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1. Introduction

The term Leibniz algebra was introduced in the study of a non-antisymmetric analogue
of Lie algebras by Loday [32], being so the class of Leibniz algebras an extension of the
type of Lie algebras. However this kind of algebras was previously studied under the
name of D-algebras by D. Bloh [11-13]. Since the 1993 Loday’s work many researchers
have been attracted by this category of algebras, being remarkable the great activity
in this field developed in the last years. This activity has been mainly focussed in the
frameworks of low dimensional algebras, nilpotence and physics applications (see [2,5,8,
15-18,21-23,25,27,30,37,38]).

Definition 1. A Leibniz algebra L is a linear space over a base field F endowed with a
bilinear product [-, -] satisfying the Leibniz identity

[y, 2], 2] = [ly, z], 2] + [y, [2, z]],
for all x,y,z € L.

In presence of anti-commutativity, Jacobi identity becomes Leibniz identity and there-
fore Lie algebras are examples of Leibniz algebras. Throughout this paper F will be
algebraically closed and with zero characteristic.

Let L be a Leibniz algebra. The ideal I generated by the squares of elements of the
algebra L, that is I is generated by the set {[z,z] : © € L}, plays an important role in
the theory of Leibniz algebras since it determines the (possible) non-Lie character of L.
From the Leibniz identity, this ideal satisfies

[L,1] = 0.

The quotient algebra L/I is a Lie algebra, called the corresponding Lie algebra of L, and
the map

Ix LTI, (1)

(i, [2]) = [i, 2],
endows I with a structure of L/I-module (see [4,34]). Observe that we can write
L=Va&l (2)
where V' is a linear complement of I in L and V is isomorphic as linear space to L/I.

From here, Leibniz algebras give us the opportunity of treating in an unifying way a Lie
algebra together with a module over the Lie algebra.
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On the other hand, we recall that Heisenberg (Lie) algebras play an important role
in mathematical physics and geometry, in particular in Quantum Mechanics (see for
instance [1,10,20,26,28,29,33]). Indeed, the Heisenberg Principle of Uncertainty implies
the non-compatibility of position and momentum observables acting on fermions. This
non-compatibility reduces to non-commutativity of the corresponding operators. If we
represent by  the operator associated to position and by % the one associated to mo-
mentum (acting for instance on a space V of differentiable functions of a single variable),
then [z, %} = 1y which is non-zero. Thus we can identify the Lie subalgebra generated
by 1, T and % with the three-dimensional Heisenberg algebra whose multiplication table
in the basis {1, 7, %} has as unique non-zero product [z, ;%] =1.

For any non-negative integer k the Heisenberg algebra of dimension n = 2k+1 (denoted
further by H,,) is characterized by the existence of a basis

B:{ijh_w"afk?d_} (3)

for 1 <i<k.

In the present paper we are focusing in introducing and studying several classes of
Leibniz algebras whose corresponding Lie algebras are Heisenberg algebras H,,. Recall
that there is a unique irreducible representation of the Heisenberg algebra (at least
a unique one that can be exponentiated). This is why physicists are able to use the
Heisenberg commutation relations to do calculations, without worry about what they
are being represented on. This representation is called the Fock (or Bargmann-Fock)
representation (see [3,9,31,35,36,40]). Physically this representation corresponds to an
harmonic oscillator, with the vector 1 € C[z] as the vacuum state and T the operator
that adds one quantum to the vacuum state. This representation is also sometimes
known as the oscillator representation. For a given Heisenberg algebra H,, n = 2k + 1,
this representation gives rise to the so-called Fock module on H,, the linear space F :=
Flx1,..., 2] of all of the polynomials, with coefficients in F, in the variables z1, ..., 2y
with the action induced by

(p(zla"'azk)ai) = p(xla"'axk)
(p(xl,...,mk),fi) = xp(T, ..., o) (4)
(p(mh"-axk);éii) — 5%1(])(131,,33;@))

for any p(x1,...,x;) € Flzy,...,z;]and i =1,... k.
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Although the Fock module is infinite dimensional, it admits a Z-graduation F = @ F;,

being all of the homogeneous spaces finite-dimensional. This is also a highest-wzeight
representation of H,,. We also note that F is also a Verma module for H,. A rigorous
development of the representation of H, on the Fock module is due to Bargmann and
Segal, see [6,7,39].

We have also to mention that the notion of Fock space was introduced in [24], being
used in quantum mechanics to construct the quantum states space of a variable or
unknown number of identical particles from a single particle Hilbert space H. A Fock
space, in an informal way, is the sum of a set of Hilbert spaces representing zero particles
states, one particle states, two particle states, and so on.

