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Abstract

In order to use dualization to study Hilbert functions of artinian level algebras we extend the
notion of level sequences and cancellable sequences, introduced by Geramita and Lorenzini, to in-
clude Hilbert functions of certain artinian modules. As in the case of algebras a level sequence is
cancellable, but now by dualization its reverse is also cancellable which gives a new condition on
level sequences. We also give a characterization of the cancellable sequences involving Macaulay
representations.
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1. Introduction

There have been a lot of interest in artinian level algebras, that is, finitely generated
graded algebras over a field with socle cortcated in one degree, and especially in their
Hilbert functions. In [1] Boij introduced the concept of a level module as a generalization
of a level algebra. When we are interested in Hilbert functions of artinian level algebras
this generalization is motivated by the following. The class of artinian level modules is
closed under dualization and truncation and this means that if a sequ®nae, .. ., ;)
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is the Hilbert function of an artinian level module then its revaisg h;_1, ..., hg) and
all its truncations, that is;, 41, ..., hj) forall 0<i < j <s, are too.

For example, letl, i1, ho, ..., hy) be the Hilbert function of an artinian level algebra.
Then the reverséig, hy_1, ..., h1, 1) is the Hilbert function of an artinian level module.

This module is generated in degree 0 and knowing this we can use Macaulay’s theorem
for modules (see Hulett [2]) to get an upper bound for the growth of its Hilbert function in
each step. This yields for example th&t 3, ..., > 14, 7, 3) is not the Hilbert function of

a level algebra since no graded module generated in degree 0 over a polynomial ring with
three variables can grow lik@, 7, 14, .. ).

Geramita and Lorenzini[3] introduced thetion of a cancellable sequence. In Section 2
we extend this notion to include not only Hilbert functions of certain artinian algebras but
also of certain artinian modules. The point of this is that the Hilbert function of an artinian
level module is cancellable and thus by dualization its reverse is also cancellable, whereas
in general the reverse of a cancellable sequence is not cancellable. Thus the condition that
the reverse of a level Hilbert function is cancellable gives something new.

In Section 3 we study the cancellable sequences through a result of Eliahou and Ker-
vaire [4] and end up with Theorem 18. In Section 4 we recall the necessary facts about
dualization and truncation from Boij [1] and see that we actually gain something from the
generalization to modules.

2. Cancellation in resolutions

In this section we will explain the notion of artinian level modules, level sequences,
cancellable sequences and cancellation in tewls. Cancellation in resolutions were first
considered for level algebras by Geramita &worenzini in [3]. Given the Hilbert function
of a graded algebra there is a special graalgdbra having maximal Betti numbers among
all graded algebras with this Hilbert function. Peeva shows in [5] that the Betti numbers
of any graded algebra can be obtained frévase maximal Betti numbers by a sequence
of operations called consecutive cancellations. The point is that by looking at the maximal
Betti numbers we can say that certain Betti numbers cannot appear for the given Hilbert
function. We will explain these results and see that they hold for graded modules as well.

Let R = k[x1, ..., x,] be the polynomial ring im variables over a field. Considerr
as a graded ring by giving eaah degree one and let = 69,»21 R; be the unique graded
maximal ideal. IfM is a finitely generated gradéttmodule with a minimal free resolution
given by

0> PRI - > PR=j)P > M—0
j j

theng; ;(M) = g; ; are the graded Betti numbers #f. The graded Betti numbers are
independent of the resolution singg; (M) = dimy Torf(M, k);. Let F be a graded free
R-module with basig;, ..., e, such thak; has degred; andd; < --- < d,,.



612 J. Soderberg / Journal of Algebra 280 (2004) 610-623

Definition 1. A monomialof F is an element on the forme; for some monomiak in R.
Thelexicographic ordelon monomials of® is the order in whicbci“l LA > xlﬂl .. x,’f

if &; > B; for the largest index such thaty; £ 8;. The lexicographic order on monomials
of F is the order in whichue; > u'e; if i < j orif i = j andu > u’ whereu andu’
are monomials inR. A graded submodulé of F is called alexicographic submodulié
each graded componeht of L is spanned as a vector space dvéry the dim, L; largest
monomials in lexicographic order. Pexicographic idealis a lexicographic submodule
of R.

