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1. Introduction

Given a set X of indeterminates and a field F , it is possible to construct an F -algebra 
F{X} which is free in a variety C of algebras. The objects of that free algebra are usu-
ally called “C-polynomials”. The ideals of F{X} invariant under C-homomorphisms are 
called T -ideals. The study of T -ideals leads to the so-called Specht problem, whether 
every T -ideal is finitely generated as a T -ideal. In the case C is the class of associa-
tive algebras and F is a field of characteristic 0, the Specht problem has a positive 
answer given by Kemer [22] whereas it fails in positive characteristic as showed by sev-
eral authors such as Kanel-Belov in [3] and Belov in [21], Grishin in [17] (ground field 
of characteristic 2) and Shchigolev in [30]. It is a remarkable fact that the three papers 
cited above have been published in the same issue of the same journal and it seems 
their authors presented such results in 1998 at the Seminar of Latyshev at the Moscow 
State University in the order cited above. We also want to cite the paper by Gupta and 
Krasilnikov [18] which presented a simple counterexample in characteristic 2 and a paper 
by Shchigolev (see [29]) about non-finitely generated T -spaces. If the class C coincides 
with the class of Lie algebras in characteristic 0 we have a result by Iltyakov [20] in 
which he proved that the Specht problem has a positive solution for finite dimensional 
Lie algebras. Moreover in [4] the authors proved that a Lie algebra has the Specht prop-
erty if its codimension sequence is polynomially bounded. In the general case we have 
no definite answer in characteristic 0 although we have counterexamples in the case of 
positive characteristic. For the purpose, see the works by Vaughan-Lee [33] (characteris-
tic 2) and Drensky [11] (characteristic p > 0). Recently in [14] the authors were able to 
construct a variety of non-associative algebras which does not satisfy the Specht prop-
erty via a sophisticated construction of varieties of algebras with slow growth of their 
codimension sequence. The latter examples have the additional exotic property that the 
codimension grows as n3+α, where α is any positive real number strictly less than 1. 
Carrying on with examples of non-Spechtian varieties, a very interesting examples was 
obtained by Drenski in [10]. In particular the author gave an example of an anticommu-
tative algebra whose variety generated by is of quadratic growth although non-finitely 
based.

Even if C is the class of Jordan algebras, one can get only partial answers to the 
Specht problem. Indeed, in [34] Vais and Zelmanov proved that any finitely generated 
Jordan algebra in characteristic 0 has the Specht property by showing that it has the 
same identities of a finite dimensional generalized Jordan pair. Unfortunately, we do 
not know yet whether the answer is positive nor negative in case of infinitely generated 
Jordan algebras.

We can also generalize the Specht problem for classes of algebras graded by a group G. 
In particular, in case of associative G-graded algebras in characteristic 0, where G is any 
finite group, a positive answer to the problem was found in [1] and [32], whereas in case 
of G-graded Lie or Jordan algebras we have experimental results, such as in [13] in which 
the authors proved the Specht property of sl2(F )G, the Lie algebra of 2 × 2 traceless 
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matrices over a field F of characteristic 0 graded by any finite abelian group G, or in 
[31] in which a similar result was achieved for Bn, the finite dimensional Jordan algebra 
of a non-degenerate symmetric bilinear form graded by Z2, the cyclic group of order 2, 
always in characteristic 0.

The goal of this paper is twofold. On one hand, we get a positive solution to the 
Specht problem in case of UJ2(F ), the Jordan algebra of 2 ×2 upper triangular matrices 
over a field F of characteristic zero, graded by any finite abelian group. In particular, 
we shall consider the classification of the G-gradings on UJ2(F ) given in [25], that is a 
particular case of a latter result by Koshlukov and Yukihide in which the authors gave 
such a classification for UJn(F ), n ≥ 2 (see [24]).

On the other hand, we shall prove the Specht property for varieties of Jordan algebras 
with trivial grading of almost polynomial growth. Recall that a variety V has almost 
polynomial growth if its codimension sequence grows exponentially and for any proper 
subvariety U � V, its codimension sequence cn(U) grows polynomially. In a forthcoming 
paper by Martino (see [26]), it was proved that up to equivalence, the only variety of 
finite dimensional special Jordan algebras of almost polynomial growth is generated by 
UJ2(F ). Moreover, in [27] the authors introduced an infinitely generated metabelian 
Jordan algebra, denoted by A1 that generates another variety of almost polynomial 
growth. Thus, in the last sections we shall prove that var(UJ2) and var(A1) have the 
Specth property. We highlight that the first part of this statement, i.e., any T -ideal 
containing that of UJ2(F ) is finitely generated, is a particular case of [34]. We chose 
to include it here since its proof involves some interesting non-trivial techniques. In 
particular, all results are stated in the language of well-quasi-ordered sets used for the 
first time by the author in [7] to establish positive results on the Specht problem for 
groups. Later this method, also known as the Higman–Cohen method, was used for 
groups, Lie and associative algebras.

2. Preliminaries

All fields we refer to are of characteristic 0 unless explicitly written.
Let X be a countable set of indeterminates and let J (X) be the free Jordan algebra 

generated by the set X over F . We say that a polynomial f(x1, . . . , xn) ∈ J (X) is a 
polynomial identity for the Jordan algebra J if f(a1, . . . , an) = 0 for all a1, . . . , an ∈ J . 
In this case we write f ≡ 0. The identities of J form a T -ideal of J (X), i.e., an ideal 
closed under all endomorphisms of the free Jordan algebra. Let us denote by Id(J) =
{f ∈ J (X)| f ≡ 0 on J} the T -ideal of polynomial identities of J . It is well-known (see 
for example [15, Theorem 1.3.7]) that, in characteristic 0, Id(J) is determined by the 
multilinear polynomials it contains. Recall that a multilinear polynomial is an element 
of the vector subspace

Pn = spanF 〈
{
xσ(1)xσ(2) · · ·xσ(n)| σ ∈ Sn

}
〉,
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where Sn is the symmetric group and xσ(1)xσ(2) · · ·xσ(n) stands for a monomial with all 
possible brackets arrangement. Thus, the relatively free algebra J (X)

Id(J) is determined by 
the sequence of vector subspaces

Pn(J) = Pn

Pn ∩ Id(J) , n ≥ 1.

In this way, we can attach to the Jordan algebra J a numerical sequence cn(J) called 
the codimension sequence, by defining

cn(J) = dimF Pn(J).

Remark that in general the codimensions are bounded only by an over-exponential func-
tion

cn(J) ≤ 1
n

(
2n− 2
n− 1

)
n!,

where 1
n

(2n−2
n−1

)
is the Catalan number. Nevertheless, one can improve this bound in 

some special settings. For instance, in [28] a celebrated theorem of Regev states that 
any associative algebra satisfying a non-trivial polynomial identity (PI-algebra) has the 
sequence of codimensions exponentially bounded. A similar result was obtained in the 
setting of finite dimensional Jordan algebras (see [12] and [16]). We shall refer to the 
growth of the Jordan algebra J as the asymptotic behaviour of its codimension se-
quence.

Given a non-empty set S ⊆ J (X), the class of all Jordan algebras J such that f ≡ 0
on J for all f ∈ S, is called variety V = V(S) determined by S. Similarly, given a 
Jordan algebra J , the variety of Jordan algebras generated by J , var(J), is the class of 
all Jordan algebras satisfying the identities of J . Hence we say that A ∈ var(J) if and 
only if Id(J) ⊆ Id(A). It is clear that there exists a one-to-one correspondence between 
T -ideals and varieties, thus given a variety V, we can naturally define Id(V), Pn(V)
and cn(V). The growth of V will be the asymptotic behaviour of cn(V). Moreover, we 
say that V has almost polynomial growth if its codimension sequence is exponentially 
(but not polynomially) bounded and for any proper subvariety U � V, cn(U) grows 
polynomially.

Let now define an action of the symmetric group Sn on Pn: if σ ∈ Sn and 
f(x1, . . . , xn) ∈ Pn, then σ ·f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). Such an action induces a 
natural Sn-action on Pn(J) that becomes an Sn-module. Hence an Sn-character arises de-
noted by χn(J) and called n-th cocharacter of J . For all n ≥ 1 the sequence {χn(J)}n≥1
is called cocharacter sequence of J . Since charF = 0, by complete reducibility χn(J) can 
be written as

χn(J) =
∑

mλχλ,

λ�n
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where χλ is the character associated to the partition λ and mλ is the corresponding 
multiplicity.

