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Let G(q) be a finite group of Lie type over a field with q
elements, where q is a prime power. The Green functions of 
G(q), as defined by Deligne and Lusztig, are known in almost
all cases by work of Beynon–Spaltenstein, Lusztig und Shoji. 
Open cases exist for groups of exceptional type 2E6, E7, E8 in 
small characteristics. We propose a general method for dealing 
with these cases, which proceeds by a reduction to the case 
where q is a prime and then uses computer algebra techniques. 
In this way, all open cases in type 2E6, E7 are solved, as well 
as at least one particular open case in type E8.
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To the memory of Kay Magaard, a dear friend

1. Introduction

Let G(q) be a group of Lie type over a finite field with q elements. We are concerned 
with the problem of computing the Green functions of G(q), as defined by Deligne and 
Lusztig [5]. This is an important and essential part of the more general problem of com-
puting the whole character table of G(q); see Carter’s book [3] for further background. 
There is a long tradition of work on Green functions; the principal ideas and methods, 
which remain valid and state of the art as of today, are summarized in Shoji’s survey 
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[36] from 1987. At that point, the Green functions were known in all cases where q is a 
power of a good prime for G, or where q is arbitrary, G is of small rank and the whole 
table of unipotent character values is available (like for G2, 3D4, 2B2, 2G2). Subsequently, 
explicit results for F4, 2F 4, E6 in small characteristics were obtained by Malle [27], [28]
and Porsch [33].

Regarding the general theory, it was first shown by Lusztig [22] (with some mild 
restrictions on q) and then by Shoji [37], [38] (in complete generality) that the original 
Green functions of [5] can be identified with another type of Green functions defined in 
terms of Lusztig’s character sheaves [21]. This provides new, extremely powerful tools. 
In this setting, groups of classical type in characteristic 2 are dealt with by Shoji [40]. 
Thus, the remaining open cases are as follows:

(♥) 2E6(3m), E7(2m), E7(3m), E8(2m), E8(3m), E8(5m)

for any m � 1. (See Marcelo–Shinoda [29] for some comments about the Green functions 
of F4(3m).) In principle, one could try to deal with these cases by similar methods as 
in the papers by Malle and Porsch mentioned above; however, these involve the techni-
cally complicated and unpleasant task of explicitly inducing class functions from proper 
subgroups. In this paper, we use another approach, similar to that in [11]. By [12, The-
orem 3.7], the computation of the Green functions of G(q), where q = pm with m � 1, 
can be reduced to the base case where m = 1, which amounts to just six individual cases 
which can be addressed by computer algebra methods. In this way, we will solve all the 
open cases for the groups of type 2E6, E7 in the list (♥), as well as one particular case 
for type E8 in characteristic 2.

In Section 2, we review the general plan for computing Green functions, which reduces 
matters to the determination of certain “Y -functions”. In Section 3, we discuss a number 
of techniques for determining these functions. Consequently, we obtain a method for 
solving the remaining open problems that relies on knowing at least some values of the 
permutation character of G(q) on the cosets of a Borel subgroup B(q) ⊆ G(q). In order 
to compute such values, we shall work with an explicit realisation of G(q) as a matrix 
group. In Section 4, we advertise a “canonical” way of constructing G(q), following [8], 
[25]. Then the remaining sections deal with the discussion of the various cases in groups 
of type F4, E6, 2E6, E7; see Section 9 for the particular case in type E8.

We heavily rely on Michel’s version of CHEVIE [30], as well as programs (written 
by the author in GAP [6]) implementing the constructions in Section 4. As far as the 
remaining open cases in type E8 are concerned, it seems that the above method might 
work in principle, but more sophisticated algorithms will certainly be required. (For 
example, one could replace the Borel subgroup B(q) by a parabolic subgroup of G(q).) 
This will be discussed elsewhere.

The main computational challenge of our approach is the explicit computation of 
the values of the above-mentioned permutation character of G(q). For this purpose, we 
need to count the (left) cosets of B(q) that are fixed by a given element g ∈ G(q). 
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But, because of the sheer size of the groups in question (e.g., for G(q) = E7(3) we have 
[G(q) : B(q)] ≈ 17 · 1030), it is entirely impossible to run through the complete list of 
cosets. Now a crucial feature of our approach is that, typically, we only need to obtain 
lower bounds for the number of fixed points, and this can be exploited as follows. By the 
sharp form of the Bruhat decomposition, we have a partition

G(q) =
∐

w∈W B(q)wB(q),

where W is the Weyl group of G(q) and each double coset B(q)wB(q) contains precisely 
ql(w) left B(q)-cosets; here, l(w) is the length of w. Now we simply begin with various 
elements w ∈ W of relatively small length, run through the left cosets that are contained 
in B(q)wB(q), and check if they are fixed by g or not. In a sense, we were just lucky 
because in all cases that we consider, this is sufficient to reach the desired lower bounds 
for the total number of fixed points — and there are cases where we never reached the 
exact total number, even after weeks or months of computations. (We will indicate the 
maximum length required for Weyl group elements in all cases in Sections 5–9.)

Acknowledgments. The author is indebted to Gunter Malle for a careful reading of 
the manuscript and for a number of useful comments. This work is a contribution to the 
SFB-TRR 195 “Symbolic Tools in Mathematics and their Application” of the German 
Research Foundation (DFG).

2. On the computation of Green functions

Let p be a prime and k = Fp be an algebraic closure of the field with p elements. 
Let G be a connected reductive algebraic group over k and assume that G is defined 
over the finite subfield Fq ⊆ k, where q = pm for some m � 1. Let F : G → G be the 
corresponding Frobenius map. Let B0 ⊆ G be an F -stable Borel subgroup and T0 ⊆ B0
be an F -stable maximal torus. Let W = NG(T0)/T0 be the corresponding Weyl group. 
For each w ∈ W , let Rw be the virtual representation of the finite group GF defined 
by Deligne–Lusztig [5, §1]. (In the setting of [3, §7.2], we have Tr(g, Rw) = RTw,1(g)
for g ∈ GF , where Tw ⊆ G is an F -stable maximal torus obtained from T0 by twisting 
with w, and 1 stands for the trivial character of TF .) This construction is carried out 
over Q�, an algebraic closure of the �-adic numbers where � is a prime not equal to p. 
The corresponding Green function is defined by

Qw : GF
uni → Q�, u �→ Tr(u,Rw),

where Guni denotes the set of unipotent elements of G. It is known that Qw(u) ∈ Z

for all u ∈ GF
uni; see [3, §7.6]. So the character formula [3, 7.2.8] shows that we also 

have Tr(g, Rw) ∈ Z for all g ∈ GF . The general plan for computing the values of Qw is 
explained in [20, Chap. 24], [36, §5], [39, 1.1–1.3] (even for generalised Green functions, 
which we will not consider here). In order to be able to address the main open issues, 
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we will have to go through some of the steps of that plan, where we streamline the 
exposition as much as possible and concentrate on the algorithmic aspects.

Remark 2.1. The Frobenius map F induces an automorphism of W which we denote by 
γ : W → W . Let Irr(W ) be the set of irreducible representations of W over Q� (up to 
isomorphism). Let Irr(W )γ be the set of all those E ∈ Irr(W ) that are γ-invariant, that 
is, there exists a bijective linear map σE : E → E such that σE◦w = γ(w)◦σE : E → E

for all w ∈ W . Note that σE is only unique up to scalar multiples but, if γ has order 
d � 1, then one can always find σE such that

σd
E = idE and Tr(σE◦w,E) ∈ Z for all w ∈ W ;

see [17, 3.2]. In what follows, we assume that a fixed choice of σE satisfying the above 
conditions has been made for each E ∈ Irr(W )γ . (For example, one could take the 
“preferred” choice for σE specified by Lusztig [19, 17.2].)

For E ∈ Irr(W )γ , the corresponding almost character is the class function RE : GF →
Q� defined by

RE(g) := 1
|W |

∑
w∈W

Tr(σE◦w,E)Tr(g,Rw) for all g ∈ GF .

Since all the terms Tr(σE◦w, E) are integers, all the values RE are in Q. By [17, 3.9], 
the above functions are orthonormal with respect to the standard inner product on class 
functions of GF . Furthermore, by [16, 3.19], we have

Qw(u) =
∑

E∈Irr(W )γ
Tr(σE◦w,E)RE(u) for w ∈ W , u ∈ GF

uni.

Hence, knowing the values of all Green functions Qw is equivalent to knowing the values 
of all RE on GF

uni. We define the matrix Ω̃ = (ω̃E′,E)E′,E∈Irr(W )γ where

ω̃E′,E := 1
|W |

∑
w∈W

[GF : TF
w ] Tr(σE′◦w,E′)Tr(σE◦w,E) ∈ Q;

here, Tw ⊆ G denotes an F -stable maximal torus obtained from T0 by twisting with w

and the maps σE : E → E, σE′ : E′ → E′ are as above.

Proposition 2.2 (Orthogonality relations). For E, E′ ∈ Irr(W )γ , we have

ω̃E′,E =
∑

g∈GF
uni

RE′(g)RE(g).
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Proof. Arguing as in [16, 3.19], the above relations are a formal consequence of the 
orthogonality relations for the Green functions Qw in [3, Prop. 7.6.2]. �

Let NG be the set of all pairs (C, E) where C is a unipotent class in G and E is 
a G-equivariant irreducible Q�-local system on C (up to isomorphism). The Springer 
correspondence defines an injective map

ιG : Irr(W ) ↪→ NG;

see Lusztig [18], [20, Chap 24], and the references there. Let E ∈ Irr(W ) and ιG(E) =
(C, E) ∈ NG. Then we define

dE := (dimG− dimC − dimT0)/2.

Note that dimCG(g) � dimT0 for g ∈ G. Furthermore, dE ∈ Z�0 since dimG − dimT0
is always even and so is dimC; see [3, §5.10] and the references there. Now assume that 
E ∈ Irr(W )γ . Then F (C) = C and F ∗E ∼= E . We define a function

YE : GF
uni → Q

as follows. Let g ∈ GF
uni. Then we set YE(g) := 0 if g /∈ C, and

YE(g) := q−dERE(g) if g ∈ CF .

Note that YE(g) ∈ Q for all g ∈ GF since all values of RE are in Q (as remarked above). 
Now we can state the following fundamental result.

Theorem 2.3 (Lusztig, Shoji). In the above setting, the following hold.

(a) The functions {YE | E ∈ Irr(W γ)} are integer-valued and linearly independent.
(b) There are unique coefficients pE′,E ∈ Z (E′, E ∈ Irr(W )γ) such that

RE |GF
uni

=
∑

E′∈Irr(W )γ
qdE pE′,EYE′ for all E ∈ Irr(W )γ .

(c) We have pE,E = 1; furthermore, pE′,E = 0 if E′ 
= E and dE′ � dE.

Proof. By Lusztig [22] (with some mild restrictions on p, q) and Shoji [37], [38] (in 
complete generality), the original Green functions of [5] can be identified with another 
type of Green functions defined in terms of character sheaves [21]. So we can place 
ourselves in the setting of [20, Chap. 24]. Thus, the restrictions of the functions RE to 
GF

uni are indeed the characteristic functions of the character sheaves Ai in [20, 24.2]. 
Furthermore, the functions YE defined above are indeed equal to the functions Yi in [20, 
24.2.3]; thus, if ιG(E) = (C, E), then we have
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YE(g) = Tr(ψg, Eg) for g ∈ CF ,

where Eg is the stalk of E at g and ψg : Eg → Eg is a certain linear map of finite order. 
In particular, this shows that the values of YE are algebraic integers. Since YE is also 
rational-valued, we have YE(g) ∈ Z for all g ∈ GF . Then all of the above statements 
follow from [20, 24.2, 24.3, 24.5] and [20, Theorem 24.4]. Note that the hypotheses of [20, 
Theorem 24.4] (“cleanness”) are always satisfied by the main result of [24]. (Since we are 
only dealing with Green functions of GF , and not with generalised Green functions, it 
would actually be sufficient to refer to [7, §3] instead of [24]; see also [12, §2] where all 
of the above are discussed in somewhat more detail.) �
Remark 2.4. The Springer correspondence is explicitly known in all cases; see the ta-
bles in Carter [3, §13.3], Lusztig [18], Lusztig–Spaltenstein [26], Spaltenstein [41] (and 
the further references there). It can be obtained electronically, via tables or combina-
torial algorithms, through Michel’s version of the CHEVIE system [30]; see the function
UnipotentClasses.

