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1. Introduction

Restriction semigroups, also known as weakly E-ample semigroups, are non-regular 
generalizations of inverse semigroups. These are semigroups with two additional unary 
operations which mimic the operations a �→ a−1a and a �→ aa−1 on an inverse semigroup. 
Various aspects of restriction semigroups and their one-sided analogues have been ex-
tensively studied in the literature, see, e.g., [3,4,6,10] and the references therein.

Proper restriction semigroups are analogues of E-unitary inverse semigroups which 
play a central role in the theory of inverse semigroups and its applications. General-
izing corresponding results for inverse and ample semigroups [20,13,14], Cornock and 
Gould [1] gave a structure theorem for proper restriction semigroups in terms of double 
partial actions of monoids on semilattices. This can be readily reformulated in terms 
of only one partial action, since each of the two partial actions is determined by the 
other one. In the present paper we consider classes of proper restriction semigroups de-
termined by the properties of this partial action. We show that the partial action is 
strong or antistrong if and only if the restriction semigroup satisfies a technical condi-
tion arising in [1]. W -products of semilattices by monoids correspond to the situation 
where the partial action is an action, and semidirect products form their subclass cor-
responding to actions by automorphisms. More importantly, we single out a class of 
proper restriction semigroups determined by homomorphisms. We call elements of this 
class ultra proper restriction semigroups. This is a rich and important class, since its 
elements, while being close to semidirect products, arise as mediators between general 
restriction semigroups and W -products or semidirect products in an embedding-covering 
result. It is interesting that this class does not have an adequate analogue if specialized
to the inverse case, ultra proper inverse semigroups being precisely semidirect products 
of semilattices by groups. This discrepancy between restriction and inverse semigroups is 
well illustrated by the fact that free restriction monoids and semigroups are ultra proper, 
whereas free inverse monoids and semigroups are not. The subclass of ultra proper restric-
tion semigroups which are also F -restriction (where F -restriction has a similar meaning 
as F -inverse in the inverse semigroup theory) is shown to be equal to the class of monoids 
Y ∗m T introduced by Fountain, Gomes and Gould in [4]. Alternatively, this subclass can 
be described by the property that the underlying homomorphism has its range in the 
Munn monoid of the semilattice. We call elements of this subclass ultra F -restriction 
monoids.

Based on ideas from [19] and [18], we construct a globalization of a strong partial ac-
tion underlying a proper restriction semigroup and obtain a McAlister-type theorem. We 
then specialize this construction to partial actions defining ultra F -restriction monoids 
M(T, Y ), where the base monoid T is free. As a result, we obtain a semilattice X and 
an action of T on this semilattice such that the W -product W (T, X) can be formed 
and, moreover, the initial monoid M(T, Y ) embeds into W (T, X). This construction is 
inspired by Szendrei’s embedding of the free restriction monoid into a W -product [21]
and generalizes it. We apply the constructed embedding in the following setting. Let S
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be an A-generated restriction monoid and T = A∗ be the A-generated free monoid. 
Modifying a construction from [4], we produce a partially defined action of T on the 
semilattice of projections Y of S defining an ultra F -restriction (and even ample) monoid 
M(T, Y ), which covers S. If S is a restriction semigroup, a variation of this construction 
produces an ultra proper restriction semigroup M(T, Y ), which covers S and is a re-
striction subsemigroup of the ultra F -restriction semigroup M(T, Y 1). The globalization 
construction enables us to embed M(T, Y ) into a W -product W (T, X), yielding new 
and simpler proofs of two embedding-covering results by Szendrei [21,22]. The first re-
sult [21] states that any restriction semigroup S has a proper ample cover embeddable 
into a W -product. Our argument proving this is that M(T, Y ) provides such a cover, 
and we emphasize that the cover is ultra proper. The second result [22] states that any 
restriction semigroup can be embedded into an almost left factorizable restriction semi-
group, that is, a (2, 1, 1)-quotient of a W -product. To show this, we construct a projection 
separating (2, 1, 1)-congruence κ on W (T, X), which extends the congruence on M(T, Y )
mapping it onto S, so that S embeds into W (T, X)/κ.

We conclude the introduction by pointing out that, after an early version of this 
paper existed, the author learned that ultra proper restriction semigroups and ultra 
F -restriction monoids were independently introduced and studied (from a somewhat 
different perspective) by Peter Jones in [12] under the names almost perfect restriction 
semigroups and perfect restriction monoids, respectively. This terminology is motivated 
by an elegant characterization noticed in [12] that a proper restriction semigroup is ultra 
proper if and only if the least congruence identifying all projections is perfect meaning 
that the product of classes is again a whole class.

2. Preliminaries

2.1. Restriction semigroups

In this section we recall the definition and basic properties of restriction semigroups [6,
8,21,22]. Further details, including a different approach to restriction semigroups, via 
generalized Green’s relations, can be found in [6,10].

A restriction semigroup is an algebra (S, ·, ∗, +), where (S, ·) is a semigroup and ∗

and + are unary operations satisfying the following identities (here and in the sequel the 
multiplication in S is denoted just by juxtaposition):

xx∗ = x, x∗y∗ = y∗x∗, (xy∗)∗ = x∗y∗, x∗y = y(xy)∗; (2.1)

x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x; (2.2)

(x+)∗ = x, (x∗)+ = x. (2.3)

If a restriction semigroup has an identity element 1 with respect to multiplication, it 
follows from 1∗1 = 1 and the dual axiom involving + that 1∗ = 1+ = 1. A restriction 
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semigroup possessing an identity is called a restriction monoid. Restriction semigroups 
form a variety of algebras of type (2, 1, 1) and restriction monoids form a variety of 
algebras of type (2, 1, 1, 0).

The following identities follow from the axioms and will be frequently used in the 
sequel (usually without reference):

(xy)∗ = (x∗y)∗, (xy)+ = (xy+)+. (2.4)

A homomorphism of restriction semigroups is required to preserve the multiplica-
tion and the operations ∗ and +, that is to be a homomorphism of (2, 1, 1)-algebras, 
and not only a semigroups homomorphism as the term might seem to suggest. For 
emphasis, we will often use the terms (2, 1, 1)-homomorphisms, (2, 1, 1)-congruence, 
(2, 1, 1)-subalgebra, etc. Similar remarks apply when restriction semigroups are replaced 
by restriction monoids.

Let S be a restriction semigroup. It follows from (2.3) that

{x∗:x ∈ S} = {x+:x ∈ S}.

We denote this set by E. It can be easily deduced that E is closed with respect to the 
multiplication, is a semilattice and also x∗ = x+ = x for all x ∈ E. It follows that E is 
a (2, 1, 1)-subalgebra of S. It is called the semilattice of projections of S and is denoted 
by P (S). Note that a projection is necessarily an idempotent, but a restriction semigroup 
may contain idempotents which are not projections.

As it was mentioned in the introduction, restriction semigroups generalize inverse 
semigroups (considered as (2, 1, 1) algebras where x∗ = x−1x and x+ = xx−1). A crucial 
result about inverse semigroups is the Ehresmann–Nambooripad–Schein theorem [16]
which says that the category of inverse semigroups is isomorphic to the category of 
inductive groupoids. It is of fundamental importance that this theorem can be extended 
to restriction semigroups: they form a category which is isomorphic to the category of 
inductive categories [10,11,15]. This fact brings up a crucial insight as well as provides 
an evidence that restriction semigroups are naturally arising algebraic objects.

A restriction semigroup S is called ample if for all a, b, c ∈ S:

ac = bc ⇒ ac+ = bc+ and ca = cb ⇒ c∗a = c∗b.

Under the correspondence between restriction semigroups and inductive categories, am-
ple semigroups correspond to cancellative inductive categories.

Let S be a restriction semigroup and E = P (S). For a, b ∈ S we set a ≤ b provided 
that there is e ∈ E with a = eb. This relation is a partial order called the natural partial 
order on S. The following properties of restriction semigroups related to the partial order 
will be used throughout the paper.
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Lemma 1. Let S be a restriction semigroup, E = P (S) and a, b ∈ S. Then

(1) a ≤ b if and only if a = bf for some f ∈ E.
(2) a ≤ b if and only if a = ba∗ if and only if a = a+b.
(3) If ea = a (ae = a), where e ∈ E, then e ≥ a+ (respectively, e ≥ a∗).
(4) a ≥ ae, ea for any e ∈ E.
(5) The order ≥ is compatible with the multiplication, that is, a ≥ b implies ac ≥ bc and 

ca ≥ cb for any c ∈ S.
(6) The order ≥ is compatible with the unary operations, that is, a ≥ b implies a∗ ≥ b∗

and a+ ≥ b+.

Let σ denote the least congruence on a restriction semigroup S, which identifies all 
elements of P (S). It is well known that the following statements are equivalent: (i) a σ b; 
(ii) there is e ∈ E such that ea = eb; (iii) there is e ∈ E such that ae = be.