Finally, from now on let us denote by G any finite abelian group and by J a G-graded 
Jordan algebra over F . Recall that J is a G-graded Jordan algebra if J =

⊕
g∈G Jg is a 

direct sum of subspaces such that JgJh ⊆ Jgh, for all g, h ∈ G.
The free G-graded Jordan algebra JG(X) is the G-graded Jordan algebra freely gen-

erated by the set X =
⋃

g∈G Xg, where for any g ∈ G the sets Xg = {xg
i | i ≥ 1} of 

variables of homogeneous degree g are countable and pairwise disjoint. A polynomial f
of J (X) is a G-graded polynomial identity of J if it vanishes under all graded substitu-
tions, i.e., for any g ∈ G, we evaluate the variables xg

i by elements of the homogeneous 
component Jg. We denote by IdG(J) the ideal of JG(X) of G-graded polynomial iden-
tities of J . It is easily checked that IdG(J) is a TG-ideal, i.e., an ideal invariant under all 
G-graded endomorphisms of JG(X). We say that J is a graded PI-algebra if IdG(J) 
= 0. 
As in the ordinary case, one can define VG = VG(S) the variety of G-graded Jordan al-
gebras defined by the set S ⊆ JG(X) as the set of all G-graded Jordan algebras such 
that f ≡ 0 for all f ∈ S.

Furthermore, one can define PG
n as the vector space spanned by all multilinear mono-

mials xgσ(1)
σ(1) · · ·xgσ(n)

σ(n) , σ ∈ Sn, g1, . . . , gn ∈ G, in the graded variables of the set X and 

by PG
n (J) the quotient vector space PG

n

PG
n ∩IdG(J) .

Let n ≥ 1 and write n = n1 + · · · + ns as a sum of non-negative integers. De-
fine Pn1,...,ns

⊆ PG
n as the space of multilinear graded polynomials in which the 

first n1 variables xg1
1 , . . . , xg1

n1
are of homogeneous degree g1, . . ., the last ns variables

xgs
n−ns+1, . . . , x

gs
n are of homogeneous degree gs. Notice that given such n1, . . . , ns, there 

are 
(

n
n1,...,ns

)
subspaces isomorphic to Pn1,...,ns

where 
(

n
n1,...,ns

)
denotes the multinomial 

coefficient. It is clear that PG
n is the direct sum of such subspaces with n1 + · · ·+ns = n. 

Moreover such decomposition is inherited by PG
n ∩ IdG(J) and we consider the spaces 

Pn1,...,ns
∩ IdG(J). In light of these remarks, one defines

Pn1,...,ns
(J) = Pn1,...,ns

Pn1,...,ns
∩ IdG(J)

.

The space Pn1,...,ns
(J) is naturally endowed with a structure of Sn1 × · · · × Sns

-module 
in the following way: the group Sn1 ×· · ·×Sns

acts on the left on Pn1,...,ns
by permuting 

the variables of the same homogeneous degree; hence Sn1 permutes the variables of 
homogeneous degree g1, Sn2 those of homogeneous degree g2 and so on. Since IdG(J) is 
invariant under this action, Pn1,...,ns

(J) has a structure of Sn1 × · · · × Sns
-module and 

we denote by χG
n (J) its character.

If λ(1) � n1, . . . , λ(s) � ns, are partitions, then we write 〈λ〉 = (λ(1), . . . , λ(s)) �
(n1, . . . , ns) and we say that 〈λ〉 is a multipartition of n = n1 + · · · + ns.

Since charF = 0, by complete reducibility, χG
n (J) can be written as a sum of irreducible 

characters in the following way:
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χG
n (J) =

∑
〈λ〉�n

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s),

where m〈λ〉 is the multiplicity of χλ(1) ⊗ · · · ⊗ χλ(s) in χG
n (J). We call χG

n (J) the n-th 
graded cocharacter of J .

Recall that the multiplicities in the cocharacter sequence are equal to the maximal 
number of linearly independent highest weight vectors, according to the representation 
theory of GLn. We also recall that a highest weight vector is obtained from the polyno-
mial corresponding to an essential idempotent by identifying the variables whose indices 
lie in the same row of the corresponding Young tableaux (see [8, Chapter 12] for more 
details).

3. Finite basis property for sets

The finite basis property for sets was first studied in [19] by G. Higman and in an 
unpublished manuscript by P. Erdos and R. Rado. Authors like B. H. Neumann and 
J. B. Kruskal also studied the finite basis property for sets which is also known as theory 
of well-quasi-ordering.

A binary relation ≤ on a set A is a quasi-order if ≤ is reflexive and transitive, i.e., 
(i) a ≤ a for all a ∈ A, and (ii) a ≤ b and b ≤ c imply a ≤ c. Every partial order is a 
quasi-order but not worth the contrary. For example, if f , g ∈ JG(X) then

f ≤ g ⇔ g ∈ 〈f〉TG
, (1)

where 〈f〉TG
denotes the TG-ideal generated by f , is a quasi-order in JG(X) but it is 

not in general a partial order. If B is a subset of a quasi-ordered set A, the closure of B
is defined as

B = {a ∈ A | exists b ∈ B such that b ≤ a}.

A closed subset is a set that coincides with its own closure, i.e., B = B. We say that 
the quasi-ordered set A has the finite basis property (f.b.p.) if every closed subset of A
is the closure of a finite set. Every well-ordered set has f.b.p. (because every non-empty 
subset is the closure of a single element). In particular N the set of natural numbers with 
standard ordering has f.b.p.. However, Z the set of integers has not the f.b.p.. In general 
a totally ordered set A has f.b.p. if and only if A is a well-ordered set. Below we present 
some equivalent definitions for f.b.p..

Theorem 1. [19, Theorem 2.1] The following conditions on a quasi-ordered set A are 
equivalent.

(1) Every closed subset of A is the closure of a finite subset;
(2) If B is any subset of A, there is a finite B0 such that B0 ⊂ B ⊂ B0;
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(3) Every infinite sequence of elements {ai}i≥0 of A has an infinite ascending subse-
quence

ai1 ≤ ai2 ≤ · · · ≤ aik ≤ · · · ;

(4) There exists neither an infinite strictly descending sequence in A nor an infinite one 
of mutually incomparable elements of A.

It is a consequence of the above theorem that every subset B of a quasi-ordered 
set A that satisfies f.b.p. has finite minimal elements (from which the name well-quasi-
ordering).

The next proposition will be very often used in this work.

Proposition 1. Let (A1, ≤A1), (A2, ≤A2), . . ., (Ak, ≤Ak
) be quasi-ordered sets satisfying 

f.b.p.

(1) The disjoint union of A1, A2, . . ., Ak endowed with the quasi-order where a ≤ b if 
and only if a, b ∈ Ai and a ≤Ai

b for some i ∈ {1, 2, . . . , k} satisfies f.b.p.
(2) The cartesian product A1 × A2 × · · · × Ak endowed with the quasi-order where 

(a1, a2, . . . , ak) ≤ (b1, b2, . . . , bk) if and only if ai ≤Ai
bi for any i ∈ {1, 2, . . . , k}

satisfies f.b.p.

Let S(A) be the set of finite subsets of A where A is a quasi-ordered set. We define 
for P , Q ∈ S(A), P ≤ Q if and only if there is one-to-one increasing map of P into Q. 
For instance if A = N the set of non-negative integers we define a quasi-order on the set 
S(N) of finite sequences of non-negative integers in the following way: a = (a1, . . . , an) ≤
(a′1, . . . , a′n′) = a′ if and only if there is a subsequence a′′ = (a′i1 , . . . , a

′
in

) of a′ (i1 <

· · · < in′) such that aj ≤ a′ij for all j ∈ {1, . . . , n}. Then Erdos and Rado proved in an 
unpublished manuscript the following result which can be found in [19] too:

Theorem 2. If A has the f.b.p., so has S(A).

As seen above the free graded Jordan algebra JG(X) is a quasi-ordered set if we 
define for f, g ∈ JG(X), f ≤ g if and only if g ∈ 〈f〉TG

. If I is a TG-ideal of JG(X), the 

quasi-order on JG(X) is inherited by 
JG(X)

I
. Hence, if f, g ∈ JG(X), we set

f ≤ g if and only if g ∈ 〈{f} ∪ I〉TG
. (2)

In this case we say that g is a consequence of f modulo I or simply that g is a consequence 
of f . When f ≤ g and g ≤ f we say that f is equivalent to g and we write f ≡ g. We 
observe that if B ⊆ JG(X) then B ⊆ 〈B〉TG

modulo I and consequently 〈 B 〉TG
= 〈B〉TG

modulo I where B is a closure of B.
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Definition 1. Let A be a G-graded Jordan algebra. We say that IdG(A) has the Specht 
property if any TG-ideal I such that I ⊇ IdG(A), has a finite basis, that is, I is finitely 
generated as a TG-ideal. Moreover, we say that a variety V has the Specht property if 
the corresponding TG-ideal has the Specht property.

