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Abstract

In order to use dualization to study Hilbert functions of artinian level algebras we exten
notion of level sequences and cancellable sequences, introduced by Geramita and Lorenzin
clude Hilbert functions of certain artinian modules. As in the case of algebras a level seque
cancellable, but now by dualization its reverse is also cancellable which gives a new condit
level sequences. We also give a characterization of the cancellable sequences involving M
representations.
 2004 Elsevier Inc. All rights reserved.

Keywords:Level algebra; Level module; Hilbert function;Betti numbers; Graded algebra; Graded module;
Lexicographic ideal; Lexicographic submodule; Level sequence; Cancellable sequence; Graded dual

1. Introduction

There have been a lot of interest in artinian level algebras, that is, finitely gene
graded algebras over a field with socle concentrated in one degree, and especially in th
Hilbert functions. In [1] Boij introduced the concept of a level module as a generaliz
of a level algebra. When we are interested in Hilbert functions of artinian level alg
this generalization is motivated by the following. The class of artinian level modul
closed under dualization and truncation and this means that if a sequence(h0, h1, . . . , hs)
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is the Hilbert function of an artinian level module then its reverse(hs, hs−1, . . . , h0) and
all its truncations, that is,(hi , hi+1, . . . , hj ) for all 0� i � j � s, are too.

For example, let(1, h1, h2, . . . , hs) be the Hilbert function of an artinian level algeb
Then the reverse(hs, hs−1, . . . , h1,1) is the Hilbert function of an artinian level modul
This module is generated in degree 0 and knowing this we can use Macaulay’s th
for modules (see Hulett [2]) to get an upper bound for the growth of its Hilbert functio
each step. This yields for example that(1,3, . . . ,� 14,7,3) is not the Hilbert function of
a level algebra since no graded module generated in degree 0 over a polynomial rin
three variables can grow like(3,7,14, . . .).

Geramita and Lorenzini [3] introduced thenotion of a cancellable sequence. In Sectio
we extend this notion to include not only Hilbert functions of certain artinian algebra
also of certain artinian modules. The point of this is that the Hilbert function of an art
level module is cancellable and thus by dualization its reverse is also cancellable, w
in general the reverse of a cancellable sequence is not cancellable. Thus the condit
the reverse of a level Hilbert function is cancellable gives something new.

In Section 3 we study the cancellable sequences through a result of Eliahou an
vaire [4] and end up with Theorem 18. In Section 4 we recall the necessary facts
dualization and truncation from Boij [1] and see that we actually gain something from
generalization to modules.

2. Cancellation in resolutions

In this section we will explain the notion of artinian level modules, level sequen
cancellable sequences and cancellation in resolutions. Cancellation in resolutions were fi
considered for level algebras by Geramita and Lorenzini in [3]. Given the Hilbert function
of a graded algebra there is a special gradedalgebra having maximal Betti numbers amo
all graded algebras with this Hilbert function. Peeva shows in [5] that the Betti num
of any graded algebra can be obtained from these maximal Betti numbers by a seque
of operations called consecutive cancellations. The point is that by looking at the ma
Betti numbers we can say that certain Betti numbers cannot appear for the given
function. We will explain these results and see that they hold for graded modules as

Let R = k[x1, . . . , xn] be the polynomial ring inn variables over a fieldk. ConsiderR
as a graded ring by giving eachxi degree one and letm = ⊕

i�1 Ri be the unique grade
maximal ideal. IfM is a finitely generated gradedR-module with a minimal free resolutio
given by

0 →
⊕

j

R(−j)βn,j → ·· · →
⊕

j

R(−j)β0,j → M → 0

thenβi,j (M) = βi,j are the graded Betti numbers ofM. The graded Betti numbers a
independent of the resolution sinceβi,j (M) = dimk TorRj (M,k)i . Let F be a graded free
R-module with basise1, . . . , em such thatei has degreedi andd1 � · · · � dm.
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Definition 1. A monomialof F is an element on the formuei for some monomialu in R.
Thelexicographic orderon monomials ofR is the order in whichxα1

1 . . . x
αn
n > x

β1
1 . . . x

βn
n

if αi > βi for the largest indexi such thatαi �= βi . The lexicographic order on monomia
of F is the order in whichuei > u′ej if i < j or if i = j andu > u′ whereu and u′
are monomials inR. A graded submoduleL of F is called alexicographic submoduleif
each graded componentLi of L is spanned as a vector space overk by the dimk Li largest
monomials in lexicographic order. Alexicographic idealis a lexicographic submodu
of R.