A restriction semigroup S is called proper if the following two conditions hold:

for any a, b ∈ S : if a∗ = b∗ and a σ b then a = b,

for any a, b ∈ S : if a+ = b+ and a σ b then a = b.

A (2, 1, 1)-morphism ϕ : T → S of restriction semigroups is called projection separating
if ϕ(e) 	= ϕ(f) for any e, f ∈ P (T ) such that e 	= f . A restriction semigroup T is 
called a cover of a restriction semigroup S if there is a surjective projection separating 
(2, 1, 1)-morphism ϕ : T → S.

2.2. Actions

Let T be a monoid with identity 1 and X be a set. A left action of T on X is a map 
T ×X → X, (t, x) �→ t ∗ x, such that 1 ∗ x = x for all x ∈ X and s ∗ (t ∗ x) = (st) ∗ x
for all s, t ∈ T and x ∈ X. A right action of T on X is defined dually. A left action of T
on X can be equivalently given by a monoid homomorphism ϕ : t �→ ϕt, ϕt(x) = t ∗ x, 
from T to the full transformation monoid T (X). A right action can be given by an 
anti-homomorphism in a similar way.

A map π : X → Y between posets is called order-preserving if x ≤ y implies 
π(x) ≤ π(y) for all x, y ∈ X. It is called an order-embedding if x ≤ y holds if and only if 
π(x) ≤ π(y) for all x, y ∈ X. An order-embedding is necessarily an injective map. A bi-
jective order-embedding is called an order-isomorphism. If X = Y , order-isomorphisms 
are called order-automorphisms. A left action of T on a poset X, given by a homomor-
phism ϕ : T → T (X), is called order-preserving (an action by order-embeddings or by 
order-automorphisms) if for each t ∈ T the transformation ϕt is order-preserving (resp. 
an order-embedding or an order-automorphism).

Let · and ∗ be left actions of monoids T and T ′ on posets X and X ′, respectively. 
These actions are called isomorphic if there are a monoid isomorphism α : T → T ′ and 
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an order-isomorphism τ : X → X ′ such that α(t) ∗ (τ(x)) = τ(t · x) for all t ∈ T and 
x ∈ X.

These concepts can be readily adapted to right actions.

2.3. W -products and semidirect products

We now recall the (left hand version of the) construction of a W -product of a semilat-
tice by a monoid, which is a generalization of the construction of a semidirect product 
of a semilattice by a group and shares several of its important properties [5,21,22].

Let T be a monoid and ∗ be a left action of T on a semilattice Y by order embeddings. 
Assume that the ranges of actions of the elements of T are order ideals of Y , that is, if 
x ≤ t ∗ y for t ∈ T and x, y ∈ Y , then there is z ∈ Y such that x = t ∗ z. We set

W (T, Y ) = {(t ∗ y, t) ∈ Y × T : y ∈ Y, t ∈ T}

and define the multiplication and the unary operations ∗ and + on W (T, Y ) by

(t ∗ y, t)(s ∗ x, s) = (t ∗ y ∧ (ts) ∗ x, ts),
(t ∗ y, t)∗ = (y, 1); (t ∗ y, t)+ = (t ∗ y, 1).

Then W (T, Y ) is a proper restriction semigroup and its semilattice of projections is

Y = {(y, 1): y ∈ Y },

which is isomorphic to Y . Furthermore, in W (T, Y ) we have (t ∗ y, t) σ (s ∗ x, s) if and 
only if s = t, and W (T, Y )/σ � T via the map σ(t ∗ y, t) �→ t, where σ(t ∗ y, t) is the 
σ-class of (t ∗ y, t). The semigroup W (T, Y ) is a monoid if and only if Y has an identity.

Remark that in the literature (e.g. in [5,21,22]) a W -product W (T, Y ) is usually 
defined starting from an action of T on Y by injective endomorphisms such that the 
range of action of each element of T is an order ideal of Y , where an endomorphism
of Y is a transformation preserving the operation ∧. An endomorphism of a semilattice 
is obviously order-preserving. Conversely, if α is an order-embedding of a semilattice Y
and its range is an order ideal in Y then α is easily seen to respect ∧, i.e., to be an 
endomorphism. Thus our definition of a W -product is equivalent to the usual one.

The semigroup W (T, Y ) is called a semidirect product of Y by T and is denoted 
by T � Y provided that the action ∗ is by order automorphisms. Clearly, in this case 
W (T, Y ), as a set, equals just Y × T .

2.4. Free restriction monoids and semigroups

Free restriction monoids and semigroups will appear throughout the paper as examples 
illustrating our constructions. We briefly recall their structure, and refer the reader to 
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[4,22,21] for further details. Let A be a set, A∗ the free monoid over A and let 1 be the 
empty word. By FG(A) we denote the free group over A. The elements of FG(A) are 
reduced words over A ∪A−1. If u, v ∈ FG(A), their product red(uv) is the reduced word 
equivalent to the word uv obtained by the concatenation of u and v. The set FG(A) is 
partially ordered by the prefix order ≤p. Let Y ′ be the set of all finite order ideals of 
(FG(A), ≤p), and let Y = Y ′ \ {1}. The group FG(A) acts on the left of its powerset 
by

v ∗ S = {red(vs): s ∈ S}.

Let

X ′ = FG(A) ∗ Y ′, X = FG(A) ∗ Y,

Q′ = A∗ ∗ Y ′, Q = A∗ ∗ Y.

With respect to the reverse inclusion order X ′, X , Q′ and Q are semilattices. Clearly, 
X ′ and X are invariant under the action of FG(A) and Q′, Q are invariant under the 
action of A∗. There is also a right action • of FG(A) on its powerset given by S•v = v−1∗S
and both X ′ and X are invariant under this action. However, neither Q′ nor Q is invariant 
under •. The left action ∗ of A∗ on Q′ satisfies the requirements for forming of the 
W -product W (A∗, Q′). The set

FWRM(A) = {(t ∗ y, t) ∈ W (A∗,Q′): y ∈ Y ′ and t ∗ y ∈ Y ′}

forms a (2, 1, 1)-subalgebra of W (A∗, Q′) which is isomorphic to the free restriction 
monoid FRM(A) over A. We refer to it as Szendrei’s model of the free restriction 
monoid. Note that

P (FWRM(A)) = {(y, 1): y ∈ Y ′}

is a semilattice isomorphic to Y ′ via the map (y, 1) �→ y; (t ∗ y, t) σ (s ∗ x, s) if and only 
if t = s and W (A∗, Q′)/σ � A∗ via the map σ(t ∗ y, t) �→ t.

Similarly, we can form the W -product W (A∗, Q) and construct Szendrei’s model of 
the free restriction semigroup FRS(A) over A as its (2, 1, 1)-subalgebra FWRS(A) by 
replacing Q′ by Q and Y ′ by Y in the definition of FWRM(A).

3. Classes of proper restriction semigroups

3.1. Partial actions and the Cornock–Gould structure theorem

Let T be a monoid with the identity element 1 and let X be a set. A left partial action
of T on X is a partial map T ×X → X, (t, x) �→ t · x, such that
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(LP1) For all x ∈ X: 1 · x is defined and 1 · x = x.
(LP2) For all s, t ∈ T and x ∈ X: if t · x is defined and s · (t · x) is defined then (st) · x

is defined and s · (t · x) = (st) · x.

A right partial action of T on X is defined dually.
A left partial action of a monoid T on a set X can be looked at as a dual pre-

homomorphism from T to the partial transformation monoid PT (X). Recall that 
a map ϕ: T → PT (X), t �→ ϕt, is called a dual prehomomorphism if ϕ1 is the iden-
tity transformation and ϕst is an extension of ϕsϕt, that is, x ∈ dom(ϕsϕt) implies 
x ∈ dom(ϕst) and ϕsϕt(x) = ϕst(x). Order-preserving partial actions, partial actions 
by order-isomorphisms and isomorphic partial actions on posets are defined similarly to 
the analogous notions for actions.

Let now Y be a semilattice and T a monoid acting on Y partially on the left via ·, 
and let ϕ : T → PT (Y ) be the corresponding dual prehomomorphism. Assume that for 
every t ∈ T the map ϕt satisfies the following axioms:

(A) dom(ϕt) and ran(ϕt) are order ideals of Y .
(B) ϕt : dom(ϕt) → ran(ϕt) is an order-isomorphism.
(C) dom(ϕt) 	= ∅.

Lemma 2. The assignment t → ϕ−1
t defines a right partial action, ◦, of T on Y and 

its defining dual antiprehomomorphism ψ, given by ψt = ϕ−1
t , satisfies axioms (A), (B) 

and (C).

