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Quantum walled Brauer—Clifford (r, s)-bead tangle algebra BT, s(¢). Finally, we define the no-
superalg.ebra tion of g-Schur superalgebras of type Q and establish their
Queer Lie superalgebra basic properties.

Centralizer algebra . .
Bead tangle algebra © 2015 Published by Elsevier Inc.

g-Schur superalgebra

Introduction

Schur—Weyl duality has been one of the most inspiring themes in representation the-
ory, because it reveals many hidden connections between the representation theories of
seemingly unrelated algebras. By the duality functor, one algebra appears as the cen-
tralizer of the other acting on a common representation space. Many interesting and
important algebras have been constructed as centralizer algebras in this way.

For example, the group algebra CXj of the symmetric group ¥j appears as the cen-
tralizer of the gl(n)-action on V®* where V = C" is the natural representation of the
general linear Lie algebra gl(n). Similarly, Hecke algebras, Brauer algebras, Birman—
Murakami—Wenzl algebras and Hecke—Clifford superalgebras are the centralizer algebras
of the action of corresponding Lie (super)algebras or quantum (super)algebras on the
tensor powers of their natural representations.

There are further generalizations of Schur—Weyl duality on mixed tensor powers. Let
V™S = VO @ (V*)®5 be the mixed tensor space of the natural representation V of gl(n)
and its dual space V*. The centralizer algebra of the gl(n)-action on V™* is the walled
Brauer algebra B, s(n). The structure and properties of B, ;(n) were first investigated in
[1,12,20]. By replacing gl(n) by the quantum enveloping algebra ,(gl(n)) and V = C”
by V4 = C(g)", we obtain as the centralizer algebra the quantum walled Brauer algebra
studied in [3,4,7,11,14]. Super versions of the above constructions have been investigated
with the following substitutions: Replace gl(n) by gl(m|n), C* by C™I"); s(,(gl(n)) by
U, (gl(m|n)); and C(q)" by C(q)™™ as in [15,16].

The Lie superalgebra q(n) is commonly referred to as the queer Lie superalgebra
because of its unique properties and the fact that it has no non-super counterpart.
Its natural representation is the superspace (Zs-graded vector space) V = C™n) . The
corresponding centralizer algebra Endg,,)(V®") was studied by Sergeev in [19], and it is
often referred to as the Sergeev algebra. Using a modified version of a technique of Fadeev,
Reshetikhin and Turaev, Olshanski introduced the quantum queer superalgebra ih,(q(n))
and established an analogue of Schur-Weyl duality. That is, he showed that there is a
surjective algebra homomorphism pj, , : HC,.(q) — Endq(,)(V®"), where HC,(q) is the
Hecke—Clifford superalgebra, a quantum version of the Sergeev algebra. Moreover, pj,  is
an isomorphism when n > r.

On the other hand, in [13] Jung and Kang considered a super version of the walled
Brauer algebra. For the mixed tensor space V¢ = V& @ (V*)®$ one can ask, What
is the centralizer of the q(n)-action on V™*? In order to answer this question, they
introduced two versions of the walled Brauer—Clifford superalgebra, (which is called the
walled Brauer superalgebra in [13]). The first is constructed using (r, s)-superdiagrams,
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and the second is defined by generators and relations. The main results of [13] show that
these two definitions are equivalent and that there is a surjective algebra homomorphism
pr®  BCp s = Endgeny (V™?), which is an isomorphism whenever n > r + s.

The purpose of this paper is to combine the constructions in [18] and [13] to deter-
mine the centralizer algebra of the ,(q(n))-action on the mixed tensor space Vi* :=
V?T@)(VZ)@S. We begin by introducing the quantum walled Brauer—Clifford superalgebra
BC, s(¢) via generators and relations. The superalgebra BC, s(q) contains the quantum
walled Brauer algebra and the Hecke—Clifford superalgebra HC,.(¢) as subalgebras.

We then define an action of BC, s(¢) on the mixed tensor space Vi>* that supercom-
mutes with the action of £l;(q(n)). As a result, there is a superalgebra homomorphism
Py s BCrs(q) = Endy, (q(n))(V5®). Actually, defining such an action is quite subtle and
complicated, and we regard this as one of our main results (Theorem 3.16). We use the
fact that BC, , is the classical limit of BC, s(¢) to show that the homomorphism pz’fq is
surjective and that it is an isomorphism whenever n > r + s (Theorem 3.28).

We also give a diagrammatic realization of BC, s(q) as the (r, s)-bead tangle algebra
BT, s(¢). An (r, s)-bead tangle is a portion of a planar knot diagram satisfying the condi-
tions in Definition 4.1. The algebra BT, s(¢) is a quantum deformation of the (r, s)-bead
diagram algebra BD,. ¢, which is isomorphic to the walled Brauer—Clifford superalgebra
BC, s (Theorem 2.9). Modifying the arguments in [10], we prove that the algebra BT, s(q)
is isomorphic to BC, s(¢) (Theorem 4.19), so that BC, s(¢) can be regarded as a diagram
algebra.

In the final section, we introduce q-Schur superalgebras of type Q and prove that the
classical results for ¢-Schur algebras can be extended to this setting.

1. The walled Brauer—Clifford superalgebras

To begin, we recall the definition of the Lie superalgebra q(n) and its basic properties.
Let I={+i|i=1,...,n}, and set Zy = Z/2Z. The superspace V = C(n|n) = C" & C"
has a standard basis {v; | i € I}. We say that the parity of v; equals |i| := |v;|, where
lv;l=11if i <0 and |v;] =01if i > 0.

The endomorphism algebra is Zs-graded, Endc(V) = Endc(V)o @ Endc(V)1, and has
a basis of matrix units F;; with —n < 4,7 < n, i # 0, where the parity of E;; is
|Eij| = |i| + |j] (mod2). The general linear Lie superalgebra gl(n|n) is obtained from
Endc(V) by using the supercommutator

[X,Y] = XY — (-)X Wy x

for homogeneous elements X,Y. The map ¢ : gl(n|n) — gl(n|n) given by E;; — E_; _;
is an involutive automorphism of gl(n|n). Let J = >"""_ (Eq o — E_4.4) € gl(n|n).

Definition 1.1. The queer Lie superalgebra q(n) can be defined equivalently as either
the centralizer of J in gl(n|n) (under the supercommutator product) or the fixed-point
subalgebra of gl(n|n) with respect to the involution ¢.
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Identifying V with the space of (n|n) column vectors and {v; | 7 € I} with the standard
1
basis for the column vectors, we have J = (_ I o) and q(n) can be expressed in the

matrix form as

A B
{ ( B A) ‘ A, B are arbitrary n x n complex matrices} .

Then ¢(n) inherits a Zs-grading from gl(n|n), and a basis for q(n)o is given by E2, =
Eap+ E_q4—p and for q(n); by EL, = B,y + E_qp, where 1 < a,b < n.

The superalgebra q(n) acts naturally on V by matrix multiplication on the column
vectors, and V is an irreducible representation of q(n). The action on V extends to one
on V& by

k

g(vi, @+ @v;,) Z (|vL1 [+ +lvi; |)|9|U ® RV, ®gu,; BV, ® @ Vg,
j=1

(1.2)

where ¢ is homogeneous. It also extends in a similar fashion to the mixed tensor space
Vs .= VO @ (V*)®5 where V* is the dual representation of V, and the action on V*
is given by

(gw)(v) := —(=1)!lw(gv)

for homogeneous elements g € q(n),w € V*, and v € V. We assume {w; | i € I} is the
basis of V* dual to the standard basis {v; | i € I} of V.

In an effort to construct the centralizer superalgebra Endg,)(V"?), Jung and Kang
[13] introduced the notion of the walled Brauer—Clifford superalgebra BC, 5. The super-
algebra BC, ; is generated by even generators si,...,Sr—1, Sy4+1,-- -, Sr4s—1, €rr4+1 and
odd generators ¢y, ..., ¢,1s, which satisfy the following defining relations (for 7, j in the
allowable range):

812 = 1, §iSi4+18; = Si+1S5iSi+1, SiSj = SjSi (|Z — ]‘ > 1),
eiﬂ_l =0, erpp18; =58jerpp1 (JFT—1Lr+1),
Err4+1 = €rr41Sr—1€rr4+1 = €rr41Sr4+1€r 141,
Sr—18r4+1€rr4+1Sr4+18r—1€rr4+1 = €r r41Sr—18r4+1€r r4+1Sr4+18r—1,
=-1 (1<i<r), =1 (r+1<i<r+s), ccj=—cjc; (i#7),
8iCiSi = Cit1, 8¢ =¢;s (J# 4,1+ 1),
Créror41 = Cr41€r 141, €rr4+1Cr = €rr4+1Cr41,

Crr4+1Crerryel1 = 07 €rr4+1Cj = CjCr r41 (] 7é T+ 1) (13)
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For1<j<r—1,r4+1<k<r4+s—1,1<I<r,and r+1<m <r+s, the action
of the generators of BC, s on V™ (which is on the right) is defined as follows:

(Vi, ® - OV, QWi ® - QW ,,) 5

= (=D)lllisnly, @... @ Vi, ® Vi, ®Vi, @V, Wy,
('Uil @ OV, QWi ®"'®wir+s) Sk

= (_1)IikHik+1|Uz'1 @ QWi QWi @ Wiy, @ Wiy 1yt D Wi,y s
(0, ® - ®V;, QWi @ - Qi) Errtl

n
= 51‘,,,21,.“(—1)'"‘ Z Vi @ - QUi QU QWi QWi y r QWi

i=—n
(Vi) ® -+ QU;, QWi @+ Qwi,,.)
— (_1)|i1|+‘..+\ilfllvil ® @iy, ®Jv, @V, @ Qi .,
(Uil ® - Qi Qws, ., ®"'®wir+s) Cm

= (71)|i1|+.“+‘im71‘vi1 Q- Wi —1 ® JTwim ® Wi 11 Q- Wirts)

where JT is the supertranspose of J, and the supertranspose is given by EZ-Tj =
(—1)(|i‘+|j|)|i|Eﬁ. By direct calculation, it can be verified that this action of the gen-
erators gives rise to an action of BC, s on V"*. Thus, there is an homomorphism of
superalgebras,

pi : BCpy — Endg(V7%)°P,

The next theorem, due to Jung and Kang [13], identifies a basis for BC, 5. In stating
it and some subsequent results, we use the following notation: For a nonempty subset
A={a < - < ap}of {1l,...;7+ s}, let ca = cq, - Ca,,, and set ¢y = 1. Let
€pq = gpewﬂgo’l, where ¢ = 541+ 8,418p - Sp—1for 1 <p<randr+1<g<r+s.