Remark 2. Note that ifL is a lexicographic submodule ofF thenL = I1e1 + · · · + Imem

for some lexicographic idealsIj . It follows thatF/L ∼= ⊕m
j=1(R/Ij )(−dj ) and that

βs,t (F/L) =
m∑

j=1

βs,t+dj (R/Ij ).

If M is a graded submodule ofF then there is a lexicographic submoduleL such that
dimk Li = dimk Mi for every i. This was proved by Macaulay [6] whenF = R and in
the general case by Hulett [7]. Since in this caseLi must be the vector space spanned
the dimk Mi largest monomials ofF in lexicographic order we see that there is only o
choice forL. Furthermore, Bigatti, Hulett and Pardue has shown that the moduleF/L has
the largest Betti numbers among all modules with the same Hilbert function asF/M.

Theorem 3 (Bigatti–Hulett–Pardue). Let M be a graded submodule of the graded f
moduleF and letL be a lexicographic submodule ofF such thatdimk Li = dimk Mi for
everyi. Thenβi,j (F/M) � βi,j (F/L) for everyi andj .

Proof. See Bigatti [8], Hulett [7] and Pardue [9].�
Let M be a graded submodule of the graded free moduleF and letL be the lexico-

graphic submodule ofF with the same Hilbert function asM. Then

(1− t)n
∞∑

j=0

dimk(F/M)tj =
∞∑

j=0

n∑
i=0

(−1)iβi,j (F/M)tj

‖
(1− t)n

∞∑
j=0

dimk(F/L)tj =
∞∑

j=0

n∑
i=0

(−1)iβi,j (F/L)tj

and we see that
∑n

i=0(−1)iβi,j (F/M) = ∑n
i=0(−1)iβi,j (F/L) for all j . Since we also

know thatβi,j (F/M) � βi,j (F/L) for all i andj it follows that the numbersβi,j (F/M)

can be obtained fromβi,j (F/L) by a sequence ofcancellationsdefined as follows. Choos
i and i ′ such that one is odd and one is even and replaceβi,j (F/L) with βi,j (F/L) − 1
andβi′,j (F/L) with βi′,j (F/L) − 1. A cancellation is called aconsecutive cancellationif
i ′ = i + 1. Peeva shows in [5] that we actually only need consecutive cancellations.
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Theorem 4 (Peeva). Let M be a graded submodule ofF and letL be the lexicographic
submodule with the same Hilbert function. Then the graded Betti numbersβi,j (F/M) can
be obtained fromβi,j (F/L) by a sequence of consecutive cancellations.

Proof. See Peeva [5, Theorem 1.1]. This theorem is stated for graded algebras
proof holds for graded modules as well.�

We will now recall the definition of an artinian level module from Boij [1].

Definition 5. Let M be a gradedR-module. Then

SocM = {x ∈ M: mx = 0}

is calledthe socle ofM.

Definition 6. Let M = M0 ⊕ · · · ⊕ Ms be a graded artinianR-module. ThenM is a level
moduleif it is generated byM0 and SocM = Ms .

If M is an artinian module then there is an integers such thatMi = 0 for everyi > s.
Thus we can write the Hilbert function ofM as a sequence of finite length(h0, h1, . . . , hs).
Such a sequence is called alevel sequenceif it is the Hilbert function of an artinian leve
module. We will now see that ifh = (h0, h1, . . . , hs) is a level sequence and{βi,j } is the
set of maximal Betti numbers associated withh thenβn−1,n+i � βn,n+i for everyi �= s.

Definition 7. A sequence of integersh = (h0, h1, . . . , hs) is calledcancellableif there is
a free gradedR-moduleF , generated in degree 0, and a lexicographic submoduleL of F

such thath is the Hilbert function ofF/L and the Betti numbers ofF/L satisfy

βn−1,n+i (F/L) � βn,n+i (F/L)

for everyi �= s.

Proposition 8. A level sequence is cancellable.

Proof. Let M be a gradedR-module. By calculating TorRn (M,k) from the Koszul
resolution of k one can show that TorR

n (M,k) ∼= (SocM)(−n) and this means tha
dimk(SocM)i = βn,n+i (M). Thus if M is artinian level with socle in degrees we have
thatβn,n+i (M) = 0 for all i �= s.