The following remark draws up the technique that we will apply in order to prove the 
Specht property for a variety of G-graded Jordan algebras.

Remark 1. Fix a variety V of graded Jordan algebras such that IdG(V) is finitely gener-
ated and let L = JG(X)

IdG(V) be the corresponding relatively free algebra. A strategy to give 
a positive answer to the Specht problem for V is:

(1) Find a set of polynomials B ⊆ L (not necessarily finite) such that for every TG-ideal 
I of L,

I = 〈B′〉TG
for some B′ ⊆ B.

(2) Show that (B, ≤) satisfies f.b.p. where ≤ is the quasi-order given by the consequence, 
i.e., f ≤ g if and only if g is a consequence of f in L.

In fact, suppose that there is a set B satisfying (1) and (2) and let I be a TG-ideal of L. 
There exists B′ ⊆ B such that I = 〈B′〉TG

. Since (B, ≤) satisfies f.b.p. by Theorem 1, 
there exists a finite set B0 ⊆ B′ such that B0 ⊆ B′ ⊆ B0. Therefore

I = 〈B′〉TG
= 〈 B0 〉TG

= 〈B0〉TG
.

If F is a field of characteristic 0 and IdG(V) is finitely generated, a natural set that 
satisfies step (1) is a set of highest weight vectors generating irreducible modules whose 
characters appear with non-zero multiplicity in the decomposition of the cocharacter of 
the variety V. If a concrete list of highest weight vectors for V is known, the next step is 
to show that this list satisfies f.b.p. with the quasi-order inherited by L.

In the proof of the main results of this paper our strategy is showing that for any set 
S of highest weight vectors there is a finite subset S0 such that all elements in S follow 
from those in S0. When handling highest weight vectors corresponding to multipartitions 
appearing with multiplicity 1 in the cocharacter sequence, in order to prove the Specht 
property it suffices using Remark 1. Otherwise the usual way to handle the problem is 
the following. We argue for the ungraded case only being the generalization to the graded 
case a simple restatement.

Step 1. If the highest weight vectors of degree n are linear combination of fn
1 , . . . , f

n
k , 

k = k(n), we order linearly the fi’s in order to select a leading term namely fn
i .

0
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Step 2. We define a partial quasi-order on the set of all fn
i ’s (for any n and any 

i = 1, . . . , k(n)) and we prove the set of these highest weight vectors satisfies f.b.p. with 
respect to the partial quasi-order above.

Step 3. We prove that if

fn1 =
k1∑
i=1

αif
n1
i , fn2 =

k2∑
j=1

βjf
n2
j , αi, βj ∈ F,

are two highest weight vectors with leading terms fn1
i0

, fn2
j0

respectively, and fn1
i0

≤ fn2
j0

, 
then there exists a highest weight vector

vn2 =
k2∑
j=1

γjf
n2
j , γj ∈ F,

which is a consequence of fn1 and its leading term is exactly fn2
j0

.
Step 4. We consider the set L of all leading terms of the set S of all highest weight 

vectors in the T -ideal. By Step 2, L has a finite subset L0 such that every element in L
is bigger than some element of L0. Let S0 ⊆ S be the finite subset with leading terms 
in L0. Let fn1 ∈ S0 and fn2 ∈ S such that their leading terms fn1

i0
, fn2

j0
respectively, are 

such that fn1
i0

≤ fn2
j0

. By Step 3 the leading term of

fn2
j0

− βj0

γj0
v

is smaller than the leading term of fn2
j0

and by inductive arguments is a consequence 
of S0.

4. Specht property for G-graded identities of UJ2

In this section we prove the Specht property for G-graded identities of UJ2, where G
is any finite abelian group.

Throughout the paper we let UJ2(F ) = UJ2 be the Jordan algebra of upper triangular 
matrices of order 2 over the field F with the product x ◦ y = xy + yx

2 for all x, y ∈ UJ2. 
We fix the basis

1 =
(1 0

0 1

)
, a =

(1 0
0 −1

)
, b =

(0 1
0 0

)
,

of J = UJ2. Hence a ◦ a = a2 = 1, b2 = b ◦ b = 0 and a ◦ b = 0. Here we simply write 
F to denote the scalar matrices in J . Up to isomorphism, J can be endowed with the 
following non isomorphic gradings (see [25, Theorem 1]):
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1. G = {0} The trivial grading: J0 = J ;
2. G = Z2:

(a) The scalar grading: J0 = F, J1 = Fa ⊕ Fb;
(b) The associative grading: J0 = F ⊕ Fb, J1 = Fa;
(c) The classical grading: J0 = F ⊕ Fa, J1 = Fb.

3. G = Z2 × Z2 (The Klein grading): J(0,0) = F , J(0,1) = Fa, J(1,0) = Fb, J(1,1) = {0}.

We denote by S, A, C and K the scalar, associative, classical and Klein grading, respec-
tively. Thus, for instance, IdC(UJ2) and varC(UJ2) will denote the T2-ideal of graded 
identities and the variety of Z2-graded Jordan algebras generated by UJ2 endowed with 
the classical grading, respectively.

4.1. The S-grading

In this section we consider the scalar grading on J = UJ2, i.e., G = Z2 and J = J0⊕J1
where J0 = F and J1 = Fa ⊕ Fb. As above we write X = Y ∪ Z where the variables 
yi ∈ Y have homogeneous degree 0, the variables zi ∈ Z have homogeneous degree 1.

A basis of the graded identities of UJ2 and its cocharacter sequence with the S-grading 
is described below. On this purpose we recall the definition of associator between three 
elements u1, u2, u3 of a given algebra:

(u1, u2, u3) := (u1u2)u3 − u1(u2u3).

Of course we have an analogous definition for associators of length n, where n is an odd 
number greater than 3.

Theorem 3. [23, Proposition 8] The following polynomials are a basis of IdS(UJ2)

(y1, y2, y3), (y, z1, z2), (z1, y, z2), (z1, z2, z3)z4.

The next theorem describes the graded cocharacter sequence.

Theorem 4. [6, Theorem 2] Let n ≥ 0 and let

χS
n(UJ2) =

∑
λ,μ

mλ,μχλ,μ

be the S-graded cocharacter of UJ2. Then mλ,μ = 1 if and only if λ = (r) and μ = (s), 
where r + s = n and r, s not simultaneously equal to 0. In all other cases mλ,μ = 0.

As a consequence of the previous result, we have the description of the highest weight 
vectors whose characters appear with non-zero multiplicity in the decomposition of 
χS
n(UJ2). In particular, the highest weight vectors are of the form:
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yrzs

for all r, s not simultaneously equal to 0. Let B be a set of all highest weight vectors and 
let B ⊆ N2 be the set of pars (r, s) such that yrzs ∈ B. By Proposition 1, B has f.b.p. if 
we define a natural quasi-order by saying that (r, s) ≤ (r′, s′) if and only if r ≤ r′ and 
s ≤ s′.

We shall show that the quasi-order ≤ in B induces the quasi-order in B. More precisely 
we have the following result.

Lemma 1. For all r, s not simultaneously equal to 0, if (r, s) ≤ (r′, s′) then yrzs ≤ yr
′
zs

′ .

Proof. The statement readily follows from the fact that yr′zs′ ≡ [yr′−r(yrzs)]zs′−s, since 
the even variables y lie in the associative and commutative centre of the relatively free 

graded algebra J 〈X〉
IdS(UJ2)

. �
Now we can prove the Specht property for IdS(UJ2).

Theorem 5. Let F be a field of characteristic 0. Then varS(UJ2) has the Specht property.

Proof. Let U be a subvariety of varS(UJ2) and let I be the corresponding T2-ideal of 
graded identities. If U = varS(UJ2), i.e., I = IdS(UJ2), then the result follows from 
Theorem 3.