Taking now into account the above comments, we introduce in Section 2 the class
of Heisenberg—Fock Leibniz algebras as those Leibniz algebras whose corresponding Lie
algebras are H,, and whose H,-modules I are isomorphic to Fock modules, and provide
a classification theorem. Thus, we have the opportunity of considering Heisenberg Lie
algebras together with their Fock representations in a unifying viewpoint. In this section
we also consider a generalization of this class of algebras by means of a direct sum
of Heisenberg algebras as corresponding Lie algebras, and provide also a classification
theorem.

In Section 3, we focus our attention on the three-dimensional Heisenberg algebra Hs,
by studying three classes of Leibniz algebras with H3 as corresponding Lie algebra and
considering certain generalizations of the Fock module. We also note that Sections 2
and 3 allow us to introduce several new classes of infinite-dimensional Leibniz algebras.

Finally, in Section 4, we deal with the class of Leibniz algebras with H,, as corre-
sponding algebra and such that the action I x H,, — I gives rise to a minimal faithful
representation of H,,. We provide a full description of this family of algebras and also a
classification theorem for the case in which n = 3.

2. Classification of Heisenberg—Fock type Leibniz algebras
2.1. Classification of HFL,

Consider a Heisenberg algebra H,,, with n = 2k +1, and its Fock module F[z1, ..., z)]
under the action (4). The Heisenberg—Fock Leibniz algebra HFL,, is defined as the Leib-
niz algebra with corresponding Lie algebra H,, and such that the action I x H,, — I
makes of I the Fock module. That is, the H,-module I under the action (1) is iso-
morphic, as H,-module, to the above described Fock module. Since F[xy,...,x] is
infinite-dimensional we get a family of infinite-dimensional Leibniz algebras.

Theorem 1. The Heisenberg—Fock Leibniz algebra HFL, admits a basis

gl

ool 2l |t e NU{0}, 1<i<k}

- 5
1 L
{ s Lty 51'1',
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in such a way that the multiplication table on this basis has the form:

7 2 =1, 1<i<k
[(fwﬂfz]: 1, 1 <1<k,
[2ak? ol T =alal a2l

(22 al T = 2 ...xﬁflle”lxﬁf Lz, 1<i<k,
[

th 0.1 _ 4. ..t1 tio1 _t;—1_ tit1 tr .
iy .t sl =ty e T e g, 1<i <k,

where the omitted products are equal to zero.

Proof. Taking into account Equations (2) and (4) we conclude that

- 5
{1,@,5—7 el x|t e NU{0}, 1<i<k}
T

is a basis of HFL,, and

t1 to tr 71 _ .t1..t2 tr
[@l'wy? . ook 1] = 2 ay? . oxph,

t1 ,.t2 ty =1 _ .t1 ti—1 ti+1 tit1 tr
(w1 2 T = 2y e T gk

ty to th 0.1 _ 4. .t tio1 ti—1, tit1 ty
[aV'as’ .. oyt sl = tiay' o e T

for 1 <i<k.
Observe that we can write

@i
[3

T

,T]:pi(xl,xg,...,xk), 1<i<k‘,
7HZQi(x1am27"'axk); ISZSIC,

i
) =r(zy, 20, .., 78),

=l

where p;, q;,r € Flzq, ..., zg].
Taking the following change of basis,

x_i/:x—i_pi(xth?'”?mk)? 1§Z§k7
— 7 —
) ) )
o1 _E—Qi($1,$2,~~~,$k), 1<i<k,
T’:T—r(ml,xg,...,xk),
we derive
8

[x_i’ﬂzoa [5_?T]207 [T7T]:0, 1<i<k.
Z;
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Now denote

(T3, 75| = a; j(z1, 22, ..., 21), [5(;,%}:bi’j(l'l,l'g,...,ﬂfk), 1<i4,5<k,

52 T) = cig(@n,waymy), [T 5] = i, wa, ), 1<i,j <k, i#j,
[z, 51]:T+6i($1,$2,---,$k), [51,_1-}:fTwai(xl,xQ,...,xk), 1<i <k,

1, 7] = hi(z1, 22, ..., 78), 1, 5i]:9i($17$27-~-,$k~), 1<i<k.

The Leibniz identity on the following triples imposes further constraints on the prod-
ucts.