Remark 2. Note that if L is a lexicographic submodule &f thenL = I1e1 + - - - + Lyen
for some lexicographic ideals. It follows that F /L = ;'?zl(R/Ij)(—dj) and that

Boi(F/L) = Bsira;(R/1)).

j=1

If M is a graded submodule d@f then there is a lexicographic submodileuch that
dim, L; = dimg M; for everyi. This was proved by Macaulay [6] whefi = R and in
the general case by Hutd¥]. Since in this casé.; must be the vector space spanned by
the dim, M; largest monomials of in lexicographic order we see that there is only one
choice forL. Furthermore, Bigi, Hulett and Pardue has shown that the modulé. has
the largest Betti numbers among all modules with the same Hilbert functidvi &s

Theorem 3 (Bigatti-Hulett—Pardue)Let M be a graded submodule of the graded free
moduleF and letL be a lexicographic submodule &f such thatdimy L; = dim; M; for
everyi. Theng; ;(F/M) < B ;(F/L) for everyi and j.

Proof. See Bigatti [8], Hulett [7] and Pardue [9].0

Let M be a graded submodule of the graded free moduknd letL be the lexico-
graphic submodule of with the same Hilbert function a&. Then

A=Y dimg(F/M)t =Y "> (=1)'g; j(F/ M)t/

j=0 j=0i=0
[
A—0)" Y dim(F/Lyt) =) "> (=)' Bij(F/L)t!
j=0 j=0i=0

and we see tha} [_o(=1)'B; j(F/M) =Y !_o(=1)'B; j(F/L) for all j. Since we also
know thatg; ; (F/M) < B;,;(F/L) for all i and it follows that the numberg; ; (F/M)
can be obtained frorfi; ; (F/L) by a sequence afancellationsiefined as follows. Choose
i andi’ such that one is odd and one is even and repfagé€F /L) with 8; ;(F/L) — 1
andp; ;(F/L) with gy ;(F/L) — 1. A cancellation is called @onsecutive cancellatidif

i’ =i+ 1. Peeva shows in [5] that we actually only need consecutive cancellations.
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Theorem 4 (Peeva)Let M be a graded submodule &f and let L be the lexicographic
submodule with the same Hilbert function. Then the graded Betti nunhe(s/M) can
be obtained frons; ; (F/L) by a sequence of consecutive cancellations.

Proof. See Peeva [5, Theorem 1.1]. This theorem is stated for graded algebras but the
proof holds for graded modules as wellx

We will now recall the definition of an artinian level module from Boij [1].
Definition 5. Let M be a graded&-module. Then
SocM = {x e M. mx =0}
is calledthe socle ofM.

Definition 6. Let M = Mo & - - - & M, be a graded artiniaR-module. ThenV is alevel
moduleif it is generated by and Sod\l = M.

If M is an artinian module then there is an integauch thaty; = 0 for everyi > s.
Thus we can write the Hilbert function @f as a sequence of finite lengthy, 41, . . ., ;).
Such a sequence is calledesvel sequenci it is the Hilbert function of an artinian level
module. We will now see that #t = (ho, h1, ..., hs) is a level sequence anig@; ;} is the
set of maximal Betti numbers associated wittheng,_1 ,+; = Bu.n+i for everyi #s.

Definition 7. A sequence of integels= (ho, h1, ..., hs) is calledcancellableif there is
a free graded?-moduleF, generated in degree 0, and a lexicographic submadwkF
such that: is the Hilbert function off'/L and the Betti numbers df /L satisfy

:anl,nJri(F/L) = ,Bn,nJri(F/L)
for everyi #s.
Proposition 8. A level sequence is cancellable.

Proof. Let M be a gradedR-module. By calculating T<;§r(M,k) from the Koszul
resolution ofk one can show that Tﬁ(M,k) = (SocM)(—n) and this means that
dimg(SocM); = B,.»+i(M). Thus if M is artinian level with socle in degreewe have
thatB, ,+i(M) =0 foralli #s.

Now leth = (ho, h1, ..., hs) be alevel sequence. Then there is a free gratiadbdule
F generated in degree 0 and a graded submoduseich thatF/N is artinian level with
Hilbert function given byh. Let L be the lexicographic submodule &f with the same
Hilbert function asN and choose an integét£ s. Theng, ,+i (F/N) = 0 and by Theo-
rem 4 there is a sequence of consecutive cancellations on

(:81,114-!' (F/L)7 ,32,n+i(F/L)a ceey ,Bn,n-l-i(F/L))
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such tha, ,+i (F/L) becomes zero. Thi,_1,,+i (F/L) > Bn.n+i(F/L) and the propo-
sition follows. O

3. Calculation of maximal Betti numbers

Eliahou and Kervaire gave in [4] an explicit minimal resolution for a family of ideals
called stable ideals. From their resolution it is possible to get an expression for the Betti
numbers ofR /I in terms of the minimal generators dfwhen/ is, for example, a lexico-
graphic ideal. We will use this to calculate the differeges n4i (F/L) — Bpn+i(F/L)
directly from the Hilbert function of/L whenL is a lexicographic submodule &f and
F is generated in degree 0. This leads to a abgarization of the cancellable sequences.