Now leth = (h0, h1, . . . , hs) be a level sequence. Then there is a free gradedR-module
F generated in degree 0 and a graded submoduleN such thatF/N is artinian level with
Hilbert function given byh. Let L be the lexicographic submodule ofF with the same
Hilbert function asN and choose an integeri �= s. Thenβn,n+i (F/N) = 0 and by Theo-
rem 4 there is a sequence of consecutive cancellations on(

β1,n+i (F/L),β2,n+i (F/L), . . . , βn,n+i (F/L)
)
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such thatβn,n+i (F/L) becomes zero. Thusβn−1,n+i (F/L) � βn,n+i (F/L) and the propo
sition follows. �

3. Calculation of maximal Betti numbers

Eliahou and Kervaire gave in [4] an explicit minimal resolution for a family of ide
called stable ideals. From their resolution it is possible to get an expression for the
numbers ofR/I in terms of the minimal generators ofI whenI is, for example, a lexico
graphic ideal. We will use this to calculate the differenceβn−1,n+i (F/L) − βn,n+i (F/L)

directly from the Hilbert function ofF/L whenL is a lexicographic submodule ofF and
F is generated in degree 0. This leads to a characterization of the cancellable sequence

Definition 9. For every monomialu in R we define

m(u) = min{i :xi dividesu}.

An ideal I of R is stable if it is generated by monomialsu1, . . . , ur such that if
m = m(uj ) thenxiuj /xm ∈ I for everyi > m. If u is any monomial andi > m(u) then
xiu/xm(u) > u and this means that a lexicographic ideal is stable.

Proposition 10 (Eliahou–Kervaire). Let I be a stable ideal ofR and letGd be the set o
minimal monomial generators ofI of degreed . Then

βs,t (R/I) =
∑

u∈Gt−s+1

(
n − m(u)

s − 1

)
.

Proof. See Eliahou and Kervaire [4]�
Remark 11. Compared to Eliahou and Kervaire [4] we have renumbered the variab
R by applyingxi 	→ xn−i+1 and, according to this, changed the definition of the func
m and the definition of a stable ideal. This also explains why the expression for the
numbers looks slightly different.

Definition 12. Let d be a positive integer. Then any positive integera can be written
uniquely in the form

a =
(

kd

d

)
+

(
kd−1

d − 1

)
+ · · · +

(
k1

1

)
,

wherekd > kd−1 > · · · > k1 (see Bruns and Herzog [10]). This sum is calledthe d th
Macaulay representationof a andkd, . . . , k1 thed th Macaulay coefficientsof a. Further-
more if i, j ∈ Z then we define

[a(d)]ij =
(

kd + i
)

+
(

kd−1 + i
)

+ · · · +
(

ks + i
)

,

d + j d − 1+ j s + j
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wheres is the smallest number such thatks �= 0. (We believe that this notation was fir
introduced by Robbiano in [11].)

Next follows a description of some special sets of monomials that we need fo
proof of Lemma 14. The description is borrowed from Bruns and Herzog [10]. Letu =
xj (1)xj (2) . . . xj (d) with 1 � j (1) � · · · � j (d) � n be a monomial inRd and denote byLu

all monomials inRd smaller thanu, that isLu = {v ∈ Rd : v < u}. Denote by[x1, . . . , xi]t
the set of monomials of degreet in the variablesx1, . . . , xi . Then we can writeLu as a
disjoint union

Lu =
d⋃

i=1

[x1, . . . , xj (i)−1]ixj (i+1) . . . xj (d)

called thenatural decompositionof Lu. It follows that

|Lu| =
d∑

i=1

(
ki

i

)

whereki = j (i) + i − 2 and thatkd, . . . , k1 are the Macaulay coefficients of|Lu|.

Remark 13. For the following lemma we need to define the binomial coefficient
(
f
g

)
when

f , g or both are negative in a certain way. Define
(
f
g

) = 0 whenf < g and then recursivel
for all f andg through the usual rule for binomial coefficients

(
f

g

)
=

(
f + 1

g

)
−

(
f

g − 1

)
.

Lemma 14. Let u1 < u2 < · · · be the monomials of degreed in R written in lexico-
graphic order. Then, for any integer0 < a � dimk Rd , the number of monomialsv in
{u1, u2, . . . , ua} such thatm(v) = r is given by[a(d)]−r

−1.

