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1. Introduction

The theory of Harish-Chandra modules over the field C of complex numbers has 
played a central role in representation theory of real reductive Lie groups as an algebraic 
model of representations on Hilbert spaces. An important part of this theory is to induce 
representations cohomologically by the derived functors RIg,K

q,M and LP g,K
q,M . In particular, 

one can in this way obtain the so-called Aq(λ)-modules. For details, see [28].
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In this paper, we provide the notion of a differential graded (dg for short) Harish-
Chandra module over an arbitrary commutative ring, and generalize the functors Ig,K

q,M

and P g,K
q,M to this setting.

1.1. Motivation

The notion of Harish-Chandra modules has been extended in several directions.
One direction is to consider their dg analogues for applications to equivariant derived 

categories which were introduced by A. Beilinson and V. Ginzburg (resp. J. Bernstein and 
V. Lunts) in algebraic (resp. geometric) setting in the late 1980s and the 1990s to improve 
functoriality of equivariant D-modules and sheaves ([2], [9], [5]). On this course, they 
also introduced weak (g, K)-modules and equivariant (g, K)-complexes. For a uniform 
approach to both (g, K)-modules and equivariant complexes of (g, K)-modules, J. Bern-
stein and V. Lunts introduced dg analogues of Harish-Chandra pairs and (g, K)-modules 
in [5]. In that paper, they also introduced the induction functor and the production func-
tor (called the coinduction functor in [5]). In other words, they constructed left and right 
adjoint functors of the forgetful functors when the corresponding map of algebraic groups 
in pairs is the identity map. In [33], P. Pandžić explicitly constructed the differential 
graded analogue of the Zuckerman functor, which he called the equivariant Zuckerman 
functor, in the setting of equivariant complexes as a right adjoint functor to the forgetful 
functor.

The second direction is to work over commutative rings and possibly schemes, which 
has been developed over last ten years and has applications to number theory and math-
ematical physics.

For example, to get applications to number theory, specifically to rationality and 
integrality of special values of L-functions, one should study rational and integral models 
of (g, K)-modules over ground rings like number fields and their rings of integers. In fact, 
M. Harris suggested to work on Harish-Chandra modules and D-modules over number 
fields to construct models of discrete series representations in [12] and [13]. After this 
work, G. Harder suggested to work over the ring Z of integers. He introduced integral 
models of certain Harish-Chandra modules to estimate contribution of rationality of the 
Rankin-Selberg L-function at the infinite place in [10]. Moreover, he refined the periods 
of [11] to formulate integrality of special L-values. In [22], F. Januszewski established 
the cohomological induction over number fields in a fairly similar way to the complex 
setting. Using his models, he proved rationality of special L-values in a representation 
theoretic way ([20], [23]).

In mathematical physics, J. Bernstein et al. introduced the contraction families which 
are Harish-Chandra pairs over the complex projective line P 1 ([4], [3]). In [37], E. Subag 
used Harish-Chandra modules over contraction families to reveal the hidden symmetries 
of the Schrödinger equation of the hydrogen atom in two dimensions.

A more primitive example can be obtained from the Lie group SU(1,1). In fact, observe 
that the Lie algebra
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sl2 = C

(
0 1
0 0

)
⊕C

(
0 0
−1 0

)
⊕C

(
1 0
0 −1

)

and the torus

Gm = SpecC
[
z±1] ∼=

{(
z 0
0 z−1

)
: z ∈ C×

}

naturally form a Harish-Chandra pair. Replace C by Z to get a Harish-Chandra pair 
(sl2, SpecZ 

[
z±1]) over Z. More precisely, the Lie algebra sl2 is spanned by the matrices (

0 1
0 0

)
, 
(

0 0
−1 0

)
, and 

(
1 0
0 −1

)
, whose Lie bracket is defined by the usual commu-

tator as matrices. The multiplicative group SpecZ 
[
z±1] acts on sl2 by the conjugation of 

matrices. The Lie algebra of the multiplicative group SpecZ 
[
z±1] is naturally isomorphic 

to the abelian Lie algebra Z. The SpecZ 
[
z±1]-equivariant Lie algebra homomorphism 

Z → sl2 is given by

1 �→
(

1 0
0 −1

)
.

Such Harish-Chandra pairs are studied in [15] as split integral models. The (limit of) 
discrete series representations also admit integral forms, equipped with actions of this 
integral model of the Harish-Chandra pair ([15]).

The main purpose of this paper is to generalize the functors Ig,K
q,M and P g,K

q,M in these 
settings at the level of abelian categories in a uniform fashion. They will be tools to 
construct Harish-Chandra modules over these variant Harish-Chandra pairs. In view of 
the theory over C, the next issue is to construct their derived functors to define an 
analogue of the cohomological induction. In the reductive setting over fields of charac-
teristic 0 without differentials, they can be computed by the Koszul complex ([28], [20]). 
In the differential graded setting over C, P. Pandžić constructed an explicit K-projective 
resolution in [33] 5.6.5 and [34] Theorem 3.1 to describe the derived functors. However, 
these methods do not work in our general setting. In [33], he also discussed an abstract 
homological approach to get resolutions without using the complete reducibility. In [14], 
the theory of model categories is adopted to get the desired derived functors without 
complicated homological arguments. In fact, we put a model structure, the so called in-
jective model structure, on the category of (A, K)-modules. We also put another model 
structure, the so called projective model structure on the same category in case the 
base ring is a field of characteristic 0 and K is reductive. To relate the approaches from 
the theories of triangulated categories and model categories, we study the underlying 
∞-categories in the sense of [29]. In the author’s paper in preparation, it will be shown 
in a standard way that they are stable, which means that our ∞-category is a homotopi-
cal enhancement of the structure of the usual derived categories. The advantage of the 
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∞-categories is that we can use categorical techniques like limits/colimits, the adjoint 
functor theorem, and generators for our ∞-categories which are well developed by J. 
Lurie in [30] and [29].

A fundamental problem in studying the functor Ig,K
q,M is to describe representations 

obtained by the functor (R)Ig,K
q,M over commutative rings. The first step in solving this 

problem is showing compatibility with base change functors (the base change theo-
rem). For example, one may expect that our cohomological induction over subrings of C
produces forms of Aq(λ)-modules. In view of [22] and [23], they should naively have ap-
plications to integrality of special values of automorphic and Rankin-Selberg L-functions, 
though we will need much deeper arguments to prove this. In [16], we establish the base 
change for several practically important situations. On the other hand, we gave nontrivial 
counterexamples, where the functor Ig,K

q,M does not commute with the base change along 
Z → C in [15]. In fact, we found explicit integral forms of discrete series representations 
of SU(1,1) which enjoy the principal series type universal property. This is a completely 
new phenomenon since it never happens over fields of characteristic 0.

The second stage of describing the functor Ig,K
g,M will vary upon the result of the 

first stage and one’s interests. In the settings where the base change holds, it is basic to 
characterize the integral forms in a rigorous way. Suppose that we are given a pair (g, K)
over an integral domain k with K smooth integral over k, a homomorphism M → K

between smooth affine group schemes over k, and a (g, M)-module V which is torsion free 
over k. If the fractional field of k is of characteristic 0 then one can show that Ig,K

g,M (V )
exhibits the maximal (g, M)-module whose structure extends to a (g, K)-module. A more 
important thing is to investigate the structure of the integral forms or their cohomology in 
more detail for applications to special L-values. For instance, their explicit descriptions 
are interesting. For deeper applications to number theory, estimates of their rings of 
definition will be important (see [22]). In another insight, one of the new things which 
occur when by considering Harish-Chandra modules over Z is torsion, which appears 
in the derived functor modules over Z. For example, we formulated and discussed the 
Borel-Weil-Bott induction over Z in [16]. For a split reductive group G over Z, it is 
proved that the algebraic Borel-Weil type induction provides the “maximal” Z-form of 
the irreducible representations of the complexified group G ⊗Z C. According to the flat 
base change theorem, the Borel-Weil-Bott induction over Z exhibits the integral model 
of the Borel-Weil-Bott induction over C modulo torsion. In that paper, we found cases 
when the cohomology has infinite torsion.