Proof. It is immediate that y ◦ 1 = y for all y ∈ Y . Assume that y ◦ s and (y ◦ s) ◦ t are 
defined. Let x = y◦s and z = x ◦t. Then y = s ·x and x = t ·z, whence y = s ·(t ·z) = st ·z
since · is a partial action. Thus y ◦ st is defined and y ◦ st = z. Axioms (A), (B), (C) 
for ψ are straightforward to verify. �

We say that the partial actions · and ◦ are reverse to each other. It is immediate that 
for every t ∈ T and y ∈ Y :

if t · y is defined then (t · y) ◦ t is defined and (t · y) ◦ t = y;

if y ◦ t is defined then t · (y ◦ t) is defined and t · (y ◦ t) = y.

We remark that in [1, Section 4] a pair of partial actions (namely, a left partial action 
and a right partial action) of a monoid T on a semilattice Y satisfying certain conditions 
is considered. Notice that each of these two partial actions determines the other one: the 
first two conditions, (A) and (B), from [1, Section 4] say precisely that for each t ∈ T

the two maps on Y induced by t are mutually inverse (and consequently, each of these 
maps is injective). Therefore, the setting from [1, Section 4] is equivalent to ours. It 
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follows in particular that the partial actions · and ◦ respect the operation ∧ on Y , as it 
is established in [1, Proposition 4.1].

Given a left partial action · of T on Y such that axioms (A), (B) and (C) hold, we set

M(T, Y ) = {(y, t) ∈ Y × T : y ◦ t is defined}

and define the multiplication on M(T, Y ) by

(x, s)(y, t) = (s · ((x ◦ s) ∧ y), st).

With respect to this multiplication, M(T, Y ) is a semigroup. Furthermore, elements 
of the form (y, 1), where y runs through Y , form a subsemilattice Y isomorphic to Y . It 
is shown in [1] that if one defines the unary operations ∗ and + by

(y, t)∗ = (y ◦ t, 1), (y, t)+ = (y, 1),

M(T, Y ) becomes a proper restriction semigroup with Y = P (M(T, Y )).
Conversely, let S be a proper restriction semigroup and consider a left partial action ·

of T = S/σ on E = P (S) given for t ∈ S/σ and e ∈ E by

t · e is defined if and only if there exists a ∈ t such that a∗ ≥ e, (3.1)

in which case t · e = (ae)+. Observe that a∗ ≥ e implies (ae)∗ = e, so that a′ = ae ∈ t

with (a′)∗ = e. We will use this fact in the sequel without further mention. The partial 
action · satisfies axioms (A), (B), (C) and the following structure theorem holds:

Theorem 3. (See Cornock and Gould [1].) Any proper restriction semigroup S is isomor-
phic to M(S/σ, P (S)).

We refer to the left partial action · given by (3.1) and its reverse right partial action ◦
as the partial actions underlying S.

3.2. Partial actions and W -products

Let W (T, Y ) be a W -product and ∗ the left action of T on Y defining it. It is im-
mediate that axioms (A), (B) and (C) are satisfied by ∗ so that the semigroup M(T, Y )
may be formed. By construction, the sets M(T, Y ) and W (T, Y ) coincide and so do 
the unary operations ∗ and + on these sets. A direct verification (or an application of 
Lemma 9) shows that the products on M(T, Y ) and W (T, Y ) coincide, too. It follows 
that M(T, Y ) = W (T, Y ) as (2, 1, 1)-algebras. If W (T, Y ) = T � Y , that is, if ∗ is an 
action by automorphisms, the underlying left and right partial actions of T � Y are 
actions.
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Conversely, let ∗ be a left action of T on Y which satisfies axioms (A), (B) and (C). 
Then ∗ satisfies the requirements needed to form the W -product W (T, Y ). If ∗ acts by 
automorphisms we have W (T, Y ) = T � Y . We obtain the following statement.

Proposition 4. W -products of semilattices by monoids (defined by left actions) are pre-
cisely the proper restriction semigroups whose underlying left partial action is an action. 
In particular, semidirect products of semilattices by monoids are precisely the proper re-
striction semigroups whose underlying left partial action is an action by automorphisms 
(or, equivalently, both of whose underlying left and right partial actions are actions).

3.3. F -restriction monoids

By analogy with inverse semigroups, we call a restriction semigroup an F -restriction 
semigroup if every σ-class has a maximum element.

Lemma 5. Let S be an F -restriction semigroup. Then S is proper. Consequently, S is 
necessarily a monoid with the identity being the maximum projection.

Proof. For a ∈ S let m(a) be the maximum element in the σ-class of a. Assume that 
a σ b and a+ = b+. Then m(a) = m(b) and since a ≤ m(a), b ≤ m(b) we obtain that 
a = a+m(a) = b+m(b) = b. Similarly, one can see that a σ b and a∗ = b∗ imply a = b. �

Recall that the Munn semigroup TY of a semilattice Y is the semigroup of all order-
isomorphism between principal order ideals of Y under composition. This is an inverse 
semigroup contained in I(Y ).

Lemma 6. Let T be a monoid acting partially on the left of a semilattice Y so that 
M(T, Y ) can be formed and let ϕ : T → I(Y ) be the corresponding dual prehomomor-
phism. The following statements are equivalent:

(1) M(T, Y ) is an F -restriction monoid.
(2) dom(ϕt) is a principal order ideal for every t ∈ T .
(3) The image of ϕ is contained in the Munn semigroup TY of Y .

Proof. (1) ⇒ (2). Since (x, s) σ (y, t) holds if and only if s = t and (x, s) ≥ (y, s) holds 
if and only if x ≥ y, we conclude that for every t ∈ T there is a maximum element y ∈ Y

such that (y, t) ∈ M(T, Y ). That is, y is the maximum element for which y ◦ t is defined 
or, equivalently, y is the maximum element of ran(ϕt). Hence, y ◦ t is the maximum 
element of dom(ϕt). The implication (2) ⇒ (1) is proved by reversing the arguments.

The equivalence (2) ⇔ (3) is immediate. �
Corollary 7. A W -product W (T, Y ) is F -restriction if and only if Y has an identity if 
and only if W (T, Y ) is a monoid.
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3.4. Strong partial actions

A left partial action · of a monoid T on a set Y is called strong if the following 
requirement holds.

(S) For all s, t ∈ T and y ∈ Y : if t · y and (st) · y are defined then s · (t · y) is defined.

If the above condition is met, we have s · (t · y) = (st) · y. A strong right partial action
is defined dually. Strong partial actions of monoids were first considered in [18], where 
condition (S) is a part of the definition of a partial action and the term strong is not 
used. They were then studied in [7,9]. If the monoid T is a group, its left partial ac-
tion, as defined by (LP1) and (LP2), is a wider notion than the usual partial action of 
a group [2,13], since the latter has to satisfy an additional requirement: for any g ∈ G

and x ∈ X if g · x is defined, then also g−1 · (g · x) is defined and g−1 · (g · x) = x. A left 
partial action of a group, as defined by (LP1) and (LP2), is strong if and only if it is 
a usual left partial action.

A globalization of a left partial action · of a monoid T on a set Y consists of (i) a left 
partial action ̂· of T on a set Y such that ̂· is isomorphic to · and (ii) a left action ∗ of T
on a superset X ⊇ Y , such that for every y ∈ Y : t ̂· y = t ∗ y whenever t ̂· y is defined. 
Strong left partial actions are precisely the left partial actions that can be globalized 
(easy to verify or see [9]). A similar definition and remark apply to right partial actions.

A dual concept to strongness, antistrongness, arises for partial actions by injective 
maps. Namely, if · is such a left partial action and ϕ : T → I(Y ), t �→ ϕt, is the 
corresponding dual prehomomorphism then the assignment t �→ ϕ−1

t defines a dual 
antiprehomomorphism and thus a right partial action, ◦. It is natural to call · antistrong
if ◦ is strong. If T is a group then its (usual) left partial action is strong if and only if it 
is antistrong, but this is not the case for monoid actions in general.

3.5. Strong partial actions and a condition from [1]

Let S be a proper restriction semigroup. We argue that strongness of the underlying 
partial actions · and ◦ of S/σ on E = P (S) is equivalent to the following condition (EP)r
and its dual condition (EP)l arising in [1].

(EP)r For all s, t, u ∈ S: if s σ tu then there exists v ∈ S with t+s = tv and u σ v.

Proposition 8. Let S be a proper restriction semigroup. Then

(1) S satisfies condition (EP)r if and only if ◦ is strong.
(2) S satisfies condition (EP)l if and only if · is strong.

Proof. (1) Assume first that (EP)r holds and show that ◦ is strong. Let p, q ∈ S/σ and 
x ∈ E be such that x ◦ (pq) and x ◦ p are defined. Let, further, y = x ◦ p and s ∈ pq, 
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t ∈ p be such that x = s+ = t+ and y = t∗. Take any element u ∈ q. By (EP)r there is 
v ∈ q such that t+s = tv. Since t+ = s+, this yields s = tv. Now, letting e = v+, this 
implies t+ = s+ = (tv+)+ = (te)+. Therefore, t = t+t = (te)+t = te and consequently 
v+ = e ≥ t∗ = y. Thus y ◦ q is defined, so that ◦ is strong.