Theorem 1.4.

(i) The actions of BC,. s and q(n) on V™* supercommute with each other. Thus, there
is an algebra homomorphism p;;® : BC,. s — Endg(,,)(V"*)°P.
(ii) The map pl»*® is surjective. Moreover, il is an isomorphism if n > r + s.
(iii) The elements

CP€pi,q1 """ €pa,qa 0CQ

such that
(1) 1<p1<---<pa <75
(2) r+1< ¢ <r+s,i=1,...,a, are all distinct;
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(B) ced, x>, o p1) < <o pa); and
(4) PC{p1,--»pa}, QC{1,....7Ju{r+1,....r +sP\{o Hq1),-..,07(qa)}
comprise a basis of BC, 5.

(iv) dime BC, s = 2" (r + )L

2. The (r, s)-bead diagram algebra BD,. ,

In this section, we give a new diagrammatic realization of the walled Brauer—Clifford
superalgebra BC, ;.

Definition 2.1. An (r, s)-bead diagram, or simply a bead diagram, is a graph consisting of
two rows with r + s vertices in each row such that the following conditions hold:

(1) Each vertex is connected by a strand to exactly one other vertex.

(2) Each strand may (or may not) have finitely many numbered beads. The bead num-
bers on a diagram start with 1 and are distinct consecutive positive integers.

(3) There is a vertical wall separating the first r vertices from the last s vertices in each
row.

(4) A wertical strand connects a vertex on the top row with one on the bottom row, and
it cannot cross the wall. A horizontal strand connects vertices in the same row, and
it must cross the wall.

(5) No loops are permitted in an (r, s)-bead diagram.

The following diagram is an example of a (3, 2)-bead diagram.

Beads can slide along a given strand, but they cannot jump to another strand nor
can they interchange positions on a given strand. For example, the following diagrams
are the same as (2, 1)-bead diagrams.

while the following diagrams are considered to be different
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%

An (r,s)-bead diagram having an even number of beads is regarded as even (resp.
odd). Let éf)m be the superspace with basis consisting of the (r, s)-bead diagrams. We
define a multiplication on E?I/DT,S. For (r, s)-bead diagrams d;, d2, we put d; under ds and
identify the top vertices of d; with the bottom vertices of ds. If there is a loop in the
middle row, we say dids = 0. If there is no loop in the middle row, we add the largest
bead number in d; to each bead number in ds, so that if m is the largest bead number in
dy, then a bead numbered i in ds is now numbered m + 4 in dyds. Then we concatenate

the diagrams. For example, if

dq

then

dids = : Lol =

Observe that éTDm is closed under this product. If the number of beads in d; (resp.
dz) is my (resp. mg) and didy # 0, then the number of beads in didz is my + mao.
Hence, the multiplication respects the Zs-grading. Let dy,d2,ds € BAE)T,S. Note that the
connections in (dydy)ds and dy(dads) are the same. The strands where the beads are
placed and the bead numbers are also the same in (dids)ds and dy(dads). Therefore,
(di1d2)ds = d1(dads3). The identity element of élva is the diagram with no beads such
that each top vertex is connected to the corresponding bottom vertex.
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Forl<i<r—1, r+l<j<r+s—1 1<k<r, r+1<I<r+s let BD), be
the subalgebra of ﬁ)h s generated by the following diagrams:

A i+ 1
S; =
)
j J+1
S; =
)
1 r .r+1 r—+ s
€rri1 = :
SN ’
k .
Ck:: ...l E o e
. )
l
C; =

Assume L is the (two-sided) ideal of BD;ﬁS generated by the following homogeneous

elements,

ci+1 (1<k<r), ¢f—1 (r+1<1<r+s), and

cicj+cijc; (1<i#j<r+s), (2.2)

and let BD,. s be the quotient superalgebra BD;. /L. We say that BD,., is the (r, s)-bead
diagram algebra, or simply the bead diagram algebra. For simplicity, we identify cosets in

BD, s with their diagram representatives and make the following identifications in BD, s:
k , k

o
El
Il
|
I
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! , !

Ks)
|
I

- — = —C4C;.

Our aim is to prove that the walled Brauer—Clifford superalgebra BC,. s is isomorphic

to BD,. ;. Towards this purpose, we adopt the following conventions:

(i) The vertices on the top row (and on the bottom row) of a bead diagram are labeled
1,2,...,7r 4+ s from left to right.
(ii) The top vertex of a vertical strand or the left vertex of a horizontal strand is the
good vertex of the strand.
(iii) A bead on a horizontal bottom row strand is a bead of type I. All other beads are
of type II.

We construct a bead diagram d from the bead diagram d by performing the following
steps:

(1) Keep the same connections between vertices as in d.

(2) If the number of beads along a strand is even, delete all beads on that strand. If
there is an odd number of beads on a strand, leave only one bead on it. Repeat this
process for all strands in d. (Hence, there is at most one bead on any strand of g)
Associate to each remaining bead the good vertex of its strand.

(3) Renumber (starting with 1) the beads of type I according to the position of its good
vertex from left to right.

(4) Let m be the maximum of bead numbers after Step 3. Renumber (starting with
m + 1) the beads of type II according to the position of its good vertex from left to
right.

The resulting diagram is d. Since the definition of d depends only on the number of
beads along a strand and the good vertices of strands having an odd number of beads,

d does not change when we slide beads along a strand, so d is well defined.
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Example 2.3. If d is as pictured below

then

Next we assign a nonnegative integer v(d) to the bead diagram d in the following way:

(1) Assume the bead numbers of type I'in d are 1 < n; < 72 < --- < 1. Let a; be
the label of the good vertex of the strand in d with the bead n;. This determines a
sequence ay,...,ap. Let £1(d) == [{(4,k) | j <k, a; > ar}l.

(2) Assume the bead numbers of type Il in d are 1 < ¥; < ¥ < -+ < ¥,. Let b; be
the label of the good vertex of the strand in d with the bead ¥;. This determines a
sequence by, ..., by Let lo(d) := [{(j, k) | j <k, bj > bi}].

- V{je{l,...,p}aj:z'}\

® Lot () =3 .
not greater than x.

’" {|{je{1,...,q}|bj=i}|J.

, where |x| denotes the largest integer

(4) Let pa(d) = ; 9

(5) For each bead n;, its passing number counts the number of beads ny, such that n; > n,
when 7; moves to the good vertex of its strand. Let p;(d) be the sum of the passing
numbers for all ny,...,np.

(6) For each bead ¥, its passing number counts the number of beads ¥y with ¥ < 9,

when ¥, moves to the good vertex of its strand. Let ps(d) be the sum of the passing

numbers for all ¥1,...,9,.
(7) For each bead ¥;, count the number of beads n; such that n; > ¥;; then let ¢(d) be
the sum of those numbers for all beads 91, ...,9,.
r+s ‘{ . R
. ]E{l,...,q}|b3—’t}’
(8) Let a(d) := 42 5 .
i=r+1

(9) Now set 3(d) := £1(d) + £2(d) + p1(d) + p2(d) + p1(d) + p2(d) + c(d) and y(d) :=
B(d) + a(d).
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Since the definition of «(d) depends only on the bead numbers, the number of beads
on a strand, and the good vertex of a strand having a bead, y(d) is well defined. All
values including §(d), a(d), and hence ~(d), are nonnegative integers.

Example 2.4. Consider the bead diagram d in Example 2.3. Three beads 2), 3), ®) are of
type I, and the rest are of type II. The sequence of labels for the good vertices obtained
in Step 1 (resp. Step 2) is a1, a9,a3 = 2,2,2 (resp. by,...,bg = 1,2,2,3,6,3,6,4,6). From
these sequences we see that

01(d) =0, lo(d) =3, pi(d) =1, pa(d) =2, and a(d) = 1.

When the bead (2) moves to the good vertex on its strand, it must pass the two beads
@), 6. When the beads (3) and (6) move to that same good vertex, they do not have
to pass a bead with a larger label. Hence p;(d) = 2. Similarly ps(d) = 2, since only the
beads (9) (passing (7)) and (0 (passing ®)) contribute to pa(d).

Only the following beads contribute to ¢(d): bead (D) with @), 3), 6) and beads @
and (B) with (6). Therefore, ¢(d) = 5.

Consequently, 8(d) =3+1+2+2+2+5=15, a(d) =1, and v(d) = 16.

The set of (r, s)-bead diagrams without any beads or horizontal strands forms a group
under the multiplication defined in éf)m which is isomorphic to the product 3, x ¥, of
symmetric groups. In what follows, we identify that group with X, x 3¢ but use boldface
when we are regarding an element of Y, x ¥, as a diagram. We adopt the following
conventions analogous to those for the basis elements of BC,. 5, but here we are using the
generators for the subalgebra BD%S of éIVDnS:

For a nonempty subset A = {a; < -+ <ap}of {1,...,7}U{r+1,...,r+s},set cy :=
Cay ***Cq,,, and let cg = 1. Let €, , := e, 19, where ¢ = 8,1 -Sp11Sp - Sp_1
forl<p<randr+1<q¢g<r-+s.