In a nontrivial case with the base change failing, a fundamental problem is to describe 
the resulting modules and new higher derived functor modules as explicitly as possible. 
It will be interesting to discover the role of these phenomena in representation theory 
and other branches of mathematics.

In another direction, the theory of D-modules over general base schemes is suggested 
to be a tool to construct Harish-Chandra modules in [12], [13], and [21]. With the equiv-
ariant derived categories of D-modules over number fields (commutative rings), one can 
obtain the localization of the equivariant Zuckerman functor as in [32] and [27].
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1.2. Contents of this paper

We replace dg Lie algebras g by dg associative algebras A, for example A = U(g), and 
we work with Harish-Chandra pairs (A, K) (pairs for short) and (A, K)-modules over 
an arbitrary commutative ring k. Our definitions are straightforward generalizations of 
those in [28] and [35].

Notation 1.2.1. For a pair (A, K), write (A, K) -mod for the category of (A, K)-modules.

For a given map (A, K) → (B, L) of pairs, one can define the forgetful functor

F
A,K
B,L : (B, L) -mod → (A,K) -mod .

Theorem 1.2.2.

(1) For a morphism (A, K) → (B, L) of pairs, the functor FA,K
B,L admits a right adjoint 

functor IB,L
A,K .

(2) For a morphism (A, K) → (B, K) of pairs, whose corresponding endomorphism of 
K is the identity map, the functor FA,K

B,K admits a left adjoint functor PB,K
A,K .

This is deduced from its analogue for weak pairs and weak (A, K)-modules. We in-
troduce the weak concepts in this paper because we can apply generalities on symmetric 
monoidal categories. More precisely, we will use the fact that cochain complexes of 
K-modules form the closed symmetric monoidal category K -mod. Then a weak pair 
(A, K) is just a monoid object in K -mod, and a weak (A, K)-module is a left module 
over the monoid object (A, K) in the usual sense in the theory of monoidal categories. 
Hence their categorical properties and relations easily follow from generalities without 
any computations.

Another reason why we adopt this strategy is because of the internal Hom of K -mod
which was used for a construction of the right adjoint functor in [28]. In the setting of 
[28], the internal Hom of K -mod is the K-finite part of the usual Hom space. However, 
this description does not make sense in our setting. In fact, the general construction in 
the proof of [17] Theorem 1.3.1 is more complicated. Our monoidal category theoretic 
approach lets us avoid using this explicit description in our construction of the right 
adjoint functor.

Motivated by Pandžić’s equivariant Zuckerman functor, we summarize the construc-
tion of a differential graded analogue of the dual Zuckerman functor in the case when 
the base ring is C, and when algebraic groups are reductive in Section 3. The case of 
(g, K)-modules without differentials over fields of characteristic 0 has been already done 
by F. Januszewski ([20] 1.4.2).
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Theorem 1.2.3. Let f : (A, K) → (A, L) be a morphism of pairs, whose corresponding 
map A → A is the identity map. Then the dual Zuckerman functor Π and the pseudo-
forgetful functor (F∨)A,K

A,L of [28] naturally extend to an adjunction

Π = PA,L
A,K : (A,K) -mod � (A, L) -mod : (F∨)A,K

A,L .

Combining PA,L
A,K and (F∨)A,K

A,L with PB,K
A,K (see Theorem 1.2.2 (1)) and FA,K

B,K re-
spectively, we obtain a pair (PB,L

A,K , (F∨)A,K
B,L ) of adjoint functors for an arbitrary map 

(A, K) → (B, L) of pairs. Finally, we show that the principle of induction-in-stages holds 
for our functors.

Remark 1.2.4. A version of the Zuckerman functor and the dual Zuckerman functor for 
Lie superalgebras was introduced in [36]. Our arguments also reprovide Santos’ Zuck-
erman functor and dual Zuckerman functor. Similarly, one can remove the differential 
graded structures from this paper.

Remark 1.2.5. In [33], P. Pandžić introduced the notion of triples (A, K, D) and 
(A, K, D)-modules to separate two actions of dg algebras. One can define triples (A, K, D)
and (A, K, D)-modules over commutative rings in the manner of [33]. For full generality, 
one may allow A and D to be dg algebras. From the perspectives of the theory of bi-
modules, it is better to modify the definition so that D acts from the right side (see [33]
3.7 and also 5.4). It also turns out that we need to refine the signs in the compatibility 
condition of the Lie algebra of K. With these minor technical changes in mind, one can 
easily prove in a similar way to [33] that for a triple (resp. a weak triple) (A, K, D), 
the categories of (A, K, D)-modules and (A ⊗Dop, K)-modules are naturally isomorphic, 
where Dop is the opposite dg algebra to D. Hence one can verify the results in this paper 
for triples via this isomorphism.

1.3. Notation

Throughout this paper, we assume that there exists a sufficiently large strongly in-
accessible cardinal, and fix a Grothendieck universe U. We freely omit the terminology 
“U-small” for rings and modules as usual. Let Z denote the ring of integers.

For an affine group scheme K over a commutative ring k, its coordinate ring will be 
denoted by O(K).

For an object X of a category, let idX denote the identity map of X. If we are given a 
pair F : C → D and G : D → C of adjoint functors between categories C and D, we will 
denote the unit (resp. the counit) by uX : X → G(F (X)) (resp. vY : F (G(Y )) → Y ) for 
each X ∈ C (resp. Y ∈ D). In the following, the subscript X of uX will be omitted if 
there is no risk of confusion. We will use similar notation for other algebraic structures.

We next summarize basic terminology and notation used in the theory of symmetric 
monoidal categories for convenience of the readers who are not familiar with them. See 
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[31] VII for a reference. A monoidal category is a category V, equipped with a functor 
− ⊗ − : V × V → V, an isomorphism a : (− ⊗ −) ⊗ − ∼→ − ⊗ (− ⊗ −) of functors from 
V ×V ×V to V, which is called the associator, an object I = IV ∈ V called the unit, and 
isomorphisms r : − ⊗ I

∼→ idV : V → V, l : I ⊗− ∼→ idV : V → V such that the following 
diagrams are commutative for all quartets X, Y, Z, W of objects in V:

(W ⊗X) ⊗ (Y ⊗ Z)

((W ⊗X) ⊗ Y ) ⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y )) ⊗ Z W ⊗ ((X ⊗ Y ) ⊗ Z))

aW,X,Y ⊗ZaW⊗X,Y,Z

aW,X,Y ⊗idZ

aW,X⊗Y,Z

idW ⊗aX,Y,Z

(X ⊗ I) ⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y.
r⊗idY

a

idX ⊗l

We will sometimes omit the identity map if necessary to save space; for example, we will 
denote aW,X,Y ⊗ idZ by aW,X,Y in the above diagram.

For a monoidal category V, define − ⊗op− as the composition of − ⊗− and the switch 
of the components of V × V:

X ⊗op Y := Y ⊗X.

