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Abstract

Some general criteria to produce explicit free algebras inside the division ring

of fractions of skew polynomial rings are presented. These criteria are applied

to some special cases of division rings with natural involutions, yielding, for

instance, free subalgebras generated by symmetric elements both in the division

ring of fractions of the group algebra of a torsion free nilpotent group and in

the division ring of fractions of the first Weyl algebra.
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1. Introduction

It has been conjectured by Makar-Limanov in [1] that a division ring which is

infinite dimensional over its center k and finitely generated (as a division algebra

over k) must contain a noncommutative free k-subalgebra. Makar-Limanov

himself provided evidence for this in [2], where it is proved that the division5

ring of fractions of the first Weyl algebra over the rational numbers contains

a free subalgebra of rank 2, and in [3], where the case of the division ring of

∗Corresponding author

Email addresses: vofer@ime.usp.br (Vitor O. Ferreira), ezancanella@uem.br (Érica Z.
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2Partially supported by Grant CNPq 300.128/2008-8 and by Fapesp-Brazil, Proj. Temático
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fractions of a group algebra of a torsion free nonabelian nilpotent groups is

tackled. Various authors have dealt with this problem and Makar-Limanov’s

conjecture has been verified in many families of division rings (see, e.g., [4, 5,10

6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]).

Division rings often come equipped with an involution. That is the case, for

instance, of division rings of fractions of group algebras which are Ore domains.

These have natural involutions induced by involutions on the group.

After the work in [12], it has become apparent that an involutional version15

of Makar-Limanov’s conjecture should be investigated. To be more precise,

given a field k and a division k-algebra D, a k-linear map ∗ : D → D satisfying

(ab)∗ = b∗a∗ and a∗∗ = a for all a, b ∈ D is called a k-involution. An element

a ∈ D is said to be symmetric with respect to the involution ∗ if a∗ = a. Our

aim in this paper is to present explicit constructions of pairs of elements in20

the division ring of fractions of some Ore domains which both generate a free

subalgebra and are symmetric with respect to an involution which extends an

involution on the ring.

In [14], this was achieved for the division ring of fractions, inside the division

ring of Malcev-Neumann series, of the group algebra of a nonabelian orderable25

group G with respect to an involution induced by the canonical (inverting)

involution on G.

Here, we present proofs to the following two further instances of the same

situation, which can be regarded as involutional versions of Makar-Limanov’s

early results.30

Theorem 1.1. Let D be the division ring of fractions of the group algebra kΓ

of the Heisenberg group Γ over the field k and let ∗ be a k-involution of D which

is induced from an involution on Γ. Then D contains a free k-algebra of rank 2

freely generated by symmetric elements.

By the Heisenberg group, one understands the free nilpotent group of class

2 generated by 2 elements. It can be presented by

Γ = 〈x, y : [[x, y], x] = [[x, y], y] = 1〉,
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where [g, h] denotes the commutator g−1h−1gh of elements g, h in a group.35

Theorem 1.2. Let A1 = Q〈s, t : st− ts = 1〉 denote the first Weyl algebra over

the field Q of rational numbers and let ∗ denote the Q-involution of A1 such that

s∗ = −s and t∗ = t. Then the division ring of fractions D1 of A1 contains a

free Q-subalgebra of rank 2 freely generated by symmetric elements with respect

to the extension of ∗ to D1.40

Theorems 1.1 and 1.2 will follow from criteria that generalize the method

developed by Bell and Rogalski in [11]. These will also provide simpler proofs of

[8, Theorem A] and [10, Theorem 1]. As a special case, we obtain the following

result.

Theorem 1.3. Let F be a field, let K = F (X1, . . . , Xn) be the rational function45

field in n indeterminates over F , and let σ be an F -automorphism of K of in-

finite order that extends one from the polynomial algebra F [X1, . . . , Xn]. Then,

the division algebra K(X;σ) contains a noncommutative free F -subalgebra.

2. Free subalgebras of fields of fractions of skew polynomial rings

In this section we offer generalizations of the method of [11] to construct free50

algebras inside division ring of fractions of skew polynomial rings.