Leibniz identity Constraint

{77,7;,1} = a;j(@1,T2,...,25) =0, 1<4,j<k,
{%,%,T} = bij(zi,@2,..25) =0, 1<4,j <k,
{5775, 1} = cij(m,ma,. . ,mk) =0, 1<, <k i#j
T 1 = dig@nma,.w) =0, 1<65 <k i#],
{x_i,(%j} = ei(z,20,...,2,) =0, 1<i<k,
{(%,x_ij} = filz,20,...,2,) =0, 1<i<Ek,

{1, 7,1} = hi(z1,29,...,25) =0, 1<i<Kk,

{1, éi,i} = gi(z1,29,...,24) =0, 1<i<k

The proof is complete. O
2.2. Classification of generalized Heisenberg—Fock Leibniz algebras

In this subsection we are interested in classifying the class of (infinite-dimensional)
Leibniz algebras formed by those Leibniz algebras L satisfying that their corresponding
Lie algebras are finite direct sums of Heisenberg algebras and that the actions on I are
induced by Fock representations.

Since

L/I = Hop 41 ® Hopyr1 ® Hapa1 @ -+ O Hap 41, (5)
we easily get

56 5

, e,
01, 02 O, i

Bi = {1:,%T1:, T2, Thy i

} (6)

for the standard basis of Ho, 41,4 € {1,2,...,s}.
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We put
I =Flzy,..., 2], (7)
where n = k1 + ko + - + ks.
The action
IXL/T—1T
given by

(p(xla"'axn)a]-_i) — p(xl,"'>xn)
(p(l'l,...,l’n),.f i) = p(xh'"7xn)xk1+k2+"'+ki—1+j

(p(xla"wxn)a(;wj’i) = mp(l‘laaxn)

for any p(z1,...,2,) € Flzy,...,2,] and (4,7) with ¢ € {1,2,...,s}, 7 € {1,...,ki},
endows I with a structure of L/I-module. Hence, we get a new family of Heisenberg—Fock
type Leibniz algebras which generalize the previous ones considered in §2.1 (case s = 1),
that we call generalized Heisenberg—Fock Leibniz algebras, by introducing the algebras
L=L/I®I with L/I and I as in Equations (5) and (7). We will denote them as

HFLog, +1,2k541,...,2k,+1-

Our aim is to classify this class of Leibniz algebras.

By taking into account the previous arguments, it is clear that for any ¢ € {1,2,..., s}
we have [Hak, 1, Hog;+1] C Hak,+1 being the multiplication table among the elements
in the basis B; as in Theorem 1. Therefore, we only need to study the products
(Hog, 1, Hop, 1] with 4,5 € {1,2,...,s} and i # j.

Lemma 1. Let a € B; and b € B, i,j € {1,2,...,s} with i # j. Then [a,b] = 0.

Proof. For i # j we have [a,b] = p and [b, 1;] = ¢ for some p,q € Flz1,...,z,]. Taking

i
now into account Theorem 1 we derive [a,1;] = 0 and so

p = (la,0], 1] = [[a, L], 8] + [a, [, L;]] =0. O

The next theorem is now consequence of Theorem 1 and Lemma 1.

Theorem 2. The Leibniz algebra HFLog, 41 2k,+1,... 2k, +1 odmits a basis (see Equa-
tions (6) and (7))

BiUBoU -+ - UBU{alt ol - - xfe | t; e NU {0}, 1< i <n},
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where n = k1 + ko4 - -+ ks, and in such a way that the multiplication table on this basis
has the form:

= 0 -1, § = _ _T.
[%,u 5%!] =1, [536“ 7553,1] = —1;,
th_t T ot :
w0 a2l Ti) = a2l el . xly
P M S ;
t1 .t by = 1 — b1 gtk g bi—1 Tlpdodheg g+ R1toobkg oy it tn
[V 5" Tyl = @1 L Tk et Tk b a4 T

= tr . i t . —1 ty . ;
t1 ta tr & . . t1 ki+tki _1+i—1 kit tk; _1+3 ki+-tk; _1+i+1 tn
[w1' 25" . 2y M,‘,J iR T N N

for1<i<s,1<j<k; and where the omitted products are equal to zero.

3. Several generalizations of the Fock representation for the 3-dimensional Heisenberg
algebra

In this section we consider several generalizations of the Fock representation of the
Heisenberg algebra Hj. First, we study when an extension of the Fock action F[z] x Hz —
Flz], (see Equation (4)), by allowing arbitrary polynomials as results of the action of a
fixed element in the basis {1,7, %} of Hs over the elements of F[x], makes of F[z] an
Hjs-module. Second, the new Hsz-modules obtained in this way give rise to new classes
of Leibniz algebras that will be described.