Lemma 2.5.
(i) For a bead diagram d, the associated diagram d has an expression of the form

CP€pi.q1 " " ©pa,qa TCQ>

where
() 1<pi < <pa <r;
2)r+1<qg<r+s,i=1,...,a, are all distinct;
(3) o €T, xX, o (p1) < - <o pa); and
(4) PCprreropal, QC {Le s b U{r+ 1+ s o (@), 0 g}
Hence, d € BD;,S.
(ii) v(d) =0 if and only if d = d. In particular, 'y(g) =0 for all bead diagrams d.
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Proof. (i) A diagram without beads can be written as a product e, 4, - - - €p, 4,0 Which
satisfies conditions (1), (2), and (3). Indeed, a is the number of horizontal strands in d.
The number p; (resp. ¢;) is the label of the good vertex (resp. right vertex) of the ith
horizontal bottom row strand from left to right. The number o=1(p;) (resp. o~ (¢;)) is
the label of the good vertex (resp. right vertex) of the ith horizontal top row strand from
left to right. For example,

From Steps 3 and 4 of the construction of d from d, we have d = CP€p, g1 " €p,.q.TCQ,
where P is a set of labels for the good vertices of strands with beads of type I, and @ is
a set of labels for the good vertices of strands with beads of type II in d. Since we can
slide a bead to the good vertex on its strand, condition (4) above can be satisfied.

(ii) (=) From the assumption that vy(d) = 0, we have that p;(d) = p2(d) = a(d) = 0.
Hence, there is at most one bead on each strand in d. Since ¢(d) = 0, the bead numbers
of the beads of type I are less than all the bead numbers of the beads of type II. From
¢1(d) = £5(d) = 0, we deduce that the sequence of good vertices for the stands with beads
of the same type are arranged in increasing size. That is, the good vertex having the
smaller label is connected to the strand with the bead having the smaller bead number.
From these properties, we determine that nothing is changed when d is constructed from
d, so that d=d.

(<) It is gnough to argue that 'y(c?) = 0. By Step 2 of the construction of 67, we have

p1(d) = pa(d) = a(d) = 0. Also, since there is at most one bead on each strand in d,
p1(d) = pa(d) = 0. By Steps 3 and 4, we see that ¢(d) = ¢1(d) = ¢2(d) = 0. As a result,

B(d) = a(d) = 0, and hence v(d) =0. O

Example 2.6. For the diagram d in Example 2.3, we have p;1 = 2,p2 = 4,91 = 5,q2 = 6,
0 = 82818586, 0 1(2) = 3,071(4) = 4,071(5) = 7,074(6) = 5, P = {2}, and Q =
{1,4,6}. Consequently, d = coez 5€4,652515556C1C4C6 € BDﬁhg.

Lemma 2.7. The subspace M spanned by {d — (—=1)*Dd | d is a bead diagram in BD,. .}
contains the two-sided ideal L of BD;’S generated by the elements ci + 1,¢7 — 1, and
c;c; +cjc; in (2.2).

Proof. It suffices to show that eci f +ef, ec?f —ef, and ec;c; f + ec;c; f belong to M
for any two bead diagrams e, f € BD'T,S.
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(i) First, we consider ec% f+ef. In constructing the diagram d from a diagram d, we

——

delete an even number of beads along each strand. Therefore, eci f = g]?.

If the product ¢} in ecif creates beads of type I, then pi(ecif) = pi(ef) + 1. In
this case, c(eci f) = c(ef),l1(ecif) = li(ef), and pi(eci f) = pi(ef) mod 2. The other
values la(ec? f), pa(ecs f), pa(ecs f) are the same as €a(ef), p2(ef), p2(ef), respectively.
Thus, B(ecif) = B(ef) + 1 mod 2.

If the product ¢ in ec? f creates beads along a vertical strand on the right-hand side
of the wall, then pa(ecif) = pa(ef). In this case, pa(ecif) = palef) + 1,¢2(ecif) =
la(ef),clecif) = c(ef) mod 2. The other values £, p1,p1 remain the same for ec? f as
for ef. Hence, B(eci f) = B(ef) + 1 mod 2. The other cases can be checked in a similar
manner.

As a consequence,

ectf+ef = ectf — (~1)PCEDeclf 4+ (~1)PCiDectf + ef

= ec2f — (~1)PChNec f 4 ef — (~1)PCNef e M. (2.8)
(ii) To verify ec? f —ef € M, we can show that e/c?jf =ef and Blecif) = B(ef) mod 2

as in (i) and then apply a calculation similar to that in (2.8).
(iii) To argue that ec;c; f + ec;jc;f € M, assume c; creates a bead indexed by a and
c; a bead indexed by a + 1 in ec;c; f. If we switch the beads containing a and a + 1, we
obtain the bead diagram ec;c;f. Since the number of beads along each strand does not

change, ec;c; f = ec;c; f.

We will show that S(ec;c;f) = B(ec;c;f) + 1 mod 2. Suppose the beads created by
c; and c; are of different types, say type I for c¢; and type II for ¢;. Then c(ec;c;f) =
c(ecjc; f) — 1. The other values (1, /s, p1, p2,p1,p2, and « are the same in ec;c;f and
ec;c; f. Hence, f(ec;c; f) = B(ecjc;f) +1 mod 2. The reverse possibility (c; type IT and
c; type I) can be treated similarly.

Now assume both c; and c; create beads of type I. If the beads are on the same
strand, then

pi(ecic; f) = pi(ecjcif) + 1 mod 2,

and the other values do not change. If they lie on different strands, then ¢ (ec;c;f) =
l1(ecjc;f) + 1 mod 2, and the other values are unchanged. Therefore, B(ec;c;f) =
B(ecjc; f) + 1 mod 2. The case that ¢; and c; create beads of type II can be handled
similarly.

Applying a computation like the one in (2.8), we obtain ec;c; f + ecjc;f € M. O

We now prove the main theorem of this section.

Theorem 2.9. The walled Brauer—Clifford superalgebra BC, s is isomorphic to the
(r,s)-bead diagram algebra BD, s as associative superalgebras.
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Proof. Using the defining relations, we see that the linear map ¢, s : BC,.; — BD,
specified by

S8i = Si, S+ 8Sj, €rr41 2 €rpry1, Cg 2 Ck, and ¢; — cy, (2.10)

is a well-defined superalgebra epimorphism.

Recall that BD,  := BD], ,/L, where L is the two-sided ideal generated by the elements
n (2.2). As L € M, by Lemma 2.7, there is well-defined linear map m,. s : BD, s —
BD;../M such that 7, s(d+ L) = d+ M for d € BD,,. Since {cpep, q, - €p,.q.0CqQ} is a
basis of BC, s by Theorem 1.4 (iii), we can define a linear map ¢, s : BC, s — BD’M/M
such that

Vrs(CPep1 gy " €pa.q,0CQ) = CP€py gy~ " €p, q,0CQ + M.

Moreover, Ty ;0 ¢ s = 1, s. Therefore, if we can show that v, s is injective, it will follow
that ¢, s is injective (hence, an isomorphism).

By Lemma 2.5(ii), when ~(d) = 0 for a bead diagram d, then d— (—1)#(?d = 0. Thus,
M is spanned by the elements d — (—1)%®d with y(d) > 1. Note that

v(crep g €p,.g.0¢Q) = 0.

Therefore, the set {cpep, 4, - - €p,.q.0cq + M} of these elements is linearly independent
in BD), ,/M, 50 tr., is indeed injective. O

Corollary 2.11. The relation L = M holds. In particular,
{d— (=1)°’Dd | d is a bead diagram in BD;... v(d) > 1} (2.12)
is a basis of the two-sided ideal L.

Proof. By Lemma 2.7 we have that L C M. Since the mapping ¢, in (2.10) is an
isomorphism and 7., = 1,5 0 ri);’i, we know that m, s is injective. Thus, for m € M,
Tps(m +L) = 04+ M implies that m € L.

From the proof of Theorem 2.9, we have that the set in (2.12) spans M (= L). Since

~v(d) > 1 and v(d) = 0, it follows that (2.12) is a linearly independent set. O
3. The quantum walled Brauer—Clifford superalgebra BC,. ;(q)

Let ¢ be an indeterminate and C(g) be the field of rational functions in ¢g. Set V, =
C(g)®cV = C(q) @c C(n|n). Corresponding to any X =", Y, ®Z;, € (Endc(y) (Vq))®2,
let X12 = ZkYk ® 2 ® id, X8 = ZkYk ® id ® Zi, and X2 = Zkid ®Y, ® Zy in

(Endcg) (V) where id = idv,.
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Let £ = ¢— ¢! and define S = Zi,ja Sij @ Byj € (End@(q)(Vq))®2 by

S = Z q(éij+6i’7j)(172|j|)Ei¢ ® Ejj +§ Z (*I)M(Eﬂ + E—j,—i) (24 Eij. (31)

i,j€1 1,J€I, 1<J

S is known to satisfy the quantum Yang-Baxter equation S'2813523 = §23G13612 p
[18], Olshanski constructed a quantization of (q(n)) of q(n) in terms of S.

Definition 3.2. (See [18].) The quantum queer superalgebra L,(q(n)) is the unital asso-
ciative superalgebra over C(q) generated by elements u,;; with i < j and ¢,j € T = {+1 |
i =1,...,n}, which satisfy the following relations:

UjgU—j,—¢ = 1= U_j,—iUis, U12U13523 = 523U13U12, (33)

where U = 37, o1 ;<;uij ® Eij, and the last equality holds in y(q(n)) ®c(g)
(Endc(q) (Vq))®2. The Zo-degree of u;; is [i| + |j].

By the construction, the assignment u;; + S;; is a representation of {,(q(n)) on
V, (see [18, Sec. 4]). The superalgebra H,(q(n)) is a Hopf superalgebra with coprod-
uct A(U) = UBU® € (Ug(q(n)))®? @c(q) Ende(q)(Vg), or more explicitly, A(u;) =
Srer (1) UAFIEDAE+D Y, @ ;. The counit is given by e(U) = 1 and the antipode by
Uw— UL

Let V1 := V& @c(g) (V)®® be the mixed tensor space of V, and V. Then V;* is
a representation of {l,(q(n)) via the coproduct and antipode mappings. To describe the
structure of the centralizer superalgebra Enduq(q(n))(Vfl’s)7 we introduce the quantum
walled Braver—Clifford superalgebra BC, s(q).