So let us suppose U � varS(UJ2) and I � IdS(UJ2). By Remark 1 it suffices to show 
that (B, ≤) satisfies f.b.p. where B is the set all highest weight vectors described above 
and ≤ is the quasi-order given by the consequence. Let B′ be a subset of B and B′ a 
subset of B = {(r, s) : yrzs ∈ B} corresponding to B′, i.e., B′ = {(r, s) : yrzs ∈ B′}. 
Since B′ ⊆ B ⊆ N2 and by Proposition 1 N2 has f.b.p., there is a finite set B0 ⊆ B′ such 
that B0 ⊆ B′ ⊆ B0. Consider B0 = {yrzs : (r, s) ∈ B0} ⊆ B′ and yrzs ∈ B′. This implies 
that (r, s) ∈ B′ ⊆ B0 and therefore there is (r0, s0) ∈ B0 where (r0, s0) ≤ (r, s). By 
the previous lemma yr0zs0 ≤ yrzs where yr0zs0 ∈ B0. Thus yrzs ∈ B0 and consequently 
B0 ⊆ B′ ⊆ B0 where B0 is a finite set. �
4.2. The A-grading

Let us consider now the associative grading on J = UJ2, i.e., G = Z2 and J = J0⊕J1
where J0 = F ⊕ Fb and J1 = Fa.

As in the previous cases, let us recall the basis of the T2-ideal of UJ2 and its graded 
cocharacter sequence.

Theorem 6. [23, Proposition 6] The following polynomials are a basis of IdA(UJ2)

(y1, y2, y3), (z1, y, z2), (z1, z2, z3), (y1, z, y2), (z, y1, y2), (z1z2, x1, x2), (x1, z1z2, x2).
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Theorem 7. [6, Theorem 3] Let n ≥ 0 and let

χA
n =

∑
λ,μ

mλ,μχλ,μ

be the A-graded cocharacter of UJ2. Then mλ,μ = 1 if either

1) λ = (r), μ = (s), for all r ≥ 0, r + s = n and s odd.
2) λ = (n), μ = ∅.
3) λ = (r), μ = (s), for all r ≤ 1, r + s = n and s even.
4) λ = (1, 1), μ = (s), s even.
5) λ = (p + q, p), μ = (s), for all 2p + q > 2, 2p + q + s = n and s even.

Moreover, mλ,μ = 2 if λ = (2) and μ = (s), where s is even, and mλ,μ = r− 2 if λ = (r)
and μ = (s), where r > 2 and s even. In all other cases mλ,μ = 0.

In the same paper, it was also proved that the highest weight vectors whose characters 
appear with non-zero multiplicity in the decomposition of χA

n (UJ2) are of the form (here 
we use the standard notation y1 · · · y2 := y1 · · · y2 − y2 · · · y1):

(1a) (yrz)zs−1 for s odd;
(1b) yr for all r ≥ 1;
(1c) yrzs for r ∈ {0, 1} and s even;
(1d) (((y1z)z)y2)zs−2 for s even;
(1e) ((((yq1 ȳ1 · · · ỹ1︸ ︷︷ ︸

p

)z)z) ȳ2 · · · ỹ2︸ ︷︷ ︸
p

)zs−2 for s even, or a linear combination of the following 

ones:
(2a) (i) y2zs for s even;

(ii) ((y2z)z)zs−2 for s even ≥ 2;
(3a) (((yiz)z)yr−i)zs−2 for r > 2, s even, i ∈ {1, . . . , r − 2}.

Let us denote by

B1a, B1b, B1c, B1d, B1e, B2a(i), B2a(ii), B3a

the sets of highest weight vectors associated to (1a), (1b), (1c), (1d), (1e), (2a(i)), (2a(ii))
and (3a), respectively. We consider the following sets which are clearly in one-to-one 
correspondence with the highest weight vectors described above. These sets are the 
following:

B1a = {(r, s) : s is odd};
B1b = {r : r ≥ 1};
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B1c = {(r, s) : 0 ≤ r ≤ 1, s is even};

B1d = {s : s is even};

B1e = {(q, p, s) : s is even};

B2a(i) = {s : s is even};

B2a(ii) = {s : s is even};

B3a = {(i, r − i, s) : 0 ≤ i ≤ r − 1, s is even, r > 2}

= {(i, j, s) : s is even and j ≥ 1}.

As in the previous section, we shall show that the natural quasi-order ≤ in B1a∪B1b∪
B1c ∪ B1d ∪ B1e ∪ B2a(i) ∪ B2a(ii) ∪ B3a induces the quasi-order ≤ in B1a ∪ B1b ∪ B1c ∪
B1d ∪ B1e ∪ B2a(i) ∪ B2a(ii) ∪ B3a where f ≤ g if and only if f , g ∈ Bi for some i and g
is a consequence of f . In order to reach the goal, first we prove the following technical 
lemma.

Lemma 2. The following statements hold modulo IdA(UJ2).

(1) (zt(yz))z ≡ zt+1(yz) for all t ≥ 0.
(2) (Y1z)(yz) ≡ ((Y1y)z)z where Y1, Y2 are products of even variables.
(3) (((Y1z)z)Y2)zr ≤ (((Y1z)z)Y2y)zr where r is even ≥ 2 and Y1, Y2 are products of 

even variables.
(4) (((Y1z)z)Y2)zr ≤ ((((Y1y)z)z)Y2)zr where r is even ≥ 2 and Y1, Y2 are products of 

even variables.

Proof. First let us prove statement (1). If t = 0 then (1) trivially follows, so let us 
suppose t > 0. If t is odd, then (zt(yz))z ≡ ((yz)z)zt ≡ (yz)zt+1 (mod IdA(UJ2)), since 
(z1, z2, z3) ≡ 0. Conversely, if t is even, then due to (z1, y, z2) ≡ 0, zt = zzt−1 with t − 1
odd and (z1z2, x1, x2) ≡ 0, we get

(zt(yz))z ≡ ((yz)z)zt ≡ zt+1(yz) (mod IdA(UJ2)).

Furthermore, since (z1, y, z2), (y1, z, y2), (y1, y2, z) are graded identities of UJA
2 it follows 

that

(Y1z)(yz) ≡ [(Y1z)y]z ≡ [Y1(yz)]z ≡ ((Y1y)z)z (mod IdA(UJ2)),

so we get statement (2).
Statement (3) is easily proved by remarking that because of r is even and 

(y1, y2, y3) ≡ 0, then

[(((Y1z)z)Y2)zr]y ≤ [((Y1z)z)Y2](yzr) ≤ [(((Y1z)z)Y2)y]zr ≤ [((Y1z)z)Y2y]zr
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Finally, let us partially linearize the variable z of (((Y1z)z)Y2)zr. We get the following 
consequence:

∑
σ∈Sr+2

(((((Y1zσ(1))zσ(2))Y2)(zσ(3) · · · zσ(r+2)).

If we replace in the previous polynomial z1 by yz and zi by z for all i 
= 1, we obtain

(((Y1(yz))z)Y2)zr + (((Y1z)(yz))Y2)zr +
r∑

t=0
(((Y1z)z)Y2)((· · · ((zt(yz)) z) · · · z)z︸ ︷︷ ︸

r−t−1

).

By taking into account the previous statements, we have that (((Y1(yz))z)Y2)zr and 
(((Y1z)(yz))Y2)zr are equivalent to ((((Y1y)z)z)Y2)zr modulo IdA(UJ2). Moreover, by 
(1) for all 0 ≤ t ≤ r,

(((Y1z)z)Y2)((· · · ((zt(yz)) z) · · · z)z︸ ︷︷ ︸
r−t−1

) ≡ (((Y1z)z)Y2)((yz)zr−1) (mod IdA(UJ2)).

Thus, in order to prove statement (4), it suffices to show that (((Y1z)z)Y2)((yz)zr−1)
is equivalent to ((((Y1y)z)z)Y2)zr modulo Id(UJ2). Since r is even and (y1, y2, y3) is an 
identity, we have

(((Y1z)z)Y2)((yz)zr−1) ≡ [(((Y1z)z))(zr−1(yz))]Y2 (mod IdA(UJ2)).

Now remark that

[(((Y1z)z))(zr−1(yz))]Y2 ≡ [((Y1z)z)zr−1](yz)]Y2 ≡ [[(Y1z)zr](yz)]Y2

≡ [(zr(Y1z))(yz)]Y2 (mod IdA(UJ2)),

since (z1z2, x1, x2) and (z1, z2, z3) are identities and r − 1 is odd. Moreover, due to the 
fact that r is even and greater than 2, zr = zzr−1 and (z1z2, x1, x2) ≡ (x1, z1z2, x2) ≡ 0, 
it turns out that

[(zr(Y1z))(yz)]Y2 ≡ [((Y1z)(yz))Y2]zr (mod IdA(UJ2)).