Proof. If u = ua+1 then {u1, u2, . . . , ua} = Lu and we can describe this set by its n
ural decomposition. Writeu asu = xj (1)xj (2) . . . xj (d) for some integers 1� j (1) � · · · �
j (d) � n and letki = j (i) + i − 2. Then

{u1, u2, . . . , ua} =
d⋃

i=1

[x1, . . . , xj (i)−1]i xj (i+1) . . . xj (d)

andkd, . . . , k1 are thed th Macaulay coefficients ofa. We start by looking at the parts o
this decomposition. The subset of monomialsv in [x1, . . . , xj (i)−1]i such thatm(v) = r

is given by [xr, . . . , xj (i)−1]i−1xr where [xr, . . . , xj (i)−1]i−1 = ∅ if r > j (i) − 1 and
[xr, . . . , xj (i)−1]i−1 = {1} if i −1 = 0 andr � j (i)−1. The number of elements in this s
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equals the number of monomials of degreei − 1 in j (i) − r variables, that is, the numbe
of elements in[xr, . . . , xj (i)−1]i−1xr is

(
j (i) − r + i − 2

i − 1

)
=

(
ki − r

i − 1

)
.

Note that with the definition of the binomial coefficient given in Remark 13 this holds
if r > j (i) − 1 or i − 1 = 0. It follows that the monomialsv in {u1, u2, . . . , ua} such that
m(v) = r are

d⋃
i=1

[xr, . . . , xj (i)−1]i−1 xrxj (i+1) . . . xj (d)

and that the number of elements in this set is

d∑
i=1

(
ki − r

i − 1

)
= [a(d)]−r

−1. �

Proposition 15. Let I be a lexicographic ideal and letH(i) = H(R/I, i) be the Hilbert
function ofR/I . Then

βs,t (R/I) =
n∑

i=1

(
n − i

s − 1

)([
H(d − 1)(d−1)

]−i+1
0 − [

H(d)(d)

]−i

−1

)

whered = t − s + 1.

Proof. We will use Proposition 10 and for that we need to calculate the minimal monomial
generators of degreed of I . Let u1 < u2 < · · · be the monomials inRd written in lexico-
graphic order. Then thek-vector space(R/I)d is spanned byu1, . . . , uH(d) sinceI is a
lexicographic ideal and dimk(R/I)d = H(d). By Macaulay’s theorem for lexicograph
ideals we know thatR1(R/I)d−1 is spanned byu1, . . . , up wherep = [H(d − 1)(d−1)]11.
Thus the minimal generators ofI of degreed areGd = {uH(d)−1, . . . , up}. Now we use
Proposition 10 and get

βs,t (R/I) =
∑
u∈Gd

(
n − m(u)

s − 1

)
=

p∑
i=1

(
n − m(ui)

s − 1

)
−

H(d)∑
i=1

(
n − m(ui)

s − 1

)
.

By applying Lemma 14 to{u1, . . . , up} and{u1, . . . , uH(d)} we can count the number o
terms in the two sums above on the right that equal

(
n−i
s−1

)
for 1 � i � n and we get

βs,t (R/I) =
n∑(

n − i

s − 1

)([p(d)]−i
−1 − [

H(d)(d)

]−i

−1

)
.

i=1
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Now [p(d)]−i
−1 = [[H(d − 1)(d−1)]11(d)

]−i
−1 = [H(d − 1)(d−1)]−i+1

0 and this ends the
proof. �
Lemma 16. Let I be a lexicographic ideal and letH(i) = H(R/I, i) be the Hilbert func-
tion ofR/I . Then

βn−1,n+i (R/I) − βn,n+i (R/I)

= n
(
H(i + 1) − [

H(i + 2)(i+2)

]−1
−1

) − H(i) + [
H(i + 2)(i+2)

]−2
−2.

Proof. By Proposition 15 we have

βn,n+i =
n∑

j=1

(
n − j

n − 1

)([
H(i)(i)

]−j+1
0 − [

H(i + 1)(i+1)

]−j

−1

)
= H(i) − [

H(i + 1)(i+1)

]−1
−1

since
(
n−j
n−1

) = 0 whenj > 1. Furthermore

βn−1,n+i =
n∑

j=1

(
n − j

n − 2

)([
H(i + 1)(i+1)

]−j+1
0 − [

H(i + 2)(i+2)

]−j

−1

)
= (n − 1)

(
H(i + 1) − [

H(i + 2)(i+2)

]−1
−1

)
+ [

H(i + 1)(i+1)

]−1
0 − [

H(i + 2)(i+2)

]−2
−1.