Definition 9. For every monomiak in R we define
m(u) = min{i : x; dividesu}.

An ideal I of R is stableif it is generated by monomialsy, ..., u, such that if
m =m(u;) thenx;u;/x, € I for everyi > m. If u is any monomial and > m(u) then
xiu/xmq) > u and this means that a lexicographic ideal is stable.

Proposition 10 (Eliahou—Kervaire)Let I be a stable ideal ok and letG, be the set of
minimal monomial generators @fof degreed. Then

BuRID= Y (” :’f”).
ueGr 11

Proof. See Eliahou and Kervaire [4]O0

Remark 11. Compared to Eliahou and Kervaire [4] we have renumbered the variables of
R by applyingx; — x,_;+1 and, according to this, changed the definition of the function
m and the definition of a stable ideal. This also explains why the expression for the Betti
numbers looks slightly different.

Definition 12. Let d be a positive integer. Then any positive integecan be written

uniquely in the form
kq ka1 k1
= (a)+ (G5 ()

whereky > kg—1 > --- > k1 (see Bruns and Herzog [10]). This sum is callbe dth
Macaulay representationf a andky, ..., k1 the dth Macaulay coefficientsf a. Further-
more ifi, j € Z then we define

i (ka+i kdl+i> <ks+i)
ap s = + 4+ .. 4 ,
lawl; <d+j) <d—1+j s+
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wheres is the smallest number such thigt# 0. (We believe that this notation was first
introduced by Robbiano in [11].)

Next follows a description of some special sets of monomials that we need for the
proof of Lemma 14. The description is borrowed from Bruns and Herzog [10]u et
Xj)Xj@)---Xj@) With 1< j(1) <--- < j(d) < n be amonomial irR; and denote by,
all monomials inR; smaller thany, that isC, = {v € R;: v < u}. Denote by[x1, ..., x;];
the set of monomials of degredn the variablest, ..., x;. Then we can write, as a
disjoint union

d
Ly, = U[XL e Xj—1iXj4n - Xj@)
i=1

called thenatural decompositionf £,,. It follows that

d

ki
Lul =2 (l. )
i=1
wherek; = j(i) +i — 2 and thakg, ..., k1 are the Macaulay coefficients pf,,|.

Remark 13. For the following lemma we need to define the binomial coeffic{éhtvhen
f, g or both are negative in a certain way. Def(ﬁc} =0whenf < g and then recursively
for all f andg through the usual rule for binomial coefficients

(=)L)
g g g—1
Lemma 14. Let u1 < uz < --- be the monomials of degrekin R written in lexico-

graphic order. Then, for any integdl < a < dim; Ry, the number of monomials in
{u1,uz, ..., us} such thatn(v) = r is given bylas)1 ]

Proof. If u =u,41 then{us, up,...,us} = £, and we can describe this set by its nat-
ural decomposition. Writa asu = x ;1)) - - - X () for some integers £ j (1) <--- <
jd)<mnandletk; = j(i)+i — 2. Then

d
{ug,ug, ..., us} = U[XL e X =1 Xj 41 - X (@)
i=1

andky, ..., k1 are thedth Macaulay coefficients af. We start by looking at the parts of
this decomposition. The subset of monomials [x1, ..., x;;)—1]; such thatn(v) =r
is given by [x,,..., Xji)—1li—1xr where [x,, ..., Xji)—1li-1 = @ if r>j@) —1and
[(Xr, ..., xj@-1li—.1 ={1}if i = 1=0andr < j (i) — 1. The number of elements in this set
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equals the number of monomials of degieel in j (i) — r variables, that is, the number
of elementsifx,, ..., x;i)—1li—1%, iS

j@) —r+i—=2\ (ki—r
i—1 S \i-1)
Note that with the definition of the binomial coefficient given in Remark 13 this holds even

if > j(@)—21ori —1=0. It follows that the monomials in {u1, uz, ..., u,} such that
m(v) =r are

d
U[xr, e Xj(i)—1i—1 XX j(i42) - - Xj(d)
i=1

and that the number of elements in this set is

d

Z ki—r —[a ]_r 0
P al (I

i=1

Proposition 15. Let I be a lexicographic ideal and lef (i) = H(R/I, i) be the Hilbert
function ofR/I1. Then

n

Bus(RID= (: - ’1) ((H@ = Du-p]o ™ = [H@ o] 2)

i=1
whered =t —s + 1.