Let k be a field and let D be a division k-algebra. Let σ : D → D be a

k-automorphism and let δ : D → D be a σ-derivation (that is, a k-linear map

satisfying δ(αβ) = σ(α)δ(β)+δ(α)β, for all α, β ∈ D). Denote by D[X;σ, δ] the

skew polynomial ring in the indeterminate X such that Xα = σ(α)X + δ(α),55

for all α ∈ D, and let D(X;σ, δ) denote its division ring of fractions. Given

a0, a1, b0, b1 ∈ k, consider the polynomials f = a0+a1X, g = b0+ b1X ∈ k[X] ⊆
D[X;σ, δ]. Also, let ψ : D → D be the map defined by ψ = a1δ + a0(Id−σ),

where Id stands for the identity map from D to D. (Note that ψ is again a

σ-derivation.) Finally, let E = kerψ.60

In what follows, we will further assume that a1 �= 0 and that Ξ = gf−1 ∈
D(X;σ, δ) \ k.
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Under these hypotheses, we shall prove the following two theorems.

Theorem 2.1. Let α ∈ D be such that

• {1, α, α2} is left linearly independent over σ(E) and65

• ψ(D) ∩ (
σ(E) + σ(E)α+ σ(E)α2

)
= {0}.

If either

(i) b1 = 0 or

(ii) b0 = 0 and δ = 0,

then the set {αΞ,Ξα} freely generates a free k-subalgebra in D(X;σ, δ).70

Proof. Consider the set

S = {(i1, . . . , it) : t ≥ 1, ij ∈ {0, 1, 2}, for all j ∈ {1, . . . , t}}

and the following subset of S:

Ŝ = {(i1, . . . , it) ∈ S : it ∈ {0, 1}}.

For each I = (i1, . . . , it) ∈ S, define the following element in D(X;σ, δ):

RI = αi1Ξαi2Ξ . . . αit−1ΞαitΞα,

and, for each I = (i1, . . . , it) ∈ Ŝ, let

LI = αi1Ξαi2Ξ . . . αit−1ΞαitαΞ.

The set B = {1}∪ {RI : I ∈ S}∪ {LI : I ∈ Ŝ} (properly) contains all the words

in the letters αΞ and Ξα. Therefore, if we prove that B is linearly independent

over k, we will have proved that αΞ and Ξα freely generate a free k-algebra.

In order to show that B is indeed linearly independent over k, we shall

introduce new auxiliary elements. Given I = (i1, . . . , it) ∈ S, let

VI = Ξαi1Ξαi2Ξ . . . αit−1ΞαitΞα,

that is, VI = ΞRI . We shall also define V∅ = Ξ.
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Given I = (i1, . . . , it) ∈ S, define the truncation of I to be I ′ = (i2, . . . , it)

if t ≥ 2, and I ′ = ∅ if t = 1. So, in D(X;σ, δ), the following relations hold:

Ξ−1V∅ = 1 and Ξ−1VI = RI = αi1VI′ , (1)

for all I ∈ S.75

For I = (i1, . . . , it) ∈ S, we define the length of I to be μ(I) = t. Also, we

set μ(∅) = 0.

We claim that if {VI : I ∈ S ∪{∅}} is left linearly independent over D, then

B is linearly independent over k. Indeed, suppose {VI : I ∈ S ∪ {∅}} is left

linearly independent over D and that

b+
∑
I∈S

cIRI +
∑
I∈Ŝ

dILI = 0 (2)

is a linear combination of elements of B with coefficients b, cI , dI from k resulting

in 0. Multiplying (2) by Ξα on the right, one obtains a relation of the form

∑
I∈S

eIRI = 0, (3)

with eI ∈ k. Note that, by doing that, all of the elements RI in (3) are distinct.

Hence, in view of (1), we get

0 =
∑
I∈S

eIRI =
∑
I∈S

eIα
i1VI′ .

For each I = (i1, . . . , it) ∈ S, there are exactly 3 elements in S which have

truncation I ′, they are

I0 = (0, i1, . . . , it), I1 = (1, i1, . . . , it) and I2 = (2, i1, . . . , it).

Thus, since {VI : I ∈ S ∪ {∅}} is left linearly independent over D, it follows

that, for each I ∈ S, one has

eI0 + eI1α+ eI2α
2 = 0.

But, by hypothesis, {1, α, α2} is linearly independent over k (for σ(E) ⊇ k);

therefore, eI0 = eI1 = eI2 = 0. This proves that all the coefficients in (3), which

are the same as the ones in (2), are zero. So, B is linearly independent over k.80
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Our next task is to show that {VI : I ∈ S ∪{∅}} is left linearly independent

over D. We shall split the proof in two parts, depending on the conditions (i)

or (ii) in the statement of the theorem.

First suppose that condition (i) holds, that is, that b1 = 0. In this case,

we must have b0 �= 0. We shall show the stronger statement that {VI : I ∈
S ∪ {∅}} is left linearly independent over D modulo the subspace D[X;σ, δ].