Conversely, suppose that the partial action ◦ is strong and show that (EP)r holds. 
Assume that s, t, u ∈ S are such that s σ tu. Then s+t+ ◦ σ(tu) is defined. Since s+t+ ◦
σ(t) is obviously defined, too, and since ◦ is strong, it follows that (s+t+ ◦ σ(t)) ◦ σ(u)
is defined. Thus there exists v′ ∈ σ(u) satisfying (v′)+ ≥ s+t+ ◦ σ(t) = (s+t)∗. 
Then

(s+tv′)+ = (s+t(v′)+)+ = (s+t)+ = s+t+ = (t+s)+.

Since also s+tv′ σ tu σ t+s, we obtain t+s = s+tv′ = t(s+t)∗v′. Setting v = (s+t)∗v′, we 
have that v ∈ σ(u) and t+s = tv, so that (EP)r holds.

(2) follows by a dual argument. �
We call a restriction semigroup S left extra proper (right extra proper) if the underlying 

left partial action · (respectively, the underlying right partial action ◦) is strong. We call 
S extra proper if both · and ◦ are strong. Proposition 8 shows that this terminology 
agrees with that proposed in [1].

3.6. Strong partial actions and FA-monoids from [4]

It is easy to verify that FA-monoids, considered in [4, Section 9], are precisely the 
ample extra proper F -restriction monoids.

3.7. Partial actions restricting global actions

Let ∗ be an order-preserving left action of a monoid T on a poset X and Y be 
a subset of X, which is an order ideal of X and a meet semilattice under the induced 
order. Furthermore, we assume that the induced partial action of T on Y satisfies axioms 
(A), (B) and (C), so that the semigroup M(T, Y ) can be formed. We additionally assume 
that for every t ∈ T and x ∈ X

if x ≤ t ∗ y, where y ∈ Y, then x = t ∗ z for some z ≤ y. (3.2)

Lemma 9. For any x, y ∈ Y and s ∈ S such that x ◦ s is defined the meet x ∧ s ∗ y exists 
in X and

x ∧ s ∗ y = s · ((x ◦ s) ∧ y),

where ◦ is the right partial action reverse to ·.
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Proof. Since Y is a semilattice and both x ◦ s and y belong to Y , the meet (x ◦ s) ∧ y

exists in Y . Let p = (x ◦ s) ∧ y. Since p ≤ x ◦ s and s · (x ◦ s) is defined, s · p is defined 
and s · p ≤ x. From p ≤ y we have s · p = s ∗ p ≤ s ∗ y and thus s · p is a lower bound 
for x and s ∗ y. Assume that q ≤ x, s ∗ y. Since q ≤ s ∗ y, by (3.2), there is some z ≤ y

such that q = s ∗ z. But z, q ∈ Y , so that q = s · z and z = q ◦ s. Now, q ≤ x implies 
q ◦ s ≤ x ◦ s and so q ◦ s ≤ (x ◦ s) ∧ y = p. This yields q ≤ s · p. We have proved that 
x ∧ (s · y) exists in X and equals s · p = s · ((x ◦ s) ∧ y), as required. �
3.8. Ultra proper restriction semigroups

A left partial action · of a monoid T on a set Y will be called a partially defined 
action2 if for all s, t ∈ T and x ∈ Y the following condition is met:

(PDA) (st) · x is defined if and only if t · x and s · (t · x) are defined.

It is clear that the above condition holds if and only if the dual prehomomorphism 
ϕ : T → PT (Y ) corresponding to · is in fact a homomorphism. We call a restriction 
semigroup ultra proper if its underlying left partial action · is a partially defined action.

Lemma 10. A restriction semigroup S is ultra proper if and only if its underlying right 
partial action ◦ is a partially defined action.

Proof. Assume that · is a partially defined action and show that so is ◦. Let x ∈ P (S)
and s, t ∈ S/σ be such that that x ◦ st is defined. Putting y = x ◦ st we get x = st · y. 
Since · is a partially defined action, t ·y and s ·(t ·y) are defined. Let z = t ·y and u = s ·z. 
Then y = z ◦ t and z = u ◦ s, whence y = (u ◦ s) ◦ t. Thus ◦ is a partially defined action. 
The ‘if’ part follows by symmetry. �

It follows that a left partially defined action of a monoid on a semilattice, satisfying 
axioms (A), (B), (C), is necessarily both strong and antistrong, and we have the following 
inclusions of classes of restriction semigroups:

Proper ⊃ Extra proper ⊃ Ultra proper

Example 11. By Proposition 4 W -products (and in particular semidirect products) of 
semilattices by monoids are ultra proper.

Example 12. Ultra proper restriction semigroups, which are inverse, are precisely semidi-
rect products of semilattices by groups. This is because a monoid homomorphism 
ϕ: G → I(Y ) with G being a group has its image in the unit group of I(Y ).

2 The term partial action would be more appropriate here, but in this paper it has a different meaning.
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Example 13. The free restriction monoid and the free restriction semigroup are ultra 
proper. We verify this, for example, for FRM(A). The underlying left partial action 
of A∗ on Y ′ is given by: t ·B is defined if and only if t−1 ∈ B in which case t ·B = t ∗B. 
Assume that (st) · B is defined. Then t−1s−1 ∈ B. Since B is prefix-closed, we have 
t−1 ∈ B, so that t ·B is defined. Further, t−1s−1 ∈ B implies s−1 ∈ t ·B, so that s · (t ·B)
is defined. Note that the free inverse semigroup and monoid are not ultra proper by the 
previous example.

3.9. Ultra F -restriction monoids

We call a restriction monoid S ultra F -restriction if it is ultra proper and F -restriction. 
This means that the left partial action · underlying S is a partially defined action and 
dom(ϕt) (and then also ran(ϕt)) is a principal order ideal for every t ∈ S/σ, where 
ϕ: S/σ → I(P (S)) is the homomorphism corresponding to ·. In other words, ϕ is 
a monoid homomorphism from S/σ to the Munn monoid TP (S) of the semilattice P (S).

Example 14. The free restriction monoid FRM(A) is ultra F -restriction. This follows 
from Example 13 and the fact that dom(ϕt) is a principal order ideal of Y ′ (recall that the 
order on Y ′ is the reverse inclusion) generated by {1, t1, t1t2, . . . , t1 · · · tn}, where t−1 =
t1 · · · tn and ti ∈ A for all i. Note that FRS(A) is not F -restriction since dom(ϕ1) = Y
is not a principal order ideal.

3.10. An ultra F -restriction cover of a restriction monoid

The construction in this section is inspired by [4] (and an explicit connection with [4]
will be stated later on in Remark 20). Let S be a restriction monoid and A be its 
generating set as a (2, 1, 1, 0)-algebra. Let T = A∗ be the free monoid generated by A (in 
the usual monoid signature (2, 0)). We put E = P (S) and for v ∈ T let v be the value 
of v in S. For v ∈ T and e ∈ E we set

v · e is defined if and only if v∗ ≥ e,

in which case we put v · e = (ve)+.

Lemma 15.

(1) The partial map · is a partially defined action of T on E and the monoid M(T, E)
is ultra F -restriction (note that M(T, E) is even ample since T is cancellative).

(2) The map M(T, E) → S given by (e, v) �→ ev is a surjective projection separating 
(2, 1, 1, 0)-morphism.

Proof. (1) Assume that vw · e is defined and show that w · e and v · (w · e) are defined. 
By assumption, (vw)∗ ≥ e. Therefore,
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w∗ ≥ (v∗w)∗ = (v w)∗ = (vw)∗ ≥ e.

Thus w · e is defined. To show that v · (w · e) is defined, we verify that v∗ ≥ (we)+. We 
note that the latter is equivalent to we = v∗we, which holds because

v∗we = w(v∗w)∗e = w(v w)∗e = we.

Assume now that w · e and v · (w · e) are defined and show that wv · e is defined. By 
assumption, w∗ ≥ e and v∗ ≥ (we)+. Then we obtain that

(vw)∗ = (v∗w)∗ ≥ ((we)+w)∗ = (we)∗ = e.

If both w · e and v · (w · e) are defined, we have

v · (w · e) = (v(we)+)+ = (v we)+ = vw · e.

The remaining axioms of a partial action, as well as that each σ-class of M(T, E) has 
the maximum element, are easy to verify.

(2) We first show that the given assignment preserves the multiplication. Let ◦ be the 
right partially defined action reverse to ·. Then e ◦ v is defined if and only if v+ ≥ e and 
whenever defined it equals (ev)∗. Using this, we calculate, for any (e, v), (f, u) ∈ M(T, E):

(e, v)(f, u) = (v · ((e ◦ v) ∧ f), vu) = ((v(ev)∗f)+, vu) = ((evf)+, vu) �→ (evf)+vu;

evfu = e(vf)+v u = (e(vf)+)+v u = (evf)+vu.