Therefore by statement (2)

[((Y1z)(yz))Y2]zr ≡ [[((Y1y)z)z]Y2]zr (mod IdA(UJ2))

and we are done. �
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Lemma 3. We have

(1) (yrz)zs−1 ≤ (yr′z)zs′−1 where (r, s) ≤ (r′, s′) and s, s′ odd;
(2) yr ≤ yr

′ where r ≤ r′ for all r, r′ ≥ 1;
(3) yzs ≤ yzs

′ and zs ≤ zs
′ where s ≤ s′ and s, s′ even;

(4) (((y1z)z)y2)zs−2 ≤ (((y1z)z)y2)zs
′−2 where s ≤ s′ and s, s′ even;

(5) ((((yq1 ȳ1 · · · ỹ1︸ ︷︷ ︸
p

)z)z) ȳ2 · · · ỹ2︸ ︷︷ ︸
p

)zs−2 ≤ ((((yq
′

1 ȳ1 · · · ỹ1︸ ︷︷ ︸
p′

)z)z) ȳ2 · · · ỹ2︸ ︷︷ ︸
p′

)zs′−2 where

(q, p, s) ≤ (q′, p′, s′) and s, s′ even ≥ 2;
(6) y2zs ≤ y2zs

′ and ((y2z)z)zs−2 ≤ ((y2z)z)zs′−2 where s ≤ s′ for s even;
(7) (((yiz)z)yj)zs−2 ≤ (((yi′z)z)yj′)zs′−2 where (i, j, s) ≤ (i′, j′, s′) and j, j′ ≥ 1, s, s′

even.

Proof. The statement (1) follows from

[yr
′−r[(yrz)zs−1]]zs

′−s ≡ [[yr
′−r(yrz)]zs−1]zs

′−s ≡ [(yr
′
z)zs−1]zs

′−s

≡ (yr
′
z)zs

′−1 (mod IdA(UJ2)),

since (y1, z, y2) and (z, y1, y2) are graded identities of UJ2. The statement (2) is trivial.
Statements (3), (4) and (6) readily follow from the fact that s and s′− s are even and 

(y1, y2, y3) ≡ 0.
In order to prove statement (5) we use the transitivity of the quasi-order, i.e., we prove 

that (q, p, s) ≤ (q′, p, s) implies fq,p,s ≤ fq′,p,s, (q, p, s) ≤ (q, p′, s) implies fq,p,s ≤ fq,p′,s

and (q, p, s) ≤ (q, p, s′) implies fq,p,s ≤ fq,p,s′ , for all q, q′, p, p′, s, s′ integers, where

fq,p,s = fq,p,s(y1, y2, z) = ((((yq1 ȳ1 · · · ỹ1︸ ︷︷ ︸
p

)z)z) ȳ2 · · · ỹ2︸ ︷︷ ︸
p

)zs−2.

Clearly, fq,p,s ≤ fq,p,s′ when s ≥ s′ and s, s′ are even, since fq,p,s′ ≡ fq,p,sz
s′−s.

Now suppose q ≤ q′, then fq,p,s ≤ fq′,p,s by (4) of Lemma 2.
Finally, without loss of generality we may suppose p′ = p + 1. The general statement 

will follow by a standard induction argument. By [6, Lemma 5] we have

fq,p,s =
p∑

j=0
(−1)p−j

(
p

j

)
((((yq+j

1 yp−j
2 )z)z)yp−j

1 yj2)zs−2.

On the other hand, by statements (3) and (4) of Lemma 2, for all 0 ≤ j ≤ p

((((yq+j
1 yp−j

2 )z)z)yp−j
1 yj2)zs−2 ≤ ((((yq+j

1 y
(p+1)−j
2 )z)z)y(p+1)−j

1 yj2)zs−2,

therefore fq,p,s ≤ fq,p+1,s.
The proof of (7) is analogous to that of (5). �
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Our next goal is proving the Specht property for varA(UJ2).

Theorem 8. Let F be field of characteristic 0, then varA(UJ2) has the Specht property.

Proof. Let U be a subvariety of varA(UJ2). If U = varA(UJ2), then the result follows 
from Theorem 6.

So let us suppose U � varA(UJ2) and let us denote by I the corresponding T -ideal 
of graded identities. As noted above, not all the highest weight vectors do correspond to 
multipartitions appearing with multiplicity 1 in the cocharacter sequence of varA(UJ2). 
Hence we divide the proof into two parts being the first one the one involving the cases 
from (1a) to (1e). We start handling the cases (1a)–(1e). By Remark 1 it suffices to show 
that (B1a ∪ B1b ∪ B1c ∪ B1d ∪ B1e, ≤) satisfies f.b.p. where f ≤ g if and only if f , g ∈ Bi

for some i and g is a consequence of f . If we set B = B1a ∪ B1b ∪ B1c ∪ B1d ∪ B1e and 
B = B1a ∪B1b ∪B1c ∪B1d ∪B1e, then by Lemma 3 we get the claim as outlined in the 
proof of Theorem 5.

It remains to prove the cases (2a) and (3a). We have to remark the two cases have 
to be manipulated separately because they correspond to different modules. Hence we 
start with the case (2a) and we notice any highest weight vector can be written as 
h = αf + βg, α, β ∈ F , f of type (2a)(i) and g of type (2a)(ii). We have to follow the 
four steps as outlined in Section 3, then we have to order the highest weight vectors. 
We always consider the elements (2a)(i) greater than the elements (2a)(ii) and among 
them we give an order depending on the exponent of the variable z and this completes
Step 1. By Lemma 3 the set (B2a(i) ∪B2a(ii), ≤) satisfies f.b.p. where f ≤ g if and only if 
f , g ∈ Bi for some i and g is a consequence of f and this is enough to complete Step 2. 
In order to get Step 3 we have simply to notice that if

h1 = α1f1 + β1g1 and h2 = α2f2 + β2g2

are highest weight vectors such that f1 ≤ f2, then f2 = f1z
t for some t ≥ 0, then we set 

g = g1z
t and we consider

h = αf2 + βg

which is the required highest weight vector and we are done because the other cases are 
completely analogous.

The case (3a) may be treated similarly to the first case. Actually we order the elements 
(3a) depending on the exponent s − 2 of z and Step 1 is over. Step 2 follows again from 
Lemma 3. If

h1 =
r−2∑

αif
(i,r−i,s)
i and h2 =

r′−2∑
αjf

(j,r′−j,s′)
j

i=1 j=1
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are two highest weight vectors such that their leading terms are f1 := f
(i0,r−i0,s)
i0

, f2 :=
f

(j0,r′−j0,s
′)

j0
respectively and f1 ≤ f2, then f2 = φ(f1z

s′−syr
′−j0−r+i0), where φ is a 

partial linearization of the polynomial in the odd variables as outlined in the proof of 
Statement (3) of Lemma 2. In light of this we set

h := φ(
r−2∑
i=1

αi((f (i,r−i,s)
i zs

′−s)yr
′−j−r+i))

that is the required highest weight vector and Step 3 is completed. �
4.3. The C-grading

In this section we fix the classical grading on J = UJ2, i.e., G = Z2 and J = J0 ⊕ J1
where J0 = F ⊕ Fa and J1 = Fb. In the free Z2-graded Jordan algebra J 〈X〉 we write 
X = Y ∪ Z, the disjoint union of two countable sets and we require that the variables 
yi ∈ Y have homogeneous degree 0, the variables zi ∈ Z have homogeneous degree 1. 
Moreover, we denote by xi any kind of variable.

The next theorems give a basis of the graded identities of UJ2 with the C-grading 
and describe the corresponding cocharacter sequence.

Theorem 9. [23, Proposition 12] The following polynomials are a basis of IdC(UJ2)

(x1x2, x3, x4) − x1(x2, x3, x4) − x2(x1, x3, x4), (y1, y2, y3), z1z2, (y1, z, y2).

Theorem 10. [6, Theorem 1] Let n ≥ 0 and let

χC
n (UJ2) =

∑
λ,μ

mλ,μχλ,μ

be the C-graded cocharacter of UJ2. Then mλ,μ = 1 if and only if λ = (r) and μ = (s), 
where r + s = n, s ≤ 1 and r, s not simultaneously equal to zero. In all other cases 
mλ,μ = 0.

In the case of the C-grading, the Specht property for UJ2 is proved assuming only 
that the base field is infinite of characteristic different from 2.

Let I be a T2-ideal such that IdC(UJ2) � I and f ∈ I. Since F is an infinite field we 
can assume that f is a multihomogeneous polynomial. By Proposition 12 of [23]

f ≡ f(y1, ..., ys, z) ≡ y1(· · · (y1︸ ︷︷ ︸
a1

(y2(· · · (ys · · · (ys︸ ︷︷ ︸
as

z)) · · · ))) · · · ) (mod IdC(UJ2)),

where ai ≥ 0 for all i ∈ {1, . . . , s}

or



154 L. Centrone et al. / Journal of Algebra 521 (2019) 137–165
f ≡ f(y1, ..., ys) ≡ yb11 . . . ybss (mod IdC(UJ2)), bi ≥ 0 for all i ∈ {1, . . . , s}.