By contradiction, suppose there exists a relation

∑
I∈S∪{∅}

βIVI = h ∈ D[X;σ, δ], (4)

with βI ∈ D not all zero. Among all those relations, choose one with r =

max{μ(I) : βI �= 0} minimal. Moreover, among those, choose one with the85

smallest number of nonzero coefficients βI for I with μ(I) = r. Note that

r ≥ 1, otherwise we would have Ξ ∈ D[X;σ, δ], which is impossible. Clearly,

we can further assume that our relation (4), beyond being minimal in the sense

described above, has βT = 1 for some T ∈ S with μ(T ) = r, by multiplying it

by a nonzero element of D on the left if necessary.90

Recall that Ξ = gf−1 = b0(a0 + a1X)−1. Hence, Ξ−1 = (a0 + a1X)b−1
0 . It,

then, follows from (1) that

XV∅ = −a−1
1 a0V∅ + a−1

1 b0 and XVI = −a−1
1 a0VI + a−1

1 b0α
i1VI′ , (5)

for all I ∈ S. Multiplying (4) by X on the left, and using (5), yields

Xh =
∑

I∈S∪{∅}
XβIVI =

∑
I∈S∪{∅}

(
σ(βI)X + δ(βI)

)
VI

= σ(β∅)XV∅ + δ(β∅)V∅ +
∑
I∈S

(
σ(βI)X + δ(βI)

)
VI

= σ(β∅)(−a−1
1 a0V∅ + a−1

1 b0) + δ(β∅)V∅

+
∑
I∈S

σ(βI)(−a−1
1 a0VI + a−1

1 b0α
i1VI′) +

∑
I∈S

δ(βI)VI

=
∑

I∈S∪{∅}

(
δ(βI)− a−1

1 a0σ(βI)
)
VI +

∑
I∈S

a−1
1 b0σ(βI)α

i1VI′ + a−1
1 b0σ(β∅).
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Multiplying this by a1 and summing with a0h, one gets

fh = (a0 + a1X)h = a0h+ a1Xh =
∑

I∈S∪{∅}
a0βIVI+

+
∑

I∈S∪{∅}

(
a1δ(βI)− a0σ(βI)

)
VI +

∑
I∈S

b0σ(βI)α
i1VI′ + b0σ(β∅)

=
∑

I∈S∪{∅}
ψ(βI)VI +

∑
I∈S

b0σ(βI)α
i1VI′ + b0σ(β∅).

Therefore, one has

∑
I∈S∪{∅}

ψ(βI)VI +
∑
I∈S

b0σ(βI)α
i1VI′ = fh− b0σ(β0) ∈ D[X;σ, δ]. (6)

The coefficient of VT in (6) is ψ(βT ) = ψ(1) = 0. Moreover, no new nonzero

coefficient of a VI with μ(I) = r appears in (6). By the minimality of (4), all

the coefficients of the VI in (6) are zero. If μ(I) = r, the coefficient of VI in

(6) is ψ(βI), so, in particular, it follows that βI ∈ E = kerψ for all I ∈ S with

μ(I) = r. Now, there are exactly 3 elements I0, I1, I2 in S whose truncations

equal T ′. Since all three have length r, if follows that βI0 , βI1 , βI2 ∈ E. But the

coefficient of VT ′ in (6) is ψ(βT ′) + b0σ(βI0) + b0σ(βI1)α+ b0σ(βI2)α
2. So,

ψ(βT ′) = σ(−b0βI0) + σ(−b0βI1)α+ σ(−b0βI2)α
2,

which is an element of ψ(D)∩(
σ(E)+σ(E)α+σ(E)α2

)
= {0}. Since {1, α, α2}

is left linearly independent over σ(E), it follows that βI0 = βI1 = βI2 = 0. But

T ∈ {I0, I1, I2}. This contradicts the fact that βT = 1.

Now suppose that condition (ii) holds, that is, that b0 = 0 and δ = 0. In this

case, we must have b1 �= 0 and a0 �= 0. We shall show the stronger statement

that {VI : I ∈ S∪{∅}} is left linearly independent over D modulo the subspace

D[X,X−1;σ]. By contradiction, suppose there exists a relation

∑
I∈S∪{∅}

βIVI = h ∈ D[X,X−1;σ], (7)

with βI ∈ D not all zero. Among all those relations, choose one with r =

max{μ(I) : βI �= 0} minimal. Moreover, among those, choose one with the95
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smallest number of nonzero coefficients βI for I with μ(I) = r. Note that r ≥ 1,

otherwise we would have Ξ ∈ D[X,X−1;σ], which is impossible (for a0 �= 0).