So preservation of the multiplication is verified. It is easy to see that ∗, + and identity 
are preserved, too. That the assignment is projection separating is immediate. �
3.11. An ultra proper cover of a restriction semigroup

Let S be a restriction semigroup and let A be its generating set as a (2, 1, 1)-algebra. 
Let T = A∗ and let ε denote the empty word. Similarly to Section 3.10 (and setting ε

to act as the identity map), one readily constructs a partially defined action · of T
on E = P (S) such that the semigroup M(T, E) can be formed and is ultra proper. 
Furthermore, the map ϕ : M(T, E) → S given by (e, ε) �→ e and (e, v) �→ ev, if v 	= ε, is 
a surjective projection separating (2, 1, 1)-morphism.

The monoid S1 = S ∪ {1}, where 1 /∈ S, becomes a restriction monoid if we set 
1∗ = 1+ = 1. We have that P (S1) = E1 and refer to S1 as the restriction monoid 
obtained from the restriction semigroup S by adjoining an identity element. The set A is 
a generating set of S1 as a (2, 1, 1, 0)-algebra. Applying the construction of Section 3.10
we can construct the monoid M(T, E1) and the cover M(T, E1) → S1. It is easy to see 
that
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M(T,E1) = M(T,E) ∪ (ε, 1)

as a set and, moreover, M(T, E1) is a restriction monoid obtained from the restriction 
semigroup M(T, E) by adjoining an identity element.

3.12. Ultra F -restriction monoids are the monoids Y ∗m T from [4]

In this section we show that a monoid is ultra F -restriction if and only if it is 
(2, 1, 1, 0)-isomorphic to a monoid Y ∗m T considered in [4,8]. We first recall its defi-
nition.

Let T be a monoid and Y a semilattice with identity, ε. Furthermore, let ∗ be a left 
action and • a right action of T on Y such that for all t ∈ T and x, y ∈ Y :

t ∗ (x ∧ y) = t ∗ x ∧ t ∗ y, (x ∧ y) • t = x • t ∧ y • t; (3.3)

(t ∗ x) • t = ε • t ∧ x, t ∗ (x • t) = x ∧ t ∗ ε. (3.4)

The actions ∗ and • are then said to form a double action of T on Y . Let

Y ∗m T = {(y, t) ∈ Y × T : y ≤ t ∗ ε} (3.5)

and define the multiplication on it by

(x, s)(y, t) = (x ∧ s ∗ y, st).

Further, for every (y, t) ∈ X ∗m T we put

(y, t)∗ = (y • t, 1), (y, t)+ = (y, 1).

Proposition 16. (See [4].) Y ∗m T is a proper restriction monoid with identity (ε, 1) and

P (Y ∗m T ) = {(y, t) ∈ Y ∗m T : t = 1}.

The semilattice P (Y ∗mT ) is order isomorphic to Y via the map (y, 1) �→ y; (y, t) σ (x, s)
if and only if t = s and (Y ∗m T )/σ � T via the map σ(y, t) �→ t.

It is natural to ask if the partial action underlying Y ∗mT has some specific properties 
caused by the symmetry of the double action defining it, a question which we now 
consider. Assume that ∗ and • form a double action of T on Y . Define the following 
partial map T × Y → Y :

t · y is defined if and only if y ≤ ε • t in which case set t · y = t ∗ y. (3.6)

For y ∈ Y let y↓ = {x ∈ Y : x ≤ y} denote the principal order ideal generated by y.
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Proposition 17.

(1) The map · is a partially defined action, which satisfies (A), (B) and (C), so that 
we can form the semigroup M(T, Y ). Moreover, M(T, Y ) is an ultra F -restriction 
monoid.

(2) M(T, Y ) and Y ∗m T are equal as (2, 1, 1, 0)-algebras.

Proof. (1) Since · is obtained by restricting a global action ∗, it is a strong partial action. 
To verify (A) and (B), we show that ϕt: x �→ t ·x is an order-isomorphism between (ε •t)↓
and (t ∗ ε)↓. If t · x is defined, we have t · x ≤ t ∗ ε as x ≤ ε and ∗ is order-preserving 
by (3.3). Assume that x ≤ t ∗ ε. Then x = t ∗ (x • t) by (3.4) and thus x = t · (x • t) since 
x •t ≤ ε •t. It follows that x ∈ ran(ϕt), so that ran(ϕt) = (t ∗ε)↓. Assume that t ·x ≤ t ·y. 
As before, we have x = (t · x) • t and y = (t · y) • t. Hence x ≤ y as • is order-preserving 
by (3.3). Since t · (ε • t) is defined for t ∈ T , (C) also holds. We are left to verify that · is 
a partially defined action. Assume that ts ·y is defined. Since y ≤ ε • ts = (ε • t) •s ≤ ε •s, 
the element s · y is defined. Then t · (s · y) is defined, too, because · is strong.

(2) Let ◦ be the right partial action converse to ·. Observe that x ◦ t is defined if and 
only if x ≤ t ∗ ε, which implies that M(T, Y ) = Y ∗m T as sets. It is immediate that their 
unary operations and the identity elements coincide. We verify that the multiplications 
coincide, too. For this, we verify that x ∧ s ∗ y = s ∗ (x • s ∧ y) whenever x ≤ s ∗ ε:

s ∗ (x • s ∧ y) = s ∗ (x • s) ∧ s ∗ y by (3.3)

= x ∧ s ∗ ε ∧ s ∗ y by (3.4)

= x ∧ s ∗ y since x ≤ s ∗ ε. �
In the opposite direction, let · be a partially defined left action of a monoid T on 

a semilattice Y satisfying axioms (A), (B), (C) such that the monoid M(T, Y ) is ultra 
F -restriction. We aim to construct a double action of T on Y . Let ◦ be the right partially 
defined action converse to ·. For t ∈ T we let dt, rt ∈ Y be the top elements of dom(ϕt)
and ran(ϕt), respectively.

For each t ∈ T and y ∈ Y we set

t ∗ y = t · (y ∧ dt), y • t = (y ∧ rt) ◦ t. (3.7)

Proposition 18.

(1) The maps ∗ and • form a double action of T on Y . Consequently, we can form the 
monoid Y ∗m T .

(2) Y ∗m T and M(T, Y ) are equal as (2, 1, 1, 0)-algebras.

Proof. (1) First, we verify that ∗ is an action. Let t, s ∈ T and y ∈ Y . To show that 
ts ∗ y = t ∗ (s ∗ y) we need to verify that
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ts · (y ∧ dts) = t · (s · (y ∧ ds) ∧ dt).

By (PDA) s · (y∧dts) and t · (s · (y∧dts)) are defined and the left hand side of the above 
equality equals t · (s · (y ∧ dts)). So the needed equality is equivalent to the equality

s · (y ∧ dts) = s · (y ∧ ds) ∧ dt.

Denote the left hand side of the above equality by A and the right hand side by B. Since 
t ·A is defined, we have A ≤ dt. Further, since ts · dts is defined and ts · dts = t · (s · dts), 
we obtain dts ≤ ds. Then A ≤ s · (y ∧ ds), so that we have proved the inequality A ≤ B.

To prove that B ≤ A, we let x = B ◦s. Since B ≤ dt, it follows that t ·(s ·x) is defined, 
so that ts ·x is defined which implies x ≤ dts. Since s ·x = B ≤ s · (y∧ds), it follows that 
x ≤ y ∧ ds. Therefore, x ≤ dts ∧ y ∧ ds = y ∧ dts, whence B = s · x ≤ s · (y ∧ dts) = A, as 
required. That • is an action is established similarly.

Let t ∈ T and x, y ∈ Y . The first equality in (3.3) holds:

t ∗ (x ∧ y) = t · (x ∧ y ∧ dt) = t · ((x ∧ dt) ∧ (y ∧ dt))

= t · (x ∧ dt) ∧ t · (y ∧ dt) = t ∗ x ∧ t ∗ y.

The second equality is verified similarly.
For the first equality in (3.4) we calculate:

(t ∗ x) • t = (rt ∧ t · (dt ∧ x)) ◦ t

= (t · (dt ∧ x)) ◦ t since t · (dt ∧ x) ≤ rt

= dt ∧ x;

(ε • t) ∧ x = (ε ∧ rt) ◦ t ∧ x = dt ∧ x.

The second equality is verified similarly.
(2) It is immediate that Y ∗m T and M(T, Y ) are equal as sets and that their unary 

operations and identities coincide. We only verify that the multiplication in Y ∗m T

coincides with that in M(T, Y ). This reduces to verifying that x ∧s ·(y∧ds) = s ·(x ◦s ∧y)
whenever x ◦ s is defined:

x ∧ s · (y ∧ ds) = s · (x ◦ s) ∧ s · (y ∧ ds)

= s · (x ◦ s ∧ y ∧ ds)

= s · (x ◦ s ∧ y) since x ◦ s ≤ ds. �
Remark 19. Let M(T, Y ) be an ultra F -restriction monoid defined by a left partially 
defined action · of T on Y and let ◦ be the right partially defined action converse
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to ·. Let, further, ∗ and • be the actions defined in (3.7). For every t ∈ T define the 
maps

ϕt : d↓t → Y, x �→ t · x; ψt : r↓t → Y, x �→ x ◦ t;
ϕ̃t : Y → r↓t , x �→ t ∗ x; ψ̃t : Y → d↓t , x �→ x • t.