Then I is defined by a subset of set of polynomial in J (X) of the form:

(1) y1(· · · (y1︸ ︷︷ ︸
a1

(y2(· · · (ys · · · (ys︸ ︷︷ ︸
as

z)) · · · ))) · · · ) (mod IdC(UJ2)), where ai ≥ 0 for all i ∈

{1, . . . , s}
(2) yb11 . . . ybss (mod IdC(UJ2)), bj ≥ 0 for all j ∈ {1, . . . , s}

Let us denote by B1 and B2 the set of polynomials associated to (1) and (2) respec-
tively. We consider the following sets which are clearly in one-to-one correspondence with 
polynomials of the type (1) and (2) respectively.

B1 = {(a1, . . . , ar) : r > 0, bi > 0 for all i};

B2 = {(b1, . . . , bs) : s > 0, aj > 0 for all j}.

Since B1 and B2 are subsets of S(N), B1 and B2 satisfy f.b.p. with the quasi-order 
induced by the quasi-order of S(N).

To simplify the notation, we will denote y1(· · · (y1︸ ︷︷ ︸
a1

(y2(· · · (ys · · · (ys︸ ︷︷ ︸
as

z)) · · · ))) · · · ) by 

Y az where a = (a1, . . . , as).

Lemma 4. Let a = (a1, . . . , ar), a′ = (a′1, . . . , a′r′) ∈ B1 and b = (b1, . . . , bs), b′ =
(b′1, . . . , b′s′) ∈ B2.

(1) If a ≤ a′ then Y az ≤ Y a′
z.

(2) If b ≤ b′ then yb11 . . . ybss ≤ y
b′1
1 . . . yb

′s′
s .

Proof. Let us prove statement (1). Since a = (a1, . . . , ar) ≤ (a′1, . . . , a′r′) = a′ there 
is a subsequence a′′ = (a′i1 , . . . , a

′
ir

) of a′ (i1 ≤ · · · ≤ ir) such that aj ≤ a′ij for all 
j ∈ {1, . . . , r}. Define f(y1, . . . , yr, z) = Y az and let f(yi1 , . . . , yir , z) be the polynomial 
obtained replacing the variable yj by yij for each j ∈ {1, . . . , r} in f(y1, . . . , yr, z). Then 
by Proposition 12 of [23]

Ỹ y
a′
i1−a1

i1
· · · ya

′
ir

−ar

ir
f(yi1 , . . . , yir , z) ≡ Y a′

z

where

Ỹ =
∏

y
a′
k

k

k∈{1,··· ,n}−{i1,...,ir}
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and the last equivalence is obtained replacing the variable yij by yj for each j ∈
{1, . . . , r}. Therefore Y az = f(yi1 , . . . , yir , z) ≤ Y a′

z. Similar arguments can be applied 
in the proof of statement (2). �
Theorem 11. Let F be an infinite field of characteristic different from 2. Then varC(UJ2)
has the Specht property.

Proof. The result follows from Theorem 9 if U = varC(UJ2).
Let I a T2-ideal such that IdC(UJ2) � I. By Remark 1 it suffices to show that 

(B1 ∪ B2, ≤) satisfies f.b.p. where f ≤ g if f , g ∈ Bi for some i ∈ {1, 2} and g is a 
consequence of f . Let us set B = B1 ∪B2 and B = B1 ∪B2, then by taking into account 
Lemma 4, the proof follows verbatim the one of Theorem 5. �

It is interesting to mention the following. The fact that in the case of characteristic 0 
the multiplicities of the irreducible components in the cocharacter sequence of varC(UJ2)
are 0 and 1 only, implies that the lattice of the subvarieties of varC(UJ2) is distribu-
tive (see the paper [2] for more details). With some additional work this leads to the 
description of this lattice.

4.4. The K-grading

Now we deal with the Klein grading on J = UJ2, i.e., G = Z2 × Z2 and J = J(0,0) ⊕
J(1,0) ⊕ J(0,1) ⊕ J(1,1) where J(0,0) = F , J(0,1) = Fa, J(1,0) = Fb, J(1,1) = {0}. Here we 
write X = Y ∪Z∪T ∪W , the disjoint union of four countable sets and we require that the 
variables yi ∈ Y have homogeneous degree (0, 0), the variables zi ∈ Z have homogeneous 
degree (1, 0), the variables ti ∈ T have homogeneous degree (0, 1), the variables wi ∈ W

have homogeneous degree (1, 1).
In [5] the authors gave a description of the generators of the T -ideal of Z2×Z2-graded 

polynomial identities of UJ2 and the corresponding graded cocharacter sequence.

Theorem 12. [5, Lemma 3.5] The following polynomials are a basis of IdK(UJ2).

(y1, y2, x), (y1, x, y2), (z1, z2, y), (z1, y, z2), (z1, z2, z3), zt, t1t2, w.

Theorem 13. [5, Lemma 3.6] Let n ≥ 0 and let

χK
n (UJ2) =

∑
λ,μ,ν,η

mλ,μ,ν,ηχλ,μ,ν,η

be the K-graded cocharacter of UJ2. Then mλ,μ,ν,η = 1 if either
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1) λ = (r), μ = (s), ν = ∅, η = ∅ for all r, s ≥ 0 and r + s = n;
2) λ = (r), μ = (s), ν = (1), η = ∅ for all r ≥ 0, r + s + 1 = n and s even;
3) λ = (n − 1), μ = ∅, ν = (1), ν = ∅.

In all other cases mλ,μ,ν,η = 0.

The highest weight vectors whose characters appear with non-zero multiplicity in the 
decomposition of χK

n (UJ2) are of the form:

(1) yrzs for all r, s not simultaneously equal to 0;
(2) yrzsw for all r ≥ 0 and s even;
(3) yrw for r ≥ 0.

Let B1, B2 and B3 be the sets of all highest weight vectors corresponding to (1), 
(2) and (3) respectively. Let us consider B1, B2 being the set of pairs (r, s) such that 
yrzs ∈ B1, yrzsw ∈ B2 respectively and B3 the set of positive integers r where yrw ∈ B3. 
By Proposition 1, B1, B2 and B3 have f.b.p. and are pairwise disjoint.

As in the case of the C-grading we shall show that the natural quasi-order ≤ in 
B1 ∪B2 ∪B3 induces the quasi-order ≤ in B1 ∪B2 ∪B3 where f ≤ g if f , g ∈ Bi for some 
i ∈ {1, 2, 3} and g is a consequence of f . Notice that, although the quasi-order ≤ is the 
same for B1, B2 and B3 (given by the consequence), it will be necessary to compare only 
polynomials f , g ∈ Bi for some i ∈ {1, 2, 3}.

Lemma 5. Let (r, s), (r′, s′) ∈ B1, (t, u), (t′, u′) ∈ B2 and v, v′ ∈ B3.

(1) If (r, s) ≤ (r′, s′) then yrzs ≤ yr
′
zs

′ ;
(2) If (t, u) ≤ (t′, u′) then ytzuw ≤ yt

′
zu

′
w;

(3) If r ≤ r′ then yrw ≤ yr
′
w.

Proof. The statement (1) follows from the fact that yr′zs′ ≡ [yr′−r(yrzs)]zs′−s modulo 
IdK(UJ2), since the even variables y lie in the associative and commutative centre of the 
relatively free graded algebra J〈X〉

IdS(UJ2)
and (y, z1, z2) is an identity of UJ2.

Moreover, since t′− t is even, then zt
′−t is an even variable that lies in the associative 

and commutative centre. Thus zs′−s[yr′−r(yrzsw)] ≡ yr
′
zs

′
w modulo IdK(UJ2) and the 

statement (2) follows.
Similar arguments prove (3). �
We are now in a position to prove the Specht property for varK(UJ2).

Theorem 14. Let F be a field of characteristic 0. Then varK(UJ2) has the Specht prop-
erty.
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Proof. Let U be a subvariety of varK(UJ2). If U = varK(UJ2), then the result follows 
from Theorem 12.