For any linear mapping  : F[z] — F[z], consider the linear space F[z] with the action
induced by the following applications:

1 Flz] x H3 — Fla] Yo Flz] x H3 — Flz]
(p(x), 1) = Q(p(x)) (p(x), 1) = p(x)
(p(x),7) = zp(z) (p(2),7) = Qp())
(p(z), ) — Zp(@) (p(z), %) — 2=p()

Us: Fla]x Hy — Fla]

(p(z),1) +— p(x)
(p(z),7) = xp(z)
(p(z), ) — Qp(x))

for any p(z) € Flz].

From now on, let us denote by {z'};enufo} the standard basis of F[z]. By consid-
ering ¥1 (p(z), [T, %])7 it is immediate to get that the first action 17 makes of F[z] an
Hz-module if and only if = 1p(,). As a consequence we get the following result.
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Proposition 1. The Leibniz algebras obtained from the first action 1, are the same as
those obtained in Theorem 1.

Consider now the second action 1, : Flz| x Hs — Flz].

Proposition 2. The action 5 makes of Flx] an Hz-module if and only if
Lo
O(2%) = i+l ( ) i—k 8
() =2 + kZ:Ock B )2 (8)

where {ck }renuqoy s a fized sequence in F and (;) are binomial coefficients.

Proof. Suppose F[z] is an Hz-module through the action 5. Then we have

v = T =l [ o)) = (17 o]~ [, 27 = (16,7, 2] — i
and so
0,7, 2] = + i 7 o

Taking into account Equation (9), we can easily prove by induction (8). Indeed, for
i = 0 we get from (9) that [[1,Z], g] 1, which implies [1,Z] = z + ¢ = Q(1). For
i = 1 the same equation allows us to get [[z,Z], 5‘;] =z + [1,Z] = 22 + ¢y and so
[,7] = 2% + cox + 1 = Q(x).

Let the induction hypothesis true for ¢ = j and we will show it for ¢ = j + 1. Taking
into account (9) we have

A = A A A . J i
[271,3], &) = 27+ [(+ a7, 7] = 23+ + G+ D@ + 3 a(] )oi ) =
k=0

) J ] )
= G2 1 3 e+ () )aik =
k:_O k

. i —_—
= (j+2)z9t + kz cp(j+1) k!(jjik)ng b=
c=0

. . J IS i
= G+ 227+ 3 i+ 1 - Rl
From here
Jj+1

I+ ] = it (j+1)! JHl—k 42 (J+1) 1k
2777 = +Z Rl _|_1_k)x T =2 +Z r ’
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that is,

4 R L
Q@ﬁ4*:ﬂ+z+g;%< k Ja 1

The converse is of immediate verification. O

Proposition 3. Any Leibniz algebra obtained from the second action o admits a basis

L7, = }0{a' 11 e NU{0})

in such a way that the multiplication table on this basis has the form:

T =af,  [2,7] = Q@), [of&] =i
z2l=1 [&.3]=-1,

where the omitted products are equal to zero and Q(x%) satisfies Equation (8).

Proof. By Proposition 2 we have the restriction on Q(z%). On the other hand, we know

[0, 1] = 2, [m",?] = Q(a), (2%, 2] =iz' ",
71 =p@), Eg=T+ew), 57 =al),

[ U =7(),  [5 5] = 0(@), [%’,f = —1+s(2),
1,7] = c(x), [1,1] = d(=), 1, 2] =e(x)

By making the change of basis T =T 4 ¢(z) we can suppose that [Z, %] =1.
Now, from Leibniz identity we obtain the following equations:

Leibniz identity Constraint

{1,1, T} = c¢(z) = [d(z),7],

ALE) = elo)= &),

{T.7, %) = [e(2),7] = g5 (c(@)) - d(2),
#17) = a(x) = p(x). 7],

ELE = dw) = L),

{z.7, 3} = pla) +c(z) = 3 (a(x)),

{3 1.7} = s(z) = d(z) + [r(2), 7],

ELEY = )= ),

{35 T 5} = [b(2),7] = —e(z) = r(z) + g (al2))
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By making the next change of basis:

— _
I =T1- ()
T :E_px%

— _

% :%—T({E),

we obtain the family of the proposition. O

Finally we consider the third action 3 : F[z] x Hs — F[z], being then

By arguing in a similar way to Propositions 2 and 3 we can prove the next results.
Proposition 4. The action 13 makes of F|x] an Hz-module if and only if
Qz") =iz + 2'c(x) (10)
for a fized c(z) € Flz] and i € NU{0}.
Proposition 5. Any Leibniz algebra obtained from the third action 3 admits a basis
{1,=, %}U{mi 11 € NU{0}}

in such a way that the multiplication table on this basis has the form:

',

=z, 7] =", [, 2] = Q@)

1
a%]:T7 [%75]:_17

)

where the omitted products are equal to zero and Q(x%) satisfies Equation (10).
4. Heisenberg type Leibniz algebras with minimal faithful representation
4.1. General case
Let Hom41 be a Heisenberg algebra of dimension 2m + 1, then it is well-known that
its minimal faithful representations have dimension m + 2, (see [14]). From now on, for

a more comfortable notation, we will denote by

{m17$25'"7xm7y1ay27"'7ymaz}



438 A.J. Calderén et al. / Journal of Algebra 452 (2016) 427—447

the standard basis of Ha, 1, (see Equation (3)), where the non-zero products are
[yi, 2i] = —[zi, ys] = 2.
By [19], we can take as minimal faithful representation the linear mapping
v : Hopy1 — End(1),

where I is an (m + 2)-dimensional linear space with a fixed basis {e1,ea,...,emi2},

determined by

o(x;) = F1,i11 1<i<m,
0(yi) = Eix1mt2 1 <i<m,
QO(Z) = El,m+2-

Here E; ; denotes the elementary matrix with 1 in the (¢, j) slot and 0 in the remaining

places and we have ¢([z,y])(e) = ¢(y)(p(x)(e)) — () ((y)(e)) for any a,y € Hap
and e € I. Observe that Hap41 corresponds to the (m + 2) x (m + 2) matrices

0 a2 a3 ... amyr c
0o 0 o0 ... 0 b
0o 0 0 ... 0 b3
000 0 ... 0 bpu
0O 0 0 ... 0 0

This representation makes of I an Hs,,+1-module under the action

¢: Ix Homer — 1
(eit1,;) — el <i<m, (11)
(em+2,¥i) + e€ip1, 1<i<m,

(em+2,2) — e,

being zero the remaining products among the bases elements in the action.

In this section we are going to study the Leibniz algebras (L, [-,-]) satisfying that
L/I = Hy,,y1 and where the Ha,,41-module I is isomorphic to the minimal faithful rep-

resentation (I, ¢). From the above, dimL = 3m+ 3 and {z1,Z2, ..., Tm,Y1,Y2,- - - s Ym, 2,
€1,€2,...,Emyt2} is a basis of L. We also have
leir1, xi] = e, 1<i<m,

[em+2,Yi] = €ip1, 1 <1< m,

[em—2,2] = e€1.
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Theorem 3. Let L be a Leibniz algebra such that L/T = Hapmiq (m # 1) and I is the
L/I-module with the minimal faithful representation given by Equation (11). Then L
admits a basis

{331,332,.. -7€m+2}

s Tmy Y1, Y25 - - -5 Ym, Z5, €1, €2, - -

in such a way that the multiplications table in this basis has the form

leiv1, i) = eq, [emt2, Yi] = €it1,

m+1
[em+2, 2] = e1, [z, ] = X0 of jes,
s=1
m
(i, y;] = vijer, i# ], [2i,ys] = —2 + diex + Tea + 3 Vi jeoy1,
s=2
[y, y;] = Bijer, [y1,71] = 2,

m—+1

i, zj] = 3 Vi i€ss TF ] i+l
s=1

[yi, z:] =z + (Vi,l

m )
+ Z (V;,—gl - V%,s)es-i-la [ 7£ 1,
s=2 s#1

[2,2:] = vf jer, i # 1,

i+1
7')62 +e; et

[Zaxl] = T€q,

Jor 1. <4,j < m, where any oy, ;s Vp.q»Ops T, Vp g Bp.gs € € F. The omilted products are
equal to zero.

Proof. We consider the following products:

m—+2
[yi,xi]:z—i—Zsfek, 1<i<m.
k=1
m+2
Putting 2’ = z+ Y e¥es we can assume [y;, 1] = 2. Thus, we have
k=1
leir1, 23] = ex, [emt2, Y] = €it1, [em+2, 2] = e1,
m+2 5 m-+2 5 . ) m—+2 i
[zi, 5] = > Oy €k [zi,yi] = > Vi,5€k> T #J |yl =—2+ 3 6ex,
k=1 k=1 k=1
m—+2 & m—+2 & m—+2 & ) )
[fEi,Z] = Z 7 €k, [ylvy]] = Z Bi,jekv [y’wxj} = Z Vi7jek7 1 #]7
k=1 k=1 k=1
m—+2 m—+2 )
[yiaz] = Z efeka [yhml] =z, [yi;mi] =z+ Z E?@]@, 1 7é 1)
k=1 k=1
m+2 m+2 m+2

2,2l = 32 tlen,
k=1

with 1 <i,j < m.