A symmetric monoidal category is a monoidal category V, equipped with an isomorphism 
C : − ⊗− ∼= − ⊗op − which satisfies the following properties:

(i) CY,X ◦ CX,Y = idX⊗Y for all X, Y ∈ V;
(ii) The diagram

X ⊗ (Y ⊗ Z)

(X ⊗ Y ) ⊗ Z (Y ⊗ Z) ⊗X

(Y ⊗X) ⊗ Z Y ⊗ (Z ⊗X)

Y ⊗ (X ⊗ Z)

CX,Y ⊗ZaX,Y,Z

CX,Y ⊗idZ aY,Z,X

aY,X,Z idY ⊗CX,Z

commutes for all X, Y, Z ∈ V.
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We say that a symmetric monoidal category is closed if for every object X ∈ V, the 
functor − ⊗ X : V → V admits a right adjoint functor Map(X, −) which is sometimes 
called the internal Hom. For a pair X, Y of objects in V, the counit

Map(X,Y ) ⊗X → Y

will be denoted by ev. Note that the internal Hom is functorial in both the domain 
and the target ([31] IV.7 Theorem 3). One can use adjunction to define the enriched 
composition map

◦ : Map(Y,Z) ⊗ Map(X,Y ) → Map(X,Z)

for objects X, Y, Z ∈ V via

Map(Y,Z) ⊗ Map(X,Y ) ⊗X
idMap(Y,Z) ⊗ ev
−−−−−−−−−−→ Map(Y,Z) ⊗ Y

ev→ Z.

Let V be a monoidal category. Then a monoid object is an object A ∈ V, equipped 
with two maps mA : A ⊗ A → A and jA : I → A such that the following diagrams are 
commutative:

A⊗ (A⊗A)

(A⊗A) ⊗A A⊗A

A⊗A A

idA ⊗mAaA,A,A

mA⊗idA
mA

mA

I ⊗A A⊗A A⊗ I

A.

jA⊗idA

l
mA

idA ⊗jA

r

When we want to specify the structure morphisms, we will say that (A, mA, jA) is a 
monoid object. We will use similar notation for other algebraic objects. For a monoid 
object A ∈ V, a left A-module in V is an object M ∈ V, equipped with a map πM :
A ⊗M → M such that the following diagrams are commutative:

A⊗ (A⊗M)

(A⊗A) ⊗M A⊗M

A⊗M M

idA ⊗πMaA,A,M

mA⊗idM
πM

πM
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I ⊗M A⊗M

M.

jA⊗idM

l
πM

The category of A-modules will be denoted by A -mod in a general setting (Lemma 2.2.5, 
Lemma 2.2.6, and Lemma 2.2.7).

For example, consider a commutative ring k. Write k -mod for the category of cochain 
complexes of k-modules. Its Hom k-module will be denoted by Hom or Homk. This 
category is closed symmetric monoidal for the usual tensor product ⊗ = ⊗k. Let us 
summarize the structure of this category in detail. Let M be a cochain complex of 
k-modules (or a graded k-module). For a homogeneous element m, m̄ denotes the homo-
geneous degree of m. Write dM for the differential of M . For cochain complexes M and 
N of k-modules, define a new cochain complex M ⊗N as

(M ⊗N)i =
⊕

p+q=i

Mp ⊗k Nq

d(m⊗ n) = dMm⊗ n + (−1)m̄m⊗ dNn

for any homogeneous element m ∈ M and any element n ∈ N . The unit object is the 
complex k which is concentrated in degree 0 with k0 = k. The internal Hom Map(M, N)
is described as

Map(M,N)i := {graded maps from M to N [i]}

=
∏
p

Hom(Mp, Np+i)

df := dN ◦ f − (−1)f̄f ◦ dM

for a homogeneous element f ∈ Map(M, N), where N [i] ∈ k -mod is defined by

(N [i])p = Np+i

dN [i] = (−1)idN

with the same k-action. The adjunction structure is given as follows: For a cochain 
complex map ϕ : M ⊗N → L, we define α(ϕ) ∈ Hom(M, Map(N, L)) as

α(ϕ)(m)(n) = ϕ(m⊗ n)

for elements m ∈ M and n ∈ N . Finally, we put the symmetry structure CMN : M⊗N
∼→

N ⊗M by

m⊗ n �→ (−1)m̄n̄n⊗m

where m ∈ M and n ∈ N are homogeneous elements.
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A monoid object of k -mod is a graded k-algebra A =
⊕

i A
i, equipped with a differ-

ential d of A of degree 1, i.e., a k-module homomorphism d : A → A with the following 
properties:

(i) d2 = 0;
(ii) d(Ai) ⊂ Ai+1;
(iii) d(ab) = (da)b + (−1)āa(db) for all homogeneous elements a, b ∈ A.

This is known as a dg algebra over k. We will simply say that A is a dg algebra. For a 
dg algebra A, a left A-module in k -mod is a graded left A-module M , equipped with a 
differential d of M of degree 1, i.e., a k-module homomorphism d : M → M satisfying 
the following conditions:

(i) d2 = 0;
(ii) d(M i) ⊂ M i+1;
(iii) d(am) = (da)m +(−1)āa(dm) for any homogeneous element a ∈ A and any element 

m ∈ M .

This is known as a left dg A-module. We will simply say that M is a dg (left) A-module. 
A morphism of dg A-modules is defined as a homomorphism of k -mod respecting the 
action maps of A.

For a digression, recall that a dg Lie algebra is a dg k-module g, equipped with a 
graded bilinear map [−,−] : g ⊗ g → g which satisfies the following conditions for any 
three homogeneous elements x, y, z ∈ g:

(i) [x, y] = −(−1)x̄ȳ [y, x];
(ii) [x, [y, z]] = [[x, y] , z] + (−1)x̄ȳ [y, [x, z]];
(iii) d [x, y] = [dx, y] + (−1)x̄ [x, dy].

For example, a Lie algebra over k is regarded as a dg Lie algebra concentrated in degree 
0.

We next consider an affine group scheme K over k. Then the category of cochain 
complexes of representations of K will be denoted by K -mod. This is closed symmet-
ric monoidal for the usual tensor product ⊗ = ⊗k. Its objects are sometimes called 
dg K-modules or dg representations of K. Note that if K is flat over k, K -mod is a 
Grothendieck abelian category. Namely, K -mod is a locally small cocomplete abelian 
category with generators, which satisfies the property that filtered colimits are exact. 
Moreover, its monomorphisms are the (degreewise) injective homomorphisms. See [8]
Proposition 1.2 for example.

If we are given an affine group scheme with a capital symbol, its Lie algebra will be 
denoted by the corresponding German symbol. Let K and L be affine group schemes 
over k. For a dg K-module M with an action map ν, the corresponding differential 
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dg representation will be denoted by dν. For an affine group scheme homomorphism 
f : K → L, its differential will be denoted by df : k → l; it is a Lie algebra homomorphism.

We now return to general monoidal categories. A lax monoidal functor is a functor 
F : V → V′, equipped with a morphism μ0 : IV′ → F (IV) and a natural transformation 
μ : F (−) ⊗ F (−) → F (− ⊗−) such that the following diagrams are commutative for all 
X, Y, Z ∈ V:

(F (X) ⊗ F (Y )) ⊗ F (Z) F (X) ⊗ (F (Y ) ⊗ F (Z))

F (X ⊗ Y ) ⊗ F (Z) F (X) ⊗ F (Y ⊗ Z)

F ((X ⊗ Y ) ⊗ Z) F (X ⊗ (Y ⊗ Z))

a

μX,Y ⊗idF (Z) idF (X) ⊗μY,Z

μX⊗Y,Z μX,Y ⊗Z

F (aX,Y,Z)

IV′ ⊗ F (X) F (X)

F (IV) ⊗ F (X) F (IV ⊗X)

l

μ0⊗idF (X)

μ

F (l)

F (X) ⊗ IV′ F (X)

F (X) ⊗ F (IV) F (X ⊗ IV).

r

idF (X) ⊗μ0

μ

F (r)

We say that F is monoidal if the map μ0 : IV′ → F (IV) and the natural transformation 
μ : F (−) ⊗F (−) → F (− ⊗−) are isomorphisms. If V and V′ are symmetric, a monoidal 
functor F : V → V′ is said to be symmetric if the diagram

F (X) ⊗ F (Y ) F (Y ) ⊗ F (X)

F (X ⊗ Y ) F (Y ⊗X)

CF (X),F (Y )

μ μ

F (CX,Y )

commutes for all X, Y ∈ V.
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2. Basic theory of dg Harish-Chandra modules

2.1. (A, K)-modules and their weak analogues

A weak pair (A, K) is a pair of a flat affine group scheme K over k and a monoid object 
A in the symmetric monoidal category K -mod. In other words, a weak pair consists of 
a flat affine group scheme K and a dg k-algebra (A, mA, jA), equipped with a K-action 
φ, namely, a dg K-module structure on A with the properties that mA and jA are 
K-equivariant. For weak pairs (A, K) and (B, L), a weak map from (A, K) to (B, L) is 
a pair f = (fa, fk) consisting of a dg algebra homomorphism fa : A → B and a group 
scheme homomorphism fk : K → L with the property that fa is K-equivariant via fk.

