product A/I.

Proof. The proof follows by using the universal property of LK(E, C, S) to define a 
K-homomorphism ψ : LK(E, C, S) → A/I such that ψ(e) = [e], for each e ∈ E1, and 
ψ(v) = [vX ] (where X is some set X ∈ C and [vX ] denotes the equivalence class of vX), 
and then use the universal property of A to define the inverse of ψ. �
Remark 4.5. The above result is an extension to the separated graph case of a result 
proved by Larki in the context of Leavitt path algebras of edge colored graphs (see [15]). 
As it happens, each edge-colored graph G = (V, E, r, s, d) (in the sense of [15]) can be 
seen as a separated graph, with partitions Cv = {s−1(v) ∩ d−1(i) : i ∈ N and s−1(v) ∩
d−1(i) �= ∅}, and so the Leavitt path algebra of the edge colored graph G (as defined 
in [15]) and the Leavitt path algebra of the above separated graph coincide.

Proposition 4.6. Let (E, C, S) be a separated graph with no loops and such that the 
restriction of the range map to {s−1(v)} is injective for each v ∈ E0. Then ALK(E, C, S)
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can be written as a quotient of an amalgamated free product of abelianized Cohn–Leavitt 
path algebras that can be faithfully represented as in Theorem 4.3.

Proof. For each v ∈ E0 let Ev be the separated graph (E0
v , s

−1(v), r, s), where E0
v =

{uv : u ∈ E0}. Notice that, by Theorem 4.3, each ALK(Ev, Cv, S) can be faithfully 
represented.

Let B be the free product of {ALK(Ev, Cv, S)}v∈E0 and B/J be the amalgamated free 
product of {ALK(Ev, Cv, S)}v∈E0 with common subset E0 (J is the ideal generated by 
the set {uv−uw : u, v, w ∈ E0}). Let U ⊆ B/J be the multiplicative semigroup generated 
by 

⋃
v∈E0 s−1(v) ∪s−1(v)∗ and J0 be the ideal in B/J generated by {αα∗ββ∗−ββ∗αα∗ :

α, β ∈ U}. By an argument analogous to the one used to prove Proposition 4.4 it follows 
that ALK(E, C, S) is isomorphic to (B/J)/J0. �
Remark 4.7. In the case of a separated graph E with no paths with length greater than 1, 
which is the case of bipartite graphs, no loops and injective range the ideal J0 in the 
previous proposition is the zero ideal and hence ALK(E, C, S) is an amalgamated free 
product of abelianized Cohn–Leavitt path algebras that can be faithfully represented. 
Furthermore, for this class of separated graphs, since the set of vertices forms an orthogo-
nal set of local units for ALK(E, C, S), the proof of Theorem 4.3 can be straightforwardly
used to faithfully represent ALK(E, C, S) via branching systems.

Remark 4.8. The class of bipartite separated graphs is of particular interest, since in [3]
it is shown that every graph algebra of a separated graph is Morita-equivalent to a graph 
algebra of a bipartite separated graph (not necessarily with injective range).
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