Remark 2.5. Let E ∈ Irr(W )γ and ιG(E) = (C, E) ∈ NG. As already mentioned in the 
proof of Theorem 2.3, the corresponding function YE has a more direct interpretation 
in terms of the local system E ; see [20, 24.2.7], [23, 19.7] (and also Remark 3.2 below). 
At this point, let us just consider the example where E ∼= Q� is the trivial local system. 
Then the construction in [23, 19.7] shows that YE is constant on CF ; by Theorem 2.3, 
that constant must be an integer. We will see in Example 2.7 below how this constant 
can be determined. Note also that, for every F -stable unipotent class C, there exists 
some E ∈ Irr(W )γ such that ιG(E) = (C, Q�); this can be easily seen, for example, from 
the explicit description of the Springer correspondence in all cases.

Remark 2.6. Lusztig [20, §24.4] describes a purely combinatorial algorithm for computing 
the coefficients pE′,E in Theorem 2.3, which modifies and simplifies an earlier algorithm 
of Shoji [36, §5]. For this purpose, we define three matrices

P = (pE′,E), Ω = (ωE′,E), Λ = (λE′,E),

where, in each case, the indices run over all E′, E ∈ Irr(W )γ , and we set

ωE′,E := q−dE−dE′ ω̃E′,E and λE′,E :=
∑

g∈GF
uni

YE′(g)YE(g).

Then the orthogonality relations in Proposition 2.2 give rise to the matrix identity

P tr · Λ · P = Ω; see Lusztig [20, 24.9], Shoji [36, 5.6].

In general, given the right hand side Ω, such a system of equations will not have a 
unique solution for P, Λ. But if we take into account the additional information on the 
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coefficients pE′,E in Theorem 2.3(c), then it does have a unique solution, which can be 
found by a recursive algorithm. This is implemented through the function ICCTable in 
Michel’s version of CHEVIE [30]; examples will be given below.

Example 2.7. (Cf. Beynon–Spaltenstein [1, §2].) Let E1 ∈ Irr(W ) be the trivial repre-
sentation of W . Clearly, we have E1 ∈ Irr(W )γ ; furthermore, we can certainly choose 
σE1 : E1 → E1 to be the identity map. Then, with this choice, we have

RE1(g) = 1 for all g ∈ GF ;

see [5, 7.14.1] or [3, Prop 7.4.2]. It is also known that ιG(E1) = (Creg, Q�) where Creg is 
the class of regular unipotent elements (see, e.g., [41, 1.1]); hence, we have

dE1 = 0 and RE1 |GF
uni

=
∑

E′∈Irr(W )γ
pE′,E1YE′ .

Combining the above two expressions for RE1 , the functions YE′ are determined for all 
E′ ∈ Irr(W )γ such that pE′,E1 
= 0. Indeed, if pE′,E1 
= 0, then let us write ιG(E′) =
(C ′, E ′) where C ′ is an F -stable unipotent class. Using Remark 2.5 and the fact that the 
functions {YE | E ∈ Irr(W γ)} are linearly independent, we conclude that

pE′,E1YE′(g) = 1 for all g ∈ C ′ F .

Since pE′,E ∈ Z and YE′(g) ∈ Z for all g ∈ GF , we either have YE′(g) = 1 for all 
g ∈ C ′ F , or YE′(g) = −1 for all g ∈ C ′ F , where the sign is determined by pE′,E1 .

Example 2.8. Let G be of type G2 and p = 3. In this case, W = 〈s1, s2〉 where s1 is the 
reflection corresponding to a long simple root and s1 is the reflection corresponding to 
a short simple root. We have

Irr(W ) = {E1,0, E1,6, E
′
1,3, E

′′
1,3, E2,1, E2,2}

where E1,0 is the trivial representation, E1,6 is the sign representations, E′
1,3, E′′

1,3 are 
two further one-dimensional representations such that

Tr(s1, E
′
1,3) = Tr(s2, E

′′
1,3) = −1 and Tr(s1, E

′′
1,3) = Tr(s2, E

′
1,3) = 1;

finally, E2,1 is the standard reflection representation and E2,2 is a further two-dimensional 
representation. The Frobenius map F acts trivially on W and so γ = idW . In Michel’s 
version of CHEVIE [30], we obtain the information on unipotent classes and the Springer 
correspondence as follows.

gap> W := CoxeterGroup("G",2);;
gap> uc := UnipotentClasses(W,3);; # p=3
gap> Display(uc); Display(ICCTable(uc));
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Table 1
The Springer correspondence and pE′,E for G2, p = 3.

E dE A(u) ιG(E)

E1,6 6 {1} (1,Q�)
E′

1,3 3 {1} ((Ã1)3,Q�)
E′′

1,3 3 {1} (A1,Q�)
E2,2 2 {1} (Ã1,Q�)
E2,1 1 Z/2Z (G2(a1),Q�)
E1,0 0 Z/3Z (G2,Q�)

pE′,E E1,6 E′
1,3 E′′

1,3 E2,2 E2,1 E1,0

E1,6 1 1 1 q2+1 q4+1 1
E′

1,3 0 1 0 1 1 1
E′′

1,3 0 0 1 1 1 1
E2,2 0 0 0 1 1 1
E2,1 0 0 0 0 1 1
E1,0 0 0 0 0 0 1

The information is summarized in Table 1 (see also [41, p. 329]). There are 6 unipotent 
classes, denoted by G2, G2(a1), Ã1, A1, (Ã1)3, 1. Since γ = idW , we also have σE = idE

for all E ∈ Irr(W ). Thus, we obtain explicit expressions

RE |GF
uni

=
∑

E′∈Irr(W )

qdE pE′,EYE′ for all E ∈ Irr(W ).

It remains to determine the values of YE for all E ∈ Irr(W ). In the present case, this is 
easily done using Example 2.7. Indeed, since all entries in the last column of Table 1 are 
equal to 1, we have RE1,0 =

∑
E∈Irr(W ) YE . Hence, each function YE is identically 1 on 

CF where ιG(E) = (C, Q�).

In general, the determination of the functions YE is a very subtle problem. In or-
der to solve it, one either needs further geometric information (as, for example, in 
Beynon–Spaltenstein [1, §3, Case V], Shoji [40, §1]) or some additional information 
about character values of GF , which was readily available in the above example but may 
require much more work in other cases (as, for example, in Malle [28]). The following 
discussion, which is inspired by the approach of Marcelo–Shinoda [29], will turn out to 
be very useful in later sections.

Remark 2.9. For w = 1, the virtual representation R1 of Deligne–Lusztig is known to be 
an actual representation, which is in fact the permutation representation of GF on the 
cosets of BF

0 (see [5, 1.5] or [3, 7.2.4]). Thus, for any unipotent element u ∈ GF , we have

Q1(u) = Tr(u,R1) = |{gBF
0 ∈ GF /BF

0 | ugBF
0 = gBF

0 }|

= |{gBF
0 ∈ GF /BF

0 | g−1ug ∈ BF
0 }| =

∑
1�i�r

|CG(u)F |
|CB0(ui)F |

where u1, . . . , ur ∈ BF
0 are representatives of the conjugacy classes of BF

0 that are con-
tained in the GF -conjugacy class of u. On the other hand, expressing R1 as a linear 
combination of RE ’s and then using Theorem 2.3(b), we obtain that

Q1(u) =
∑

′ γ

p̃E′YE′(u) where p̃E′ :=
∑

γ

qdETr(σE , E) pE′,E .

E ∈Irr(W ) E∈Irr(W )
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Thus, since the terms p̃E′ are determined by the algorithm in Remark 2.6, this yields 
conditions on the values of the functions YE′ , once we manage to obtain some information 
about Q1(u) by other means.

In Sections 5–8, we will try to evaluate Q1(u) explicitly for certain unipotent ele-
ments u (see Example 3.6 below for a first illustration). For this purpose, we note that 
the formula for Q1(u) can be further refined using the Bruhat decomposition. Let Φ be 
the root system of G with respect to T0. Let Φ+ ⊆ Φ be the set of positive roots deter-
mined by the choice of B0. Finally, let {αi | i ∈ I} ⊆ Φ+ be the corresponding set of 
simple roots, where I is a finite indexing set. This defines a length function l : W → Z�0. 
For each α ∈ Φ, let Uα = {xα(t) | t ∈ k} ⊆ G be the corresponding root subgroup. For 
w ∈ W , we set

Uw := 〈Uα | α ∈ Φ−
w〉 ⊆ G where Φ−

w := {α ∈ Φ+ | w(α) ∈ Φ−};

we also fix a representative ẇ of w in NG(T0). Here, we tacitly assume that ẇ is chosen 
such that F (ẇ) = ẇ whenever γ(w) = w, which is possible by [3, p. 33]. Then we have 
the following sharp form of the Bruhat decomposition.

G =
∐

w∈W

B0ẇUw (with uniqueness of expression);

see [3, Theorem 2.5.14 and Prop. 2.5.6]. Writing Φ−
w = {β1, . . . , βl} where l = l(w), we 

actually have Uw = Uβ1 · · ·Uβl
with uniqueness of expression.

Lemma 2.10. Let u ∈ GF be unipotent. Then

Q1(u) =
∑

w∈W,γ(w)=w

|Q1,w(u)|

where Q1,w(u) := {v ∈ UF
w | ẇvuv−1ẇ−1 ∈ BF

0 } for all w ∈ W such that γ(w) = w.

Proof. By [3, §2.9], we also have a sharp form of the Bruhat decomposition for the finite 
group GF , such that GF =

∐
w BF

0 ẇUF
w , where the union runs over all w ∈ W such that 

γ(w) = w. Inverting elements, we see that

{(ẇv)−1 | w ∈ W,γ(w) = w, v ∈ UF
w }

is a complete set of representatives of the cosets {gBF
0 | g ∈ GF }. This yields the above 

formula. �
Remark 2.11. As far as explicit computations using a computer are concerned, the above 
formula means that



JID:YJABR AID:17504 /FLA [m1L; v1.261; Prn:25/06/2020; 16:10] P.10 (1-37)
10 M. Geck / Journal of Algebra ••• (••••) •••–•••
Q1(u) �
∑
w

|Q1,w(u)|

where w runs over all elements of W of any given bounded length. Note that |UF
w | = ql(w)

(see [3, p. 74]) which quickly becomes very large with growing l(w). Thus, we can only 
reasonably work with bounds like l(w) � 25 (if q = 2) or l(w) � 16 (if q = 3) on a 
standard computer. In any case, the above estimate will be crucial in our discussion of 
groups of exceptional type in Sections 5–9.

3. On the determination of the functions YE

We will assume from now on that G is simple and that the Frobenius map F : G → G

is given by

F = γ̃ ◦ Fm
p = Fm

p ◦ γ̃ (m � 1)

where γ̃ : G → G is an automorphism of finite order (leaving T0, B0 invariant) and 
Fp : G → G is a Frobenius map corresponding to a split Fp-rational structure, such that 
Fp commutes with γ̃ and Fp(t) = tp for all t ∈ T0. Thus, GF is an untwisted or twisted 
Chevalley group, as in Steinberg [42]. Note that γ̃ induces an automorphism of W which 
is just the automorphism γ : W → W induced by F considered earlier.

Remark 3.1. It is known that all unipotent classes of G are Fp-stable (since, in each case, 
representatives of the classes are known which lie in GFp = G(Fp); see, e.g., Liebeck–Seitz 
[15]). Let C be an F -stable unipotent class. We shall also make the following assumption.