Proof. We will use Proposition 10 and for that weed to calculate the imimal monomial
generators of degregof I. Letu; < u2 < --- be the monomials irR; written in lexico-
graphic order. Then thk-vector spac&R/I), is spanned byiy, ..., unq) sincel is a
lexicographic ideal and dipiR/I); = H (d). By Macaulay’s theorem for lexicographic
ideals we know thaRy(R/I)4—1 is spanned by, ..., u, wherep =[H(d — 1)(‘1,1)]%.
Thus the minimal generators éfof degreed areGy = {up @)1, . . ., up}. Now we use
Proposition 10 and get

p H(d)

n—m(u) n—m(u;) n—m(u;)
,Bs,t(R/I)ZZ( s—1 >:Z< s—1 )_Z< s—1 )

ueGy i=1 i=1

By applying Lemma 14 tdua, ..., u,} and{uy, ..., unq)} we can count the number of
terms in the two sums above on the right that ec(@_éj) for 1 <i <n and we get

n

Boi(R/T)= <: : ;) (a1 = [H@w@]7))-

i=1
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Now [p)]~y = [[H(d = Dg—)ip)) " = [Hd = Dg_plp' ™ and this ends the
proof. O

Lemma 16. Let I be a lexicographic ideal and letf (i) = H(R/1, i) be the Hilbert func-
tion of R/I. Then

IBn—l,n-H (R/I) - ﬁn,n-ﬁ-i (R/I)
=n(HGi+1D—[HG(+ 2)(,»+2)]j) —H@)+[HG+ 2)(,-+2)]:§.
Proof. By Proposition 15 we have
n

Bnn+i = Z (Z : i) ([H(i)(i)]ajJrl —[HG+ 1)(i+l)]:i)

j=1

=H(@i)—[H(+ 1)(i+1)]j

since(’”1) = 0 when; > 1. Furthermore

Bn—1n+i = Z <Z : ]2) ([HG+ 1)(i+1)]8j+1 - [HG+ 2)(i+2)]:{)
j=1
—(—D(HG+D —[HG +212]])
+[HG+ 1)<i+1)]81 —[HG+ 2)(i+2>]:i-

Thus
Butnti — Bunsi =n(HG+1) — [Hi + 4] 1)
+[HG+ D]y +[HG+Dirn] T - HG+ D

— HG) + [H + D42 ] = [H + D422

Now since(’ %) + (/Z7) = (/) holds for all f andg we see that

. -1 . -1 .
[HG+Digy]y +[HG+ Doy j=HGE+D).
In the same way we get

[HG +2)42] "3 — [HG + 222 s =[HG +2)412)] 5

and the lemma follows. O
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Proposition 17. Let F be a free graded module generated in degdeé a lexicographic
submodule oF and H (i) = H(F/L, i) the Hilbert function ofF/L. Fix an integeri and
let ¢ be the quotient and the remainder whet/ (i + 2) is divided bydimg R; ;2. Then

IBn—l,n-H (F/L) - ,Bn,n-i-i (F/L)

=n(HG+1) —qdimg Rit1 — [ra42171) — H(@) + g dimg R; + [ri42)175.

Proof. Assume thaf is generated by, ..., ¢, all of degree 0. As noted in Remark 2 we
may write L = Iye1 + - - - + I,e,, for some lexicographic ideals and theng, ;(F/L) =
Zj Bs.«(R/I;). To simplify the expressions let; = H(R/I;,i), bj = H(R/I;,i + 1)

andc; = H(R/I;,i + 2) and note thanaj =H(@), Zjbj =H@Gi+1) ande cj=
H (i +2). Now by Lemma 16

IBn—l,n+i(F/L) - ﬁn,n-{-i(F/L) = Z(,Bn ln+i(R/I') - ,Bn,n-i-i (R/Ij))
= Z —lejilz ) aj+ [C.l'(i)]:g)
J J

We need to compute the numbers= H(R/I;,i + 2) for every j. It follows from the
definition of a lexicographic submodule thiat, » is given by

Lito2=Vesr1+ Rit2e442+ -+ Ritoen

where V is the subspace oR;;2 spanned by the dipR;;2 — r largest monomials in
lexicographic order. We see that

dimgRiy2 if j<gq,
¢ {r if j=qg+1,
0 if j>qg+1,
and thus
Z[Cf(iJrZ)]:} = g[dimy R,’+2(,')]:} + [r(,')]:}
J
and