For every x ≤ dt and y ∈ Y we then have:

ϕt(x) ≤ y if and only if x ≤ ψ̃t(y).

Indeed, t ·x ≤ y is equivalent to t ·x ≤ y∧rt, which is in turn equivalent to x ≤ (y∧rt) ◦t. 
Similarly for every x ≤ rt and y ∈ Y :

ψt(x) ≤ y if and only if x ≤ ϕ̃t(y).

This means that the map ϕt is a left adjoint to the map ψ̃t and the map ψt is a left 
adjoint to the map ϕ̃t.

Remark 20. Using the results of this section, we can present the monoid M(T, E) from 
Section 3.10 in the form E ∗m T . It is then easy to verify that it coincides (after a 
change in notation) with the covering monoid considered in the proof of Theorem 7.1 
of [4].

4. Globalization of a strong partial action

Let T be a monoid and · a strong left partial action of T on a semilattice Y satis-
fying axioms (A), (B) and (C). In this section we construct a globalization ∗ of ·. The 
construction is based on a combination of ideas to be found in [18,19]. Let ◦ be the right 
partial action converse to ·.

For (x, s), (y, t) ∈ Y × T we set (x, s) → (y, t) if there is p ∈ T such that s = tp and 
p · x = y. So we have:

(x, tp) → (p · x, t); (x, t) ← (x ◦ p, tp)

whenever p · x or x ◦ p is defined.
Let ∼ be the minimum equivalence relation on Y ×T , which contains the relation →. 

In other words, ∼ is the transitive closure of → ∪ ←. For A, B ∈ (Y × T )/∼ we set 
A ≥ B if there are (x, s) ∈ A and (y, s) ∈ B such that x ≥ y.

Lemma 21.

(1) If A ≥ B and (z, t) ∈ A then there is (u, t) ∈ B where z ≥ u.
(2) The relation ≥ is a preorder on (Y × T )/∼.
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Proof. (1) Let (x, s) ∈ A and (y, s) ∈ B be such that x ≥ y. Since (x, s) ∼ (z, t), 
there is a sequence (x, s) = (x0, s0), (x1, s1), . . . , (xn, sn) = (z, t) in Y × T such that 
either (xi, si) → (xi+1, si+1) or (xi+1, si+1) → (xi, si) for all admissible i. Assume that 
(x, s) → (x1, s1). Then there is a factorization s = s1q such that x1 = q · x. It follows 
that q · y is defined and (y, s) → (q · y, s1). We put y1 = q · y and note that x1 ≥ y1. 
Let now (x1, s1) → (x, s). Then there is a factorization s1 = sp such that x1 = x ◦ p. 
Similarly as before, we get that y ◦ p is defined and (y ◦ p, sp) → (y, s). We put y1 = y ◦ p
and note that y1 ≤ x1. The statement now follows by induction.

(2) Reflexivity of ≥ is obvious and transitivity follows from (1). �
Lemma 22. Let (x, s) ∼ (y, t). Then either both s · x and t · y are defined, in which case 
s · x = t · y, or they are both undefined.

Proof. It is enough to consider only the case where (x, s) → (y, t), since the other case 
then holds by symmetry and the statement follows by induction. Rewriting (x, s) → (y, t)
as (x, tp) → (p · x, t), we see that the claim holds since · is strong. �
Lemma 23. Let A, B ∈ (Y × T )/∼ be such that A 	= B, A ≤ B and B ≤ A. If (x, s) ∈ A

then s · x is undefined. Consequently, no element of the form (x, 1) belongs to A.

Proof. Let (x, s) ∈ A. By Lemma 21 and since A ∩ B = ∅, there are (z, s) ∈ B and 
(y, s) ∈ A such that x � z � y. Assume that s · x is defined. Then by Lemma 22 s · y
is defined and s · x = s · y. It follows that x = (s · x) ◦ s = (s · y) ◦ s = y, which is 
a contradiction. �

Let ≈ be the equivalence on Y ×T given by (x, s) ≈ (y, t) if and only if [x, s]∼ ≤ [y, t]∼
and [y, t]∼ ≤ [x, s]∼, where [x, s]∼ denotes the ∼-class of (x, s). The set X = (Y × T )/≈
is partially ordered with the order induced by the preorder on (Y × T )/∼. By [x, s] we 
will denote the ≈-class of (x, s). We let Y = {[y, 1]: y ∈ Y }.

Lemma 24.

(1) The map θ : y �→ [y, 1] is an order-isomorphism between Y and Y .
(2) Y is an order ideal of X.
(3) Y is a meet semilattice under the induced order on Y and Y is isomorphic to Y as 

a meet semilattice via θ.

Proof. (1) Clearly, θ is surjective. Let x, y ∈ Y . If x ≤ y, we have [x, 1]∼ ≤ [y, 1]∼ by the 
definition of the order on (Y × T )/∼, so that [x, 1] ≤ [y, 1]. Assume that [x, 1] ≤ [y, 1]. 
Then [x, 1]∼ ≤ [y, 1]∼ and Lemma 21 implies that [x, 1]∼ = [z, 1]∼ for some z ≤ y. By 
Lemma 22 we obtain x = 1 · x = 1 · z = z yielding x ≤ y.
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(2) Assume that [x, s] ≤ [y, 1]. Then [x, s]∼ ≤ [y, 1]∼. By Lemma 21 we then obtain 
that (x, s) ∼ (z, 1) for some z ≤ y, which implies (x, s) ≈ (z, 1) and consequently 
[x, s] ∈ Y .

(3) follows from (1) and (2). �
Lemma 25. Let [x, s] = [y, p]. Then [x, ts] = [y, tp] for any t ∈ T .

Proof. Since [x, s]∼ ≤ [y, p]∼, we have [x, s]∼ = [z, p]∼ for some z ≤ y by Lemma 21. 
We show that [x, ts]∼ = [z, tp]∼. Assume that (x, s) → (z, p). This can be rewritten as 
(x, pq) → (q · x, p). But then (x, tpq) → (q · x, tp), which means that (x, ts) → (z, tp). 
The claim that [x, ts]∼ = [z, tp]∼ now easily follows by induction. Therefore, [x, ts]∼ ≤
[y, tp]∼. The opposite inequality can be proved similarly, so that [x, ts] = [y, tp], as 
required. �

Let t ∈ T and [y, s] ∈ X. We set t ∗ [y, s] = [y, ts]. By the preceding lemma this is well 
defined and thus is an order-preserving left action of T on X.

Lemma 26.

(1) The induced left partial action of T on Y is isomorphic to the left partial action ·
of T on Y .

(2) If [x, s] ≤ t ∗ [y, 1] then [x, s] = t ∗ [z, 1] for some z ≤ y.

Proof. (1) Let t ∈ T and y ∈ Y . By Lemmas 22 and 23 we have that [y, t] = [z, 1] for 
some z if and only if t · y is defined. Assume that t · y is defined. Then t ∗ [y, 1] = [y, t] =
[t · y, 1]. Assume that t · y is undefined. Then t ∗ [y, 1] /∈ Y and so the induced partial 
action is undefined on [y, 1].

(2) follows from Lemma 21 and the definition of ∗. �
Proposition 27. Let S be a left extra proper restriction semigroup. Let X be the poset 
and ∗ be the left action of S/σ on X obtained by applying the globalization construction 
to the strong left partial action · underlying S. Then for every x, y ∈ P (S) and s ∈ S/σ

the meet x ∧ s ∗ y exists in X and the multiplication in the semigroup M(S/σ, P (S)) can 
be expressed by the formula:

(x, s)(y, t) = (x ∧ s ∗ y, st).

Proof. By Lemma 26(2) condition (3.2) is satisfied, so the statement follows by 
Lemma 9. �

Proposition 27 provides a globalized version of Theorem 3 and may be considered an 
analogue of the McAlister P -theorem [17,16] for left extra proper restriction semigroups. 
A similar statement can be formulated and proved for right extra proper restriction 
semigroups.
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5. Embedding of an ultra F -restriction monoid M(A∗, Y ) into a W -product

It is natural to look for conditions on the semigroup M(T, Y ), under which the poset X
constructed in the previous section would be a semilattice and the action ∗ would have 
nice properties. In this section we show that this can be achieved if T is a free monoid 
and M(T, Y ) is ultra F -restriction. To be precise, our result is formulated as follows:

Theorem 28. Let T = A∗ be the free A-generated monoid and assume that a left partially 
defined action · of T on a semilattice Y is given such that the semigroup M(T, Y ) can 
be formed and is an ultra F -restriction monoid. Let X and ∗ be the poset and the left 
action of T on X constructed in Section 4. Then

(1) X is semilattice.
(2) The W -product W (T, X) may be formed.
(3) M(T, Y ) embeds into W (T, X).