Clearly, we can further assume that our relation (4), beyond being minimal in

the sense described above, has βT = 1 for some T ∈ S with μ(T ) = r, by

multiplying it by a nonzero element of D on the left if necessary.100

It follows from (1) that

X−1V∅ = −a1a
−1
0 V∅ + b1a

−1
0 and X−1VI = −a1a

−1
0 VI + b1a

−1
0 αi1VI′ , (8)

for all I ∈ S. If one multiplies (7) by X−1 on the left, relations (8) allow us to

conclude that

X−1h =
∑

I∈S∪{∅}
−a1a

−1
0 σ−1(βI)VI +

∑
I∈S

b1a
−1
0 σ−1(βI)α

i1VI′ + b1a
−1
0 σ−1(β∅).

This multiplied by a−1
1 a20 and, then, summed with −a0h yields

∑
I∈S∪{∅}

ψ(σ−1(βI))VI −
∑
I∈S

b1a
−1
1 a0σ

−1(βI)α
i1VI′

= −(a−1
1 a20X

−1 + a0)h+ b1a
−1
1 a0σ

−1(β∅) ∈ D[X,X−1;σ]. (9)

The coefficient of VT in (9) is ψ(σ−1(βT )) = ψ(1) = 0. By minimality, all the

coefficients on the left-hand side of (9) are zero. In particular, if μ(I) = r,

the coefficient of VI is 0 = ψ(σ−1(βI)). So, for I with μ(I) = r, one has

βI ∈ σ(E) = E. (This last equality follows from the fact that, in this case,

E = ker(Id−σ); so σ(E) = E.) If I0, I1, I2 denote the three elements in S with105

truncation T ′, then, by what we have just seen, βI0 , βI1 , βI2 ∈ E.

The coefficient of VT ′ on the left-hand side of (9) is

ψ(σ−1(βT ′))− b1a
−1
1 a0(σ

−1(βI0) + σ−1(βI1)α+ σ−1(βI2)α
2);

because this must be zero, it follows that

ψ(σ−1(βT ′)) = b1a
−1
1 a0(σ

−1(βI0) + σ−1(βI1)α+ σ−1(βI2)α
2),

which belongs to ψ(D) ∩ (E + Eα + Eα2) = {0}. Hence, since {1, α, α2} is a

left E-linearly independet set, we have that σ−1(βIj ) = 0, for all j = 0, 1, 2. In

particular, βT = 0, for T ∈ {I0, I1, I2}. But this contradicts βT = 1.
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Theorem 2.2. Let n be an integer with n ≥ 2. Let α1, . . . , αn ∈ D be such that110

• {α1, . . . , αn} is left linearly independent over σ(E) and

• ψ(D) ∩ (
σ(E)α1 + · · ·+ σ(E)αn

)
= {0}.

If either

(i) b1 = 0 or

(ii) b0 = 0 and δ = 0,115

then the set {α1Ξ, . . . , αnΞ} freely generates a free k-subalgebra in D(X;σ, δ).

Proof. We consider the set

S =
{(

(i1), . . . , (it)
)
: t ≥ 1, (ij) = (ij1, . . . , ijn), ijl ∈ {0, 1},

n∑
l=1

ijl = 1, for all j = 1, . . . , t
}
.

Given I =
(
(i1), . . . , (it)

) ∈ S, one defines

WI = αi11
1 . . . αi1n

n Ξαi21
1 . . . αi2n

n Ξ . . . αit1
1 . . . αitn

n Ξ.

The set of all nonempty words in the letters α1Ξ, . . . , αnΞ coincides with {WI :

I ∈ S}. Our task is, thus, to show that B = {1} ∪ {WI : I ∈ S} is linearly

independent over k.

Here, for I =
(
(i1), . . . , (it)

) ∈ S, its length is defined to be t and its trun-120

cation I ′ =
(
(i2), . . . , (it)

) ∈ S, if t ≥ 2. If I has length 1, its truncation is

defined to be I ′ = ∅. It follows from the definition of S that given I ∈ S, there

exist exactly n elements of S, all of them with the same length as I, having

truncation I ′ (clearly, one of them is I itself).

Defining VI = ΞWI , for I ∈ S, and V∅ = Ξ, one gets

Ξ−1V∅ = 1 and Ξ−1VI = WI = αi11
1 . . . αi1n

n VI′ , (10)

for all I ∈ S.125

9



Again, we shall show first that left linear independence over D of {VI :

I ∈ S ∪ {∅}} implies linear independence of B over k, and, then, show that

{VI : I ∈ S ∪ {∅}} is, indeed, left linearly independent over D.