[Zayl] = Z A']L'Cekv
k=1

[2,2] = 3 p¥ex,
k=1
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We compute all Leibniz identities using the software Mathematica and we get the
following restrictions:

Leibniz identity Constraint
{z, 2,y } = pmt2 =2t =, 1<k<m,
{2, 2,21} = pFtl = ’7',:1+2 0 1<k<m,
{5, 2} = M=o, pl =N =N, 1< k<m, j#k,
{z,2j, 21} = TJ]»H_l gH, 1<j,k<m,
{vir 2,0} = 07T =g =0, 1<i,jk<m,
{yi, 2,21} = =00t 1<ik<m, i#k,
= 0 -l =0, ut =67, 1<i<m, k=1,
{vi, v, 2a} = Bt =vt =0, 1<i,jok <m, j#k#i,
= 9}:5331, 05 =0, 1<i,j<m, k=j, i#Jj,
2<s<m+1,
= Bt =Nl SN R0, 1<i i <m, i #1,
= A§+1=07 i=1,j#1,
= 0;=0, 3<s<m+1,i=73=k=1,
{viszi,vi} = =B, I<i<m,
{yi g, en} = ’fjl E 1<ijk<m, j£i#k,
= 1 =0, Tk—l—EkH 22120, 2<s<m+1, 1 <ik<m,
j=i#k,
= 7=} 1<ji<m,i=k=1, j#1,
{zi, 2, Yk} = n?”rz 'yZ’,jQ—O, 1<ik<m, i#k,
= o=, 1<i<m, i=k,
{zi, 2,21} = nf“ = a;’fkﬂ, 1<ik<m,
{@i, i, yr } = A\, =0, 1<k<m,
{zi, 5,y } = v,’ijl—a?,ﬁ—o, 1<ijk<m,i#j#k
= st =0, L<ik<m, j=i#k,
= vz;lfo, 1<ij<m, k=j#4,
= nl=-1r+57 p3 =0, 2<s<m, 1<i<m, j=k=i,
{25, 9} = ;=0 1<ijk<m, i#k#j,
= b =91 1<i,j<m, k=j#i,
{xi, xj, x5} = ozkjl = ozz}:l, 1<4,5,k<m.
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From here,
[61‘4_1,%1‘}:61, 1§i§m,
[€m+2,Yi] = €it1, 1<i<m,
[em+27 Z] = €1,
m—+1
[, zj] = > a; es, 1<i4,7 <m,
s=1
[yz7y]] :ﬂil’j61+0i16j+17 1 S’Lmj va
[zi, y;] = i jer + miejia, 1<i,j<m, i#j
m
[h»yl] =-—z+ 6%61 + (77% + 7—11)62 + Z V12,ses+17 1<i< m,
5=2
m
[z, yi] = =2+ 8ler +riea + (nf + 07 )eii + 2 viesqn, 2<i<m,
s=2 s#1
[yl;xl] =z,

iz =z+eter + (W — e +ei e+ > (i —vi e, 2<i<m,

7,8

5=2 s#£i
[yi, 2] =m§j:111/f,jes, 1<id,j<m, i#]
[xi72]=n;1, 1<i<m,
[yi, 2] = 0}ex, 1<i<m,
[2,71] = Tier,
[z,2i] = V%,ielv 2<i<m,

with the following restrictions

k+1 _ g+l o
a i =00, 1<i,5,k<m,

ket +1 o oo
viit=vly, 1<i g k<m, j#i#k

Only rest to make the next change of basis

/o 1 .

Ty = T — 1N; €m+2, 1< <m,
/o 1

Y1 =y1 — O1emy2,

y; =Y — €}€j+1 - 9‘71‘6777,4-27 2 < ] < m,

and we obtain the family of the theorem (renaming the parameters). O
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4.2. Particular case: classification of Leibniz algebras when m =1

In this subsection we classify the Leibniz algebras such that L/I = Hjz and I is the
L/I-module with the minimal faithful representation given by Equation (11). Let us fix
{z,y, 2, e1,ea,e3} as basis of L. All computations have been made by using the software
Mathematica.