The remainder of this section will be devoted to the proof of Theorem 28. For v ∈ A∗

by |v| we denote the length of v. The empty word is denoted by 1 and we put |1| = 0. The 
following two lemmas hold under a milder assumption that M(T, Y ) is an ultra proper 
restriction semigroup.

Lemma 29.

(1) Every ∼-class B of Y × T has a unique representative, which we call canonical, of 
the form (x, w) where

|w| = min{|u|: (y, u) ∈ B}.

If (x, w) is a canonical representative and (y, u) ∼ (x, w) then (y, u) = (x ◦ t, wt) for 
some t ∈ A∗.

(2) The equivalences ∼ and ≈ on Y × T coincide.

Proof. (1) Let (y, u) ∈ B and v be the longest suffix of u such that v · y is defined and 
put x = v · y. Due to (PDA), v′ · y is defined for any suffix v′ of v. Let w ∈ A∗ be such 
that u = wv (any of the words w or v may be empty). We have (y, u) ∼ (x, w). Assume 
that (z, r) ∼ (x, w) and show that there is t ∈ A∗ such that z = x ◦ t and r = wt. By the 
definition of ∼, there is a sequence

(x,w) = (x0, w0), (x1, w1), . . . , (xn, wn) = (z, r)

such that for each admissible i we have (xi, wi) → (xi+1, wi+1) or (xi+1, wi+1) → (xi, wi). 
Note that we necessarily have (x1, w1) → (x0, w0) and so (x1, w1) = (x0 ◦ t, w0t) =
(x ◦ t, wt) for some t ∈ A∗. We proceed by induction on n. Assume that (xi, wi) =
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(x ◦ t, wt). If (xi+1, wi+1) → (xi, wi), it is immediate that (xi+1, wi+1) equals (x ◦ ts, wts)
for some s ∈ A∗. Consider now the case where (xi, wi) → (xi+1, wi+1). By assumption 
we have (xi, wi) = (x ◦ t, wt) and then (xi+1, wi+1) = (p · (x ◦ t), q), where p is a suffix 
of wt and q is determined by qp = wt. Note that p must be a suffix of t for if we assume 
that p = w′t with w′ being non-empty, we obtain that w′ · x is defined (since w′t · (x ◦ t)
is defined, t · (x ◦ t) is defined and · is strong), which contradicts the choice of (x, w). 
This proves that (x, w) is canonical, that it is unique and so the claim about the form 
of any element in its ∼-class holds.

(2) We prove that the preorder ≤ on (Y × T )/∼, defined before Lemma 21, is in 
fact an order. Indeed, assume that [y, v]∼ ≤ [x, w]∼, [x, w]∼ ≤ [y, v]∼ and that (x, w)
is a canonical element. Since [y, v]∼ ≤ [x, w]∼, we have that (y, v) ∼ (z, w) for some 
z ≤ x by Lemma 21. Similarly, [x, w]∼ ≤ [z, w]∼ implies that (x, w) ∼ (x′, w) for some 
x′ ≤ z ≤ x. But the latter is possible only if x′ = x since, as we have proved, any element 
in (x, w)∼ has the form (x ◦ t, wt) for some t ∈ A∗. �
Example 30. Let FRM(A) = M(A∗, Y ′) be the free restriction monoid over A. The 
relation ∼ on Y ′ × A∗ is given by (B, v) ∼ (B′, v′) if and only if v ∗ B = v′ ∗ B′, 
where we remind that v ∗ B = {red(vb): b ∈ B}. It follows that [B, v]∼ �→ v ∗ B defines 
a bijection between the sets (Y ′ × A∗)/∼ and Q′. It is easy to see that the order on 
(Y ′ × Z∗)/∼ corresponds to the anti-inclusion order on Q′ under this bijection and the 
canonical elements of Y ′ × A∗ are precisely the elements (B, v) such that either v = 1, 
or, otherwise, z−1 /∈ B with z being the last letter of v. For an arbitrary element (B, v)
the canonical element in its ∼-class is the element (w ·B, u), where w is the longest suffix 
of v such that w−1 ∈ B and v = uw. Recall that the elements of X ′ can be interpreted 
as finite connected subgraphs in the Cayley graph of FG(A) and the elements of Y ′ as 
such subgraphs containing the origin (see [21,22] for details). Then the elements of Q′

correspond to the finite connected subgraphs of the form t ∗C where C ∈ Y ′ and t ∈ A∗. 
If Γ is such a subgraph then the canonical element (B, v) corresponding to it under the 
bijection between Q′ and (Y ′×A∗)/∼ is determined as follows: v the vertex of Γ which is 
the closest to the origin (such a vertex exists since the graph is a tree) and B = v−1 ∗Γ.

Recall that the action ∗ of T on X which globalizes · is given by t ∗ [x, w] = [x, tw]. 
Let the map αt : X → X be given by x �→ t ∗ x.

Lemma 31.

(1) For every t ∈ T ran(αt) is an order ideal of X.
(2) αt : X → ran(αt) is an order-isomorphism.

Proof. (1) Assume that [y, v] ≤ t ∗ [x, w] = [x, tw]. Then [y, v] = [z, tw], where z ≤ x, so 
that [y, v] = t ∗ [z, w].
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(2) It is immediate that ∗ is order-preserving. We now assume that t ∗ [x, w] ≤ t ∗ [y, v]
and show that [x, w] ≤ [y, v]. Let q be the longest suffix of tw such that q · x is defined 
and let tw = pq. Then

[x, tw] = [x, pq] = [q · x, p]

and the element (q · x, p) is canonical. Similarly, [y, tv] = [q′ · y, p′] with the element 
(q′ · y, p′) being canonical, where q′ is the longest suffix of tv such that q′ · y is defined. 
Assume that tv = p′q′. Since [q · x, p] ≤ [q′ · y, p′], there is some z ≤ y such that

[q · x, p] = [q′ · z, p′].

Canonicity of (q · x, p) implies that

(q′ · z, p′) = ((q · x) ◦m, pm)

for some m ∈ T . It follows that

q · x = mq′ · z and pm = p′.

Then we have tw = pq and tv = pmq′. We consider two possible cases:
Case 1. Assume that |p| ≥ |t|. Then |q| ≤ |w| and |mq′| ≤ |v|, which implies that 

w = rq and v = rmq′ for some suffix r of p. Then we have:

[x,w] = [x, rq] = [q · x, r] = [mq′ · z, r] = [q′ · z, rm] ≤ [q′ · y, rm] = [y, rmq′] = [y, v].

Case 2. Assume that |p| < |t|. Then |q| > |w| and |mq′| > |v|. Thus q = kw and 
mq′ = kv for some suffix k of t. Since q · x is defined, w · x is also defined and we have

w · x = (q · x) ◦ k = (mq′ · z) ◦ k ≤ (mq′ · y) ◦ k = (kv · y) ◦ k = v · y.

Therefore, [x, w] = [w · x, 1] ≤ [v · y, 1] = [y, v], which completes the proof. �
From now on we assume that M(T, Y ) is an ultra F -restriction monoid. For v ∈ T

let dv and rv denote the top elements of dom(ϕv) and ran(ϕv), respectively.

Lemma 32. X is a semilattice. The meet on X is calculated by the rule:

[e, v] ∧ [f, u] = [v′ · (e ∧ dv′) ∧ u′ · (f ∧ du′), k], (5.1)

where k is the longest common prefix of v and u and v = kv′, u = ku′.
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Proof. Let [e, v], [f, u] ∈ X. Let, further, k be the longest common prefix of v and u and 
assume that v = kv′ and u = ku′. We put

g = v′ · (e ∧ dv′) ∧ u′ · (f ∧ du′)

and show that [g, k] = [e, v] ∧ [f, u]. To verify that [e, v] ≥ [g, k], it is enough to show 
that [g, k] = [e′, v] for some e′ ≤ e. Since g ≤ v′ · (e ∧ dv′), the element g ◦ v′ is defined 
and g ◦ v′ ≤ e ∧ dv′ . Therefore,

[g, k] = [g ◦ v′, kv′] ≤ [e ∧ dv′ , v] ≤ [e, v].

Similarly, [g, k] ≤ [f, u].
Suppose that [h, t] ≤ [e, v], [f, u], where we assume that the element (h, t) is canonical. 

Then there are e′ ≤ e and f ′ ≤ f such that [h, t] = [e′, v] = [f ′, u]. Since (h, t) is 
canonical, Lemma 29(1) implies that

e′ = h ◦ p, v = tp, f ′ = h ◦ q, u = tq

for some p, q ∈ T . Hence t is a common prefix of v and u, so that k = tl for some l ∈ T

by maximality of k. We also have p = lv′ and q = lu′. Since h ◦ p is defined, h ◦ l and 
(h ◦ l) ◦ v′ are defined and e′ = h ◦ p = (h ◦ l) ◦ v′ by (PDA). Similarly, h ◦ q = (h ◦ l) ◦u′. 
Then

[e′, v] = [h ◦ lv′, tlv′] = [h ◦ l, tl] = [h ◦ l, k].