Definition 3.4. The quantum walled Brauer—-Clifford superalgebra BC, s(g) is the associa-
tive superalgebra over C(q) generated by even elements ty,ta,...,t.—1,t5,t5, ..., t5_q,
e and odd elements cj,co,...,Cp, C],C5,. .., Ck satisfying the following defining relations
(for 7,7 in the allowable range):

! —(¢g—¢ ti—-1=0, () = (¢—g¢ Htf =1 =0,
titipa1ti = tivatitipr, tity b =ttt

tty =tit; (li—jl>1), ttj=tt, tt; =t (i —jl>1),

e =0,et,_je=e etj=tje (j#r—1), etie=e, et; =tie (j#1),

—1 g% exe—1 L —1 .k k. —1
et, ety =t g tett e,

2 _ . . * * *\2 * ok * % . .

¢; = —1, cic; = —cjc; (i #j), cic; = —cjc, (c;)" =1, cjc; = —cjc; (i #J),
* % * *

t,ci = citty, tic, = ¢ty

tic; =cjt; (j#i,i+1), tic; =cit] (j#i,i+1),
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tic; = cjti, cre = cie, tic; = c;t], ec, = ec],
cje=ec; (j#r), cje=ec; (j#1),
ec,e = 0. (3.5)

Definition 3.6. (i) The (finite) Hecke—Clifford superalgebra HC,.(q) in [18] is the associa-
tive superalgebra over C(q) generated by the even elements tq,ta,...,t,—1 and the odd
elements cq, Ca, . .., ¢, with the following defining relations (for allowable i, j):

t? — (=g Hti —1=0, titi1ti = tiv1titiva,

tit; =ttt (li—jl>1),

i = —1, cicj = —¢ic; (i # j),
tic; = Cipti, ticj = ¢ty ( #4,1+1). (3.7)

(ii) The quantum walled Brauer algebra HY ((¢) in [11] is the associative algebra over
C(q) generated by the elements t,ta,...,t,—1,t],...,t5_; and e which satisfy the first
four lines in (3.5).

Remark 3.8. The relations in the first three lines in (3.5) appear in Definition 2.1 of [11].
In line 4 of (3.5), we have the one relation

et ' tretit ! =t 1 tietit e (3.9)
instead of the following two relations of [11]:
et L tlet, 1 =et ' tiet],  t._jet ' tie =tiet ! t]e. (3.10)

The relations in (3.10) can be derived using (3.9) and various identities from (3.5)
(especially the fact that t._; and tf commute) in the following way:

et, tie = (et 1ye) £, tie = e((t]) T't]) et the

=e(t]) 7! (t] t, et itie) = e(t)) " (et} t et lit])

= (e(t)) 'e) tit et t] =etit, et t] = ety tietit ) =t tet, ] e,
implying both relations in (3.10).

The following simple expression will be useful in several calculations henceforth.

Lemma 3.11. With the conventions (—1)I° = 0, |j| = 1 for any integer j < 0, and |j| = 0
for 7 >0, we have
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€37 (—1)lil 2020 (BR-DA-2Ik) (2412 (3.12)
i<j<k

1

for any nonzero integers i < k, where £ = q— q~ " as above.

Proof. This can be checked by considering the three cases 0 < i < k, 7 < k < 0 and
1<0<k. O

In order to construct an action of BC, ,(¢) on the mixed tensor space Vi©, we
will need a number of 4, (q(n))-module homomorphisms. Note that C(q) becomes a
Uy (q(n))-module by sending U to the identity map in Endc(q)(C(q) ®c(q) Vq)-

Lemma 3.13. There are U,(q(n))-module homomorphisms N : C(q) — V,® V; and
U:V,®V; — C(q) given by

=S v ®w, Ut @w)) = (~1)lilg0-2iD-@niDs,

€1

Proof. Since N is the canonical map C(q) — V, ® V7, we have
(X ®id)N = (id® X")N (3.14)

for any X € Endc(q)(Vy), where T denotes the supertranspose. Since N is even, it follows
that

((523)71)1'2 (ﬁ ® Id) _ (513)71(m ® Id)

in Home(4)(C(q) ® V4, V, ® V; ® V), where T2 indicates taking the supertranspose on
the second factor. Thus

S5 ) (N@id) = (N@id).

The action of U,(q(n)) on V, ® V7 (resp. on C(q)) is defined by sending U to
S13 ((523)’1)T2 (resp. to id), so this shows that N is a $4,(q(n))-module homomorphism.

To check that U is a homomorphism, we require an explicit expression for

S13 ((523)71)T2. We have

sl = Zq Cut0i-) -2 g, @ B;; — € Z V(B + E_j ) ® Eyj.

4,J€I 4,J€L, 1<j

If we identify V, with V} via v; — w;, then (S7')™ becomes identified with an endo-
morphism S* of V, ® V, given by
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_ Z g Gitdi-)0=2D g & E;;
4,j€L
—e S ()il B + B, ) @ By (3.15)

1,J€L, 1<j

Therefore, identifying V, ® V§ with V, ® V,, we have that the action on V, ® V, is
defined by sending U to

SIS(S* Z q511+51 —5 =005, k) (1— 2|J‘)E ®Ekk®Ejj
i,5,k€L

_gz Z IkHJ\ qOiitd-i) (=210 B

i€I j,k€I,j<k
® ()P ME, + E_; 1) ® B
+¢ Z Z 1)lilg 1k+5i,7k)(172‘k‘)(Ekj +E_4_j)®E; ® Eji
J,kel,j<k €I
s Z (=)l (Bij + B—i ;)
i,4,k€L, j<i<k
® ((—1>|k‘Eik + (—1)|iIE—i,7k) ® Eji,
The map U can be identified with the map ¢~ (+1) Yier 1211w @ w;, and wikli; =
Ok,swj. Moreover, direct calculations show

q2n+1( ®|d)Sl3(S*) 2n+1( ®Id)
= € 37 (— 1) Il gU=21iD g2 =2 (1) T+ KLy, @ oy 4wy @ w_y) © By
i<k
+§Z |J| —(1-2[k[) 2k(1—2|k\)((_1)\k\(\k|+lj\)wj ® Wi
i<k
+ (_1)(\k|+1)(|k|+|j|)w7j ® w,k) ® Ejk
— g2 Z (_1)IiI\j|+\j||k|+\j|q2i(1*2\i|) ((_1)Ik\+|i\(\i|+\j|)wj ® Wi
J<i<k

+ (DGO, @ w ) © By

_§Z< @E=D)(A=2[k]) _ o(27+1)(1=213]) —¢ Z || 2i(1-2li |)>

i<k k>i>j
((71)\kua‘|+\k|+|j\wj ©wi + (~)Hl_ @ w_k> ® By
=0 by (3.12).

Therefore (U ® id)S'3(5*)?* = (U ® id), so U defines a ,(q(n))-module homomor-
phism. O
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Theorem 3.16. There is an action of BC, s(q) on V* which supercommutes with the
action of Ug(q(n)), such that the action of each generator is given by

ti — id®(’i71) ® PS ® id®(7‘+5717i), I — id®(i71) ® @ ® id®(’r+87i)’
t;k — id®(’l’+i*1) ® PTST ® id®(3717i), C,); — id®(T+i71) ® @T ® id®(57i),

e id® Y o nuid®EY

where id = idv_,

P= Z WIE; @ Eji € End(V,@V,), @=> (-1)IE; _; € End(V,),
1,JE€I i€l
(3.17)
and T is the supertranspose. Explicitly, identifying V, with V3 as above, we have
PS = Z H (5u+571 )= 2|J|)E‘ ®E‘
4,J€I
+¢ Y (Baw By —(-)"ME e B ), (3.18)
1,J€1,i<]
PTST — Z (_1)\ilq(Jij+5_7t,j)(1—2|j|)Eji ® E;j +¢ Z (Eii QEjj—Ei_;® E—j,j)7
i,j€l i,jEL,j<i
= ZEZ _iy NU =g @t Z (_1)|i||j|q2j(1*2\j|)Eij ® Eyj.
i€l i,jel

Proof. The fact that the actions of t; and c; are $,(q(n))-module endomorphisms satis-
fying the relations of HC,.(¢) is shown in [18]. Consider the linear map given by the cyclic
permutation 0 : V&% = V& 0, @ - @ v, — (—=1)%i<ai lvillvily @ . @ vy, Conjugating
by o, we obtain another action of HCs(g) on V?S specified by

t; = id®C1) @ SP @ id®0Y ) ¢ id®C) g ¢ ®id®0,

These maps are also ,(q(n))-module endomorphisms (even though o is not). Applying
the antiautomorphism of HC,(q) that sends t; to ts—; and ¢; to cs11—;, we see that

t; = id®0Y @ PTST@id¥¢ 1 ¢ s id®U Y @ o7 @id® e

satisfy the required relations.
Since N and U are 4l;(q(n))-module homomorphisms, the same is true of e. We have

U(id @ @7) = g~ (2n+1) Z 02y @ w; = U(P @id).

i€l
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Thus, U(id ® ¢7) = U(? ®id), so ec, = ec}. Also (id ® #T)N = (® ® id)N by (3.14), so
cre = cje. We have

un(l) = _(2n+1)<2q231 20w © wj <sz®vl>

Jel i€l
—(2n+1) Z | \ 2z(1 2li) —
€1
U(@ ® Id) N (1) — q—(2n+1) (qui(l—QIi)wi ® Wi) (Zvj & ’Uj) =0,
i€l jEI

so €2 = ec,e = 0. Now using ¢*"*' U (E;; ®id) N (1) = (—1)/11¢g(1=2liD§,; and identifying
V, with V, ® C(gq), we have

q2”+1(|d®u)(PS®|d)(|d®ﬂ) :Zq(QjJrl)(l 21451) E +£ Z \ | 2z(1 2|4 \)
JEI i,j€L, j<i
= Z (25+1)(1=251) +£ Z \ | 21(1 21il) Ej;
Jet i,J€1, j<i

=¢*"lid by (3.12).