(♣) There exists an element u0 ∈ CF such that F acts trivially on the finite group of 
components A(u0) := CG(u0)/C◦

G(u0).

If (♣) holds, then there is a bijective correspondence between the conjugacy classes of 
A(u0) and the conjugacy classes of GF that are contained in the set CF (see, e.g., [15, 
Lemma 2.12]). For a ∈ A(u0), an element in the corresponding GF -conjugacy class is 
given by ua = hu0h

−1 where h ∈ G is such that h−1F (h) ∈ CG(u0) maps to a under the 
natural homomorphism CG(u0) → A(u0). (The existence of h is guaranteed by Lang’s 
Theorem; note that h is not unique but ua = hu0h

−1 is well-defined up to GF -conjugacy.)

Remark 3.2. Let E ∈ Irr(W )γ and ιG(E) = (C, E) ∈ NG, such that F (C) = C and 
F ∗E ∼= E . Now let us fix an element u0 ∈ CF as in (♣), such that F acts trivially on 
A(u0). Then it is known (see Lusztig [23, 19.7]) that there is a natural A(u0)-module 
structure on the stalk Eu0 ; in fact, we have Eu0 ∈ Irr(A(u0)) and there is a root of unity 
δE ∈ Q� such that

YE(ua) = δE Tr(a, Eu0) for all a ∈ A(u0).
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Since the values of YE are integers, it easily follows that δE = ±1. (See [12, Lemma 3.3]
for further details.) Note that Tr(a, Eu0) is just an entry in the ordinary character table 
of A(u0). In particular, if a = 1, then u1 is GF -conjugate to u0 and so δE is determined 
by the identity

YE(u0) = δE dim Eu0 .

Thus, the whole problem of computing the Green functions Qw is reduced to the de-
termination of the signs δE = ±1 for E ∈ Irr(W )γ (cf. Shoji [39, 1.3, p. 161]).

Remark 3.3. In the tables in Carter [3, §13.3], Lusztig–Spaltenstein [26] and Spaltenstein 
[41], the pair (C, E) ∈ NG corresponding to E ∈ Irr(W ) via the Springer correspondence 
is specified by indicating the class C, the group A(u) (where u ∈ C) and the irreducible 
A(u)-module Eu. For example, in Table 1, we have E ∼= Q� and so Eu is the trivial 
representation of A(u), in all cases. For G of exceptional type, the possibilities for A(u)
are rather limited: either A(u) is abelian of order at most 6, or a dihedral group of order 8, 
or isomorphic to a symmetric group Sr where r = 3, 4, 5, or isomorphic to Z/2Z ×S3

(see [41, 5.4]).

Remark 3.4. Let C be an F -stable unipotent class and u0 ∈ CF be such that F acts 
trivially on A(u0). Let u0 = u1, u2, . . . , ur ∈ CF be representatives of the GF -conjugacy 
classes that are contained in CF , and let a1, . . . , ar ∈ A(u0) be corresponding represen-
tatives of the conjugacy classes of A(u0) (see Remark 3.1).

(a) Let E0 ∈ Irr(W )γ be such that ιG(E0) = (C, Q�). Then the corresponding 
A(u0)-module is the trivial representation and we have

YE0(ui) = δE0 for 1 � i � r.

Now let E1 ∈ Irr(W ) be the trivial representation. Then the restriction of the almost 
character RE1 to CF is constant and so pE0,E1δE0 = 1 (see Example 2.7). Hence, the 
sign δE0 is determined by the Lusztig–Shoji algorithm in Remark 2.6.

(b) Let E ∈ Irr(W )γ be such that ιG(E0) = (C, E) where E is not the trivial local 
system. Then we have YE(ui) = δETr(ai, Eu0) for 1 � i � r. Hence, we obtain

λE0,E =
∑

g∈GF

YE0(g)YE(g) = δE0δE
∑

1�i�r

[GF : CG(ui)F ]Tr(ai, Eu0).

The sum on the right hand can be explicitly computed using the knowledge of the 
centraliser orders |CG(ui)F | and the character table of the group A(u0). On the other 
hand, the left hand side is also known from the Lusztig–Shoji algorithm in Remark 2.6. 
Hence, if the left hand side is non-zero, then we also obtain δE0δE ; since δE0 is known 
from (a), this also determines δE .
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If the left hand side is zero, then some special arguments are required. A very particular 
such case occurs for G of type E8 and p 
= 2, 3, where A(u0) ∼= S3 and it turns out that 
δE0 = 1 and δE ≡ q mod 3; see Beynon–Spaltenstein [1, §3, Case 5]. (We will encounter 
a similar case in Section 9.)

Example 3.5. Let C be an F -stable unipotent class such that A(u) ∼= Z/2Z for u ∈ C. 
Note that F acts trivially on A(u) for any u ∈ CF (since A(u) has order 2). So let us 
fix some u0 ∈ CF . Assume that E0 ∈ Irr(W )γ is such that ιG(E0) = (C, Q�). Then the 
corresponding sign δE0 is determined as in Remark 3.4(a). Let us also assume that there 
exists E ∈ Irr(W )γ such that ιG(E) = (C, E) where E is a non-trivial local system. Now 
CF splits into two classes in GF ; let u′

0 ∈ CF be such that u0, u′
0 are not conjugate in 

GF . Then the values of YE0 , YE are given by

YE0(u0) = YE0(u′
0) = δE and YE(u0) = δE , YE(u′

0) = −δE .

(Note that Q� corresponds to the trivial character of A(u0) and E corresponds to the 
non-trivial character of A(u0).) Now, we either have δE = δE0 or δE = −δE0 . But, as 
already discussed in [1, p. 591], if we are in the second case, then we change the roles 
of u0, u′

0 and, with the new choice of u0, we will have δE = δE0 . Thus, in the present 
situation, we can always choose u0 ∈ CF such that δE = δE0 , and u0 is unique up to 
conjugation within GF . The only remaining problem is to identify u0 in a given list 
of representatives of unipotent classes. In order to try to solve this problem, we follow 
Remark 3.4(b) and consider the relation

(∗) λE0,E =
∑

g∈GF

YE0(g)YE(g) = |GF |
(
|CG(u0)F |−1 − |CG(u′

0)F |−1)δE0δE .

This leads to the following two cases.
(a) If λE0,E 
= 0, then (∗) implies |CG(u0)F | 
= |CG(u′

0)F |, which distinguishes the 
representatives u0, u′

0.
(b) If λE0,E = 0, then an additional argument is required in order to distinguish the 

representatives u0, u′
0. (See §5.2 below for a typical example.)

Example 3.6. Let G be of type G2 and p 
= 3. Then F acts trivially on W and the 
induced automorphism γ : W → W is the identity. Consequently, Irr(W ) = Irr(W )γ . By 
[15, Table 22.2.6], there are 5 unipotent classes of G, which are all F -stable. Let C be 
the unipotent class denoted by G2(a); we have A(u) ∼= S3 for u ∈ C. The set CF splits 
into three classes in GF , with centraliser orders 6q4, 2q4, 3q4. Thus, up to conjugation 
by elements in GF , there is a unique u0 ∈ CF such that |CG(u0)F | = 6q4 and F acts 
trivially on A(u0). This whole discussion also works for the Frobenius map Fp. Thus, we 
can even assume that Fp(u0) = u0 and Fp acts trivially on A(u0). If C ′ is a unipotent 
class different from C, then |A(u′)| � 2 for u′ ∈ C. Consequently, condition (♣) holds 
for all unipotent classes of G. The Springer correspondence is explicitly described by 
Spaltenstein [41, p. 329]; see Table 2. As in Example 2.8, we run the function ICCTable
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Table 2
The Springer correspondence and pE′,E for G2, p �= 3.

E dE A(u) ιG(E)

E1,6 6 {1} (1,Q�)
E′′

1,3 3 {1} (A1,Q�)
E2,2 2 {1} (Ã1,Q�)
E2,1 1 S3 (G2(a1),Q�)
E′

1,3 1 S3 (G2(a1), E)
E1,0 0 Z/(p, 2)Z (G2,Q�)

(where E � Q�, dim Eu = 2)

pE′,E E1,6 E′′
1,3 E2,2 E2,1 E′

1,3 E1,0

E1,6 1 1 q2+1 q4+1 q2 1
E′′

1,3 0 1 1 1 0 1
E2,2 0 0 1 1 1 1
E2,1 0 0 0 1 0 1
E′

1,3 0 0 0 0 1 0
E1,0 0 0 0 0 0 1

which yields the coefficients pE′,E . By inspection of Table 2, we see that there is just one 
case which is not covered by the arguments in Remark 3.4. The relevant unipotent class 
is the above-mentioned class C; we have

ιG(E2,1) = (C,Q�) and ιG(E′
1,3) = (C, E) where dim Eu = 2.

Using the output of ICCTable and the argument in Remark 3.4(a), we already see that 
δE2,1 = 1. However, we have 〈YE2,1 , YE′

1,3
〉 = 0 and so we can not apply the method in 

Remark 3.4(b). We now argue as follows. Using the output of ICCTable (see Table 2), 
we compute the coefficients p̃E′ in Remark 2.9. We obtain the following formula:

Q1(u0) = (2q + 1)YE2,1(u0) + qYE′
1,3

(u0) = (2q + 1) + 2qδE′
1,3

.

Thus, depending on whether δE′
1,3

equals +1 or −1, we have Q1(u0) = 4q+1 or Q1(u0) =
1. On the other hand, by Remark 2.9, Q1(u0) also is the value at u0 of the character of 
the permutation representation of GF on the cosets of BF

0 . We use this interpretation to 
show that Q1(u0) > 1. For this purpose, it will be sufficient to show that CG(u0)F � BF

0 . 
Assume, if possible, that CG(u0)F ⊆ BF

0 . Then we also have CG(u0)Fp ⊆ B
Fp

0 . We have 
a natural homomorphism BFp

0 → T
Fp

0 , with kernel consisting of unipotent elements only. 
If p = 2, then TFp

0 = {1} and so CG(u0)Fp would be a unipotent group, contradiction 
to the fact that A(u0) ∼= S3 is a quotient of CG(u0)Fp . If p 
= 2 (and p 
= 3), then 
A(u0) ∼= S3 will still be a quotient of the image of CG(u0)Fp in TFp

0 , contradiction since 
T0 is abelian. Thus, we do have CG(u0)F � BF

0 and so Q1(u0) > 1, as claimed. But this 
forces δE′

1,3
= 1.

Remark 3.7. Assume that γ̃ = idG and F = Fm
p where m � 1. Let us first consider the 

case where m = 1 and GFp = G(Fp) is an untwisted Chevalley group over the prime 
field Fp. The whole discussion above applies, of course, with Fp instead of F . In order to 
have a separate notation from the general case, we introduce a superscript “
” to various 
objects considered earlier. Thus, for w ∈ W , we denote by R�

w the virtual representation 
of GFp defined by Deligne–Lusztig, and by Q�

w the corresponding Green function. For 
E ∈ Irr(W ), let R�

E : GFp → Q� be the corresponding almost character. (Note that, now, 
Fp acts trivially on W and so σE = idE : E → E.) As in Remark 3.1, we assume that 
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there exists an element u0 ∈ CFp such that Fp acts trivially on A(u0). By Remark 3.2, 
there is a well-defined sign, which we now denote by δ�E = ±1, such that

R�
E(u0) = δ�E pdE dim Eu0 .

Having fixed the above notation, we now consider F = Fm
p for any m � 1. Then we still 

have F (u0) = u0, and F acts trivially on A(u0). Let δE = ±1 be as in Remark 3.2, now 
with respect to F . Then, by [12, Theorem 3.7], we have

δE = (δ�E)m; in particular, δE = 1 whenever m is even.

Thus, in order to determine δE, it is sufficient to consider the case where m = 1. This 
will be our main tool in the discussion of groups of exceptional type, in order to deal 
with those cases which are not covered by Remark 3.4.