To introduce the notion of pairs, recall how the adjoint “representation” is constructed: 
For any commutative k-algebra R, we have a homomorphism

R [ε] /(ε2) → R; a + bε �→ a.

Using this map, we define a functor LieK from the category of commutative k-algebras 
to that of groups as

(LieK)(R) = Ker(K(R [ε] /(ε2)) → K(R)).

We now define an action Ad of K(R) on (LieK)(R) by conjugation via the map

R → R [ε] /(ε2); a �→ a + 0ε

for each R. Hence we obtain a homomorphism of group functors

Ad : K → Aut(LieK).

One can obtain the natural structure of a Lie algebra over R on (LieK)(R) from this 
action (see [7] Chapter II, §4, 4.2 and 4.5 Proposition). In particular, the Lie algebra k
of K is defined by k = (LieK)(k).
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To obtain a representation of K on the k-module k from this construction, consider 
the following condition for an affine group scheme K:

Condition 2.1.1. The conormal k-module Ie/I2
e is finitely generated and projective, where 

Ie denotes the kernel of the counit map of the coordinate ring of K.

Example 2.1.2 ([7] Chapter II, §4, 4.8). Condition 2.1.1 is satisfied in either of the 
following cases:

(i) K is smooth over k;
(ii) k is a field, and K is of finite type over k.

Lemma 2.1.3 ([7] Chapter II, §4, 4.8 Proposition). Let K be an affine group scheme over 
k. Then the R-module homomorphism

R⊗k (LieK)(k) → (LieK)(R)

is an isomorphism for every commutative k-algebra R if and only if K satisfies Condition 
2.1.1.

Example 2.1.4. The additive group Z/2Z attaches the diagonalizable group K =
SpecZ [t] /(t2 − 1). Then we have (LieK)(Z) = 0 and (LieK)(F2) = F2, where F2 is 
the finite field of two elements. In [16], we deal with the case when K has not so bad 
singularity, for example, K is flat and finitely presented over k.

Therefore if K satisfies Condition 2.1.1, the adjoint representation Ad of K on the 
k-module k = (LieK)(k) is obtained by

K(R) × (R⊗k (LieK)(k)) → K(R) × (LieK)(R) Ad→ (LieK)(R) ∼= R⊗k (LieK)(k),

where R runs through all commutative k-algebras. We are now ready to define pairs: 
Let (A, K, φ) be a weak pair with the property that K satisfies Condition 2.1.1, and let 
ψ : k → A be a K-equivariant dg Lie algebra homomorphism. Then (A, K) is called a 
pair if the following equality holds for any ξ ∈ k:

dφ(ξ) = [ψ(ξ),−] : A → A.

A map

(A,K, φA, ψA) → (B, L, φB, ψB)

of pairs is a weak map f = (fa, fk) respecting ψ, i.e., satisfying the equality

fa ◦ ψA = ψB ◦ dfk : k → B.
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Example 2.1.5. Let K be a flat affine group scheme.

(1) We put A = k with the trivial action. This naturally gives a weak pair (k, K). We 
call it the trivial weak pair. The trivial Lie algebra homomorphism k → k defines a 
structure of a pair on (k, K) if K satisfies Condition 2.1.1.

(2) Let (A, K) be a weak pair. Then we have a unique weak map f = (fa, idK) from the 
trivial weak pair (k, K) to (A, K).

(3) Suppose that K satisfies Condition 2.1.1. We set A as the enveloping algebra U(k)
with the adjoint action. Then (U(k), K) forms a pair by the canonical Lie algebra 
homomorphism k → U(k). We call it the trivial pair.

(4) Let (A, K) be a pair. Then we have a unique map f = (fa, idK) from the trivial pair 
(U(k), K) to (A, K).

(5) For a weak pair (A, K), (Aop, K) is a weak pair where Aop denotes the opposite dg 
algebra to A with the same K-action. We call it the opposite weak pair to (A, K). 
This is the opposite monoid to (A, K) in the sense of monoidal category theory.

(6) For a pair (A, K, φ, ψ), (Aop, K, φ, −ψ) is a pair. We call it the opposite pair to 
(A, K, φ, ψ).

(7) For two weak pairs (A, K) and (B, K), (A ⊗B, K) naturally forms a weak pair. This 
follows from general theory of monoids in symmetric monoidal categories.

(8) For two pairs (A, K, φA, ψA) and (B, K, φB, ψB),

(A⊗B,K, φA ⊗ φB, ψA ⊗ 1 + 1 ⊗ ψB)

is a pair.

For a weak pair (A, K), the category of (left) weak (A, K)-modules is defined as 
the category of left modules over (A, K) in the sense of 1.3. In other words, a weak 
(A, K)-module is a dg k-module M with a left dg A-module structure π and a K-module 
structure ν satisfying the condition that π is K-equivariant, i.e., the following diagram 
commutes:

K ×A⊗M K ×M

A⊗M M.

idK ×π

φ⊗ν ν

π

For a pair (A, K), we define an (A, K)-module as a weak (A, K)-module M satisfying 
π(ψ(ξ)) = dν(ξ) for every ξ ∈ k.

Notation 2.1.6.

(1) For a weak pair (A, K), write (A, K) -modw for the category of weak (A, K)-modules.
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(2) For a pair (A, K), write (A, K) -mod for the full subcategory of (A, K) -modw con-
sisting of (A, K)-modules.

Lemma 2.1.7. Let K be a flat affine group scheme. Then the category of weak 
(k, K)-modules is canonically isomorphic to K -mod.

Proof. Observe that the trivial K-module k is the unit object of the monoidal category 
K -mod. The assertion is now obvious. �
2.2. Functors

Our first goal is to give dg analogues of functors Fh,L
g,K , P g,K

h,K and Ig,K
h,L ([28]). The first 

proposition below is obvious.

Proposition 2.2.1. Let f = (fa, fk) : (A, K) → (B, L) be a weak map of weak pairs. For 
a weak (B, L)-module (M, π2, ν2), the dg vector space M admits a weak (A, K)-module 
structure (π1, ν1) as follows:

π1 = π2 ◦ fa
ν1 = ν2 ◦ fk.

Moreover, if f is a map of pairs and M is a (B, L)-module, the resulting weak 
(A, K)-module is actually an (A, K)-module.

As a consequence, we obtain the following two forgetful functors:

F
A,K
B,L,w : (B, L) -modw → (A,K) -modw;

F
A,K
B,L : (B, L) -mod → (A,K) -mod .

We construct their right adjoint functors. For a pair (A, K), let

JA,K : (A,K) -mod → (A,K) -modw

denote the natural fully faithful embedding. The next lemma reduces existence of the 
right adjoint functor Ig,K

q,L to the cases of weak modules.