Thus (id ® NU)(PS ® id)(id ® NU) = (id ® NU), so et,_1e = e. Similarly,

q2n+l(u®ld)(ld®PTST ﬂ®|d Zq23+1 (1— 2\]|)E +£Z |\ 21(1 2|i \)
>

= q2”+1id.

Thus (N U ®id)(id @ PTST)(NU®id) = (NU ®id), so etje = e.
Identifying V, ® V with V, ® C(q) ® V7, we have

(P®idv:ev:)(idv, ®N®idv:) N (1) = (P®id) [ Y v, @0 0w dw;
4,J

= Z(—l)'i‘mvi ®v; ® w; @ wj.

The above is the canonical map C(¢) = V,® V, ® V; ® Vg, so by the same reasoning
that led to (3.14), we know

(SP®id)(P®id)(ld® N®id)N = (id ® PTST)(P ®id)(ld @ N®id) N
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Thus
(PS®id)(id®N®id)N = (id® PTST)(id@N®id)N. (3.19)
To prove the corresponding expression for U, we must explicitly compute the following:
¢ U (id ® U®id)(PS ®id)

= ¢ 2 U(deU®id) ( > (—)llglute-e)(=20DE @ By @ id @ id
i,j
+ 5 Z(Ejj ® B — (71)|i‘+mEj7_j X E—i,i) ®id ® Id)
i>7
= Z(_l)li\Ulq(5u+5—i,j+2j)(1—2|j\)+21(1—2\i|)wi R w; ® w; ® wj
+£Z q2i(1—2\i|)+2j(1—2|j\) (Wj R w; ® w; ®w; + (-1)”'&),]‘ Qw; @w_; ® wj) ,
>
¢ U (d® U®id)(id @ PTST)

=¢"? U (deU®id) ( > (—1)lilguto-e)=2lilid @ id @ Ej; @ By

4,3

+ gz id®id® (E; @ Ejj — E;—; ® Ej,j))

i>j

_ 2t (Z(_l)ﬂq(émai,j+zj)<1_2j|>id ® w; ®w; ® By

2%
+¢> 0P (d@w, ®w ® Ejj —idow; ®w_; @ E_j ;) )
i>7
= ¢ U (deu®id)(PS ®id).
Thus,
U(id @ U®id)(PS ®id) = U(id ® U ®id)(id ® PTST). (3.20)

Finally, using

g-1p — Z 1)lilg=Gutd-) 020D g, @ B,

—¢ Z (En ® Ej; + (—1)|i|+|j‘E4,i ® Ej,—j)

i>7

and
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MU (Eyy @ BN = 83850 (— 1)l il 171 g2i1=20D)
we have (with the help of (3.12))

P (d@Ueid)(STIP e PTST)(d@ N ®id)
_ Zq2j(172\j\)(71)\i||ﬂE‘ij ® Eij
%,

+63 (gDl g2 -21iD) (E ® B+ (-D)E_; ® E_M)
>

— & Y (Mg (Eu ®Ej+ (-)"E_; ® E,j,j)
i>k>j

=gt nu.
Combining this with (3.20) gives

(id @ NU®id)(S™'P ® PTST)(id ® N U ®id)(PS ® id)
=(i[d®N®id) NU(id® U ®id)(PS @ id)
= (d®NuUid)(S~'P® PTST)(id ® N U ®id)(id ® PTST).

Thus, et ! tiet,_; = et ' tiet]. Similarly combining with (3.19) shows that

(PS®id)(id ® NU®id)(S™'P ® P"S")(id ® N U ®id)
= (PS®id)(id®N®id) NU(id ® U®id)
= (id® PTST)(id ® NU ®id)(S™'P @ PTST)(id ® N U ®id).

Hence, t,_jet; ' tie = tiet, ' tie, and it follows that et tietit, !, =t ! tiet ' tfe. O
Proposition 3.21. The walled Braver—Clifford superalgebra BC,. ; is the classical limit of
the quantum walled Braver—Clifford superalgebra BC, s(q).

Proof. To sce this, let R = C[g,q]4—1) be the localization of Clg,q '] at the
ideal generated by ¢ — 1. Let BC, (R) be the R-subalgebra of BC, s(¢) generated
by t1,...,tr—1,C1,. .., G b, . tE g, cf, .. ke Let Vg = R®c V and set Vy° =
R Rc Vs,

It follows from [13, Thm. 5.1] that there is a natural epimorphism from the walled
Brauer—Clifford superalgebra BC, s onto (R/(¢ — 1)R) @x BC, s(R) = BC, 4(R)/(¢ —
1)BC, s(R) and hence a natural epimorphism

7 BCry — BC,o(R)/(q — 1)BC,4(R).

We want to argue that 7 is an isomorphism.
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Let pi»® : BC,. s — Endc(V"#)°P be the representation given just before Theorem 1.4.
The action of BC, 5(¢) on VZ’S defined in Theorem 3.16 restricts to a representation
P i BCrs(R) — End®(V3"). Let p; % be the homomorphism

BC,s(R)/(q — 1)BC, (R) — Endx(V5*) /(¢ — 1)Endz (V5?).

Since V3* is a free R-module, the algebra Endg (V5”") is also free; thus, it is possible to
identify Endx(V5")/(¢ — 1)Endx(V4®) with Endc(V™®).

Let 7 be the anti-involution of BC, ; which fixes each generator. Upon the previous
identification, the composite ;‘JZ’)S:R o is equal to p;® 07, as can be checked from the action
of the generators on the mixed tensor space given in Theorem 3.16. (Setting ¢ = 1 in the
formula for S in (3.1) gives the identity map). When n > r + s, the map pl>® is known

to be injective by [13, Thm. 4.5]. Therefore, if n > r + s, then p>% o7 must also be
injective, hence so is 7. In conclusion, 7 is an isomorphism. O

In the proof of Theorem 5.1 in [13], a vector space basis of the walled Brauer—Clifford
superalgebra BC, s is constructed. In this section, we obtain a basis of BC, s(¢) which
specializes to the one in [13] when ¢ — 1 (in a suitable sense). Our basis is inspired by
the basis of the quantum walled Brauer algebra H]' ((¢) constructed in Section 2 of [11]
(see Corollary 3.26 below).

Definition 3.22. (See [11].) A monomial n in normal form in the generators ty,ta, ..., tr—1
is a product of the form n = pyps - p,._1, Wwhere p; = t;lt;fl = ~t;1 for some j with
1<j<i+1. (If j =i+1, then p; = 1.) A monomial n* in normal form in the generators
t7,t3,...,ts_; is a product of the form n* = pip3---p;_;, where p; = tjt;_,---t] for

some j with 1 <j <i+1. (Ifj=i+1, thenpf =1.)

K3

Definition 3.23. Suppose that I = (i1,...,4,) with 1 <i; < - <io <r,J = (1, -+, Ja)
with 0 < jp < s—1for k =1,...,a, and if k; # ko, then ji, # ji,. Let I C I and
JCA{L,2,...,r+s}\ J.

A monomial m in normal form in BC, s(q) is one of the form

—
o kg ok xy—1 -1 ,—1 -1 ,—1 — 1% * * B
m=c; | [ €t ittt et e g et | e
k=1,...,a
where
1) nis a monomial in normal form in the generators ty,ts,...,t.—1;
2) n* is a monomial in normal form in the generators tj,t3,...,ti_;;

(1)

(2)

(3) the product is arranged from k& = 1 to k = a from left to right;

(4) cj is the product of ¢; over i € I in increasing order, and c5 is defined similarly.
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(5) Moreover, it is required that if n = pipa---pr,—1 and p; = t;lt;f1~-~t;1, then
o i) < -+ < 07 (iy) where ¢ = 0109---0,_1 and oy is the cycle (i + 1 i i —
1. j+15).

Theorem 3.24. The set B of monomials m in normal form is a basis of BC, s(q) over

C(q)-

Proof. As in Step 1 of [13, Thm. 5.1], there are relations analogous to those labeled
(1)—(8), except that words of strictly smaller length need to be added on one side of each
equality. By using induction on the length of words, we can verify that the set B spans
BC, s(q) over C(q).

Since BC,. 5(R) is a finitely generated torsion-free R-module, it is free over R. Now by
a standard argument in abstract algebra (cf. [9, Chap. 4, Thm. 5.11]), it follows that B
is linearly independent over C(g). O

Corollary 3.25. The dimension of BC, s(q) over C(q) is (r + s)!27F5.

Proof. This follows from Theorem 3.24, Step 2 in the proof [13, Thm. 5.1], and [11,
Lem. 1.7]. O

Corollary 3.26. The subalgebra of BC, s(q) generated by t1,...,t,—1,¢1,...,¢Cr (resp. by
tf,...,t" 1 andcj,...,ct) is isomorphic to the finite Hecke—Clifford superalgebra HC,.(q)
(resp. to HC,(q)). The subalgebra generated by ty,...,tr—1,t],...,t5_1, and e is isomor-
phic to the quantum walled Brauer algebra HY), [(q) in [11].

Proof. The first assertion follows from the fact that the set {c;n}, as I ranges over
the subsets of I = {1,---,7} and n ranges over the monomials in normal form in
ti,te,...,t.—1, is a basis of HC,(q) over C(q). For the second assertion, one can show
that the set B’ consisting of the elements

—
* gk *xy—1 -1 ,—1 -1 ,—1 —1. % * * *
IT ettt gt et ey g 1o, | ™,
k=1,...,a
where n is a monomial in normal form in ti,ts,...,t._1 satisfying the condition (5) in
N P P * s . . . K Lk * 0
Definition 3.23, and n* is a monomial in normal form in tj,t3,...,t;_;, spans H; ((q)

over C(q). Since dimg(q) HY () = (r + s)! and |B’| < (r + s)!, the set B’ is a basis of
H%s(q) over C(g). O

We will frequently deduce properties of BC,. s(g) from the corresponding properties of
BC,. s using the following well-known facts about specialization, which we prove here for
convenience.
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Lemma 3.27. Suppose R is a Noetherian local integral domain whose mazimal ideal is
generated by a single element x € R. Let ¢» : A — B be a homomorphism of finitely
generated R-modules, and consider the corresponding induced homomorphism

Y AJzA — B/2B, Y(a+ zA) = Y(a) + xB.