So let us suppose U � varK(UJ2) and let us denote by I the corresponding T -ideal of 
graded identities. By Remark 1 it suffices to show that (B1 ∪ B2 ∪ B3, ≤) satisfies f.b.p. 
where f ≤ g if f , g ∈ Bi for some i ∈ {1, 2, 3} and g is a consequence of f . Let us set 
B = B1 ∪ B2 ∪ B3 and B = B1 ∪ B2 ∪ B3, then by taking into account Lemma 5, the 
proof follows verbatim the one of Theorem 5. �
4.5. The trivial grading

We finally deal with the trivial grading, i.e., the ordinary polynomial identities of UJ2. 
In [26] it was proved that the algebra of 2 ×2 upper triangular matrices is the only finite 
dimensional special Jordan algebra that generates a variety of almost polynomial growth. 
Furthermore, in [6] and [23] the authors computed a basis of the T -ideal of identities of 
UJ2 and the corresponding cocharacter sequence.

Lemma 6. [23, Theorem 19] The following polynomials are a basis of Id(UJ2)

(x1x2, x3, x4) − x1(x2, x3, x4) − x2(x1, x3, x4), (x1, (x2, x3, x4), x5).

Remark 2. If B is an associator then x1(x2B) ≡ x2(x1B) modulo Id(UJ2).

Proof. Since (x1, (x2, x3, x4), x5) ∈ Id(UJ2), then we have that

x1(x2B) = (x1B)x2 − (x1, B, x2) ≡ (x1B)x2 = x2(x1B) (mod Id(UJ2)). �
The proof of the next Lemma uses the relation between proper and ordinary cochar-

acter sequences. We refer to [8, Chapters 4.3 and 12.5] for an exhaustive survey about 
proper polynomials, proper cocharacters and Littlewood–Richardson rule. The book [8]
considers associative algebras only but the same results hold for any unitary algebra, see 
Proposition 1.5 in [9].

Lemma 7. Let n ≥ 1 and let

χn(UJ2) =
∑
λ�n

mλχλ

be the n-cocharacter of the Jordan algebra UJ2. If λ = (n) then mλ = 1, if either 
λ = (p + q, p) or λ = (p + q, p, 1), p > 0, then mλ = � q+1

2 � if p is odd and mλ = � q+2
2 �

if p is even.
In all other cases mλ = 0.
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Proof. By [6], the proper cocharacter of UJ2 is

ψn(UJ2) =
{
χ(n−1,1) if n is odd,
0 if n is even.

Then

χn(UJ2) =
n∑

k=0

χk ⊗ ψn−k(UJ2) = χ(n) +
∑
p>0

(
m(p+q,p)χ(p+q,p) + m(p+q,p,1)χ(p+q,p,1)

)
.

Here ⊗ stands for the multiplication in the Littlewood–Richardson rule.
This proves immediately the cases λ = (n) and λ = (λ1, . . . , λr), λ3 > 1 or λ4 > 0.
The case λ = (p + q, p) (with similar arguments for λ = (p + q, p, 1)) is handled as 

follows. Clearly, χ(p+q,p) is obtained from χ(k)⊗ψn−k(UJ2) when n −k is odd, i.e., from 
χ(k)⊗χ(2s,1), p ≤ 2s ≤ p +q. For p even, we have the possibilities s = p, p +2, . . . , p +q−ε, 
ε = 0, 1, depending on the parity of q, i.e., � q+2

2 � possibilities. For p odd the possibilities 
for s are s = p + 1, p + 3, . . . , p + q − ε, ε = 0, 1, i.e., � q+1

2 � possibilities. �
By using the Littlewood–Richardson rule, it was also proved in [6, Theorem 4] that 

the highest weight vectors associated to the partition λ = (p + q, p) whose characters 
appear with a non-zero multiplicity in the decomposition of χn(UJ2) are of the form:

ft,u,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

), (3)

where p = u +1, q = t +v and u +v odd. Thus it is clear that each highest weight vector 
is uniquely determined by a triple of positive integers (t, u, v).

Next we consider the following set which is in a one-to-one correspondence with the 
set of highest weight vectors:

B = {(t, u, v) : u is even and v is odd or u is odd and v is even}.

We shall consider a quasi-order on B and we shall show that it induces the quasi-order 
(2) in the corresponding subset of highest weight vectors B.

We start by defining a natural quasi-order ≤ on B as follows:

(t, u, v) ≤ (t′, u′, v′) if t ≤ t′, u ≤ u′, v ≤ v′.

Clearly, B has the f.b.p. Thus, in order to reach our goal, as in the previous section, 
by transitivity it suffices to prove that for all t, t′, u, u′, v, v′ we have: (t, u, v) ≤ (t′, u, v)
implies ft,u,v ≤ ft′,u,v, (t, u, v) ≤ (t, u′, v) implies ft,u,v ≤ ft,u′,v and (t, u, v) ≤ (t, u, v′)
implies ft,u,v ≤ ft,u,v′ . The next lemmas go in this direction.

Lemma 8. Let (t, u, v), (t′, u, v) ∈ B, then (t, u, v) ≤ (t′, u, v) implies ft,u,v ≤ ft′,u,v.



L. Centrone et al. / Journal of Algebra 521 (2019) 137–165 159
Proof. Since the brackets in (3) are right-normed, it is clear that

ft′,u,v = x1 · · ·x1︸ ︷︷ ︸
t′−t

ft,u,v,

thus ft,u,v ≤ ft′,u,v. �
Lemma 9. Let (t, u, v), (t, u, v′) ∈ B, then (t, u, v) ≤ (t, u, v′) implies ft,u,v ≤ ft,u,v′ .

Proof. With abuse of notation, let

ft,u,v = AC,

where A = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

and C = (x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

).

Remark that, since u + v and u′ + v′ are odd, we have v ≡ v′ (mod 2), thus we can 
consider ft,u,v′ = A(B, x1, x1). The general statement will follow by a standard induction 
argument. By applying Remark 2 we get

ft,u,v′ = A(C, x1, x1) = A((Cx1)x1) −A(C(x1x1)) ≡ x1(x1(AC)) − (x1x1)(AC)

= x1(x1ft,u,v) − (x1x1)ft,u,v (mod Id(UJ2)).

Thus ft,u,v ≤ ft,u,v′ . �
Lemma 10. Let (t, u, v), (t, u′, v) ∈ B, then (t, u, v) ≤ (t, u′, v) implies ft,u,v ≤ ft,u′,v.

Proof. As in the previous lemma, since u ≡ u′ (mod 2), we can consider

ft,u,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

) and

ft,u′,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

˜̃x2x̂2(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, ˜̃x1, x̂1, x1, . . . , x1︸ ︷︷ ︸
v

).

We remark that in the proof of [23, Theorem 19], the authors showed that one can always 
reorder the variables that lie inside the associator except the one in the second position, 
therefore using this fact and Remark 2, we get

ft,u′,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

˜̃x2x̂2(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, ˜̃x1, x̂1, x1, . . . , x1︸ ︷︷ ︸
v

)

≡ x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

˜̃x2x̂2(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

, ˜̃x1, x̂1)

≡ ˜̃x2x̂2 x1 · · ·x1︸ ︷︷ ︸ ¯̄x2 · · · x̃2︸ ︷︷ ︸(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸, x1, . . . , x1︸ ︷︷ ︸, ˜̃x1, x̂1) (mod Id(UJ2)).

t u u v
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By expanding the last associator and by using once again Remark 2, we have

ft,u′,v =
[( ˜̃x2x̂2 x1 · · ·x1︸ ︷︷ ︸

t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

)
) ˜̃x1

]
x̂1

−
[

˜̃x2x̂2 x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

)
]( ˜̃x1x̂1

)
= ˜̃x1x̂1 ˜̃x2x̂2 x1 · · ·x1︸ ︷︷ ︸

t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

)

−
( ˜̃x1x̂1

)[ ˜̃x2x̂2
(
x1 · · ·x1︸ ︷︷ ︸

t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

)
)]

≡ −
( ˜̃x1x̂1

)[ ˜̃x2x̂2ft,u,v

]
(mod Id(UJ2)).

Thus ft,u,v ≤ ft,u′,v and we are done. �
Lemma 11. Let (t, u, v), (t, u′, v′) ∈ B, such that either u, v′ are odd and v, u′ are even 
or u, v′ are even and v, u′ are odd, then (t, u, v) ≤ (t, u′, v′) implies ft,u,v ≤ ft,u′,v′ .

Proof. Let us suppose u′ = u + 1 and v′ = v + 1. The general statement will follow by a 
standard induction argument.

We write

ft,u,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

) and

ft,u′,v′ = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

x̂2(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x̂1, x1, . . . , x1︸ ︷︷ ︸
v

, x1).

Let expand the last alternation of ft,u′,v′ :

ft,u′,v′ = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

x2(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, x1, . . . , x1︸ ︷︷ ︸
v

, x1)

− x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

x1(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x2, x1, . . . , x1︸ ︷︷ ︸
v

, x1).