4. Explicit realisations of G(q)

Assume that G is a simple algebraic group. In order to perform explicit computations 
on a computer with elements of G (as in the following sections), we need a concrete 
realisation of G as a matrix group. Now, in principle it is well-known how to do this, 
using Chevalley’s construction as explained in detail by Carter [2] and Steinberg [42]. 
Computer programs are available as described by Cohen–Murray–Taylor [4], for exam-
ple. Note that the starting point of this approach is the choice of a Chevalley basis in 
the corresponding simple Lie algebra over C. For example, Mizuno [32, Table 12] ex-
plicitly specifies such a choice for type E6, E7, E8. But this raises the following issue. If 
we want to perform computations with Mizuno’s class representatives using the Cohen–
Murray–Taylor programs, we would first need to clarify the relation between the chosen 
Chevalley bases — and the same issue arises with any other reference to the literature 
about explicit computations in G.

Here, we wish to advertise two recent developments with regard to these issues. Firstly, 
Lusztig [25] gives an explicit, canonical construction of G as a matrix group, which does 
not depend at all on the choice of a Chevalley basis. Since this only yields root elements 
in G for simple roots and their negatives, one still needs to specify a Chevalley basis 
for further computations. But then, secondly, [8] produces two canonical choices of a 
Chevalley basis, which differ from each other by a global sign and, thus, yield “canonical” 
root elements for all roots. The computer algebra package ChevLie [10] implements these 
constructions and works both in GAP4 [6] and Michel’s version of GAP3 [30]. We briefly 
explain the constructions of [8], [25] and the basic functionality of the ChevLie package.

4.1. Cartan matrices and the ε-function

Let I be a finite index set and A = (aij)i,j∈I be the Cartan matrix of an irreducible 
(crystallographic) root system. In Table 3, we fix a labelling of the corresponding Dynkin 
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Table 3
Dynkin diagrams of simple Lie algebras.

E7 �
1+

�
3−

�
4+

�2−

�
5−

�
6+

�
7−

E8 �
1+

�
3−

�
4+

�2−

�
5−

�
6+

�
7−

�
8+

G2 �
1+

> �
2−

F4 �
1+

�
2−

> �
3+

�
4−

E6 �
1+

�
3−

�
4+

�2−

�
5−

�
6+

Dn

n�4

�1+

�
��

�
2+�
��

�
3−

�
4+

� � � �
n±

Cn

n�2

�
1+

> �
2−

�
3+

� � � �
n±

An

n�1

�
1+

�
2−

�
3+

� � � �
n±

Bn

n�2

�
1+

< �
2−

�
3+

� � � �
n±

diagram. Recall that A can be recovered from the diagram as follows. For i ∈ I, we have 
aii = 2. Now assume that i, j ∈ I are such that i 
= j. Then aij = aji = 0 if i, j are 
not joined by an edge. We have aij = aji = −1 if i, j are joined by a simple edge. 
Furthermore, aij = −1 and aji = −2 if i, j are joined by a double edge with an arrow 
pointing towards j. Finally, aij = −1 and aji = −3 if i, j are joined by a triple edge with 
an arrow pointing towards j. For example:

B3 :

⎛
⎜⎝ 2 −2 0

−1 2 −1
0 −1 2

⎞
⎟⎠ , G2 :

(
2 −1

−3 2

)
.

In Table 3, we also specify a function ε : I → {±1} such that ε(i) = −ε(j) whenever 
i 
= j and aij 
= 0. Note that, since the diagram is connected, there are exactly two such 
functions: if ε is one of them, then the other one is −ε.

4.2. The Weyl group and the root system

Let V be a Q-vector space with a basis {αi | i ∈ I}. For i ∈ I, we define a linear map 
si : V → V by si(αj) := αj − aijαi for j ∈ I. Then s2

i = idV and so si ∈ GL(V ). Then 
the corresponding Weyl group is given by W := 〈si | i ∈ I〉 ⊆ GL(V ), with root system

Φ := {w(αi) | i ∈ I, w ∈ W} ⊆ V,

where {αi | i ∈ I} is a system of simple roots. In CHEVIE [13], all of the above is 
realised by the function CoxeterGroup, which returns a record containing basic data 
corresponding to a given Dynkin diagram. For ChevLie, we essentially copied the code of 
that function, so that it works both in GAP3 and GAP4. Example:
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gap> W := WeylRecord("B",2);;
gap> W.cartan # the Cartan matrix
[ [ 2, -2 ], [ -1, 2 ] ]
gap> W.roots; # I-tuples representing the roots
[ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ], [ 2, 1 ],
[ -1, 0 ], [ 0, -1 ], [ -1, -1 ], [ -2, -1 ] ]

gap> W.epsilon;
[ 1, -1 ]

The record component epsilon holds the function ε : I → {±1}. (This is not present in 
the original CHEVIE system.)

4.3. The operators ei and fi

For any α, β ∈ Φ such that α 
= ±β, we define

pα,β := max{i � 0 | β + iα ∈ Φ} and qα,β := max{i � 0 | β − iα ∈ Φ}.

Thus, β − qα,βα, . . . , β − α, β, β + α, . . . , β + pα,βα is the α-string through β. Following 
Lusztig [25, §2], we now consider a Q-vector space M with a basis {ui | i ∈ I} ∪ {vα |
α ∈ Φ} and define linear maps ei : M → M and fi : M → M by the following formulae, 
where j ∈ I and α ∈ Φ.

ei(uj) := |aji|vαi
, ei(vα) :=

⎧⎪⎪⎨
⎪⎪⎩

(qαi,α + 1)vα+αi
if α + αi ∈ Φ,

ui if α = −αi,

0 otherwise,

fi(uj) := |aji|v−αi
, fi(vα) :=

⎧⎪⎪⎨
⎪⎪⎩

(pαi,α + 1)vα−αi
if α− αi ∈ Φ,

ui if α = αi,

0 otherwise.

Note that all entries of the matrices of ei, fi with respect to the given basis of M are 
non-negative integers. We consider End(M) as a Lie algebra with the usual Lie bracket 
[x, y] := x ◦ y − y ◦ x for x, y ∈ End(M). We set hi := [ei, fi] for i ∈ I. As in [8, §4], 
consider the Lie subalgebra g ⊆ End(M) generated by ei, fi (i ∈ I). Then g is a (split) 
simple Lie algebra with Cartan subalgebra h := 〈hi | i ∈ I〉Q and corresponding root 
system Φ. In particular, we have the Cartan decomposition

g = h⊕
⊕

α∈Φgα where dim gα = 1 for all α ∈ Φ.

In ChevLie, we obtain matrices representing ei, fi through the following command.
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gap> W := WeylRecord("E",7);
gap> r := LieAdjRepresentation(W);;
gap> #I dim = 133, Chevalley relations ....... true

If the basis vectors {ui | i ∈ I} ∪ {vα | α ∈ Φ} are ordered as in [8, Lemma 4.1], 
then each ei is a nilpotent upper triangular matrix and each fi is a nilpotent lower 
triangular matrix. This convention is used in ChevLie. There is also the function
LieMinusculeRepresentation which constructs the matrices in a representation with 
a minuscule highest weight, as in [9].

gap> W := WeylRecord("E",7);
gap> m := MinusculeWeights(W);
[ [ 0, 0, 0, 0, 0, 0, 1 ] ]
gap> r := LieMinusculeRepresentation(W,m[1]);;
#I dim = 56, Chevalley relations true

4.4. Lusztig’s construction of Chevalley groups

Following Lusztig [25, §2], we now obtain a Chevalley group over any field as follows. 
Since the ei and fi are nilpotent, we can define xi(t) := exp(tei) ∈ GL(M) and yi(t) :=
exp(tfi) ∈ GL(M) for all i ∈ I and t ∈ Q. Explicitly, we have:

xi(t)(uj) = uj + |aji|tvαi
, xi(t)(v−αi

) = v−αi
+ tui + t2vαi

,

xi(t)(vαi
) = vαi

, xi(t)(vα) =
∑

k�0, α+kαi∈Φ

(k+qαi,α

k

)
tkvα+kαi

,

yi(t)(uj) = uj + |aji|tv−αi
, yi(t)(vαi

) = vαi
+ tui + t2v−αi

,

yi(t)(v−αi
) = v−αi

, yi(t)(vα) =
∑

k�0, α−kαi∈Φ

(k+pαi,α

k

)
tkvα−kαi

,

where j ∈ I and α ∈ Φ, α 
= ±αi. (Compare with the formulae in [2, §4.3].) Now let K
be any field and M̄ be a K-vector space with a basis {ūi | i ∈ I} ∪ {v̄α | α ∈ Φ}. For 
i ∈ I and t ∈ K, we define x̄i(t) ∈ GL(M̄) and ȳi(t) ∈ GL(M̄) by formulae as above 
(which involve only integer coefficients; see also [2, §4.4].) Then

GK := 〈x̄i(t), ȳi(t) | i ∈ I, t ∈ K〉 ⊆ GL(M̄)

is a Chevalley group over K.

4.5. The ε-canonical Chevalley basis

For each α ∈ Φ, let us choose a non-zero element eα ∈ gα. If α, β ∈ Φ are such that 
α + β ∈ Φ, then we define Nα,β ∈ Q by [eα, eβ ] = Nα,βeα+β . Now {eα | α ∈ Φ} is called 
a Chevalley basis if
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Nα,β = ±(qα,β + 1) for all α, β ∈ Φ such that α + β ∈ Φ.

Clearly, if {eα | α ∈ Φ} is a Chevalley basis, then so is {±eα | α ∈ Φ}, for any choice of 
the signs. Now, having fixed ε : I → {±1}, there is a unique Chevalley basis {eεα | α ∈ Φ}
such that the following relations hold, for any i ∈ I:

eεαi
= ε(i)ei, eε−αi

= −ε(i)fi,

[ei, eεα] = (qαi,α + 1)eεα+αi
if α + αi ∈ Φ,

[fi, eεα] = (pαi,α + 1)eεα−αi
if α− αi ∈ Φ.

(See [8, Theorem 5.7 and Example 5.9].) If we replace ε by −ε, then e−ε
α = −eεα for 

all α ∈ Φ. In ChevLie, the complete list of elements {eεα | α ∈ Φ}, as matrices with 
respect to the basis {ui | i ∈ I} ∪ {vα | α ∈ Φ} of M , is obtained through the command
CanonicalChevalleyBasis(W).

4.6. Root elements

Let α ∈ Φ. By [8, Cor. 5.6], the linear map eεα ∈ End(M) is nilpotent and so we 
can define xε

α(t) := exp(teεα) ∈ GL(M) for any t ∈ Q. As in §4.4, if K is any field, 
then we obtain analogous elements x̄ε

α(t) ∈ GK for t ∈ K. If ε is replaced by −ε, then 
x̄−ε
α (t) = x̄ε

α(−t) for all t ∈ K. Thus, having fixed ε, we obtain “canonical” root elements 
x̄ε
α(t) ∈ GK . In ChevLie, these are obtained as follows.

gap> W := WeylRecord("E",8);
gap> rep := LieAdjointRepresentation(W);
gap> cb := CanonicalChevalleyBasisRep(W,rep);
gap> r := W.roots[70];
[ 1, 1, 2, 3, 2, 1, 1, 0 ]
gap> u := ChevalleyRootElement(W,cb,r,5); # t=5
< matrix 248x248 over the integers >

(One can equally well use elements from finite fields, of course; furthermore, instead of 
the adjoint representation, one can also use a representation with a minuscule highest 
weight, if such a representation exists.) Once the elements x̄ε

α(t) ∈ GK are available, we 
can also define elements h̄ε

α(t) ∈ GK and n̄ε
α(t) ∈ GK by analogous formulae as in [2, 

Lemma 6.4.4]. These elements yield the familiar diagonal elements and lifts of reflections 
in the Weyl group, respectively.