(i) If v is surjective, then v is surjective.
(ii) If B is torsion free and v is injective, then 1) is injective, and its cokernel is also
torsion free.

Proof. (i) Let C be the cokernel of 1. The right exact sequence A % B —» C induces

a right exact sequence A/xA % B/xB — C/xC. By assumption, 1 is surjective, so
C/2C = 0. Thus C = 0 by Nakayama’s lemma.

(ii) Let K be the kernel of 1. If k € K, then v (k) 4+ zA is in the kernel of 9, which is
zero by assumption. Thus k € zA, so k = za for some a € A. Thus z¢(a) = (k) =0, so
¥(a) = 0 since B is torsion free. Thus, a € K, so K = 2K. Again by Nakayama’s lemma,
K =0, so v is injective. Finally, choose an (R/zR)-basis X of A/zA and extend it to a
basis XY of B/xB (here we are identifying 1(X) with X by injectivity). By lifting these
basis elements arbitrarily to A and B, we obtain a commutative diagram

R¥ — > R¥@RY

A B B/A

where the top two modules are free over R, and the vertical maps induce isomorphisms of
(R/zR)-vector spaces. By what we’ve shown so far, R* — A is surjective and R*@RY — B
is an isomorphism. Therefore B/A = RY is free, and in particular, is torsion free. O

We now show that BC, ;(¢) gives the centralizer of the action of il;(q(n)) on Vi»*. We
deduce this from the corresponding result in the classical case, which is proven in [13].

Theorem 3.28. Let p);5 : BC, s(q) — Endy, (q(n))(Vy®) be the representation of BC, s(q)
coming from Theorem 3.16. Then py% is surjective, and when n > r+ s, it is an iso-
morphism.

Proof. Let m : BC, s = (R/(q — 1)R) ®x BC, 5(R) be the isomorphism established in
Proposition 3.21. Consider the following elements of H,(q(n)) for i,5 € I = {£i|i =
1,...,n} with i < j:

Uij—]. ifi:j7

=~ _ —1
b =(a=1) {uij if i # .
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Let
U= T ® By € Yy(a(n)) @c Endc (V).
i<y

By (3.1), the action of U;; on V lies in Endx (V%) C Endg(q)(V,). Moreover, under the
surjection Endz(Vx) — Endc(V) given by evaluation at ¢ = 1, the action of u;; maps
to the action of the following element of q(n):

—1)IIEY, if i=j,

(X3 ]
uj = oel=00i.15 o
” (—1)M2E(71)“L"‘j"(71)m if @ <j.

Similarly, by (3.15), the action of u;; on V7 lies in End®(V?%) and maps to the action of
u;; on V* by evaluation at ¢ = 1. Finally, since the coproduct on {,(q(n)) sends

AO)=UB+ U+ (¢—1)UBU?,

the corresponding statements extend to the action of u;; on Vp:°.

Now let End;(V5®) denote the space of endomorphisms in End®(Vy®) which su-
percommute with the action of u;; for all ¢ < j. We will show that the R-module
homomorphism

1 : BC,.4(R) — End; (V)

is surjective, and an isomorphism if n > r + s. Note that if X € Endx (V") is such that
(¢ — 1) X supercommutes with u;;, then X also supercommutes with u;;. Therefore, the
induced homomorphism

(R/(qg —1)R) ®x End(V5") = Endc (V™)

is injective. Moreover since the elements {u;; | ¢ < j} generate q(n), this map factors
through Endg,) (V™). We obtain the following diagram.

T (R/(q— DR) @8 BCpa(R) — ' (R/(q — 1)R) @ Ends (V)

— |

Endg(,,) (V™#)C Endc(V™#)

BC, s

Now Theorem 3.5 of [13] shows that the homomorphism p};® : BC,. s — Endg,y (V"*)°P
given by the BC, s;-module action is surjective, and also injective for n > r + s. It
follows that (R/(q — 1)R) @ End;(V53®) — Endgen,)(V™®) is an isomorphism for all n,
s0 (R/(qg—1)R) ®x 1 is surjective for all n and injective for n > r +s. Since Endy(V53?)
is torsion free, we conclude by Lemma 3.27 that
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BC,.s(R) = End5(VZ")

is surjective for all n and injective for n > r + s. Finally, since the U;; generate 4l (q(n)),
we have

Clg) ®x Endy (V") = Endy, (q(n)) (V™).
Therefore, tensoring by C(g), we obtain the desired result. 0O

Remark 3.29. The following question is left open: Does i,(q(n)) surject onto
Endsc, . (o) (V5")?

4. The (r, s)-bead tangle algebras BT, s(q)

In this section, we introduce a diagrammatic realization of the quantum walled
Brauer—Clifford superalgebra BC, 5(g) given in Definition 3.4.

Definition 4.1. An (r, s)-bead tangle is a portion of a planar knot diagram in a rectangle
R with the following conditions:

(1) The top and bottom boundaries of R each have r 4+ s vertices in some standard
position.

(2) There is a vertical wall that separates the first r vertices from the last s vertices on
the top and bottom boundaries.

(3) Each vertex must be connected to exactly one other vertex by an arc.

(4) Each arc may (or may not) have finitely many numbered beads. The bead numbers
in the tangle start with 1 and are distinct consecutive positive integers.

(5) A wertical arc connects a vertex on the top boundary to a vertex on the bottom
boundary of R, and it cannot cross the wall. A horizontal arc connects two vertices
on the same boundary of R, and it must cross the wall.

(6) An (r,s)-bead tangle may have finitely many loops.

The following is an example of (3,2)-bead tangle.

We want to stress that an (r, s)-bead tangle is in the plane, not in 3-dimensional space.

We cousider a bead as a point on the arc. Two (r, s)-bead tangles are regularly isotopic
if they are related by a finite sequence of the Reidemeister moves II, ITI together with
isotopies fixing the boundaries of R.
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Reidemeister move II:

Reidemeister move I1I: <=2

We observe that there are isotopies fixing the boundaries of the rectangles between
the following tangles:

*\;* <> *X* <> % /*
e yd e

Therefore, moving a bead along a non-crossing arc or an over-crossing arc gives tangles
that are regularly isotopic. We want to emphasize that the following are not regularly
isotopic:

We identify an (r, s)-bead tangle with its regular isotopy class, and denote by éYI'T,S
the set of (r,s)-bead tangles (up to regular isotopy). The (r,s)-bead tangle in which
there are even (resp. odd) number of beads is regarded as even (resp. odd).

Now we define a multiplication on éfrr’s. For (r,s)-bead tangles dy, ds, we place dy
under dy and identify the top row of d; with the bottom row of dy. We add the largest
bead number in d; to each bead number in dy, as we did for (r, s)-bead diagrams, and
then concatenate the tangles. For example, if
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®/ k)

&
g
e

then,

FAAEIN

A0

We observe éﬁ'r’s is closed under this product, and it is Zs-graded. The shape of
the arcs are the same in (dyds)ds and dy(dads). Moreover, the locations of the beads
and the bead numbers are also the same in (dldg)d3 and dy(dads). Tt follows that the
multiplication on BTT s 1s associative. Hence BT,« s is a monoid with identity element

For1<i<r—-1,1<j7<s-1,1<k<r 1<I<s, we define the following

(r, s)-bead tangles:
i i1
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From Reidemeister move II, we obtain the following elements in I_Sﬁ'ns:

T 1+ 1
. N\ s

j Jj+1
[T TN
J VAN

I )£

Now we consider the submonoid BT;’S of E?:Tns generated by al-il, (O'j yhyc,cf.
We denote by BT;. ,(¢q) the monoid algebra of BT, over C(¢) and define the algebra

T,8

BT.,(¢) to be the quotient of BT). ,(¢) by the following relations (for allowable i, j):

oit=0i—(qg—qa"), (o)) =0 —(g—q "),
ho,_1h =h, h? =0, hoih = h, hce,h =0,
¢} = —1, cicj = —c;¢; (i # j), cic) = —cfei, (c))? =1, ¢jc; = —cjc; (i # j).

For simplicity, we identify the coset of a diagram in BT, ;(¢) with the diagram itself.
Note that we get extra terms when a bead moves along an under-crossing arc. That is,

/ \
¥ \

we have
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<=> /@+(qq1)( - >

which is equivalent to c;o; = oicir1+(q—q 1) (¢; —cir1). Similarly, we obtain Ci+10';1 =
o7 tei4+(g—q ) (ci —civ1). We call BT, 4(q) the (r, s)-bead tangle algebra or simply the
bead tangle algebra.

In [10], Kauffman introduced the algebra of tangles and showed that it is isomorphic to
the Birman-Murakami-Wenzl algebra. To show that BT, ,(¢) is isomorphic to BC, s(q),
we will follow the outline of the argument given in [10, Thm. 4.4].

Let F/, be the monoid generated by 1,5, .., 62, (¢5)F, (¢5)*L, ..., (t1_1)*Y,
e, €1,¢o,...,¢p and ¢, ch, ..., ¢k with the following defining relations (for ¢,7 in the

allowable range):

tit; b =t =1, et =) =1,
titiv1ts = tip1titisa, titiat; = tatitig,

(

(
tit; =tit; (i —j| > 1), tit; =t (li—j1>1), (
tit] = t3t;, (4.
ety =tje (j#r—1), eti =tie (j#1), (
et Ltte= et Lttetit ) =t et te, (

etr_1(t)) " te = et,_1 (t7) " Le(t]) My

=t () et,_1(t]) e, (4.9)
et Litte =et,_1(t]) e, (4.10)
tici = citati, tici = ciqt;, (4.11)
tic; =cjti (j #14,i+1), tic; =cit; (j#i,i+1), (4.12)
tic; = cjti, tic; = ¢t;, (4.13)
cre = cje, ec, = ecj, (4.14)
cje=ec; (j#r), cie=ec; (j#1). (4.15)

We define a monoid homomorphism ¢, : F) , — BT'nS by

ors(ti) =0 ons((E)F) = (01)F', ¢rsle) =h, @ra(ci) =c;, and

prs(c) = cj.
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By direct computations, one can check that O'?:l, (a;k)il

ing defining relations (4.3)-(4.15) in BT;’S. Moreover, ¢, s is surjective.