So, suppose that {VI : I ∈ S ∪ {∅}} is left linearly independent over D and

let c +
∑

I∈S dIWI = 0 be a linear dependence relation of elements of B with

coefficients c, dI from k. By multiplying this relation by α1Ξ on the right, we

can assume that c = 0. So,

0 =
∑
I∈S

dIWI =
∑
I∈S

dIα
i11
1 . . . αi1n

n VI′ .

Since {VI : I ∈ S ∪ {∅}} is left linearly independent over D, for each I ∈ S, if

H1, . . . , Hn denote the elements of S with truncation I ′, one gets

dH1
α
h1,11

1 . . . αh1,1n
n + · · ·+ dHn

α
hn,11

1 . . . αhn,1n
n = 0,

whereHj = ((hj,11, . . . , hj,1n), (hj,21, . . . , hj,2n), . . . (hj,r1, . . . , hj,rn)) and r stands

for the length of I. Now, the set {α1, . . . , αn} is linearly independent over k130

(because, by hypothesis, it is left linearly independent over σ(E)). So, dH1 =

· · · = dHn = 0, which implies that dI = 0, for I must be one of the Hj ’s. This

proves the first assertion in the previous paragraph.

Our final step it to prove that {VI : I ∈ S∪{∅}} is left linearly independent

over D. We shall consider cases (i) and (ii) separately.135

Suppose that (i) b1 = 0. We shall show, in this case, that {VI : I ∈ S ∪{∅}}
is, in fact, linearly independent in the left D-vector space D(X;σ, δ)/D[X;σ, δ].

Suppose not and pick a minimal (in the sense used in the proof of Theorem 2.1)

relation
∑

I∪{∅} βIVI = h ∈ D[X;σ, δ], with βI ∈ D. That is, the maximal

length r of the I’s ocurring with nonzero coefficient βI is minimal and, moreover,

the number of nonzero βI ’s with I having length r is also minimal. We can

assume that βJ = 1, for some J ∈ S of length r, by multiplying the relation by

a nonzero element ofD, if necessary. Now, multiply the relation by f = a0+a1X

10



on the left to get

fh = (a0 + a1X)h = a0h+ a1Xh =
∑

I∈S∪{∅}
a0βIVI +

∑
I∈S∪{∅}

a1XβIVI

=
∑

I∈S∪{∅}
a0βIVI +

∑
I∈S∪{∅}

a1
(
δ(βI) + σ(βI)X

)
VI

=
∑

I∈S∪{∅}

(
a1δ(βI) + a0(βI − σ(βI))

)
VI + b0σ(β∅)

+
∑
I∈S

b0σ(βI)α
i11
1 . . . αi1n

n VI′ ,

since it follows from (10) that a1XV∅ = −a0V∅ + b0 and

a1XVI = −a0VI + b0WI = −a0VI + b0α
i11
1 . . . αi1n

n VI′ .

Therefore,

∑
I∈S∪{∅}

ψ(βI)VI +
∑
I∈S

b0σ(βI)α
i11
1 . . . αi1n

n VI′ = fh− b0σ(β∅) ∈ D[X;σ, δ].

(11)

The coefficient of VJ on the left-hand side of (11) is ψ(βJ) = ψ(1) = 0. By min-

imality, all VI on the left-hand side of (11) have coefficient zero. In particular,

if I has length r, since its coefficient is ψ(βI), it follows that βI ∈ kerψ = E.

If H1, . . . , Hn denote the elements of S with truncation J ′, the coefficient of

VJ ′ on the left-hand side of (11) is

ψ(βJ ′) + b0σ(βH1)α
h1,11

1 . . . αh1,1n
n + · · ·+ b0σ(βHn)α

hn,11

1 . . . αhn,1n
n

Since all H1, . . . Hn have length r, it follows that βH1 , . . . , βHn ∈ E and, because

this coefficient is zero, we have

ψ(βJ ′) = −b0σ(βH1)α
h1,11

1 . . . αh1,1n
n − · · · − b0σ(βHn)α

hn,11

1 . . . αhn,1n
n ,

an element of ψ(D)∩(σ(E)α1+· · ·+σ(E)αn) = {0}. Left linear independence of
{α1, . . . , αn} over σ(E) implies σ(βH1) = · · · = σ(βHn). In particular, βJ = 0.140

This is impossible, because we had βJ = 1.