Lemma 2.2.2 ([33] 5.7.3). Let (A, K) be a pair. Then the full subcategory (A, K) -mod
of (A, K) -modw is both a localization and a colocalization, i.e., JA,K admits both a left 
adjoint functor (−)k and a right adjoint functor (−)k. Moreover, the adjoint functors 
only depend on K in the sense that we have the following isomorphisms for a map 
(A, K) → (B, K) of pairs, whose corresponding map K → K is the identity map:

(−)k ◦ FA,K
B,K,w

∼= F
A,K
B,K,w ◦ (−)k;
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(−)k ◦ FA,K
B,K,w

∼= F
A,K
B,K,w ◦ (−)k.

Proof. Let (A, K, φ, ψ) be a pair, and (M, π, ν) be a weak (A, K)-module. Set

ω(ξ) = dν(ξ) − π(ψ(ξ))

for ξ ∈ k. Then ω is a dg representation of k by [32] 2.1. Moreover, ω commutes with the 
action of A and it is equivariant with respect to the action of K. Hence the dg submodule

N := ω(k)M

inherits a weak (A, K)-submodule structure, and N is stable under the action ω. Hence 
the quotient dg module Mk = M/N defines a left adjoint functor of JA,K . Similarly, let 
M k ⊂ M be the submodule where ω acts trivially. Passing to the adjunction, one can 
identify it with the kernel of the K-module homomorphism M → Map(k, M) ([19] I.2.7 
(5)). Hence M k is an (A, K)-submodule, and (−)k gives rise to a right adjoint functor to 
JA,K . �

In view of the classical construction of the functor Ig,K
q,L (especially in the case K = L), 

we should use the internal Hom of K -mod and L -mod. Let us recall the construction:

Construction 2.2.3. Let C be a (flat) coalgebra over k, V be a right dg C-comodule, 
ρ = ρV : V → V ⊗ C be its coaction, and V̄ be the cokernel of ρ. Since ρ can be 
regarded as a dg C-comodule homomorphism from the given right dg C-comodule V to 
the free right dg C-comodule V ⊗ C, V̄ is canonically equipped with the structure of a 
right dg C-comodule, whose coaction will be denoted by ρ̄. We again regard ρ̄ as a dg 
C-comodule homomorphism from V̄ to the free right dg C-comodule V̄ ⊗ C. Compose 
ρ̄ with the canonical quotient map coker ρ : V ⊗ C → V̄ to get a C-homomorphism 
τV : V ⊗ C → V̄ ⊗ C between free right dg C-comodules, whose kernel (as a k-module) 
is V since the coaction maps are injective.

Recall that for a flat affine group scheme K, K -mod can be identified with the sym-
metric monoidal category of right dg comodules over the coordinate ring H := O(K) of 
K ([38] Theorem 3.2). In the following, we will denote the Hom bifunctor of right dg 
H-comodules by HomH . Let m (resp. ε) be the multiplication map (resp. counit) of H.

Proposition 2.2.4 ([17] Theorem 1.3.1). Let M, M ′ be right dg comodules over H, and 
N, N ′ be dg k-modules.

(1) Regard Map(M, N) ⊗ H as a free right dg C-comodule. Then there is a bijection 
γ : HomH(M ′, Map(M, N) ⊗H) ∼= HomH(M ′ ⊗M, N ⊗H) which is natural in M
and M ′.
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(2) For a comodule homomorphism f : N ⊗ H → N ′ ⊗ H, set f̂M = γ−1(f ◦
γ(idMap(M,N)⊗H)) : Map(M, N) ⊗H → Map(M, N ′) ⊗H. Then the diagram

HomH(M ′,Map(M,N) ⊗H) HomH(M ′,Map(M,N ′) ⊗H)

HomH(M ′ ⊗M,N ⊗H) HomH(M ′ ⊗M,N ′ ⊗H)

f̂M◦−

γ γ

f◦−

commutes.
(3) The homomorphism γ(idMap(M,N)⊗H) is given by the composite map

Map(M,N) ⊗H ⊗M
ρM−−→ Map(M,N) ⊗H ⊗M ⊗H

CH,M−−−−→ Homk(M,N) ⊗M ⊗H ⊗H

ev ⊗m−−−−→ N ⊗H.

(4) The internal Hom of K -mod is given by

F (M,M ′) = Ker( ˆ(τM ′)M : Map(M,M ′) ⊗H → Map(M, M̄ ′) ⊗H).

Proof. Part (1) is due to the following formal computation of the usual adjunctions:

HomH(M ′,Map(M,N) ⊗H) ∼= Hom(M ′,Map(M,N))
∼= Hom(M ′ ⊗M,N)
∼= HomH(M ′ ⊗M,N ⊗H).

It is clear that this sequence of bijections is natural in M and M ′.
Part (2) immediately follows from the naturality of (1).
We unwind the definitions to show (3). Firstly, the identity map idMap(M,N)⊗H goes 

to

idMap(M,N) ⊗ε : Map(M,N) ⊗H → Map(M,N).

Pass to the adjunction of Map and ⊗ to get a map

Map(M,N) ⊗H ⊗M → N ; g ⊗ a⊗m �→ ε(a)g(m).

We next regard Map(M, N) ⊗H ⊗M as the tensor comodule of Map(M, N) ⊗H and 
M . The map γ(idMap(M,N)⊗H) is obtained by universally extending to a comodule ho-
momorphism Map(M, N) ⊗H ⊗M → N ⊗H. Explicitly, γ(idMap(M,N)⊗H) is expressed 
by
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g ⊗ a⊗m �→
∑

g ⊗ a1 ⊗m1 ⊗ a2c2

�→
∑

ε(a1)g(m1) ⊗ a2c2

=
∑

g(m1) ⊗ ac2

(the Sweedler notation). This coincides with the map in the assertion.
The general adjunction is obtained from the isomorphism

HomH(−⊗M,M ′) ∼= Ker HomH(−⊗M, τM ′)

∼= Ker HomH(−, ˆ(τM ′)M )

∼= HomH(−, F (M,M ′)).

This shows (4). �
We now factorize a given morphism f = (fa, fk) : (A, K) → (B, L) of weak pairs as

(A,K) (fa,idK)−−−−−−→ (B,K) (idB,fk)−−−−−→ (B, L)

to reduce construction of PB,K
A,K,w and IB,K

A,L,w to the following three well-known results in 
the theory of monoidal categories:

Lemma 2.2.5. Let F : V → V′ be a monoidal functor between monoidal categories with a 
right adjoint functor G, and (A, m) be a monoid object of V. Then the adjunction (F, G)
extends to

F : A -mod � F (A) -mod : G.

Proof. Since F is monoidal, F (A) is a monoid object of V′ in a natural way. Observe also 
that G is lax monoidal in a canonical way ([1] Proposition 3.84). For an F (A)-module 
(N, πN ), define a map in V as

A⊗G(N)
uA⊗idG(N)−−−−−−−→ G(F (A)) ⊗G(N)

μF (A),N−−−−−→ G(F (A) ⊗N) G(πN )−−−−→ G(N).