Using Remark 2 and reordering opportunely the variables inside the associator, we get

ft,u′,v′ ≡ x2 x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

, x1, x1)

− x1 x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

, x2, x1) (mod Id(UJ2)).

Finally, applying the same arguments as in Lemma 9, we have
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ft,u′,v′ ≡ x2(x1(x1ft,u,v) − (x1x1)ft,u,v) − x1(x2(x1ft,u,v)

− (x1x2)ft,u,v (mod Id(UJ2)).) (mod Id(UJ2)).

Hence ft,u,v ≤ ft,u′,v′ and we are done. �
If λ = (p + q, p, 1), then the highest weight vector associated to λ is of the form

gt,u,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

x̄3(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

). (4)

With similar arguments as in the previous case, we can find a set B′ which is in a 
one-to-one correspondence with the set of highest weight vectors B′ of the gt,u,v’s. It 
turns out that analogous statements of the ones of Lemmas 8, 9, 10 and 11 hold.

Finally, if λ = (n), then the corresponding highest weight vector is of the form hn =
xn. Thus one can collect them in a set B′′ that is in a one-to-one correspondence with 
B′′ = {n : n ≥ 1}. It is clear that if n ≤ n′ then hn ≤ h′

n and so B′′ has the f.b.p.
We are now in a position to prove the main theorem of this section.

Theorem 15. Let F be a field of characteristic zero and let I be a T -ideal containing 
Id(UJ2). Then I is finitely generated as T -ideal.

Proof. If I = Id(UJ2), then we have nothing to prove since Lemma 6 ensures us that I
is finitely generated. So let us suppose that I � Id(UJ2).

Let now focus our attention to the highest weight vectors of the type (3), since the 
statement for the ones of type (4) will follow analogously.

Since the multiplicities of the characters corresponding to such highest weight vectors 
are greater than 1, we have to follow the four steps described in section 3. For any 
fixed n ≥ 1, we choose to order the polynomials of degree n in B in the following way: 
ft,u,v ≺ ft′,u′,v′ if and only if either t < t′ or t = t′ and u < u′ or t = t′ and u = u′ and 
v < v′. Recall that n = t + 2u + v + 2. Hence we completed Step 1. By Lemmas 8–11, 
the quasi-order defined on B induces a quasi-order on B, thus B satisfies the f.b.p. and
Step 2 is complete. In order to get Step 3, let

fn1 =
k1∑
i=1

αifti,ui,vi and fn2 =
k2∑
j=1

βjftj ,uj ,vj

be two highest weight vectors of degree n1 and n2 with leading terms fti0 ,ui0 ,vi0
and 

ftj0 ,uj0 ,vj0
according to ≺, respectively. Recall that ti+2ui+vi+2 = n1 for all 1 ≤ i ≤ k1

and tj + 2uj + vj + 2 = n2 for all 1 ≤ j ≤ k2. Moreover, let fti0 ,ui0 ,vi0
≤ ftj0 ,uj0 ,vj0

.
By the proofs of Lemmas 8–11, one gets that it is possible to obtain ftj0 ,uj0 ,vj0

properly multiplying fti0 ,ui0 ,vi0
by some variables. In order to simplify the notation, 

let ftj ,uj ,vj = ϕ(fti ,ui ,vi ) be such multiplication. Thus it is clear that

0 0 0 0 0 0
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vn2 = βj0

αi0

ϕ(fn1)

is a consequence of fn1 and has the same leading term of fn2 , hence it is the required 
highest weight vector and Step 3 is done.

Finally, since the multiplicity corresponding to the partition λ = (n), n ≥ 1 is equal 
to 1, we have nothing more to prove. The proof of the theorem is now complete. �
5. Specht property for the metabelian algebra A1

In this section we shall prove the Specht property for the variety generated by the 
metabelian Jordan algebra introduced in [27].

Let A1 be the Jordan algebra generated by the elements t, ai, bi, i ≥ 1, such that

aiaj = bibj = aibj = tbi = twt = 0,

twaiaj = 0, twbibj = 0

twaibjak = −twakbjai,

twbiajbk = −twbkajbi,

for all i, j, k, where w is any word in the alphabet of the generators. Here we are consid-
ering monomials with left-normed brackets.

Theorem 16. [27, Theorem 1] Let A1 be the Jordan algebra defined above, then Id(A1) =
〈(x1x2)(x3x4)〉T . Moreover, if

χn(A1) =
∑
λ�n

mλχλ

is the n-th cocharacter of A1, then mλ = 1 if either λ = (3, 2k−1, 1n−2k−1) or λ =
(2k, 1n−2k.) In all other cases mλ = 0.

Theorem 17. [27, Theorem 2] Every proper subvariety of var(A1) has polynomial growth.

Notice that in light of the previous theorems, A1 is an infinitely generated Jordan 
algebra such that any product of its elements has left-normed brackets and furthermore 
it generates a variety of almost polynomial growth.

The highest weight vector associated to the partition λ = (3, 2k−1, 1n−2k−1) is of the 
form

fn,k = x1x̄1x̃1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k−1, (5)

whereas the highest weight vector associated to the partition λ = (2k, 1n−2k.) is of the 
form
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gn,k = x̄1x̃1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k. (6)

In order to prove the Specht property for var(A1), by following the lines of [27], we 
first prove some technical lemmas.

Lemma 12. The identities

x1x2yx3 + x1x3yx2 + x2x3yx1 ≡ 0 and (7)

z1z2 · · · zsxyx ≡ 0, s ≥ 2 (8)

hold in var(A1).

Proof. Recall that the identity y(xx)x ≡ yx(xx) holds in every Jordan algebra. Then, 
by taking into account the identity (x1x2)(x3x4), we get that the previous becomes

xxyx ≡ 0. (9)

Now, the complete linearization of the latter identity gives us (7).
Moreover, if one partially linearizes (9) replacing x by x +z and considers the multiho-

mogeneous component of degree 1 in the z and degree 2 in the x, we get 2zxyx +x2yz ≡ 0. 
Finally, by replacing z by the product z1z2 · · · zs, s ≥ 2, we obtain identity (8). �
Lemma 13. Let U be a proper subvariety of var(A1). If either fn,k ≡ 0 or gn,k ≡ 0 on U
for some n and k, then fn′,k′ ≡ 0 for all n′ ≥ n and k′ ≥ n − k− 1 and gn′,k′ ≡ 0 for all 
n′ ≥ n and k′ > n − k − 1.

Proof. First, let us suppose that

fn,k = x1x̄1x̃1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k−1 ≡ 0

for some n and k and let us replace x1 by z1z2 +x1. If we consider the linear component 
in z1 and z2 and if we multiply by xk+1, xk+2, . . . , xn−k−1, then we can apply identities 
(7) and (8) in order to get the following consequence

z1z2x1x1x2x2 · · ·xn−k−1xn−k−1.

Thus, it is clear that fn′,k′ ≡ 0 for all n′ ≥ n and k′ ≥ n − k − 1.
Now let us suppose

gn,k = x̄1x̃1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k ≡ 0

for some n and k. By multiplying gn,k by x1 and by applying identity (7), we get as 
consequence
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−x1x̄1x̃1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k − x1x̃1x̄1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k ≡ 0

Hence, with arguments similar to those used in the previous case, we get the claim. �
We now can prove the Specht property for var(A1).

Theorem 18. Let F be a field of characteristic zero and let U ⊆ var(A1). Then Id(U) is 
finitely generated as T -ideal.

Proof. If U = var(A1), then by Theorem 16 we have nothing to prove, so let U be a 
proper subvariety of var(A1) and let Id(U) be the corresponding T -ideal.

Let us consider the sets

B1 = {fn,k : n, k ∈ N} and

B2 = {gn,k : n, k ∈ N}.

We define a total order on B1 and B2 by stating that fn,k ≤ fn′,k′ (resp. gn,k ≤ gn′,k′) if 
n ≤ n′ or n = n′ and n − k − 1 ≤ n′ − k′ − 1.

Among the generators of Id(U) let now consider fN,K and gM,L as the minimal highest 
weight vectors of B1 and B2 with respect to the above order. Then, by taking into account 
Lemma 13, it is clear that fn,k and gm,l are consequences of fN,K and gM,L, respectively, 
if n ≥ N or n −k−1 ≥ N−K−1 and m ≥ M or m − l−1 ≥ M−L −1. It readily follows 
that a basis of Id(U) contains fN,K , gM,L and a finite list of highest weight vectors fn,k
and gm,l such that n < N or n −k−1 < N−K−1 and m < M or m − l−1 < M−L −1. 
Hence Id(U) is finitely generated and var(A1) has the Specht property. �
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