Finally, let us deal with the case (ii) b0 = 0 and δ = 0. Here we shall

show that {VI : I ∈ S ∪ {∅}} is D-left linearly independent in D(X;σ) mod
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D[X,X−1;σ]. Again, pick a minimal relation of the form
∑

I∈S∪{∅} βIVI =

h ∈ D[X,X−1; δ] with βJ = 1 for some J ∈ S of maximal length r.145

Relations (10) imply X−1V∅ = −a1a
−1
0 V∅ + b1a

−1
0 and

X−1VI = −a1a
−1
0 VI + b1a

−1
0 αi11

1 . . . αi1n
n VI′ ,

for all I ∈ S.

Similarly to what has been done in the proof of Theorem 2.1, we may get

∑
I∈S∪{∅}

ψ(σ−1(βI))VI −
∑
I∈S

b1a
−1
1 a0σ

−1(βI)α
i11
1 . . . αi1n

n VI′

= −(a−1
1 a20X

−1 + a0)h+ b1a
−1
1 a0σ

−1(β∅) ∈ D[X,X−1;σ]. (12)

Again, from minimality of the given relation, it will follow that βI ∈ E for

all I with length r. For the last step, consider the elements H1, . . . , Hn in S

with truncation J ′. Then βH1 , . . . , βHn ∈ E. Looking at the coefficient of J ′ on

the left-hand side of (12) and considering the hypothesis that ψ(D)∩(σ(E)α1+150

· · · + σ(E)αn) = {0}, one will eventually get that βH1 = · · · = βHn = 0, a

contradiction.

Remark 2.3. By setting σ to be the identity automorphism of D, Theorem 2.2

can be used to recover both [8, Theorem A] and Makar-Limanov’s result of

[2], producing free subalgebras inside the division ring of fractions of the first155

Weyl algebra over the rationals. Indeed, if D1 denotes the division ring of

fractions of the first Weyl algebra A1 = Q〈s, t : st − ts = 1〉, then, via the

identification s 
→ X, D1 coincides with the division ring of fractions Q(t)(X; δ)

of the skew polynomial ring Q(t)[X; δ], where δ is the usual derivation on the

rational function field Q(t), that is, the one satisfying δ(t) = 1. Here, the160

rational functions α1 = 1
t and α2 = 1

t(1−t) satisfy the hypotheses of Theorem 2.2;

hence, taking a0 = b0 = 0 and a1 = b1 = 1, it follows that α1X
−1 and α2X

−1

generate a free Q-subalgebra in Q(t)(X; δ), or, in other words, (st)−1 and (1−
t)−1(st)−1 generate a free Q-subalgebra of D1.

Observe that Theorem 2.2 recovers Makar-Limanov’s result, which does not165

occur with [11, Theorem 2.2], as pointed out by the authors.
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In Section 4, we shall see that Theorem 2.2 can also provide a pair of symmet-

ric elements of D1 generating a free algebra, with respect to a natural involution

on D1.

3. Free symmetric subalgebras and the Heisenberg group170

Let k be a field, let Γ = 〈x, y : [[x, y], x] = [[x, y], y] = 1〉 be the Heisenberg

group and let ∗ be an involution on Γ. Then ∗ can be linearly extended to a k-

involution ∗ on the group algebra kΓ, which, in turn, has a unique extension to

a k-involution on the Ore division ring of fractions D of the noetherian domain

kΓ.175

In this section, we shall present a proof of Theorem 1.1, exhibiting two

elements inD which freely generate a free k-subalgebra and which are symmetric

with respect to ∗. For that purpose, we shall make use of Theorem 2.1 and of

the classification of involutions on Γ given in [19].

Recall that the center of Γ is infinite cyclic, generated by λ = [x, y]. The180

attribution λ 
→ t, y 
→ Y, x 
→ X establishes a k-isomorphism between D and

the division ring k(t, Y )(X;σ), where k(t, Y ) stands for the field of rational

functions in the indeterminates t and Y over k and σ is the k(t)-automorphism

of k(t, Y ) satisfying σ(Y ) = tY .

Theorem 1.1 will follow from Theorem 2.1, after a judicious choice of ele-185

ments α and Ξ. But, in order to verify the hypotheses of Theorem 2.1 in this

setting, we shall need the following fact on automorphisms of rational function

fields, whose proof is similar to the proof of [14, Lemma 1.4].