Thus

βn−1,n+i − βn,n+i = n
(
H(i + 1) − [

H(i + 2)(i+2)

]−1
−1

)
+ [

H(i + 1)(i+1)

]−1
0 + [

H(i + 1)(i+1)

]−1
−1 − H(i + 1)

− H(i) + [
H(i + 2)(i+2)

]−1
−1 − [

H(i + 2)(i+2)

]−2
−1.

Now since
(
f−1

g

) + (
f−1
g−1

) = (
f
g

)
holds for allf andg we see that

[
H(i + 1)(i+1)

]−1
0 + [

H(i + 1)(i+1)

]−1
−1 = H(i + 1).

In the same way we get

[
H(i + 2)(i+2)

]−1
−1 − [

H(i + 2)(i+2)

]−2
−1 = [

H(i + 2)(i+2)

]−2
−2

and the lemma follows. �
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Proposition 17. Let F be a free graded module generated in degree0, L a lexicographic
submodule ofF andH(i) = H(F/L, i) the Hilbert function ofF/L. Fix an integeri and
let q be the quotient andr the remainder whenH(i + 2) is divided bydimk Ri+2. Then

βn−1,n+i (F/L) − βn,n+i (F/L)

= n
(
H(i + 1) − q dimk Ri+1 − [r(i+2)]−1

−1

) − H(i) + q dimk Ri + [r(i+2)]−2
−2.

Proof. Assume thatF is generated bye1, . . . , em all of degree 0. As noted in Remark 2 w
may writeL = I1e1 + · · · + Imem for some lexicographic idealsIj and thenβs,t (F/L) =∑

j βs,t (R/Ij ). To simplify the expressions letaj = H(R/Ij , i), bj = H(R/Ij , i + 1)

andcj = H(R/Ij , i + 2) and note that
∑

j aj = H(i),
∑

j bj = H(i + 1) and
∑

j cj =
H(i + 2). Now by Lemma 16

βn−1,n+i (F/L) − βn,n+i (F/L) =
∑
j

(
βn−1,n+i (R/Ij ) − βn,n+i (R/Ij )

)
=

∑
j

(
n
(
bj − [cj (i)]−1

−1

) − aj + [cj (i)]−2
−2

)

= n

(
H(i + 1) −

∑
j

[cj (i)]−1
−1

)
− H(i) +

∑
j

[cj (i)]−2
−2.

We need to compute the numberscj = H(R/Ij , i + 2) for everyj . It follows from the
definition of a lexicographic submodule thatLi+2 is given by

Li+2 = V eq+1 + Ri+2eq+2 + · · · + Ri+2em

whereV is the subspace ofRi+2 spanned by the dimk Ri+2 − r largest monomials in
lexicographic order. We see that

cj =
{dimk Ri+2 if j � q,

r if j = q + 1,

0 if j > q + 1,

and thus ∑
j

[cj (i+2)]−1
−1 = q[dimk Ri+2(i)]−1

−1 + [r(i)]−1
−1

and ∑
j

[cj (i+2)]−2
−2 = q[dimk Ri+2(i)]−2

−2 + [r(i+2)]−2
−2.

Now [dimk Ri+2(i+2)]−1
−1 = dimk Ri+1 and[dimk Ri+2(i+2)]−2

−2 = dimk Ri and the proposi
tion follows. �



J. Söderberg / Journal of Algebra 280 (2004) 610–623 619

le

-

lization
ut a
ction

les is

ons

reverse
so

se is not
Theorem 18. Let h = (h0, h1, . . . , hs) be the Hilbert function of a gradedR-module gen-
erated in degree0. Thenh is cancellable if and only if for each0 � i < s we have

n
(
hi+1 − q dimk Ri+1 − [r(i+2)]−1

−1

) − hi + q dimk Ri + [r(i+2)]−2
−2 � 0,

whereq is the quotient andr the remainder whenhi+2 is divided bydimk Ri+2.