Since h ◦ p ≤ e and h ◦ p = (h ◦ l) ◦ v′ ≤ dv′ , we obtain h ◦ p ≤ e ∧ dv′ . Therefore,

h ◦ l = v′ · (h ◦ p) ≤ v′ · (e ∧ dv′).

Similarly, h ◦ l ≤ u′ · (f ∧ du′). Therefore, h ◦ l ≤ g, so that [h, t] = [h ◦ l, k] ≤ [g, k], and 
the proof is complete. �

By Lemmas 31 and 32 we may form the W -product W (T, X). As it is shown in 
Section 3.2, we have W (T, X) = M(T, X). To complete the proof of Theorem 28 we 
show that M(T, Y ) embeds into W (T, X). Let ̂· be the left partially defined action of T
on Y isomorphic to · via [y, 1] �→ y. Then the action ∗ is an extension of ·̂ and the 
right partially defined action • reverse to ∗ is an extension of the right partially defined 
action ◦ reverse to ̂·. Therefore,

M(T, Y ) = {([y, 1], t) ∈ Y × T : [y, 1] ◦ t is defined} =

{([y, 1], t) ∈ Y × T : [y, 1] • t is defined and [y, 1] • t ∈ Y } ⊆ M(T,X) = W (T,X). (5.2)

By Proposition 27 we obtain that M(T, Y ) is a (2, 1, 1)-subalgebra of M(T, X).
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Example 33. Consider the free restriction monoid FRM(A) = M(A∗, Y ′). As already 
remarked, the semilattice (Y ′ × A∗)/∼ is order isomorphic to Q′. It is easy to see that 
the action of A∗ on (Y ′ ×A∗)/∼, which globalizes ·, is isomorphic to the action ∗ of A∗

on Q′ given by v ∗ E = {red(ve): e ∈ E}. It follows that the monoid W (T, X) from 
Theorem 28(2) is isomorphic to the monoid W (A∗, Q′) and the embedding of FRM(A)
into W (A∗, Q′), produced by the proof of Theorem 28, coincides with the (left hand 
version of the) embedding constructed by Szendrei in [21].

Remark 34. We remark that Lemma 32 and thus also Theorem 28 can be formulated and 
proved in a slightly more general setting where M(T, X) is an ultra proper restriction 
semigroup and dom(ϕt) is a principal order ideal for all t 	= 1. Examples where this 
setting arises are the free restriction semigroup FRS(A) and also the semigroup M(T, E)
from Section 3.11. The resulting construction of embedding of M(T, E) into a W -product 
then generalizes Szendrei’s embedding of FRS(A) into a W -product [21].

We deduce the following result which is equivalent to the main result of [21], but the 
formulation below emphasizes the fact that the covering semigroups and monoids can 
be chosen ultra proper or ultra F -restriction.

Theorem 35.

(1) Every restriction monoid S = 〈A〉 has an ultra F -restriction (ample) cover 
M(A∗, P (S)) which (2, 1, 1)-embeds into a W -product W (A∗, X).

(2) Every restriction semigroup S = 〈A〉 has an ultra proper (ample) cover M(A∗, P (S))
which (2, 1, 1)-embeds into a W -product W (A∗, X ′).

Proof. (1) follows from Lemma 15 and Theorem 28.
(2) The semigroup M(A∗, P (S)), constructed in Section 3.11, is an ultra proper cover 

of S and is a (2, 1, 1)-subalgebra of the ultra F -restriction monoid M(A∗, P (S)1). The 
latter can be (2, 1, 1)-embedded into a W -product W (A∗, X ′) by Theorem 28. �
6. An embedding of a restriction semigroup into a quotient of W (A∗, X)

Let S = 〈A〉 be a restriction monoid with E = P (S). Let, further, M(A∗, E) be the ul-
tra F -restriction cover of S from Section 3.10 and W (A∗, X) be the W -product, produced 
by the proof of Theorem 28. In this final section we construct a projection separating 
(2, 1, 1)-congruence κ on W (A∗, X) such that S (2, 1, 1)-embeds into W (A∗, X)/κ. This 
yields a new and simpler proof of the main result of [22] that any restriction semigroup 
embeds into an almost left factorizable restriction semigroup.

We set W = W (A∗, X) and define W1 to be the subset of W consisting of the elements, 
which can be written in the form ([e, p], pq). We may assume that the element (e, p) is 
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canonical as otherwise we have that p = rt and e = f ◦ t, where (f, r) is the canonical 
element equivalent to (e, p), so that ([e, p], pq) = ([f, r], rtq).

We define an auxiliary relation γ on W1 by setting x γ y if and only if

x = ([e, p], pq), y = ([e, p], pr) and eq = er,

where the element (e, p) is canonical. For x = ([e, p], pq) ∈ W1 with (e, p) being canonical 
we put

inv(x) = eq.

For x, y ∈ W we put x κ y if and only if x = y or x, y ∈ W1 and x γ y.

Lemma 36. The relation κ is a (2, 1, 1)-congruence on W .

Proof. It is immediate that this is an equivalence relation. Let x κ y. We may assume 
that x, y ∈ W1 and that x = ([e, p], pq), y = ([e, p], pr), where (e, p) is a canonical element 
and eq = er. It is immediate that x+ = ([e, p], 1) = y+. We show that x∗ = y∗. We have

x∗ = ([e ◦ q, 1], 1), y∗ = ([e ◦ r, 1], 1).

The elements (e ◦ q, 1) and (e ◦ r, 1) are clearly canonical. The needed equality follows 
from

e ◦ q = (eq)∗ = (er)∗ = e ◦ r.

We now show that κ is stable with respect to the multiplication on the left and on 
the right. Let z = ([f, a], b) ∈ W . We first show that xz κ yz. Applying (5.1) we write

xz = ([e, p] ∧ [f, pqa], pqb) = ([e(qaf)+, p], pqb]). (6.1)

Note that

e(qaf)+ = (e(qaf)+)+ since x+ = x for x ∈ E

= (eq af)+ by (2.4)

and similarly e(raf)+ = (er af)+. Since eq = er, it follows that e(qaf)+ = e(raf)+, let 
us denote this element by e′. Then

xz = ([e′, p], pqb) ∈ W1 and yz = ([e′, p], prb) ∈ W1.

Let p = p1p2 be a factorization such that the element (p2 · e′, p1) is canonical. We have
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inv(xz) = (p2 · e′)p2qb

= (p2e
′)+p2qb

= p2e
′q b by Lemma 1(2)

and similarly inv(yz) = p2e
′r b. Our assumption that x κ y and the inequality e′ ≤ e

imply the equality e′q = e′r. We obtain that xz κ yz.
We now show that zx κ zy. We have

zx = ([f, a], b)([e, p], pq) = ([f, a] ∧ [e, bp], bpq).

Let c be the longest common prefix of a and bp, so that a = ca′ and bp = cb′. Then

[f, a] ∧ [e, bp] = [(a′f)+(b′e)+, c],

and thus

zx = ([(a′f)+(b′e)+, c], cb′q) ∈ W1.

Substituting q with r in the above calculation for zx, we obtain

zy = ([(a′f)+(b′e)+, c], cb′r) ∈ W1.

Let c = kl, where the element (l · ((a′f)+(b′e)+), k) is canonical. Then

inv(zx) = (l(a′f)+(b′e)+)+lb′q

= l(a′f)+(b′e)+b′q by Lemma 1(2) since l(a′f)+(b′e)+ ≤ l

= l(a′f)+b′eq by Lemma 1(2) since b′e ≤ b′.

Hence inv(zx) = inv(zy), so that zx κ zy, as required. We have verified that κ is 
a (2, 1, 1)-congruence on W . That κ is projection separating is immediate from its defi-
nition. �
Theorem 37. (See Szendrei [22].) Every restriction semigroup is (2, 1, 1)-embeddable into 
a (2, 1, 1)-morphic image of a W -product of a semilattice by a monoid.

Proof. Let S = 〈A〉 be a restriction semigroup and M(A∗, E) the ultra proper cover 
of S from Section 3.11. As it is explained in Section 3.11, by adjoining an identity 
to M(A∗, E) we obtain an ultra F -restriction monoid M(A∗, E1), and M(A∗, E) is 
a (2, 1, 1)-subalgebra of M(A∗, E1). Let W = W (A∗, X) be the W -product produced 
by the proof of Theorem 28 out of the monoid M(A∗, E1) and κ be the congruence 
on W constructed in this section. The definition of κ implies that ([x, 1], s) κ ([y, 1], t) if 
and only if xs = yt. Since the quotient of M(A∗, E) over this congruence is isomorphic 
to S, the latter embeds into W/κ. �
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