In ChevLie, the basis of M is ordered such that all x̄ε
α(t), α ∈ Φ+, are represented 

by unipotent upper triangular matrices, and all x̄ε
α(t), α ∈ Φ−, by unipotent lower 

triangular matrices; furthermore, all h̄ε
α(t) are diagonal and all n̄ε

α(t) are monomial ma-
trices. Thus, the unipotent radical of the standard Borel subgroup of GK , that is, the 
subgroup
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UK = 〈x̄ε
α(t) | α ∈ Φ+, t ∈ K〉 ⊆ GK

consists precisely of the unipotent upper triangular matrices in GK .

4.7. Computing estimates for Q1(u)

Now let G = Gk, where k = Fp as in the previous sections, and Fp : G → G is given 
by Fp(x̄ε

α(t)) = x̄ε
α(tp) for α ∈ Φ and t ∈ k. Once the above functions are available, it is 

straightforward to write a program which computes the cardinalities of the sets Q1,w(u)
in Lemma 2.10, where u ∈ GFp . For w ∈ W , let Φ−

w = {β1, . . . , βl} where l = l(w). Then

UFp
w = {x̄ε

β1
(t1) · · · x̄ε

βl
(tl) | ti ∈ Fp},

with uniqueness of expression. By running systematically over all tuples (t1, . . . , tl) ∈ F l
p, 

we have a way of running through the elements of UFp
w , one by one. For each v ∈ U

Fp
w , 

we need to check if v′ := ẇvuv−1ẇ−1 ∈ B
Fp

0 which, by the remarks in §4.6, is simply 
done by testing if v′ is an upper triangular matrix. (Some modifications are needed for 
twisted groups; see §7.1 below.)

This description shows that computer memory is not an issue, but speed is critical. 
We shall have to perform several millions of multiplications of matrices (of moderate 
size) over small finite fields. For this purpose, the GAP [6] function ImmutableMatrix
turns out to be particularly efficient. It converts a given matrix into an internal format 
which appears to be highly optimized concerning space and runtime.

5. On the Green functions of type F4 in characteristic 3

Throughout this section, let G be a simple algebraic group of type F4. We have 
G = 〈xα(t) | α ∈ Φ, t ∈ k〉 where Φ is the root system of G with respect to T0. Let 
{α1, α2, α3, α4} be the set of simple roots with respect to B, where the labelling is as in 
Table 3. We assume that G is defined and split over Fp, with corresponding Frobenius 
map Fp : G → G such that Fp(t) = tp for all t ∈ T0. Let F = Fm

p where m � 1. Then

GF = F4(q) where q = pm.

For p > 3, the Green functions of GF have been determined by Shoji [35]. For p = 2, 
the Green functions are explicitly computed by Malle [28]. It is briefly remarked by 
Marcelo–Shinoda [29] that Shoji’s computations remain valid for p = 3. Since further 
details are omitted in [29], we provide here an independent verification based on the 
results in Section 3; this will also serve as a model for the later case studies in Sections 6–9. 
In the following, if α =

∑4
i=1 niαi ∈ Φ, we just write xn1n2n3n4(t) instead of xα(t).
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Table 4
Critical unipotent classes for type F4 with p = 3.

C dimCG(u) A(u) |CG(u)F | E0 E : dim Eu

F4(a1) 6 Z/2Z 2q6, 2q6 χ4,1 χ2,3 : 1
F4(a2) 8 Z/2Z 2q8, 2q8 χ9,1 χ2,1 : 1
F4(a3) 12 S4 24q12, 8q12, 4q12, 4q12, 3q12 χ12 χ9,3 : 3

χ6,2 : 2
χ1,3 : 3

C3(a1) 14 Z/2Z 2q12(q2−1), 2q12(q2−1) χ16 χ4,3 : 1

5.1. Critical unipotent classes for p = 3

Assume from now on that p = 3. We have | Irr(W )| = 25 and the character table of 
W is available in CHEVIE. Now F acts trivially on W and γ : W → W is the identity. 
Consequently, Irr(W ) = Irr(W )γ . By Shoji [34], there are 16 unipotent classes of G, 
which are all F3-stable. Furthermore, for each unipotent class C, there exists an element 
u0 ∈ C such that F3(u0) = u0 and F3 acts trivially on A(u0); see [34, Table 6]. Thus, 
condition (♣) in Section 3 holds. The Springer correspondence is explicitly described by 
Spaltenstein [41, p. 330]. As in Example 2.8, we run the function ICCTable which yields 
the coefficients pE′,E . By inspection of the output, we see that pE′,E1 ∈ {0, 1} for all 
E′ ∈ Irr(W ), where E1 is the trivial representation of W . Hence, by the argument in 
Remark 3.4(a), we already have that

δE0 = 1 for all E0 ∈ Irr(W ) such that ιG(E0) = (C,Q�).

There are further cases which are not covered by the arguments in Remark 3.4(b); 
these are specified in Table 4. The last two columns specify E, E0 ∈ Irr(W ) such that 
ιG(E0) = (C, Q�) and ιG(E) = (C, E) with E � Q�.

In the table, we use the notation of Spaltenstein [41] for Irr(W ). The translation to 
the notation of Carter [3, §13.2] (or CHEVIE) is as follows.

χ4,1 χ2,3 χ9,1 χ2,1 χ12 χ9,3 χ6,2 χ1,3 χ4,3

φ4,8 φ′
2,4 φ9,2 φ′′

2,4 φ12,4 φ′
9,6 φ′′

6,6 φ′
1,12 φ′′

4,7

5.2. The class F4(a1)

Let C be the unipotent class denoted by F4(a1). Since A(u) ∼= Z/2Z for u ∈ C, 
we are in the situation of Example 3.5, with E0 = χ4,1 and E = χ2,3; see Table 4. 
We already know that there exists some u0 ∈ CF such that F acts trivially on A(u0)
and δχ4,1 = δχ2,3 = 1. The only remaining problem is to identify u0 in a given list 
of class representatives. For a certain choice of a Chevalley basis in the Lie algebra 
of G, a representative ũ ∈ C is explicitly described by Lawther [14, Table A]. Since our 
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“canonical” Chevalley basis in Section 4 may be different from that in [14], we can only 
say that

ũ := x1000(ε1)x0100(ε2)x0110(ε3)x0011(ε4) ∈ C

where εi = ±1 for 1 � i � 4. Clearly, we have ũ ∈ GF3 . Using our computer programs 
in §4, we check explicitly that all elements ũ as above, for all possible choices of the εi, 
are conjugate under elements of TF3

0 . Hence, we may assume without loss of generality 
that εi = 1 for all i. Now consider the signs δχ4,1 and δχ2,3 with respect to ũ. Since 
ιG(χ4,1) = (C, Q�), we already know that δχ4,1 = 1. We claim that we also have δχ2,3 = 1. 
Since ũ ∈ CF3 , we can apply Remark 3.7. Thus, it will be sufficient to determine δχ2,3

in the special case where m = 1. We now argue as in Example 3.6. Using the output of
ICCTable, we find the coefficients p̃E′ in §2.9. This yields the formula

Q1(ũ) = (4q + 1)Yχ4,1(ũ) + 2qYχ2,3(ũ) = (4q + 1) + 2qδχ2,3 .

Setting q = 3, we obtain Q1(ũ) = 13 + 6δχ2,3 ∈ {19, 7}. On the other hand, by Re-
mark 2.11, we can try to directly compute the value of Q1(ũ) (or, at least, a lower bound 
for that value), by running through the sets Q1,w(ũ) and checking if the corresponding 
coset representatives are fixed by ũ. It turns out that we just need to go up to l(w) � 3
in order to find 19 cosets that are fixed. (Since we already know that Q1(ũ) ∈ {19, 7}, 
it would actually be enough to find strictly more than 7 cosets that are fixed — this 
simple remark will be important in later sections when the values of Q1 get significantly 
larger.) Thus, we do have Q1(ũ) = 19 and, indeed, ũ ∈ C is a representative such that 
δχ4,1 = δχ2,3 = 1 (regardless of the choice of a Chevalley basis).

5.3. The class F4(a2)

Let C be the unipotent class denoted by F4(a2). Again, we are in the situation of 
Example 3.5, now with E0 = χ9,1 and E = χ2,1; see Table 4. As in the previous case, 
there exists some u0 ∈ CF such that δχ9,1 = δχ2,1 = 1. The only remaining problem is 
to identify u0 in a given list of class representatives. By Lawther [14, Table A], there is 
a choice of signs εi = ±1 such that

ũ := x1100(ε1)x0120(ε2)x0001(ε3)x0011(ε4) ∈ C.

We check again that all elements as above, for all possible choices of the signs, are 
conjugate under elements of TF3

0 . Hence, as in the previous case, we may assume without 
loss of generality that εi = 1 for all i. We consider the signs δχ9,1 and δχ2,1 with respect 
to ũ. Since ιG(χ9,1) = (C, Q�), we already know that δχ9,1 = 1. Since ũ ∈ CF3 , it will 
again be sufficient to determine δχ2,1 in the special case where m = 1. Using the output 
of ICCTable, we find the formula
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Q1(ũ) = (9q2 + 4q + 1)Yχ9,1(ũ) + 2q2Yχ2,1(ũ) = (9q2 + 4q + 1) + 2q2δχ2,1 .

Setting q = 3, we obtain Q1(ũ) = 94 + 18δχ2,1 ∈ {112, 76}. Again, by an explicit com-
putation counting coset representatives, we find that Q1(ũ) = 112. (We just need to 
look at sets Q1,w(ũ) where l(w) � 7.) Thus, indeed, ũ ∈ C is a representative such that 
δχ9,1 = δχ2,1 = 1 (regardless of the choice of a Chevalley basis).

5.4. The class F4(a3)

Let C be the unipotent class denoted by F4(a3). We have A(u) ∼= S4 for u ∈ C. 
By Shoji [34, Table 6], the set CF splits into five classes in GF , with centraliser or-
ders 24q12, 4q12, 8q12, 3q12, 4q12. Thus, up to conjugation by elements in GF , there is a 
unique u0 ∈ CF such that |CG(u0)F | = 24q12 and F acts trivially on A(u0). Now, via 
the Springer correspondence, there are four irreducible representations of W associated 
with C. These are χ12, χ9,3, χ6,2, χ1,3; see Table 4. We already know that δχ12 = 1. 
Now u0 can be chosen to be fixed by F3; see the explicit expression in [34, Table 6]. So, 
by Remark 3.7, it is sufficient to determine δχ6,2 , δχ9,3 , δχ2,1 in the special case where 
m = 1.

Let u0 = u1, u2, u3, u4, u5 ∈ CF3 be representatives of the GF3-conjugacy classes that 
are contained in CF3 , and let a1, a2, a3, a4, a5 ∈ A(u0) be corresponding representatives 
of the conjugacy classes of A(u0) (see Remark 3.1). Using the output of ICCTable, and 
setting q = 3, we find the formula

Q1(ui) = (12q4 + 16q3 + 9q2 + 4q + 1)Yχ12(ui)

+ (6q4 + 4q3)Yχ6,2(ui) + (9q4 + 8q3 + 2q2)Yχ9,3(ui) + q4Yχ1,3(ui)

= 1498Yχ12(ui) + 594Yχ6,2(ui) + 963Yχ9,3(ui) + 81Yχ1,3(ui) (q = 3),

for 1 � i � 5. Now, up to the signs δχ6,2 , δχ9,3 , δχ1,3 , the values of the Y -functions on 
ui are given by character values of S4; see Remark 3.2. Thus, up to those signs, we can 
explicitly determine the values Q1(ui). We find that Q1(ui) � 5818 for all i, regardless 
of what the signs δχ6,2 , δχ9,3 , δχ1,3 are; furthermore,

Q1(ui) = 5818 ⇐⇒ i = 1 and δχ6,2 = δχ9,3 = δχ1,3 = 1.