Proof. This follows immediately from Proposition 17 and the definition of a cancellab
sequence. �
Corollary 19. Let (h0, h1, . . . , hs) be a cancellable sequence and leti be an integer such
that 0� i � s and assume thathi+2 � dimk Ri+2. Then

n
(
hi+1 − [hi+2(i+2)]−1

−1

) − hi + [hi+2(i+2)]−2
−2 � 0.

Proof. If hi+2 � dimk Ri+2 thenq = 0 andr = hi+2 in Theorem 18. �
Corollary 20. Let (h0, h1, . . . , hs) be a cancellable sequence and leti be an integer such
that 0� i � s and assume thathi+2 � i + 2. Then

n
(
hi+1 − hi+2

) − hi + hi+2 � 0.

Proof. For any positive integera we have that ifj � a then thej th Macaulay representa
tion of a is

a =
(

j

j

)
+

(
j − 1

j − 1

)
+ · · · +

(
j − a + 1

j − a + 1

)
︸ ︷︷ ︸

a number of terms

.

Thus[a(j)]rr = a for any integerr and from this the corollary follows. �

4. Dualization and truncation

In Sections 2 and 3 we have considered artinian level modules which are a genera
of artinian level algebras. With our definition, an artinian level algebra is nothing b
cyclic artinian level module, at least when it comes to its module structure. In this se
we will motivate this generalization. We will see that the class of artinian level modu
closed under dualization and truncation. This means that if a sequence(h0, h1, . . . , hs) is
level then its reverse(hs, hs−1, . . . , h0) and all its truncations, that is,(hi, hi+1, . . . , hj ) for
all 0 � i � j � s, are too. This is, of course, not true if we only consider Hilbert functi
of artinian level algebras since they always haveh0 = 1.

We have seen that a level sequence is cancellable and thus, by dualization, its
is too. Furthermore, the reverse of a cancellable sequence is not in general cancellable
if we remove from the set of all cancellable sequences the sequences whose rever
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cancellable we get something smaller and the set of all level sequences will be a su
this set.

In some cases where the level sequences are known we have used the criterion
Theorem 18 to see how many of the cancellable sequences have a cancellable rev
how many of them are level.

First we recall what we need about dualization and truncation from Boij [1].

Definition 21. Let M be a finitely generated gradedR-module. Then thegraded dualof
M is defined to beM∨ = ∗Homk(M,k) = ⊕

i Homk(Mi, k). By regardingM∨ as a subse
of Homk(M,k) we let the module structure onM∨ be defined byxφ(y) = φ(xy) for all
x ∈ R, φ ∈ M∨ andy ∈ M. The grading is given byM∨

i = Homk(M−i , k).

Remark 22. Since dimk Homk(M−i , k) = dimk M−i we get thatH(M∨, i) = H(M,−i).
Thus if the Hilbert function ofM is given by(h0, h1, . . . , hs). Then its reverse(hs, hs−1,

. . . , h0) is the Hilbert function ofM∨(−s).

Proposition 23. If M is an artinian levelR-module with socle in degrees, thenM∨(−s)

is artinian level with socle in degrees.

Proof. See Boij [1, Proposition 2.3]. �
Proposition 24. Let M = ⊕

i Mi be an artinianR-module with socle in degrees and let
i, j be integers such that0� i � j � s. Then theith twist ofMi ⊕ · · · ⊕ Mj is an artinian
level module.

Proof. See Boij [1, Proposition 2.4]. �
Example 25. Let M be an artinian levelR-module with Hilbert function given by
(. . . , c, n,2). By truncating the moduleM and taking the dual we get a level module w
Hilbert function(2, n, c). By Proposition 8 a level sequence is cancellable so it foll
from Corollary 19 that

n
(
n − [c(2)]−1

−1

) − 2+ [c(2)]−2
−2 � 0.

It is easy to see that this implies

c �
(

n

2

)
+ 1.

In fact, as noted by Fabrizio Zanello (private communication), this upper bound oc is
sharp since theR-moduleR/(xn + m3) ⊕ R/(x3

1, x2, x3, . . . , xn) is artinian level and its
Hilbert function is(2, n,

(
n
2

) + 1).

If we want to use Theorem 18 to decide if a sequence(h0, h1, . . . , hs) is cancellable we
must first see that it is the Hilbert function of a gradedR-module generated in degree 0 a
this can be checked by Macaulay’s theorem for modules.
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Proposition 26. A sequence(hi)i�0 is the Hilbert function of a gradedR-module gener-
ated in degree0 if and only if for eachi

hi+1 � q dimk Ri+1 + [r(i)]11,

whereq is the quotient andr the remainder whenhi is divided bydimk Ri .