This determines the structure of a left A-module on G(N). In fact, use the lax structure 
to get the following commutative diagrams:
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A⊗ (A⊗G(N)) G(F (A)) ⊗ (G(F (A)) ⊗G(N))

A⊗ (G(F (A)) ⊗G(N)) G(F (A)) ⊗G(F (A) ⊗N)

A⊗G(F (A) ⊗N)

A⊗G(N) G(F (A) ⊗ (F (A) ⊗N))

G(F (A)) ⊗G(N)

G(F (A) ⊗N)

G(N)

uA⊗uA

idA ⊗uA⊗idG(N) id ⊗G(μ)

idA ⊗μ

idG(F (A)) ⊗G(πN )

μF (A),F (A)⊗N

G(πN )

uA⊗idG(N)

G(idF (A) ⊗πN )
μF (A),N

G(πN )

(A⊗A) ⊗G(N) (G(F (A)) ⊗G(F (A))) ⊗G(N)

G(F (A) ⊗ F (A)) ⊗G(N) G((F (A) ⊗ F (A)) ⊗N)

G(F (A⊗A)) ⊗G(N) G(F (A⊗A) ⊗N)

A⊗G(N) G(F (A)) ⊗G(N) G(F (A) ⊗N)

G(N)

(uA⊗uA)⊗idG(N)

mA⊗idG(N)

uA⊗A⊗idG(N)

μF (A),F (A)⊗idG(N)

μF (A)⊗F (A),N

G(μA,A)⊗idG(N) G(μA,A⊗idN )

μF (A⊗A),N

G(F (mA))⊗G(idN ) G(F (mA)⊗idN )

uA⊗idG(N) μF (A),N

G(πN )

A⊗G(N) G(F (A)) ⊗G(N) G(F (A) ⊗N) G(N)

IV ⊗G(N) G(F (IV)) ⊗G(N) G(F (IV) ⊗N)

G(N) G(IV′) ⊗G(N) G(IV′ ⊗N)

G(IV′ ⊗N)

uA
μF (A),N G(πN )

jA⊗idG(N)

μ0

uIV

l

μF (IV),N

G(F (jA))⊗idG(N)

G(μ−1
0 ) G(μ−1

0 ⊗idN )

G(F (jA)⊗idN )

G(l−1)
μ

μ

G(l)

(use the colax-lax property of [1] Definition 3.81 and Proposition 3.82). Compare the first 
and second diagrams to get the associativity of the action. The third diagram shows the 
unitality. This construction is clearly functorial. The proof will be completed by seeing 
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that the counit and the unit are compatible with actions of A and F (A) respectively. It 
is again shown by routine diagram chases for an A-module M and an F (A)-module N :

A⊗M A⊗G(F (M))

G(F (A)) ⊗G(F (M))

G(F (A⊗M)) G(F (A) ⊗ F (M))

M G(F (M))

πM

idA ⊗uM

uA⊗M

uA⊗idG(F (M))

μF (A),F (M)

G(F (πM ))

G(μ−1
A,M )

G(πF (M))

uM

F (A) ⊗ F (G(N)) F (A) ⊗N

F (A⊗G(N)) F (G(F (A))) ⊗ F (G(N))

F (G(F (A)) ⊗G(N))

F (G(F (A) ⊗N))

F (G(N)) N.

μA,G(N)

idF (A) ⊗vN

πN

F (uA⊗idG(N))

vF (A)⊗vN

F (μF (A),N )

μ−1
G(F (A)),G(N)

F (G(πN ))

vF (A)⊗N

vN

�

Lemma 2.2.6. Let V be a closed symmetric monoidal category with equalizers, and f :
A → B be a morphism of monoids of V. Then the forgetful functor

B -mod → A -mod

admits a right adjoint functor.

Proof. We ignore the associator a in this proof for convenience.
Define m̂op : B → Map(B, B) by the opposite multiplication

B ⊗B
C∼= B ⊗B

m→ B.

Let (M, πM ) be an A-module. Then Map(B, M) is a left B-module for the multipli-
cation on the domain B from the right side:
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B ⊗ Map(B,M) m̂op

→ Map(B,B) ⊗ Map(B,M)

C∼= Map(B,M) ⊗ Map(B,B)

◦→ Map(B,M).

This corresponds to the composite map

B ⊗ Map(B,M) ⊗B
CB,Map(B,M)⊗B

Map(B,M) ⊗B ⊗B

m→ Map(B,M) ⊗B

ev→ M.

To see the associativity, observe that the following diagram commutes:

B ⊗B B

Map(B,B) ⊗ Map(B,B) Map(B,B)

Map(B,B) ⊗ Map(B,B).

m

m̂op⊗m̂op m̂op

C ◦

Since the enriched composition is associative ([26] 1.6), the assertion follows by comparing 
the two diagrams

B ⊗B ⊗ Map(B,M) B ⊗ Map(B,B) ⊗ Map(B,M)

Map(B,B) ⊗ Map(B,B) ⊗ Map(B,M) B ⊗ Map(B,M) ⊗ Map(B,B)

B ⊗ Map(B,M)

Map(B,B) ⊗ Map(B,M) ⊗ Map(B,B) Map(B,B) ⊗ Map(B,M)

Map(B,M) ⊗ Map(B,B) ⊗ Map(B,B) Map(B,M) ⊗ Map(B,B)

Map(B,M)

m̂op

m̂op⊗m̂op idB ⊗C
m̂op

idMap(B,B) ⊗C

◦

m̂op

id ⊗◦

CMap(B,B),Map(B,M)⊗Map(B,B) C

◦⊗id

◦
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B ⊗B ⊗ Map(B,M) B ⊗ Map(B,M)

Map(B,B) ⊗ Map(B,B) ⊗ Map(B,M) Map(B,B) ⊗ Map(B,M)

Map(B,B) ⊗ Map(B,B) ⊗ Map(B,M) Map(B,M) ⊗ Map(B,B)

Map(B,M) ⊗ Map(B,B) ⊗ Map(B,B) Map(B,M).

m

m̂op⊗m̂op m̂op

C⊗idMap(B,M) C◦⊗idMap(B,M)

CMap(B,B)⊗Map(B,B),Map(B,M) ◦
idMap(B,M) ⊗◦

For the coincidence of the left vertical composite arrows, see [25] Proposition 2.7 and 
also [24] Proposition 1 B.5. Observe next that the map m̂op ◦ jB : I → Map(B, B)
corresponds to l : I ⊗B ∼= B (use [25] Proposition 2.1). Then the unitality follows from 
the following diagram by passing to the left adjoints:

I ⊗ Map(B,M) ⊗B

Map(B,M) ⊗ I ⊗B Map(B,M) ⊗B

Map(B,M) ⊗B M.

C⊗idB

lMap(B,M)

lB

rMap(B,M)

ev

We next define two morphisms Map(B, M) ⇒ Map(A ⊗B, M) as follows:

• Take the pullback along mB ◦ (f ⊗ idB) : A ⊗B → B ⊗B → B.
• Define Map(B, M) → Map(A ⊗B, A ⊗M) by

Map(B,M) ⊗A⊗B
C∼= A⊗ Map(B,M) ⊗B

ev→ A⊗M.

Then compose it with πM .

Let MapA(B, M) be the equalizer of these two maps, and i : MapA(B, M) → Map(B, M)
denote the canonical morphism. Then the composite two arrows

B ⊗ MapA(B,M) i→ B ⊗ Map(B,M) π→ Map(B,M) ⇒ Map(A⊗B,M)

coincide. In particular, MapA(B, M) is a B-submodule of Map(B, M). In fact, passing to 
left adjoints, we can rewrite the composite arrows B ⊗MapA(B, M) ⇒ Map(A ⊗B, M)
as
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B ⊗ MapA(B,M) ⊗A⊗B
i→ B ⊗ Map(B,M) ⊗A⊗B

m̂op

→ Map(B,B) ⊗ Map(B,M) ⊗A⊗B

C∼= Map(B,M) ⊗ Map(B,B) ⊗A⊗B

◦→ Map(B,M) ⊗A⊗B

f→ Map(B,M) ⊗B ⊗B

m→ Map(B,M) ⊗B

ev→ M

B ⊗ MapA(B,M) ⊗A⊗B
i→ B ⊗ Map(B,M) ⊗A⊗B

m̂op

→ Map(B,B) ⊗ Map(B,M) ⊗A⊗B

C∼= Map(B,M) ⊗ Map(B,B) ⊗A⊗B

◦→ Map(B,M) ⊗A⊗B

C∼= A⊗ Map(B,M) ⊗B

ev→ A⊗M

πM→ M.