Hence, if we can find an element ũ ∈ CF3 such that Q1(ũ) = 5818, then ũ must be 
conjugate to u0 = u1 in GF3 and δχ6,2 = δχ9,3 = δχ1,3 = 1. Now, using the list of 
representatives in [34, Table 6] and adjusting some signs, we consider the element

ũ := x1100(1)x0120(−1)x0122(1)x1122(−1) ∈ GF3 ,

where we work with the “canonical” Chevalley basis as in Section 4. We check that, 
in the adjoint representation, ũ has Jordan blocks of sizes 7, 62, 53, 36. Hence, we have 
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ũ ∈ C; see [14, Table 4]. By an explicit computation counting coset representatives, we 
find that Q1(ũ) = 5818. (We just need to look at sets Q1,w(ũ) where l(w) � 9.) Thus, 
indeed, u0, ̃u are conjugate in GF3 and we do have δχ6,2 = δχ9,3 = δχ1,3 = 1.

5.5. The class C3(a1)

Let C be the unipotent class denoted by C3(a1). Again, we are in the situation of 
Example 3.5, now with E0 = χ16 and E = χ4,3; see Table 4. As in the first case, there 
exists some u0 ∈ CF such that δχ16 = δχ4,3 = 1. The only remaining problem is to 
identify u0 in a given list of class representatives. By Lawther [14, Table A], there is a 
choice of signs εi = ±1 such that

x0100(ε1)x0001(ε2)x0120(ε3) ∈ C (where εi = ±1).

Now we find that all elements as above, for all possible choices of the signs, are conjugate 
under elements of TF3

0 to one of the following two elements:

ũ± := x0100(1)x0001(1)x0120(±1).

We check that, in the adjoint representation, both ũ+ and ũ− have Jordan blocks of sizes 
7, 62, 5, 44, 33, 13. Hence, we have ũ± ∈ C; see [14, Table 4]. We consider the signs δ±χ16

and δ±χ4,3
with respect to ũ±. Since ιG(χ16) = (C, Q�), we already know that δ±χ16

= 1. 
Since ũ± ∈ CF3 , it will again be sufficient to determine δ±χ4,3

in the special case where 
m = 1. Using the output of ICCTable, we find the formula

Q1(ũ±) = (16q5 + 36q4 + 28q3 + 11q2 + 4q + 1)Yχ16(ũ±)

+ (4q5 + 10q4 + 8q3 + 2q2)Yχ4,3(ũ±).

Setting q = 3, we obtain Q1(ũ±) = 7672 + 2016 δ±χ4,3
∈ {9688, 5656}. By an explicit 

computation counting coset representatives, we find that Q1(ũ±) = 9688. (For ũ+, we 
just need to look at sets Q1,w(ũ±) where l(w) � 13 in order to find 9688 cosets that 
are fixed; for ũ− we have to go up to l(w) � 14 in order to find strictly more than 5656
cosets that are fixed.) In particular, this shows that ũ+, ̃u− are conjugate in GF3 . Hence, 
indeed, u = ũ+ ∈ C is a representative such that δχ16 = δχ4,3 = 1 (independently of the 
choice of a Chevalley basis).

Remark 5.6. By analogous arguments, we obtain an independent verification of the re-
sults of Malle [28] on the Green functions of F4(2m).

6. On the Green functions of untwisted E6 in characteristic 3

Throughout this section, let G be a simple algebraic group of (adjoint) type E6. We 
have G = 〈xα(t) | α ∈ Φ, t ∈ k〉 where Φ is the root system of G with respect to T0. Let 
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Table 5
The critical unipotent class for type E6 with p = 3.

C dimCG(u) A(u) |CG(u)F | E0 E

E6(a3) 12 Z/2Z 2q12, 2q12 303 155

{αi | 1 � i � 6} be the set of simple roots with respect to B0, where the labelling is 
chosen as in Table 3. We assume that G is defined and split over Fp, with corresponding 
Frobenius map Fp : G → G such that Fp(t) = tp for all t ∈ T0. Let F = Fm

p where 
m � 1. Then

GF = E6(q) where q = pm.

For p > 3, the Green functions have been determined by Beynon–Spaltenstein [1]. For 
p = 2, 3, the Green functions are explicitly computed by Malle [28] and Porsch [33]. 
Since the results for p = 3 have never been published, and since we also need them 
when dealing with the twisted case, we will provide here an independent verification of 
Porsch’s results.

6.1. Critical unipotent classes for p = 3

Assume from now on that p = 3. We have | Irr(W )| = 25 and the character table of 
W is available in CHEVIE. Now F acts trivially on W and γ : W → W is the identity. 
Consequently, Irr(W ) = Irr(W )γ . By Mizuno [31], there are 21 unipotent classes of G, 
which are all F3-stable. Furthermore, for each unipotent class C, there exists an element 
u0 ∈ C such that F3(u0) = u0 and F3 acts trivially on A(u0); see [31, Prop. 6.1]. Thus, 
condition (♣) in Section 3 holds. The Springer correspondence is explicitly described by 
Spaltenstein [41, p. 331]. As in Example 2.8, we run the function ICCTable which yields 
the coefficients pE′,E . By inspection of the output, we see that there is just one case 
which is not covered by the arguments in Remark 3.4; see Table 5 where the last two 
columns specify E, E0 ∈ Irr(W ) such that ιG(E0) = (C, Q�) and ιG(E) = (C, E) with 
E � Q�.

In the table, we use the notation of Spaltenstein [41] for Irr(W ), which is just a slight 
variation of Carter [3, §13.2] (or CHEVIE); for example, the representation 303 is denoted 
by φ30,3 in [3, p. 415].

6.2. The class E6(a3)

Let C be the unipotent class denoted by E6(a3). (Note that Mizuno uses the notation 
A5+A1 for this class.) Since A(u) ∼= Z/2Z for u ∈ C, we are in the situation of Exam-
ple 3.5, with E0 = 303 and E = 155. The following argument is analogous to that in §5.2. 
We already know that there exists some u0 ∈ CF such that F acts trivially on A(u0)
and δ303 = δ155 . Using the output of ICCTable and the argument in Remark 3.4(a), we 
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have δ303 = 1 and, hence, also δ155 = 1. The only remaining problem is to identify u0
in a given list of class representatives. By Mizuno [31, Lemma 4.3], there is a choice of 
signs such that

x18 := xα5(±1)xα4(±1)xα3(±1)xα1(±1)xα6(±1)xα1+α2+α3+α4+α5+α6(±1) ∈ C.

But then we check again that all elements as above, for all possible choices of the signs, 
are conjugate under elements of TF3

0 . Thus, we may assume that all signs are +1. Then 
we consider the signs δ303 and δ155 with respect to x18. Since ιG(303) = (C, Q�), we 
already know that δ303 = 1. Since x18 ∈ CF3 , we can apply Remark 3.7. Thus, it will 
be sufficient to determine δ155 in the special case where m = 1. Using the output of
ICCTable, we find the coefficients p̃E′ in §2.9. This yields the formula

Q1(x18) = (30q3 + 20q2 + 6q + 1)Y303(x18) + (15q3 + 6q2)Y155(x18).

Setting q = 3, we obtain Q1(x18) = 1009 + 459δ155 ∈ {1468, 550}. By an explicit com-
putation counting coset representatives, we find that Q1(x18) = 1468. (In the setting 
of Lemma 2.10, we just need to look at sets Q1,w(x18) where l(w) � 12.) Thus, in-
deed, u0 := x18 ∈ C is a representative with respect to which we have δ303 = δ155 = 1
(regardless of the choice of a Chevalley basis).

6.3. A different representative for E6(a3)

Let C be as above, but now consider the element

x′
18 := xα1(1)xα6(1)xα3(1)xα5(1)xα4(1)xα1+α2+α3+α4+α5+α6(1) ∈ GF3 .

(This will be useful in the following section, when we consider twisted groups of type 
E6.) We claim that x18, x′

18 are conjugate in GF3 . First we check that, in the adjoint 
representation, x′

18 has Jordan blocks of sizes 94, 7, 64, 33, 2. Hence, we have x′
18 ∈ C; see 

[14, Table 6]. Furthermore, we check that all the elements

xα1(±1)xα6(±1)xα3(±1)xα5(±1)xα4(±1)xα1+α2+α3+α4+α5+α6(±1)

are conjugate under elements of TF 3

0 . As above, we set q = 3 and compute that 
Q1(x′

18) = 1468. Thus, x′
18 must be conjugate in GF3 to x18 (regardless of the choice of 

a Chevalley basis). Furthermore, if we take x′
18 as the chosen representative in CF , then 

the corresponding signs δ303 and δ155 will again be equal to 1.

6.4. Improving efficiency

We have |W | = 51840 and there are 8335 elements w ∈ W such that l(w) � 12. So, a 
priori, in §6.2 we would have to look at
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∑
w∈W,l(w)�12

3l(w) = 1569060811

coset representatives in order to obtain that Q1(x18) = 1468. Since we only need to 
establish the estimate Q1(x18) > 550, we can try to reduce the number of elements 
w ∈ W to consider, as follows.

Let v ∈ UF
w for some w ∈ W . Writing v as a product of terms xα(t) where α ∈ Φ+

and t ∈ k, and using Chevalley’s commutator relations, we see that

vx18v
−1 = xα5(±1)xα4(±1)xα3(±1)xα1(±1)xα6(±1)

× product of terms xα(t) where α ∈ Φ+ and α 
= αi for all i.

Now v will only contribute to |Q1,w(x18)| if ẇvx18v
−1ẇ−1 ∈ BF

0 . So we just consider 
those w ∈ W such that l(w) � 12 and the roots w(α5), w(α4), w(α3), w(α1), w(α6) are 
all positive. There are 47 such elements w ∈ W , accounting for only 4220491 cosets. It 
turns out that, already among these cosets, we find more than 550 ones that are fixed by 
x18. (And a similar procedure works in all the other cases that we consider in Section 8, 
where |W | = 2903040 and such a reduction becomes even more important. We also note 
that that procedure is not just a heuristic principle but can be formally justified.)

Remark 6.5. By analogous arguments, we obtain an independent verification of the re-
sults of Malle [28] on the Green functions of E6(2m).

7. On the Green functions of twisted E6 in characteristic 3

Throughout this section, let again G be a simple algebraic group of (adjoint) type E6. 
We have G = 〈xα(t) | α ∈ Φ, t ∈ k〉 where Φ is the root system of G with respect to T0. 
Let {αi | 1 � i � 6} be the set of simple roots with respect to B0, where the labelling is 
chosen as in Table 3. We assume that G is defined and split over Fp, with corresponding 
Frobenius map Fp : G → G such that Fp(t) = tp for all t ∈ T0. Now we also consider 
the non-trivial graph automorphism γ̃ : G → G of order 2, such that γ̃(B0) = B0 and 
γ̃(T0) = T0. This induces the following permutation of the simple roots:

α1 → α6, α2 → α2, α3 → α5, α4 → α4, α5 → α3, α6 → α1.

Let m � 1 and q = pm. Then GF = 2E6(q) where F := γ̃ ◦ Fm
p = Fm

p ◦ γ̃.
For p > 3, the Green functions have been determined by Beynon–Spaltenstein [1]. 

For p = 2, the Green functions are explicitly computed by Malle [28]. To complete the 
picture, it remains to deal with the case p = 3.
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7.1. Root elements in GF

Let g be the Lie algebra of type E6, realized as a subalgebra of End(M) as in Section 4; 
recall that M comes equipped with a basis {u1, . . . , u6} ∪ {vα | α ∈ Φ}. Let Φ → Φ, 
α �→ α†, be the permutation induced by the automorphism γ̃ : G → G. Then define a 
linear map τ : M → M by

u1 �→ u6, u2 �→ u2, u3 �→ u5, u4 �→ u4, u5 �→ u3, u6 �→ u1, and vα �→ vα†

for all α ∈ Φ; note that τ2 = idM . Then one simply checks that conjugation with τ inside 
End(M) defines the non-trivial graph automorphism of g. We shall assume throughout 
this section that G = Gk ⊆ GL(M̄) is realised as in §4.4. Then γ̃ is also realised 
by conjugation with τ inside GL(M̄). Furthermore, consider the “canonical” Chevalley 
basis {eεα | α ∈ Φ} of g. Then one also checks that τ ◦ eεα = eεα† ◦ τ for all α ∈ Φ. In this 
situation, root elements for GF have a simple description as in [2, Prop. 13.6.3], that is, 
given α ∈ Φ and t ∈ k, we have

xα(t) ∈ GF if α† = α and tq = t,

xα(t)xα†(tq) ∈ GF if α† 
= α and tq
2

= t.