We have the following products:

lea, z] = e, les,y] = le3, 2] = e,

[z, 2] = a1e1 + ages + azes, [r,y] = —2 + d1e1 + daea + d3e3, [z, 2] = nre1 + naes + nses,
ly,y] = Bre1 + Baea + PBaes, [y, z] = ly, 2] = O1e1 + Ozez + O3es,
[z,2] = Tie1 + Taea + T3€3,  [2,y] = Ae1 + Aaea + Ages, [2, 2] = p1eq + paes + pses.

The Leibniz identity on the following triples imposes further constraints on the prod-

ucts.
Leibniz identity Constraint
{z,z,y} = —m =710 Q3—MN2=Ty —T3=Ts,
{z, 2,2} = a3 =72,
{z.,y,2} = =103 p2=-n3, p3=0,
{y,v,2} = pPs=063=0,
{y,z,y} = —th =X — B2, —th=2NX, —03=2A3
{y,z, 2} = =02, p2=0,
{z,2,y} = 1 =A2, P2 =T,
{z,2,2} = g =73,
{2y, 2} = A =0,
{z,z,x} = 12 = as,
{z, 2,9} = =103, p2=-ns.

Thus, we get the following family of algebras, L(aq, s, as, 81, B2, 01, 02,m1,01):

ez, 2] = eq, [es, y] = ea, les, 2] = e1,

[z, 2] = are; + ages + ages, [x,y] = —z+ d1e1 + daea, [z, 2] = mer + aszes,
[y, y] = Bre1 + Baez, ly,z] = 2, [y, z] = e,
[z,7] = (02 —m)er — 2aze2,  [z,y] = (B2 — Oh)ex

Theorem 4. Let L be a Leibniz algebra such that L/I = Hjz and I is the L/I-module with
the minimal faithful representation given by Equation (11). Then L is isomorphic to one
of the following pairwise non-isomorphic algebras:
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L(o,1,0,1,0,0,0,1,A), AeF, L(0,1,0,1,0,0,0,0,1), £L(0,1,0,1,0,0,0,0,0),
L(0,1,0,0,0,0,0,1,)), xeF, L(0,1,0,0,0,0,0,0,1), L(0,1,0,0,0,0,0,0,0),
L(0,0,0,1,0,0,0,1,1), L(0,0,0,1,0,0,0,1,0), L(0,0,0,1,0,0,0,0,1),
L(0,0,0,1,0,0,0,0,0), L(0,0,0,0,0,0,0,1,1), £(0,0,0,0,0,0,0,1,0),
L(0,0,0,0,0,0,0,0,1), L(0,0,0,0,0,0,0,0,0), L(0,0,1,1,0,0,0,1,)), A €T,
L(0,0,1,1,0,0,0,0,1), L(o,0,1,1,0,0,0,0,0), L(0,0,1,0,0,0,0,1,1),
L(0,0,1,0,0,0,0,1,0), L(o0,0,1,0,0,0,0,0,1), L(0,0,1,0,0,0,0,0,0).

Proof. We can distinguish two cases:
Case 1: e3 € [L, L]. Then a3 = 0.
Applying the general change of basis generators:

3 3

a' = Ajx + Ayy + Asz + ZPiei, y' = Bix + Byy + B3z + Z Qi€is
k=1 k=1
3
ey = Cix + Coy + C3z + Z Rie;
k=1

we derive the expressions of the new parameters in the new basis:

O/ - OélA%BQ — QQA%BS + 52A1A332 + AlBQPQ + Angpg O/ o OKQA%
te A, B2 © 27 ByRy’
ﬂ/:@ 5,25232-*-@3
VT ARy 2 Ry
5 — B2A3B2 + 61 A1 By + A1Q2 + A3Qs s — 02 A1 + Ps
! A1ByR3 ’ 2 Ry 7
,mAL+ D , _ 01Ba+ Q3
= R—g’ 1= R—3’

and the following restrictions:

Ci=Cy=C3=B1=A4,=0,

AsR3
R — 2378
5 Al )
A, ByRs £ 0.
We set
P; = —52A1 = 5& = O,
Q3 = —B2B3 = fB3=0,
Q2= —01B> = 01=0,
Py — (a1By — a2 B3) A4 = al =0,

B;
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then we get

where

CYQA%

/
a, = —1L
27 ByRy’

8 =

A1R3’
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e, y] = e2, [es, 2] = ex,
[x,y} ==z [33,2] = 7711617
[y, 2] = z, [y, 2] = O1e1,
[2,y] = —01e1,
,_ (m—02)A o (61 — B2) B>
m Rg ’ 1 Rg .