Since the arrows MapA(B, M) i→ Map(B, M) ⇒ Map(A ⊗B, M) coincide, the diagram

MapA(B,M) ⊗A⊗B Map(B,M) ⊗A⊗B

Map(B,M) ⊗A⊗B A⊗ Map(B,M) ⊗B

Map(B,M) ⊗B ⊗B A⊗M

Map(B,M) ⊗B M

i

i C⊗idB

f ev

mB πM

ev

commutes. The assertion now follows by comparing diagrams
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B ⊗ MapA(B,M) ⊗A⊗B MapA(B,M) ⊗B ⊗A⊗B

Map(B,B) ⊗ Map(B,M) ⊗A⊗B

Map(B,M) ⊗ Map(B,B) ⊗A⊗B Map(B,M) ⊗ Map(B,B) ⊗B ⊗B

Map(B,M) ⊗A⊗B Map(B,M) ⊗ Map(B,B) ⊗B

Map(B,M) ⊗B Map(B,M) ⊗B

M

C⊗idA⊗B

m̂op⊗i⊗idA⊗B

i⊗m̂op⊗f⊗idB

C

◦
f

m

mB◦(f⊗idB) ◦ ev

ev
ev

MapA(B,M) ⊗B ⊗A⊗B MapA(B,M) ⊗A⊗B ⊗B

Map(B,M) ⊗ Map(B,B) ⊗B ⊗B MapA(B,M) ⊗B ⊗B ⊗B

Map(B,M) ⊗ Map(B,B) ⊗B Map(B,M) ⊗B

CB,A⊗B

i⊗m̂op⊗f f

m i⊗m◦(m⊗idB)

ev

B ⊗ MapA(B,M) ⊗A⊗B MapA(B,M) ⊗A⊗B ⊗B

Map(B,B) ⊗ Map(B,M) ⊗A⊗B Map(B,M) ⊗A⊗ Map(B,B) ⊗B

Map(B,M) ⊗ Map(B,B) ⊗A⊗B A⊗ Map(B,M) ⊗ Map(B,B) ⊗B

Map(B,M) ⊗A⊗B A⊗ Map(B,M) ⊗B

A⊗ Map(B,M) ⊗B A⊗M

M

m̂op⊗i⊗idA

CB,MapA(B,M)⊗A

i⊗idA ⊗m̂op

C

C

C

◦

C

ev

◦

C ev

ev

πM
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MapA(B,M) ⊗A⊗B ⊗B Map(B,M) ⊗A⊗B ⊗B

Map(B,M) ⊗A⊗ Map(B,B) ⊗B

A⊗ Map(B,M) ⊗ Map(B,B) ⊗B A⊗ Map(B,M) ⊗B ⊗B

A⊗ Map(B,M) ⊗B A⊗ Map(B,M) ⊗B ⊗B

A⊗M.

i⊗idA ⊗m̂op

i

CMap(B,M),A

m̂op

CMap(B,M),A

ev
m̂op

CB,B

ev

m

To see that this defines a right adjoint functor to the forgetful functor B -mod → A -mod, 
let M be a B-module, and N be an A-module. If we are given an A-module homomor-
phism p : M → N , define a B-module homomorphism M → Map(B, N) adjunctionally 
by

M ⊗B
CM,B∼= B ⊗M

π→ M
p→ N.

This factors through MapA(B, M) by a similar argument. For a B-module homomor-
phism M → MapA(B, N), define an A-module homomorphism by

M → MapA(B,N) → Map(B,N) → N,

where the last arrow is defined by restriction to I: Map(B, N) → Map(I, N) ∼= N . �
Lemma 2.2.7. Let V be a symmetric monoidal category with coequalizers, and f :
(A, mA) → (B, mB) be a morphism of monoids of V. Suppose that for every object 
X ∈ V, X ⊗− respects coequalizers. Then the forgetful functor

B -mod → A -mod

admits a left adjoint functor.

Proof. The proof essentially goes in the dual way to Lemma 2.2.6. Let (M, πM ) be an 
A-module. It is clear that B ⊗M is a left B-module for the multiplication from the left 
side. Define B ⊗A M by the coequalizer sequence

B ⊗A⊗M
(mB◦(idB ⊗f))⊗idM−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇒

idB ⊗πM

B ⊗M
q→ B ⊗A M.

Then we have a commutative diagram
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B ⊗B ⊗A⊗M B ⊗B ⊗M B ⊗M

B ⊗B ⊗B ⊗M B ⊗A⊗M

B ⊗B ⊗M B ⊗B ⊗M

B ⊗M B ⊗A M.

mB

πM

f

mB⊗idM

qmB⊗idB

idB ⊗mB

idB ⊗πM

(mB◦(idB ⊗f))⊗idM

mB
mB

q

Since B ⊗− respects coequalizer sequences, this implies that the action of B on B ⊗M

descends to B⊗AM . Moreover, the resulting map B⊗(B⊗AM) → B⊗AM exhibits the 
structure of a left B-module on B⊗AM since (B⊗B) ⊗− respects coequalizers sequences. 
The adjunction is defined in the usual manner: Let M be an A-module, and N be a 
B-module. Suppose that we are given an A-module homomorphism p : M → N . Then it 
extends to a B-module homomorphism πN ◦ (idB ⊗p) : B⊗M → N . A similar argument 
shows that this extension of p descends to a B-module homomorphism B ⊗A M → N :

B ⊗A⊗M B ⊗M

B ⊗B ⊗M B ⊗A⊗N

B ⊗M B ⊗B ⊗N B ⊗N

B ⊗N N

πM

p
f

p

p
mB

πN
f

p

πN

mB πN

πN

This determines the desired adjunction. �
Theorem 2.2.8.

(1) For a map (A, K) → (B, L) of pairs, FA,K
B,L admits a right adjoint functor IB,L

A,K .
(2) For a map f = (fa, idK) : (A, K) → (B, K) of pairs, the forgetful functor FA,K

B,K

admits a left adjoint functor PB,K
A,K .

Proof. Recall that a given map (A, K) → (B, L) of (weak) pairs admits a factorization

(A,K) → (B,K) → (B, L)

(see above Proposition 2.2.5), which implies an equality

F
A,K
B,L,w = F

A,K
B,K,w ◦ FB,K

B,L,w.
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Notice that Fk,K
k,L,w is a (strict) symmetric monoidal functor. Moreover, it admits a right 

adjoint functor ([19] I.3.3 and I.3.4). We now apply Lemma 2.2.5 to

V = L -mod;

V′ = K -mod;

F = F
k,K
k,L,w;

A = (B,K)

to get a right adjoint functor IB,L
B,K,w of FB,K

B,L,w. Similarly, apply

V = K -mod

A = (A,K)

B = (B,K)

to Lemma 2.2.6 and Lemma 2.2.7 to get right and left adjoint functors IB,K
A,K,w and 

PB,K
A,K,w. Compose the right adjoint functors to get a right adjoint functor IB,L

A,K,w of 
F
A,K
B,L,w. From Lemma 2.2.2,

IB,L
A,K = (−)k ◦ IB,L

A,K,w ◦ JA,K

is right adjoint to FA,K
B,L . This shows (1).

To see (2), it will suffice to show that PB,K
A,K,w sends (A, K)-modules to (B, K)-modules. 

Let (M, πM , νM ) be an (A, K)-module and set X := PB,K
A,K,wM . Let us denote the cor-

responding action maps on X by πX and νX . Let ψA : k → A and ψB : k → B be the 
structure maps. Then for ξ ∈ k and b ⊗m ∈ X, we obtain

dνX(ξ)(b⊗m) = [ψB(ξ), b] ⊗m + b⊗ dνM (ξ)m

= ψB(ξ)b⊗m− b⊗ πM (ψA(ξ))m + b⊗ dνM (ξ)m

= ψB(ξ)b⊗m

= πX(ψB(ξ))(b⊗m).