Proof. This is a special case of Hulett [2, Corollary 6].�
Since the reverse of a level sequence, by dualization, is level it is interesting to lo

cancellable sequences whose reverse also is cancellable. We will see that not all s
quences are level, which is not surprising as indicated by the following argument. It i
known that all cyclic artinian levelR-modules of type one, that is, all artinian Gorenst
algebras, have symmetric Hilbert functions. The condition in Theorem 18 depends o
three adjacent positions in the sequence at a time and it is unlikely that this would f
sequence to be symmetric. Nevertheless it is interesting to see how many of the can
sequences that are level and what we gain by looking at the reverse of the sequen
will do this in some special cases next.

Let s and t be integers and denote byMs,t the set of all sequences of positive in
gersh = (1, n,h2, h3, . . . , hs) such thaths = t and bothh and its reverse are bounded
Macaulay’s theorem for modules, that is, satisfy the condition in Proposition 26. LeFs,t

be the subset ofMs,t of all cancellable sequences and letBs,t be the subset ofMs,t of all
sequences whose reverse is cancellable. Denote byLs,t the set of all level sequences o
the form(1, n,h2, h3, . . . , hs) wherehs = t . We have seen thatLs,t ⊆ Fs,t ∩ Bs,t .

Using Proposition 26 and Theorem 18 it is easy to generate the setsMs,t , Fs,t andBs,t

with a computer. In general we do not know very much about the setLs,t but for some
values ofs, t andn we do. In [12, Theorem 4.2] Stanley describes precisely the set
Gorenstein sequences whenn � 3, that is, all cyclic artinian levelR-modules of type one
Using this result we can generate the setLs,t for all s whent = 1 andn � 3. With n = 3,
Geramita et al. in [13] use several different techniques to record the setsLs,t for all t � 2
whens � 5 and fort = 2 whens = 6. Thus forn = 3 we have complete knowledge of th
setsLs,t for all t whens � 5 and fort � 2 whens = 6.

The number of elements in the setsMs,t , Fs,t , Bs,t , Fs,t ∩Bs,t andLs,t for these values
of s and t are displayed in Tables 1–4. Note that it is when|Fs,t ∩ Bs,t | < |Fs,t | that
we actually gain something by looking at the reverse of the sequences. We see th
happens at several places in the tables and we have marked these places by wr
corresponding numbers with bold face.

Table 1
Socle degree 6

t M6,t F6,t B6,t F6,t ∩ B6,t L6,t

1 34 23 23 22 11
2 148 85 81 71 58
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Table 2
Socle degree 5

t M5,t F5,t B5,t F5,t ∩ B5,t L5,t

1 12 10 10 10 4
2 44 31 29 27 23
3 59 39 41 37 34
4 56 38 45 36 34
5 49 34 42 33 32
6 49 30 39 30 26
7 37 24 32 24 22
8 27 19 26 19 18
9 20 16 20 16 15
10 15 12 15 12 12
11 15 11 15 11 10
12 10 8 10 8 8
13 7 6 7 6 6
14 5 5 5 5 5
15 5 4 5 4 4
16 3 3 3 3 3
17 2 2 2 2 2
18 2 2 2 2 2
19 1 1 1 1 1
20 1 1 1 1 1
21 1 1 1 1 1

Table 3
Socle degree 4

t M4,t F4,t B4,t F4,t ∩ B4,t L4,t

1 5 5 5 5 4
2 14 11 10 10 10
3 17 13 13 13 12
4 14 11 13 11 11
5 14 10 11 10 9
6 10 8 10 8 8
7 7 6 7 6 6
8 5 5 5 5 5
9 5 4 5 4 4
10 3 3 3 3 3
11 2 2 2 2 2
12 2 2 2 2 2
13 1 1 1 1 1
14 1 1 1 1 1
15 1 1 1 1 1

Table 4
Socle degree 3

t M3,t F3,t B3,t F3,t ∩ B3,t L3,t

1 2 2 2 2 1
2 5 4 4 4 4
3 4 4 4 4 4
4 4 3 4 3 3
5 3 3 3 3 3
6 2 2 2 2 2
7 2 2 2 2 2
8 1 1 1 1 1
9 1 1 1 1 1
10 1 1 1 1 1
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