We observe that the nullities of as, 51, 11, 61 are invariant. Thus, we can distinguish

the following non-isomorphic cases. An appropriate choice of the parameter values (Aj,

Bs and R3) allows us to obtain the following algebras or families of algebras.

‘Case ‘Algebra ‘
as #0, 1 #0, m1 #0, L(0,1,0,1,0,0,0,1,A), A € F,
ag #0, f1#0, ;1 =0, 6; #0,|L(0,1,0,1,0,0,0,0,1),
as #0, f1 #0, ; =0, 6, =0,|L(0,1,0,1,0,0,0,0,0),
as £0, f1 =0, m1 #0, L(0,1,0,0,0,0,0,1,\), A €T,
as #0, f1 =0, ; =0, 6, #0,|L(0,1,0,0,0,0,0,0,1),
as #0, 1 =0, =0, 6, =0,|L(0,1,0,0,0,0,0,0,0),
as =0, 1 #0, m1 #0, 6; #0,|L(0,0,0,1,0,0,0,1,1),
as =0, 1 #0, ;1 #0, 6, =0, L(0,0,0,1,0,0,0,1,0),
as =0, /1 #0, ; =0, 6, #0,|L(0,0,0,1,0,0,0,0,1),
as =0, /1 #0, ; =0, 6, =0, | L(0,0,0,1,0,0,0,0,0),
as =0, /1 =0, ;m #0, 6, #0,|L(0,0,0,0,0,0,0,1,1),
as =0, f1 =0, ;m #0, 6, =0,|L(0,0,0,0,0,0,0,1,0),
as =0, f1=0,n =0, 6; #0,|L(0,0,0,0,0,0,0,0,1),
as =0, f1=0,m =0, 6, =0, L(0,0,0,0,0,0,0,0,0).

Case 2: e3 ¢ [L, L]. Then a3 # 0. Making the following change of basis in L(a1, as, as,

B1, B2, 01,02,m1,01)

A
eh =
eh =
el =

aie; + ager + ases,
a3€2,
Qas3€q,
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we obtain L(0,0,1, 81, B2, 01, 62,m1,61):

[e2, 7] = e, [e3,y] = e2, [es, 2] = e1,

[CL’,.’E] = €3, [xvy] :_Z+6161+52627 [I,Z] :77161+62a
[yvy] = /6161 + 5262; [y»x] = <, [yvz] = 9161;

[ [

Analogously to the previous case, by making the general change of basis of generators
3 3
¥ = Aiw+ Agy + Az + Y Pies, Yy =Biz+ Bay+ Bsz+ Y _ Qiey,
k=1 k=1

we derive the expressions of the new parameters in the new basis:

g = DB g = D282+ Qs
1 — Ail), ) 2 — A% )
5 — BaA3B3 + A1 B + 01 A1 B3 + A1 BoQy + A3 BoQs3 5 — —A1B3+02A1B2 + Ba P
1 — ) 2 — )
A3B2 A3B,
,  —A1B3+mA1By + BaP3 ,  01By+ Q3
m= AQB ) 01 - T,
152 1

with the restriction:

A2 =B = 07
A1 By # 0.
By putting
A{(Bs — 63B
o 1(Bs 2B3) 8 =0,
By
Q3 = —p2B2 = p5=0,
B2 + §, B2
Qr=-2 12 L g,
By
we deduce
[6271'] = €1, [63,9] = €2, [6372] = e,
[x,l’] = €3, [x,y] = —Zz, [.’E,Z} :771614‘627
[yay] = ﬂiela [y,fl'] =z, [yaz} = 9/161,
[z,2] = —nier — 2e2, [z,y] = —01eq,
where
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We observe that the nullities of 51, 71, 61 are invariant. Thus, we can distinguish
the following non-isomorphic cases. An appropriate choice of the parameter values
(A; and Bs) allows us to obtain the following algebras or families of algebras.

|Case |Algebra

B1#0, m #0, L(0,0,1,1,0,0,0,1,A), A € F,

B1#0, ;m =0, 8+£0,|L(0,0,1,1,0,0,0,0,1),

B1#0, ;m=0,6=0,|L(0,0,1,1,0,0,0,0,0),

B1=0,m#0, 8+#0,|L(0,0,1,0,0,0,0,1,1),
( )
( )
( )

/81:()’ 77175()’ 9207 LO7O7170a070a07170a
ﬂlZOa 771:Oa 97&07 L0a071707070a07071a
pf1=0,m=0,6=0,|L(0,0,1,0,0,0,0,0,0).

The proof is complete. O
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