(Note that, in type E6, we have α + α† /∈ Φ for all α ∈ Φ; so we only have to consider 
cases (i) and (ii) of [2, Prop. 13.6.3].) It is then straightforward to adjust the program 
in §4.7 to the present situation.

7.2. Critical unipotent classes for p = 3

Assume from now on that p = 3. The induced automorphism γ : W → W is given 
by conjugation with the longest element w0 ∈ W . Consequently, Irr(W ) = Irr(W )γ . For 
each E ∈ Irr(W ), we need to choose a map σE : E → E as in §2.1. In CHEVIE, the 
“preferred” choice for σE specified by Lusztig [19, 17.2] is taken. By [15, Lemma 20.16], 
all the 21 unipotent classes of G are stable under F3 and under γ̃. Further information 
about the classes is provided in [15, Table 22.2.3]. This shows that, for each unipotent 
class C, there exists some u0 ∈ CF such that F acts trivially on A(u0). Thus, condition 
(♣) in Section 3 holds. As in Example 2.8, we run the function ICCTable which yields 
the coefficients pE′,E :

gap> W := RootDatum("2E6");;
gap> Display(CharTable(W));
gap> uc := UnipotentClasses(W,3);; # p=3
gap> Display(uc); Display(ICCTable(uc));

By inspection of the output, we see that there is only one case which is not covered 
by the arguments in Remark 3.4, exactly as in Section 6, Table 5.
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7.3. The class E6(a3) (twisted case)

Let C be the unipotent class denoted by E6(a3). Since A(u) ∼= Z/2Z for u ∈ C, we 
are in the situation of Example 3.5, with E0 = 303 and E = 155. The following argument 
is analogous to that in §6.2, but some additional care is needed because of the presence 
of the graph automorphism γ̃. We already know that there exists some u0 ∈ CF such 
that F acts trivially on A(u0) and δ303 = δ155 . Using the output of ICCTable and the 
argument in Remark 3.4(a), we have δ303 = 1 and, hence, also δ155 = 1. Again, the only 
remaining problem is to identify u0 in a given list of class representatives. We claim that, 
regardless of the choice of a Chevalley basis in the Lie algebra of G, we can take u0 to 
be the element already considered in §6.3:

x′
18 := xα1(1)xα6(1)xα3(1)xα5(1)xα4(1)xα1+α2+α3+α4+α5+α6(1) ∈ C.

By §7.1, we have x′
18 ∈ GF ; in fact, x′

18 is fixed by both F3 and γ̃. Conjugating by 
elements in TF

0 , one sees again that the GF -conjugacy class of x′
18 is well-defined, re-

gardless of the choice of a Chevalley basis. We consider the signs δ303 and δ155 with 
respect to x′

18. Since ιG(303) = (C, Q�), we already know that δ303 = 1. So it remains 
to show that δ155 = 1. Since x′

18 is fixed by F3 and by γ̃, we can apply the argument in 
[12, Remark 3.8]. This shows that

δ155δ
◦
155

does not depend on m,

where δ◦155
is the sign from the untwisted case in Section 6. By §6.3, we have δ◦155

= 1 for 
all m. Hence, we conclude that δ155 does not depend on m either. So it will be sufficient 
to determine δ155 in the special case where m = 1. Using the output of ICCTable, we 
find the coefficients p̃E′ in §2.9. This yields the formula

Q1(x′
18) = (10q3 + 4q2 + 2q + 1)Y303(x′

18) + (q3 − 2q2)Y155(x′
18).

Setting q = 3, we obtain Q1(x′
18) = 313 +9δ155 ∈ {322, 304}. By an explicit computation 

counting coset representatives, we find Q1(x′
18) = 322. (In the setting of Lemma 2.10, 

we just need to look at sets Q1,w(x′
18) where l(w) � 12.) Thus, indeed, x′

18 ∈ C is a 
representative with respect to which we have δ303 = δ155 = 1.

Remark 7.3. By analogous arguments, we obtain an independent verification of the re-
sults of Malle [28] on the Green functions of 2E6(2m).

8. On the Green functions of type E7 in characteristics 2, 3

Throughout this section, let G be a simple algebraic group of (adjoint) type E7. We 
have G = 〈xα(t) | α ∈ Φ, t ∈ k〉 where Φ is the root system of G with respect to T0. Let 
{αi | 1 � i � 7} be the set of simple roots with respect to B0, where the labelling is 
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Table 6
Critical unipotent classes for type E7 with p = 2, 3.
p C dimCG(u) A(u) |CG(u)F | E0 E : dim Eu

2, 3 E7(a3) 13 Z/2Z 2q13, 2q13 563 216

3 E7(a4) 17 Z/2Z 2q17, 2q17 1895 157

2, 3 E7(a5) 21 S3 6q21, 2q21, 3q21 3157 2809 : 2
3513 : 1

2, 3 E6(a3) 23 Z/2Z 2q21(q2−1), 2q21(q2−1) 4058 18910

chosen as in Table 3. We assume that G is defined and split over Fp, with corresponding 
Frobenius map Fp : G → G such that Fp(t) = tp for all t ∈ T0. Let F = Fm

p where 
m � 1. Then

GF = E7(q) where q = pm.

For p > 3, the Green functions have been determined by Beynon–Spaltenstein [1]. To 
complete the picture, it remains to deal with the cases p = 2, 3. In the following, if 
α =

∑7
i=1 niαi ∈ Φ, we just write xn1n2...n7(t) instead of xα(t).

8.1. Critical unipotent classes for p = 2, 3

Assume from now on that p = 2 or p = 3. We have | Irr(W )| = 60 and the character 
table of W is available in CHEVIE. Now F acts trivially on W and γ : W → W is 
the identity. Consequently, Irr(W ) = Irr(W )γ . The unipotent classes of G have been 
classified by Mizuno [32]. Each unipotent class C is F -stable and there exists an element 
u0 ∈ C such that Fp(u0) = u0 and Fp acts trivially on A(u0); see [32, Table 2]. Thus, 
condition (♣) in Section 3 holds. The Springer correspondence is explicitly described by 
Spaltenstein [41, p. 331–333]. As in Example 2.8, we run the function ICCTable which 
yields the coefficients pE′,E . By inspection of the output, we see that pE′,E1 ∈ {0, 1} for 
all E′ ∈ Irr(W ), where E1 is the trivial representation of W . Hence, by Remark 3.4(a), 
we already have that

δE0 = 1 for all E0 ∈ Irr(W ) such that ιG(E0) = (C,Q�).

There are further cases which are not covered by the arguments in Remark 3.4(b); these 
are specified in Table 6 where, as before, the last two columns specify E, E0 ∈ Irr(W )
such that ιG(E0) = (C, Q�) and ιG(E) = (C, E) with E � Q�.

In the table, we use the notation of Spaltenstein [41] for Irr(W ), which is just a slight 
variation of Carter [3, §13.2] (or CHEVIE); for example, the representation 563 is denoted 
by φ56,3 in [3, p. 416].



JID:YJABR AID:17504 /FLA [m1L; v1.261; Prn:25/06/2020; 16:10] P.30 (1-37)
30 M. Geck / Journal of Algebra ••• (••••) •••–•••
8.2. The class E7(a3) for p = 2, 3

Let C be the unipotent class denoted by E7(a3). (Note that Mizuno uses the nota-
tion D6+A1 for this class.) Since A(u) ∼= Z/2Z for u ∈ C, we are in the situation of 
Example 3.5, with E0 = 563 and E = 216. The following argument is analogous to that 
in §5.5. We already know that there exists some u0 ∈ CF such that F acts trivially on 
A(u0) and δ563 = δ216 = 1. The only remaining problem is to identify u0 in a given list 
of class representatives. Using Mizuno [31, Table 2], checking sizes of Jordan blocks, and 
arguing as in §5.5, we may take

ũ± := x1000000(1)x0101000(1)x0011000(1)x0101100(1)

· x0111100(±1)x0000110(1)x0000001(1) ∈ C,

regardless of the sign or the choice of a Chevalley basis. We consider the signs δ±563
and 

δ±216
with respect to ũ±. Since ιG(563) = (C, Q�), we already know that δ±563

= 1. Since 
ũ± ∈ CFp , we can apply Remark 3.7. Thus, it will be sufficient to determine δ±216

in the 
special case where m = 1. Using the output of ICCTable, and setting q = 2 or q = 3, we 
obtain the formulae

Q1(ũ±) = (56q3 + 27q2 + 7q + 1)Y563(ũ±) + (21q3 + 7q2)Y216(ũ±)

=
{

571 + 196δ216 ∈ {767, 375} (q = 2),
1777 + 630δ216 ∈ {2407, 1147} (q = 3).

(Of course, in general, the polynomial expressions for the values of Q1 will depend 
on whether p = 2 or p = 3, but for the classes in Table 6, they do coincide.) By 
an explicit computation counting coset representatives (see Lemma 2.10), we find that 
Q1(ũ±) equals 767 if p = 2, and 2407 if p = 3. (If p = 2, then we just need to look 
at sets Q1,w(ũ±) where l(w) � 15 in order to find 767 cosets that are fixed; if p = 3, 
then we just need to go up to l(w) � 6 in order to find strictly more than 1147 cosets 
that are fixed.) In particular, ũ+, ũ− are conjugate in GF . Thus, indeed, ũ+ ∈ C is a 
representative with respect to which we have δ563 = δ216 = 1 (regardless of the choice of 
a Chevalley basis).

8.3. The class E7(a4) for p = 3

Let p = 3 and C be the unipotent class denoted by E7(a4). (Note that Mizuno uses 
the notation D6(a1)+A1 for this class.) Since A(u) ∼= Z/2Z for u ∈ C, we are in the 
situation of Example 3.5, with E0 = 1895 and E = 157. The following argument is 
analogous to that in §5.5. We already know that there exists some u0 ∈ CF such that F
acts trivially on A(u0) and δ1897 = δ157 = 1. The only remaining problem is to identify 
u0 in a given list of class representatives. Using Mizuno [31, Table 2], checking sizes of 
Jordan blocks, and arguing as in §5.5, we may take
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ũ± := x1000000(1)x0111000(1)x0011100(1)x0101100(1)

· x0001110(1)x0011110(±1)x0000011(1) ∈ C,

regardless of the sign or the choice of a Chevalley basis. We consider the signs δ±1895
and 

δ±157
with respect to ũ±. We already know that δ±1895

= 1. Since ũ± ∈ CF3 , we can apply 
Remark 3.7. Thus, it will be sufficient to determine δ157 in the special case where m = 1. 
Using the output of ICCTable, we find the following formula.

Q1(ũ±) = (189q5 + 155q4 + 77q3 + 27q2 + 7q + 1)Y1895(ũ±) + 15q5Y157(ũ±).

Setting q = 3, we obtain that Q1(ũ±) = 60826 + 3645δ157 ∈ {64471, 57181}. By an 
explicit computation counting coset representatives, we find that Q1(ũ±) = 64471. (We 
just need to look at sets Q1,w(ũ±) where l(w) � 16 in order to find strictly more than 
57181 cosets that are fixed by ũ±.) Thus, ũ+ and ũ− are conjugate in GF and, indeed, 
ũ+ ∈ C is a representative with respect to which we have δ157 = 1 (regardless of the 
choice of a Chevalley basis).