,h, ¢, cf satisfy the correspond-

Theorem 4.16. The monoid F ; is isomorphic to BT%S as monoids.

Proof. It is suffices to show that ¢, , is injective. Assume that ¢, s(d) = ¢,,s(d’) € BT, .
This means that ¢, s(d") can be obtained from ¢, ;(d) by a finite sequence of Reidemeister
moves II, IIT and vice versa.

If ¢, s(d") can be obtained from ¢, s(d) without moving beads, then modifying the
proof of [10, Thm. 4.4], we can show that d’ can be obtained from d using relations
(4.3)(4.10).

We consider the various cases in which we need to move the beads.

Case 1: A bead moves along a non-crossing arc. We have the following five cases.

N
I
V

~

\ <= >

\/ <—> \/ ,
A A
a /
A A~

Observe that the above are equivalent to the following relations for j £ 4,i+ 1,1 # r,
m # 1, and allowable values of k:
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. kK -1 _ -1 . *\—1 __ #\—1
Cjoi = 0iCy, CjOk = OkCj; Cjo;  =0; G cj(o%) (o%)™ ¢
* % _ _k_x * _ * * *\—1 __ *\—1 % * —1 _ _—1 %
cio; = ojcj, cjok = oxC], ci(of) " = (o) "¢}, ciop =0y ¢,
cth = hey, cr h = he), crh = cih, he, = hel.

Hence d and d' are related in Fy .

Case 2: A bead moves along an over-crossing arc. In the following two cases,

/ /
/ /

the corresponding relations are equivalent to

* * * ok —1 —1 * *\—1 *\—1 %
Ci4+10; = 0;Cq, Ci+10i =0,C;, CiUi =0, Cit1, C; (Uz) = (O’)

which implies that d and d’ are related.

The remaining cases appear as a mixture of Case 1 and Case 2. For instance, a crossing
of a horizontal and a vertical arc is a combination of the following moves.

\/ -
¢

XX

which can be written as coo1h = o1¢c1h = o1hcy.
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In conclusion, when ¢, 4(d') is obtained from ¢, s(d) by moving beads, d can be
transformed to d’ by the corresponding relations in (4.11)-(4.15). O

Let F} ;(q¢) = C(q)F} ¢ be the associated monoid algebra, and let R be the two-sided
ideal of Fy ((q) corresponding to the following relations:

th=ti—(q—q "), )=t —(g—q "),
et,_1e=e, e2 =0, etie =e, ecye =0,
G =1, e =g (i £0), 6 = —Gew ()P =1, ¢l = —cic; (i £ )

(4.17)

We consider (t;)*1, (t;’f)il, h as the even generators and ¢;, ¢ as the odd generators.

We denote by F,. s(q) the quotient superalgebra F; ;(q)/R. For ease of notation, we
also use t;, j,h ¢, and ¢f for the generators of F s(¢). We note that the relations in
(4.2) correspond to the relations in (4.17) via the map ¢, 5. By the definitions of F,. s(¢)
and BT, ;(¢) and Theorem 4.16, we obtain the following corollary.

Corollary 4.18. The superalgebra F, s(q) is isomorphic to BT, s(q) as associative super-
algebras.

One can check that relations (4.3)-(4.15) and (4.17) include the corresponding re-
lations (3.5) if we map t;,t;,e,c, and ¢ to t;,t;,h,cp and cf, respectively. Using
the relations in (4.17) and Remark 3.8, we obtain that the relations corresponding to
(4.8)—(4.10) are also satisfied in BC,. 5(¢). It follows that F) ;(q) is isomorphic to BC, s(q)
as associative superalgebras. Therefore, we obtain the following main result of this sec-
tion.

Theorem 4.19. The quantum walled Brauer—Clifford superalgebra BC, s(q) is isomorphic
to the (r,s)-bead tangle algebra BT, s(q) as associative superalgebras.

Corollary 4.20. The dimension of BT, s(q) over C(q) is (r + s)!2"+5.

Remark 4.21. Since BC,  is the classical limit of BC, 4(g), by Theorem 2.9 and Theo-
rem 4.19, we conclude that BD, ; is the classical limit of BT, (q).

5. The g-Schur superalgebra of type Q and its dual

There are two equivalent ways to define the g¢-Schur algebra S,(n;¢) associ-
ated to ,(gl(n)): either as the image of U4(gl(n)) in Endg(y((C(q)™)®) or as
Endy, () ((C(q)™)®), where Hy(q) is the Hecke algebra (the subalgebra of HCy(g) gener-
ated by the t;, i = 1,...,¢—1). Analogous definitions can be considered in our quantum
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super context, but we are not able to prove that they are equivalent. Therefore, in order
to develop a viable theory, we have settled on the following definition.

Definition 5.1. The ¢-Schur superalgebra of type Q, denoted S,(n;r,s), is
EndBCT,S(q)(VQS)~

Even when s = 0, this superalgebra had not been studied until the recent paper [6].
In this case, it follows from [18, Thm. 5.3] that the next result holds, but we don’t know

if it is true for arbitrary s > 1.
Proposition 5.2. Sy(n;7,0) is equal to the image of Ug(q(n)) in Endgq) (Vi 0).

There is a third point of view on ¢-Schur algebras adopted for instance in [5], which is
as duals of certain homogeneous subspaces of quantum matrix algebras. Super analogues
of quantum GL,, were first introduced in [17] and more general superalgebras were studied
in [8], where bases were constructed using quantum minors and indexed by standard
bitableaux. In this section, we obtain similar results for a quantum matrix superalgebra
of type Q.

Let

1 ifi<y,
dicj = .
0 otherwise

and &;4; = 8;j + 0; —;. Also recall that £ = ¢ — ¢ '

Definition 5.3. We denote by A,(n) the associative unital algebra over C(gq) generated by
Tap and Zap for 1 < a,b < n, subject to the following relations for any 1 < a,b,c,d < n
with a < ¢:

5 5 —
G TapTeqd = ¢ TeaTap + E0bcd TevTad + ETcbTad,

Sue . = —Gyan _
@ TapTed = @ P TedTab — E0d<b TebTads

Sac = _ 4 = = =
q """ TabpTed = 4 bdxcdl'ab + gmcbxad + £5b<d TebLad,

Suem = Spam S
G TapTed = —q """ ZTeaZab + E0d<b TevTad-

We define a Z-grading on A,(n) by declaring each generator to have degree 1. We call
A,(n) the quantum matriz superalgebra of type Q.

Remark 5.4. The quotient of A,(n) by the two-sided ideal generated by the odd elements
is isomorphic to the quantum matrix algebra as presented for instance in Section 1.3
of [2] with v = ¢~ L.
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The algebra A4(n) can be viewed as a ¢g-deformation of the algebra of polynomial func-
tions on the space M, (Q) of (2nx2n)-matrices of type Q inside M,,,,(C). A g-deformation
of the algebra of polynomial functions on M,,|,,(C) was first given in [17].

Lemma 5.5. The algebra Ay(n) is isomorphic to the unital associative algebra over C(q)
generated by elements x;; with i,j € I = {£1,...,£n}, which satisfy the relations
LTij = T —4,—j and

2312 x18 _ y13 12623 (5.6)
where S?3 is the same matriz used in Definition 3.2.

Proof. This follows from relations (5.10) and (5.11) below and from the proof of Theo-
rem 5.8. O

Corollary 5.7. The algebra Ay(n) is a bialgebra with coproduct A given by

n

Awi) = 37 (~) DR 3y 0 5

k=—n

k0
Theorem 5.8. Let Ay(n,r) denote the degree r component of Aq(n). There is a vector
space isomorphism Ag(n,r) = Enduc, (q)(VE")*. Emplicitly, let {E};} denote the ba-
sis of Endc(q) (V)™ dual to the natural basis Endcq)(Vy). Define a map Ay(n,1) —
Ende)(Vg)* by 2ap — EYy,  Tay — E . This extends to the map Ay(n,r) —
Enduc, (o) (VE")* wvia the (super) identification

£\ OT ~ *
(Ende(g)(Vg)™)™" = Ende(q) (VET)

Proof. Let F,(n) denote the free algebra generated by e;; fori,j € I = {£1,42,...,£n},
and let Fy(n,r) denote the degree r component of F,(n) where each generator has degree
L. Sending ;5 to Ey,
An element of Endgg)(VE") will lie in the subspace Endyc, (q)(VE") if its coefficients

we obtain a vector space isomorphism F(n,r) = Endg(g)(VE")*.

satisfy certain relations. We can obtain Endyc, () (ng’r)* by quotienting F,(n) by the
same relations.

The generator ¢; of HC,.(q) acts on the kth tensor factor via the map @ (3.17), and the
generator tj of HC,.(¢) acts on the kth and (k + 1)st factors via the map PS (3.18). We
compute the supercommutator of each of these maps with an arbitrary endomorphism.