Lemma 3.1. Let F be a field, let t ∈ F \ {0} be an element which is not a

root of unity, and let σ be the F -automorphism of the rational function field

F (Y ) such that σ(Y ) = tY . Let α ∈ F (Y ) \ F [Y ] be a rational function which

has a unique pole and this pole is nonzero, and let m be a positive integer. If

β ∈ F (Y ) satisfies

σ(β)− β ∈ F + Fα+ · · ·+ Fαm,

then β ∈ F .

13



3.1. Proof of Theorem 1.1190

As we have seen above, we can identify D with k(t, Y )(X;σ). Taking F =

k(t) in Lemma 3.1, one sees that any rational function α ∈ F (Y ) which has a

unique pole and this pole is nonzero will satisfy the hypotheses of Theorem 2.1,

therefore providing a pair {αX(1−X)−1, X(1−X)−1α} inside D which freely

generates a free k-subalgebra. Now, according to [19, Theorem 3.4], up to195

equivalence, a k-involution ∗ on D which is induced by an involution on Γ must

satisfy one of the following conditions:

(I) X∗ = ζX, Y ∗ = ηY ;

(II) X∗ = X−1, Y ∗ = Y −1;

(III) X∗ = X, Y ∗ = ζY −1;200

(IV) X∗ = ζY, Y ∗ = ζ−1X;

the elements ζ and η being powers of t (and, therefore, central). In the first two

cases, one has t∗ = t−1, and in the last two, t is symmetric.

We shall treat each of the four types (I)-(IV) separately.

(I) In this case, taking α = (1−Y )−1, we obtain elements A = (1−Y )−1X(1−205

X)−1 and B = X(1−X)−1(1− Y )−1 freely generating a free subalgebra

of D. Now consider the k(t)-automorphism ψ of D such that ψ(Y ) =

(1+η)Y and ψ(X) = (1+ ζ)X. Since (1+η)Y = Y +Y ∗ and (1+ ζ)X =

X +X∗, it follows that ψ(Y ) and ψ(X) are symmetric with respect to ∗.
Thus, ψ(A)∗ = ψ(B). This implies that ψ(AB) and ψ(BA) are symmetric210

and, because AB and BA freely generate a free subalgebra of D, so do

they.

(II) This is contained in Theorem 1.1 of [14].

(III) The rational function γ = Z(ζ − Z)−2 in the indeterminate Z over the

field F = k(t) satisfies the conditions of Lemma 3.1 with respect to the215

automorphism τ such that τ(Z) = t2Z. Therefore, by Theorem 2.1,

γX(1 − X)−1 and X(1 − X)−1γ freely generate a free k-subalgebra in

k(t, Z)(X; τ). Since the map Z 
→ Y 2 establishes an isomorphism between
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k(t, Z)(X; τ) and the subalgebra k(t, Y 2)(X;σ) of D, it follows that, set-

ting α = Y 2(ζ − Y 2)−2, the elements A = Y 2(ζ − Y 2)−2X(1 − X)−1
220

and B = X(1−X)−1Y 2(ζ − Y 2)−2 freely generate a free k-subalgebra of

D. Since A∗ = B, it follows that AB and BA form a pair of symmetric

elements which freely generate a free subalgebra of D.

(IV) Here, taking α = Y (1−Y )−1, one gets the free pair A = Y (1−Y )−1X(1−
X)−1 andB = X(1−X)−1Y (1−Y )−1. If ψ denotes the k(t)-automorphism225

of D such that ψ(X) = X and ψ(Y ) = ζY , it follows that {ψ(A), ψ(B)}
is a pair of symmetric elements which freely generates a free algebra in

D.

4. Free symmetric subalgebras and the first Weyl algebra

As we have seen in Remark 2.3, we can regard the division ring of fractions230

D1 of the first Weyl algebra over Q as Q(t)(X; δ), where δ stands for the usual

derivation on the rational function field Q(t).

In the proof of Theorem 1.2, we shall need the following consequence of

Theorem 2.2.

Corollary 4.1. Let a, b ∈ Q(t) be rational functions satisfying the following235

conditions:

• {a2, ab} is a Q-linearly independent subset of Q(t), and

• δ
(
Q(t)

) ∩ (Qa2 +Qab) = {0}.

Then, aX−1a and bX−1a freely generate a free Q-subalgebra of Q(t)(X; δ).

Proof. By Theorem 2.2, the elements a2X−1 and abX−1 freely generate a240

free Q-subalgebra of Q(t)(X; δ). The automorphism of Q(t)(X; δ) given by

f 
→ a−1fa sends the set {a2X−1, abX−1} to {aX−1a, bX−1a}.