8.4. The class E7(a5) for p = 2, 3

Let C be the unipotent class denoted by E7(a5). (Note that Mizuno uses the notation 
D6(a2)+A1 for this class.) We have A(u) ∼= S3 for u ∈ C. The set CF splits into three 
classes in GF , with centraliser orders 6q21, 2q21, 3q21. Thus, up to conjugation by elements 
in GF , there is a unique u0 ∈ CF such that |CG(u0)F | = 6q21 and F acts trivially on 
A(u0). Now, via the Springer correspondence, there are three irreducible representations 
of W associated with C. These are 3157, 2809, 3513; see Table 6. We already know that 
δ3157 = 1. Now u0 can be chosen to be fixed by Fp; see the explicit expression in [32, 
Table 2]. So, by Remark 3.7, it is sufficient to determine δ2809 , δ3513 in the special case 
where m = 1. The following argument is analogous to that in §5.4.

Let u0 = u1, u2, u3 ∈ CFp be representatives of the GFp-conjugacy classes that are 
contained in CFp , and let a1, a2, a3 ∈ A(u0) be corresponding representatives of the con-
jugacy classes of A(u0), where the notation is such that a2 corresponds to a transposition 
in S3 ∼= A(u0) and a3 to a 3-cycle. Using the output of ICCTable, and setting q = 2 or 
q = 3, we find the formula

Q1(ui) = (315q7 + 483q6 + 350q5 + 182q4 + 77q3 + 27q2 + 7q + 1)Y3157(ui)

+ (280q7 + 330q6 + 161q5 + 48q4 + 7q3)Y2809(ui) + (35q7 + 21q6)Y3513(ui)

=
{

86083Y3157(ui) + 62936Y2809(ui) + 5824Y3513(ui) (q = 2),
1143148Y3157(ui) + 896130Y2809(ui) + 91854Y3513(ui) (q = 3),

for 1 � i � 3. Now, up to the signs δ2809 and δ3513 , the values of the Y -functions on ui

are given by character values of S3; see Remark 3.2. Thus, we obtain
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Q1(u1) =
{

86083 + 2 · 62936δ2809 + 5824δ3513 (q = 2),
1143148 + 2 · 896130δ2809 + 91854δ3513 (q = 3).

Since Q1(u1) � 0, this already forces that δ2809 = 1 in both cases. We claim that we also 
have δ3513 = 1. For this purpose, we consider the values at u3:

Q1(u3) =
{

86083 − 62936 + 5824δ3513 = 23147 + 5824δ3513 (q = 2),
1143148 − 896130 + 91854δ3513 = 247018 + 91854δ3513 (q = 3).

By Mizuno [32, Lemma 21], there is a choice of signs εi = ±1 such that

y46 := x1011000(ε1)x0111000(ε2)x0011100(ε3)x0101100(ε4)

· x0001110(ε5)x0000111(ε6)x1111100(ε7)x1111110(ε8) ∈ C

and |CG(y46)F | = 3q21. Then y46 will be conjugate to u3 in GF .
If q = 2, then εi = 1 for all i, and the above formula shows Q1(u3) ∈ {28971, 17323}. 

By an explicit computation counting coset representatives (see Lemma 2.10), we find 
that Q1(y46) = 17323. (We just need to look at sets Q1,w(y46) where l(w) � 13.) Hence, 
δ3513 = 1, as claimed.

Now assume that p = 3. Then Q1(u3) ∈ {338872, 155164}. Now we simply consider 
all elements y46 as above, for all possible choices of the signs εi. For each such choice, 
y46 has Jordan blocks of sizes 99, 7, 62, 53, 36 and, hence, y46 ∈ C; see [14, Table 8]. 
Furthermore, we find that Q1(y46) = 338872 in each case. (We just need to look at sets 
Q1,w(y46) where l(w) � 8.) Hence, δ3513 = 1, as claimed.

8.5. The class E6(a3) for p = 2, 3

Let C be the unipotent class denoted by E6(a3). (Note that Mizuno uses the notation 
(A5+A1)′ for this class.) Since A(u) ∼= Z/2Z for u ∈ C, we are in the situation of 
Example 3.5, with E0 = 4058 and E = 18910. The following argument is analogous to 
that in §5.2. We already know that there exists some u0 ∈ CF such that F acts trivially 
on A(u0) and δ4058 = δ18910 = 1. The only remaining problem is to identify u0 in a given 
list of class representatives. Using Mizuno [31, Table 2], checking sizes of Jordan blocks, 
and arguing as in §5.2, we may take

ũ := x1010000(1)x0111000(1)x0011100(1)x1111000(1)x0101110(1)x0001111(1) ∈ C,

regardless of the choice of a Chevalley basis. We consider the signs δ4058 and δ18910 with 
respect to ũ. We already know that δ4058 = 1. Since ũ ∈ CF3 , we can apply Remark 3.7. 
Thus, it will be sufficient to determine δ18910 in the special case where m = 1. Using the 
output of ICCTable, we find the following formula.
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Q1(ũ) = (405q8 + 973q7 + 933q6 + 532q5 + 230q4 + 84q3 + 27q2 + 7q + 1)Y4058(ũ)

+ (189q8 + 420q7 + 351q6 + 161q5 + 48q4 + 7q3)Y18910(ũ)

=
{

309435 + 130584δ18910 ∈ {440019, 178851} (q = 2),
5615752 + 2457648δ18910 ∈ {8073400, 3158104} (q = 3).

On the other hand, using Lemma 2.10, we can try to directly compute Q1(ũ).
If p = 2, then we just need to look at sets Q1,w(ũ) where l(w) � 12 in order to find 

strictly more than 178851 cosets that are fixed. A comparison with the above formula 
shows that we must have δ18910 = 1. If p = 3, then we need to go up to l(w) � 13 in 
order to find strictly more than 3158104 cosets that are fixed. (This is the hardest case 
for type E7; the computation requires less than 4 GB of main memory but takes about 
a week on a standard computer, even with efficiency improvements as in §6.4.) So we 
also have δ18910 = 1 in this case.

9. On the Green functions of type E8 in characteristics 2

In this final section, let G be a simple algebraic group of type E8 and Fp : G → G be 
a split Frobenius map as before. Let F = Fm

p where m � 1. Then

GF = E8(q) where q = pm.

For p > 5, the Green functions have been determined by Beynon–Spaltenstein [1]. Here, 
we will not be able to complete the computation of the Green functions for the cases 
where p = 2, 3, 5. But we can at least show that the very particular case mentioned in 
Remark 3.4 also occurs for p = 2. So assume from now on that p = 2.

We have | Irr(W )| = 112 and the character table of W is available in CHEVIE. Now F
acts trivially on W and γ : W → W is the identity. Consequently, Irr(W ) = Irr(W )γ . The 
unipotent classes of G have been classified by Mizuno [32]. The Springer correspondence 
is explicitly described by Spaltenstein [41, p. 333–336]. The “very particular” case is 
related to the unipotent class C specified as follows.

C dimCG(u) A(u) |CG(u)F | E0 E : dim Eu
E8(b6) 28 S3 6q28, 2q28, 3q28 224010 17512 : 2

84013 : 1

where, as before, the last two columns specify E, E0 ∈ Irr(W ) such that ιG(E0) = (C, Q�)
and ιG(E) = (C, E) with E � Q�. (Note that Mizuno uses the notation D8(a3) for 
this class; furthermore, the same conventions for the notation of Irr(W ) apply as in 
Section 8.) Up to conjugation by elements in GF , there is a unique u0 ∈ CF such that 
|CG(u0)F | = 6q28 and F acts trivially on A(u0). By Mizuno [32, Lemma 53], such a 
representative is given by
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u0 := z77 = x11110000(1)x10111000(1)x01111000(1)x00111100(1)

· x01011100(1)x00011110(1)x00000011(1)x00000111(1).

(As before, if α =
∑8

i=1 niαi ∈ Φ, we just write xn1n2...n8(t) instead of xα(t).) We 
consider the corresponding signs δE with respect to u0; we claim that

δ224010 = 1 and δ84013 = (−1)m (q = 2m).

This is seen as follows. As before, since u0 ∈ CF2 , it is sufficient to determine the signs in 
the special case where m = 1 (see Remark 3.7). As in Example 2.8, we run the function
ICCTable which yields the coefficients pE′,E . By inspection of the output, and using the 
argument in Remak 3.4(a), we already see that δ224010 = 1.

We now follow the argument in §8.4. Let u0 = u1, u2, u3 ∈ CF2 be representatives 
of the GF2-conjugacy classes that are contained in CF2 , and let a1, a2, a3 ∈ A(u0) be 
corresponding representatives of the conjugacy classes of A(u0), where the notation is 
such that a2 corresponds to a transposition in S3 ∼= A(u0) and a3 to a 3-cycle. By 
Mizuno [32, Lemma 53], such representatives are given by

u2 := z78 = z77x00001111(1),

u3 := z79 = x11110000(1)x10111000(1)x01111000(1)x00111100(1)x01011100(1)

· x00011110(1)x00000001(1)x00000111(1)x00001111(1).

Using the output of ICCTable, and setting q = 2, we find the formula

Q1(ui) = (2240q10 + 3688q9 + 3444q8 + 2360q7 + 1351q6

+ 672q5 + 294q4 + 112q3 + 35q2 + 8q + 1)Y224010(ui)

+ 175q10Y17512(ui) + (840q10 + 650q9 + 160q8)Y84013(ui)

= 5479485Y224010(ui) + 179200Y17512(ui) + 1233920Y84013(ui) (q = 2),

for 1 � i � 3. Up to the signs δ17512 and δ84013 , the values of the Y -functions on ui are 
given by character values of S3; see Remark 3.2. Thus, for q = 2, we obtain

Q1(u1) = 5479485 + 2 · 179200 δ17512 + 1233920 δ84013 ,

Q1(u2) = 5479485 − 1233920 δ84013 ,

Q1(u3) = 5479485 − 179200 δ17512 + 1233920 δ84013 .

Assume, if possible, that δ84013 = 1. Then we would have Q1(u2) = 5479485 −1233920 =
4245565 for q = 2. On the other hand, running through all sets Q1,w(z78) (as in 
Lemma 2.10) where l(w) � 23, we already find 4047101 cosets that are fixed by z78. 
Running also through sets Q1,w(z78) where l(w) = 24, we find further 305856 cosets that 
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are fixed. Thus, we have Q1(u2) > 4245565 and so we conclude that δ84013 = −1, as 
claimed.

The total running time for these computations is about 1 year, even with effi-
ciency improvements as in §6.4. (It already takes 4 months just to deal with those 
sets Q1,w(z78) where l(w) = 24.) Everything is much slower than in the previous 
cases because, for type E8, we only have at our disposal the 248-dimensional ad-
joint representation, whereas for type E7 we could use the 56-dimensional minuscule 
weight representation. However, distributing the task over a small number of (inde-
pendent) standard desktop computers with altogether 30 processors, we could manage 
to complete the computations in 2 weeks. — Once δ84013 is determined, we obtain 
Q1(u1) = 5479495 − 1233920 + 2 · 179200δ17512 ∈ {4603965, 3887165} (for q = 2). If 
we could find strictly more than 3887165 cosets that are fixed by z77, then we would 
be able to conclude that δ17512 = 1. However, this appears to be even more difficult 
computationally, the reason being that the difference between the lower and the upper 
bound for the value of Q1 is much smaller than in the previous case. (So we would need 
to find almost all cosets that are fixed by z77.)

All this clearly indicates that type E8 is not completely out of reach, but some more 
sophisticated algorithms are certainly required in order to deal with the remaining open 
cases (especially for p = 3, 5). An independent verification of the above results would 
also be highly desirable.

Note added January 2020. There is now a version of the ChevLie package written 
in the Julia programming language (https://julialang .org/), with some improvements. 
Using these new programs, the computations in this paper can be performed within a 
few hours; details and further applications to the remaining open problems on Green 
functions will appear elsewhere.
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