This completes the proof. �
Remark 2.2.9. The functor FA,K

B,L does not always admit a left adjoint functor since it 
does not preserve infinite limits in general.

Remark 2.2.10 (production-in-stages). Suppose that we are given a sequence

(A,K) → (B, L) → (C,M)
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of pairs. Then we have an obvious equality

F
A,K
B,L ◦ FB,L

C,M = F
A,K
C,M .

Pass to the right adjoints to get an isomorphism IC,MB,L ◦ IB,L
A,K

∼= IC,MA,K .

Finally, we put a linear structure on the category of weak (A, K)-modules. Notice that 
each Hom set of the category of weak (A, K)-modules is a k-submodule of the k-module 
of morphisms as k-modules. The resulting linear structure makes (A, K) -modw into 
a linear category. Remark that the isomorphism of Lemma 2.1.7 preserves the linear 
structures. The next result is a consequence of Lemma 2.2.2:

Corollary 2.2.11.

(1) For a weak pair (A, K), the category (A, K) -modw is a (locally small) bicomplete 
abelian category, whose colimits and finite limits are computed in the category of dg 
k-modules.

(2) For a pair (A, K), the category (A, K) -mod is a (locally small) bicomplete abelian 
category, whose colimits and finite limits are computed in the category of dg 
k-modules.

Proof. Let (A, K) be a weak pair. According to [6] Proposition 4.3.1, Proposition 4.3.2, 
(A, K) -modw has small limits and colimits which are computed in K -mod since K -mod
is a bicomplete closed monoidal category. Moreover, colimits and finite limits are com-
puted in k -mod since K is flat over the base ring k. Notice that the zero dg k-module 
admits the trivial weak (A, K)-module structure, which is a zero object of (A, K) -modw. 
It is also clear that (A, K) -modw is additive. Finally, suppose that we are given a map 
of weak (A, K)-modules f : M → N . Let Ker f (resp. Im f) denote the kernel of f (resp. 
the image of f). Then we have a natural map

M/Ker f → Im f

which is an isomorphism as a map of k -mod, so it is also an isomorphism as a map of 
weak (A, K)-modules. Hence (1) is verified.

We next prove (2). Let (A, K) be a pair. Lemma 2.2.2 implies that the category 
(A, K) -mod is bicomplete and that its limits and colimits are computed in (A, K) -modw. 
In particular, (A, K) -mod is an abelian subcategory of (A, K) -mod. This completes the 
proof. �
Remark 2.2.12. We can directly prove without Lemma 2.2.2 that the category (A, K)-
mod is stable under formation of (possibly empty or infinite) coproducts, cokernels, and 
kernels in (A, K) -modw by checking the compatibility condition of the actions of k.
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3. Differential graded analogue of the dual Zuckerman functor

In this section, we remark how to define differential graded enrichment of the dual 
Zuckerman functor and the pseudoforgetful functor over the field C of complex numbers. 
In this section, the ground field is C, and all affine group schemes are assumed to be 
reductive. We work with reductive groups since their representations are completely 
reducible. Thanks to this fact, the pseudoforgetful functor is exact ([28] Lemma 2.28 
and Proposition 2.33). We work over C to use [28] Lemma 1.46. The author expects that 
[28] Lemma 1.46 is valid in the setting of [20].

3.1. Construction

For a reductive group K, R(K) will denote the Hecke algebra of a maximal compact 
subgroup of K ([28] I.2). Recall that R(K) is a right O(K)-module by the standard 
multiplication ([28] Lemma 1.46).

As in the proof of Theorem 2.2.8 (1), we start with the weak setting. Let (A, L, φ)
be a weak pair, K → L be a homomorphism of reductive groups, and V be a weak 
(A, K)-module. As a dg L-module, define PA,L

A,K,w(M) = Πw(M) as

Πw(M) = R(L) ⊗R(K) M.

To describe the action of A on Πw(M), let a ∈ A, and T ⊗m ∈ Πw(M). Choose elements 
ai ∈ A and fi ∈ O(K) such that

φ(l)−1a =
∑
i

fi(l)ai

for every l ∈ L. If we write ρ for the coaction of O(L) on A, these elements are charac-
terized by

ρ(a) =
∑
i

ai ⊗ S(fi),

where S denotes the antipode of O(L). Then the action πΠw(M)(a) on Πw(M) is written 
as

πΠw(M)(a)(T ⊗m) =
∑

Tfi ⊗ π(ai)m.

This is clearly independent of the expression of ρ(a), and determines a differential graded 
action ([28] I.5, [18] 5.4.1). The dual Zuckerman functor for pairs is defined by composing 
Πw with the localization (−)l.

Similarly, let N be a weak (A, L)-module. Define a dg vector subspace
MapR(L)(R(L), N) ⊂ Map(R(L), N) by
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MapR(L)(R(L), N)i = {graded left R(L)-module homomorphisms R(L) → N [i]}.

Then MapR(L)(R(L), N) is a left R(K)-module for the right action on the domain. As a 

K-module, (F∨)A,K
A,L,w(N) is defined as its K-finite part. To define the action of A, take 

homogeneous elements ϕ ∈ MapR(L)(R(L), M)K , a ∈ A and S ∈ R(L). Choose ai ∈ A

and fi ∈ O(L) so that

φ(l)a =
∑

fi(l)ai

for every l ∈ L. Then the action π(a) = π(F∨)A,K
A,L,w(N)(a) is defined as

(π(a)ϕ)(T ) =
∑

πM (ai)ϕ(Tfi).

This determines the structure of a weak (A, K)-module. Since the action of k induced 
from A factors through the degree 0 part A0, this functor sends (A, L)-modules to 
(A, K)-modules if (A, L) is a pair from the classical setting. We define (F∨)A,K

A,L :
(A, L) -mod → (A, K) -mod by the restriction of (F∨)A,K

A,L,w if (A, L) is a pair.

3.2. Induction-in-stages

To establish the principle of induction-in-stages, we extend our definition. If we are 
given a map f : (A, K) → (B, L) of pairs, factorize it as

(A,K) (B, L)

(B,K).

f

(fa, idK) (idB ,fk)

According to this factorization, set

PB,L
A,K = PB,L

B,K ◦ PB,K
A,K ;

(F∨)A,K
B,L = F

A,K
B,K ◦ (F∨)B,K

B,L .

Proposition 3.2.1 (induction-in-stages). Suppose that we are given a sequence (A, K) →
(B, L) → (C, M) of maps of pairs. Then the following isomorphisms exist:

(1) (F∨)A,K
B,L ◦ (F∨)B,L

C,M
∼= (F∨)A,K

C,M ;
(2) PC,M

B,L ◦ PB,L
A,K

∼= PC,M
A,K .

Proof. It suffices to prove the weak version of (1). We construct the isomorphism in the 
following two stages:
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(F∨)A,K
B,L,w ◦ (F∨)B,L

C,M,w = F
A,K
B,K,w ◦ (F∨)B,K

B,L,w ◦ FB,L
C,L,w ◦ (F∨)C,LC,M,w

(i)∼= F
A,K
B,K,w ◦ FB,K

C,K,w ◦ (F∨)C,KC,L,w ◦ (F∨)C,LC,M,w

(ii)∼= F
A,K
B,K,w ◦ FB,K

C,K,w ◦ (F∨)C,KC,M,w

= F
A,K
C,K,w ◦ (F∨)C,KC,M,w

= (F∨)A,K
C,M,w.

Part (i) follows by unwinding the definitions. To see (ii), we pass to the left adjoints 
again. Since the natural isomorphism

R(M) ⊗R(L) (R(L) ⊗R(K) −) ∼= R(M) ⊗R(K) −

respects the differential and the actions of C and R(M), the assertion follows. This 
completes the proof. �
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