4.1. Proof of Theorem 1.2

Consider the rational functions

a =
t

1 + t2
and b =

1

1 + t
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in Q(t). Considering them as real functions in the variable t, we have

∫ (
t

1 + t2

)2

dt =
1

2

(
arctan t− t

1 + t2

)
+ constant

and

∫ (
t

1 + t2

)(
1

1 + t

)
dt =

1

4

(
ln(1 + t2) + 2 arctan t− 2 ln(1 + t)

)
+ constant.

Developing arctan t, ln(1+ t2) and ln(1+ t) as power series in the interval (0, 1),

we can easily check that a and b satisfy the conditions in Corollary 4.1. It245

follows that α = as−1a and β = bs−1a freely generate a free Q-subalgebra of

D1. Hence, the symmetric elements α2 and αβ also generate a free Q-subalgebra

of D1.

5. Free subalgebras in F (X1, . . . , Xn)(X;σ)

In this section we follow closely the arguments in [10, Section 4] and show250

that part of the proof of [10, Theorem 1] can be greatly simplified using Theo-

rem 2.2.

We start with a more general setting. Let k be a field and let R be a

commutative k-algebra which is a factorial domain with group of units k† =

k \ {0}. Let σ be a nonidentity k-automorphism of R and assume the the fixed255

ring of R under σ coincides with k. Extend σ to the field of fractions K of

R. Theorem 1.3 will follow from the next result, in the statement of which, for

a ∈ k†, we use the notation Ra = {r ∈ R : σ(r) = ar}.

Proposition 5.1. Under the above hypotheses, the division algebra K(X;σ)

contains a noncommutative free k-subalgebra. More precisely, one of the follow-260

ing alternative possibilities must hold.

(i) Either Ra = {0}, for all a ∈ k† \ {1}. In this case, given any α ∈ K \ R
whose denominator is a prime power, for any positive integer m, the set

{αX(1−X)−1, α2X(1−X)−1, . . . , αmX(1−X)−1}

freely generates a free k-subalgebra in K(X;σ).
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(ii) Or R ⊇ k[t], where t is algebraically independent over k and σ satisfies

σ(t) = λt, for some λ ∈ k which is not a root of unity. In this case, given

any b ∈ k, for any positive integer m, the set

{(t− b)−1X(1−X)−1, (t− b)−2X(1−X)−1, . . . , (t− b)−mX(1−X)−1}

freely generates a free k-subalgebra in K(X;σ).

Proof. In case (i), take α ∈ K \R. By [10, Lemma 5], the set {1} ∪ {σj(αi) :

i ≥ 1, j ≥ 0} is k-linearly independent. Moreover, if the denominator of α is a

prime power, then, by [10, Lemma 7], the equation

σ(β)− β =
∑
i≥1

biα
i

has no solution with bi ∈ k and β ∈ K \ k. It follows from Theorem 2.2 that

αX(1 − X)−1, . . . , αmX(1 − X)−1 freely generate a free k-algebra in K(X;σ)265

for any positive m.

Now suppose that (i) does not hold, that is, there exists λ ∈ k† \ {1} such

that Rλ �= {0}. By [10, Lemma 2], λ is not a root of unity. Choose t ∈ Rλ \{0}.
Then, σ(t) = λt and we have an embedding k(t)(X;σ) ⊆ K(X;σ). It follows

from Lemma 3.1 and Theorem 2.2 that, for any b ∈ k and any positive integer270

m, (t− b)−1X(1−X)−1, (t− b)−2X(1−X)−1, . . . , (t− b)−mX(1−X)−1 freely

generate a free k-subalgebra in k(t)(X;σ) and, hence, in K(X;σ).

5.1. Proof of Theorem 1.3

The same argument used in the proof of [10, Corollary 2] holds. LetM be the

fixed subring of S = k[X1, . . . , Xn] under the action of σ, let R = S(M \{0})−1,275

and let k = M(M \ {0})−1. By Proposition 5.1, K(X;σ) contain a free k-

subalgebra and, thus, by [5, Lemma 1], contains a free F -subalgebra.
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[6] J. Z. Gonçalves, M. Shirvani, On free group algebras in division rings

with uncountable center, Proc. Amer. Math. Soc. 124 (1996) 685–687.295

doi:10.1090/S0002-9939-96-03032-8.
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[12] J. Z. Gonçalves, M. Shirvani, A survey on free objects in division rings and

in division rings with an involution, Comm. Algebra 40 (2012) 1704–1723.

doi:10.1080/00927872.2011.554934.
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