¢,y ayEi| =Y (~1)ami—; —aiy)Ei;.
i

ij
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[
PSS aiuEy ® Bu | = 3 g [(~D)IH IR s 0 B @ By
15kl ijkl

+E6ick Bij ® Epy + E0_icp, (-1)IIHFFIITEIE_; i@ By,

()R e (0 g

— €81 Bij ® By — 65y (—D)IIFIIHRHI R, o Ek,fl}
=3 { 1) 151+ EDF1 IR gdier (1)

ijkl

+ €8k apgit — E0pe—i (D) lq_y 4

_ (_1)|j|(|1\+|i|)+|llli\q5jiz(—1)”'

Qijkl

Aklij
— &6 apgi + E0—jar (1)1 lay i | By © Ey. (5.9)
Therefore, Endyc, (q)(VE")* is the degree r component of A, (n)" = Fy(n)/(R(ij), R(ijkl))
by [4, Lemma 2.3], where we have factored out by the ideal generated by the elements
R(Zj) =&—4,—j — Eij, (510)

R(ijkl) = ¢o=+ DM (C)Gil+aDilg, o

) _nl i ;
— O gy iDLy

[k

(1) RIEHRIHAI (5§ epen

ki [E[[U ]+ k]
(1) IR R (5, e e e e ).

(5.11)

The element R(ijkl) was obtained from the right-hand side of (5.9) by multiplying it by
(—1)!l31 and by replacing each a;jz; by (—1)IAFIDURHI e, cp) Tt remains to show that
As(n) = Ag(n). Let Fy(n) be the free algebra generated by x4, and Z4p for 1 < a,b <n.
For convenience, we define elements x;; and z;; in F,(n)" for all 4, j € I such that

T_jj = Tyj = Tj,—j-

Clearly there is an isomorphism Fy(n)/(R(ij)) = Fq(n)’ sending e;; to z;;. Let R(ijkl)’
be the image of R(ijkl) in Fy(n)’. Note that

R(—i,—j, k,1) = (_1)Ill(\i\+|j|)q5iik(—1)'k‘xijxkl _ (_1)Ik\(\ilﬂjl)qé;‘iz(—l)‘”xklxij

()RR e (5, 0~ 5 ) F

A+ (=)W IRI G (64 oy — 65<0) wpymi

= R(ijkl)'.
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Similarly, using q‘;iik(_l)lk‘ — q_‘siik(_l)lk‘ = 0;+1(—1)*I¢, we have

(fl)\ilﬂle(i 3, —k, 1)’
= (— 1)1+ g =dizk (= nl* ‘x”xkl (— 1)|k\(\i|+\j|)q*5]’il(*1)‘”xklxij

()RR R (1§, — 6y — 1+ 61y + 0oty) Fayia

— (—1) IR E (1 = i — bik — 14 G5t + Oj1) Tajia
()M g (=D g g (YD g
() D g (-0 g (1) D+ g
(1) LRI (5, — 6 o 65 — 6_y5) Fns
+ (=) FIEEIRIFIN (5 i — 6t + 6k — 670) Thjin
)"

= R(ijkl)

Observe also that ¢di+r(=D"™+(=D") 1 _ 5ik(—1)‘k‘q(_1)‘k|§. Therefore

(_1)\.7'||l\q5iik(—1)'”R(ijkl)’ + (_1)\i||k|q5jiz(—1)'”R(klij)'
= (1)l (q‘;iik((*l)'k”r(*l)‘“) — q‘sjit((*l)'j‘+(*1)‘l‘)) TijThi

— 1D P O e (5, i — 85 g

)
)W g D e By — 5 ) g
— 1) (DI o D e (6, — 61c) i
)l g D g (G S ) Ea
= (~D)FIGID oeen D e (64 s+ Gy, — bj.t) way

+ (~) DI P DN e (5 — G105 — 8y7) wa

+ & (Gic—k — 0—j<1) X
(= 1)l =il =kl (=D gz (1)l =d 4= s (= 1"”%%}
=&(1 = i<k — dj<t) X

[ i (=)l i Dol
(D)W gBesn (1) () iI+IDI] gbra(=1) xill’kj}

+&(0ick — 0_j<) X

[(— 1)kl =kl i (=D gz (— )il =d+ 1=l g8 (D) ‘Il%}_

On the other hand, note that if d1,d2 € {0,1} then (§; — d2)(1 — 5, — ) = 61 — 02 —
82 + 02 =0, so
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(1 = bicr — 6<1) R(kjil)
=(1=6ick — dj<1) X
(1) MO0 g gy (1) HOSHD g (0 g

A+ (1) IR RITIR R e (1 — 6, — 6520) (Bic ke — 0 j<t) TijTaa-

Similarly

Rk, i, —1) = (—1)| U)o -O g gy il ORH =D g (D
()RR (1 5, — 55 2) Ty

()RR (1~ S,y — ) ey,

SO
()W (5 — 6 ) R(k, —j, 0, 1)’
= (5i<7k - 57j<l)
% [(_1)‘k|‘—iH'HH—k‘qtsiik(—l)\“J_:kja_jil n (_1)\¢\|_j\+|j\\—z|q5jﬂ(_1)miﬂjk]}
+ (_1)|_iH_l|§(1 - 6i<k - 6j<l) (5i<—l~c - 5—j<l)£ij§7kl~
Thus,

(—1)”””(]6&’“(71)‘“R(’L'jk'l)/ + (_1)‘illk‘q6jil(71)‘llR(k‘lij)/
_5(_1)|j\+|j\|l|+|kHi| (Sic—r — 0_j<1) R(k,—j,i,—1)".

These dependencies amongst the R(ijkl)’ imply that
spang  {R(ijkl)" | 1,5, k,1 € 1} = spang(, {R(ijkl)" | i,5,k,1 € T with 0 <4 < k}.

Note that if 0 < i < k, then R(ijkl)" simplifies to

R(ijkl) = ¢®#+ (= 1)y ap — qé"i’(fl)mxmxij‘

— (—D)VWes; g gy — (—1)WHES o 25

By considering the four possibilities for (|j],]!|), we obtain the four relations in the
definition of A4(n). Thus

Ag(n) = Fy(n) /(R(ijkl) | i,5,k,1 € Twith 0 <i< k) =A,(n). O
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It is also possible to prove an analogue of Theorem 5.8 when s # 0 using the coalgebra
Ag(n;r, s) that we define immediately below. Set z}, = x4 and Z}, = \/—1Za. The
relations in the following definition are super analogues of those in Lemma 4.1 of [4].

Definition 5.12. Abbreviate x4, ® 1 and 1 ® 7, in Ay(n) ®c(q) Ag-1(n) by x4 and z7;,
respectively. Then A, (n) is defined to be the quotient of A,(n) ®c(q) Ag-1(n) by the
two-sided ideal generated by the following:

n n
@ (wepwly — Tenilyg) forb#d, > ¢ (wepZly — Tevwly) (5.13)
e=1 e=1
n n
D (Tacthe + Tackye) for a e, Y (Tacki, — TacTlh,) (5.14)
e=1 e=1
n n
Z g (TebTep — TebTrp) — Z (TaeTge + Taelye) - (5.15)
e=1 e=1

Definition 5.16. A,(n;r, s) is defined as the subspace of ;&q(n) spanned by monomials in
the generators of bidegree (r,s); that is, of degree r in the generators xup, Zop and of
degree s in the generators x7,, Z5, .

Theorem 5.17. There is a vector space isomorphism Ag(n;r, s) = Endge, (q)(Ve®)*.

Proof. Most of the necessary computations are already contained in the proof of Theo-
rem 5.8. Recall that NU = ¢~ (271 ZMEI(71)|i||j|q2j(172‘j|)Eij ® E;;. We only need to
explain where the new relations (5.13)-(5.15) in Definition 5.12 come from, and for this
we have to compute the following commutator:

Ny, Z ;i iy ® By
ijkl

—q (2n+1) Z (Za 2p(1—2p|)(_1)p+|pllj> (—1)””j|Eij ® Ey

ijl
_ q7(2n+1) Z (Z aipkpqﬂ(l2|l)(_1)|pl+lkllp|> (—1)“€””Eil @ Ey.
ikl P
This leads to the relation
kz |le|+|jHl| 2p(1 2|p|)x o = 5]12 | [1E]+3] o] 21(1 2”|)xipx2p~
p

The relations (5.13)-(5.15) can be deduced by considering the cases i # k and j = [;
it =kand j #1;i=kand j = [; and also the various possibilities for the signs of
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i,7,k,1. Note that =7, = miCL’_b and xZ’_b = —ac*_a,b =z, for 1 < a,b < n, because of
the relation [®7 > il =325 (aij — (=Dl*bla_; _NE_;;. O

Remark 5.18. The algebra A,(n;r, s) could possibly be used to prove the open problem
of showing the surjectivity of the map i,(q(n)) — Endgc, ,(q)(Vy®) (see Remark 3.29).
The following line of reasoning was applied in [4] to establish a similar surjectivity
result for 4,(gl(n)) over a quite general base ring. First, it might be possible to obtain
a homomorphism 7 : Sg(n;r’,0) — Sy(n;r,s) for some ' (possibly ' = r + s) via
some embedding of the mixed tensor space into (C(n\n)@/. The surjectivity of the map
Ug(q(n)) — Endgc, . (q)(Vy?®) then would follow from the surjectivity of 7, which is
equivalent to the injectivity of 7 : Sy(n;r,s)* — Sq(n;r’,0)*. As suggested by [4],
the injectivity of 7* could perhaps be shown by constructing bases of Ag(n;r,s) and
Ag(n;r’,0) using super analogues of bideterminants. For the quantum general linear
supergroup, this was accomplished in [8].

Remark 5.19. The algebra A4(n) is a bialgebra, so it can be enlarged to a Hopf algebra,
the so-called Hopf envelope of Aj(n). This is explained in [17] in the context of the
quantum general linear supergroup attached to gl(m|n). Moreover, it is proved in [17]
that the Hopf envelope of A,(m|n), the quantized algebra of functions on the space of
super matrices of size (m|n) x (m|n), is isomorphic to the localization of A,(m|n) with
respect to the quantum Berezinian, a super analogue of the quantum determinant. This
localization is the quantized algebra of functions C,[GL,,|,,]. This raises the following
question: is the Hopf envelope of A,(n) isomorphic to the localization of A,(n) with
respect to an appropriate super version of the quantum determinant? Such a localization
could be thought of as a quantized algebra of functions for the supergroup of type Q,,.
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