Y M) 4275 = qldime Ri 2175 + [ris21 5
J

Now [dimy Riy2(;,2)]1-1 = dimk Ri+1 and[dimy Ri42.,1~5 = dim R; and the proposi-
tion follows. O
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Theorem 18. Leth = (hg, h1, ..., hy) be the Hilbert function of a grade®-module gen-
erated in degre®. Then/ is cancellable if and only if for eadh < i < s we have

n(hi+1 —qdimg Rjy1 — [V(,'+2)]:i) —hi +qdimg R; + [r(i+2)]:§ >0,
whereg is the quotient and the remainder wheh; 7 is divided bydim; R; ;2.

Proof. This follows immediately from Propositiol7 and the definition of a cancellable
sequence. O

Corollary 19. Let (hg, k1, ..., hy) be a cancellable sequence andidie an integer such
that0 <i < s and assume that; > < dim; R; 2. Then

n(hit1— [hi+2(i+z)]j) —hi+ [hi+2(i+2)]i§ > 0.
Proof. If h;42 < dimg R; 2 theng =0 andr = h; 42 in Theorem 18. O

Corollary 20. Let (hg, h1, ..., hs) be a cancellable sequence andidie an integer such
thatO <i < s and assume that; ;> <i + 2. Then

n(hiz1—hiy2) —hi +hiy2 >0.

Proof. For any positive integar we have that ifj > a then thejth Macaulay representa-

tion ofa is
. 1 . 1
a=<].)+<]. )++(] @t )
Jj j—1 j—a+1

a number of terms

Thus[a(j]; = a for any integer and from this the corollary follows. O

4, Dualization and truncation

In Sections 2 and 3 we have considered artinian level modules which are a generalization
of artinian level algebras. With our definition, an artinian level algebra is nothing but a
cyclic artinian level module, at least when it comes to its module structure. In this section
we will motivate this generalization. We will see that the class of artinian level modules is
closed under dualization and truncation. This means that if a sequefada, ..., hy) is
level thenits revers@,, hs—1, ..., ho) and all its truncations, that ih;, hiy1, ..., h;) for
all 0<i < j <s, aretoo. This is, of course, not true if we only consider Hilbert functions
of artinian level algebras since they always haye= 1.

We have seen that a level sequence is cancellable and thus, by dualization, its reverse
is too. Furthermore, the reverse of a candsB#asequence is not in general cancellable so
if we remove from the set of all cancellable sequences the sequences whose reverse is not
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cancellable we get something smaller and the set of all level sequences will be a subset of
this set.

In some cases where the level sequences are known we have used the criterion given in
Theorem 18 to see how many of the cancellable sequences have a cancellable reverse and
how many of them are level.

First we recall what we need about dualization and truncation from Boij [1].

Definition 21. Let M be a finitely generated gradétmodule. Then thgraded dualof
M is defined to bV = *Homy (M, k) = €, Homi (M, , k). By regardingV ¥ as a subset
of Homy (M, k) we let the module structure an¥ be defined by¢ (v) = ¢ (xy) for all
x€R,¢e M’ andy e M. The grading is given bys,” = Homy (M _;, k).

Remark 22. Since dim Homy (M_;, k) = dim; M_; we get thatd (MY, i) = H(M, —i).
Thus if the Hilbert function ofM is given by(ho, h1, ..., hy). Then its reverseéhy, hy_1,
..., ho) is the Hilbert function of\/ ¥ (—s).

Proposition 23. If M is an artinian levelR-module with socle in degreg thenM" (—s)
is artinian level with socle in degree

Proof. See Boij[1, Proposition 2.3]. O

Proposition 24. Let M = D, M; be an artinianR-module with socle in degreeand let
i, j be integers such th&t<i < j < s. Then theth twist ofM; @ - - - & M is an artinian
level module.

Proof. See Boij [1, Proposition 2.4]. O

Example 25. Let M be an artinian levelR-module with Hilbert function given by
(...,c,n, 2). By truncating the modulé/ and taking the dual we get a level module with
Hilbert function (2, n, ¢). By Proposition 8 a level sequence is cancellable so it follows
from Corollary 19 that

n(n — [c(z)]j) -2+ [C(Z)]:g > 0.

n
< 1.
c (2> +

In fact, as noted by Fabrizio Zanello (private communication), this upper bourdi®n
sharp since th&-moduleR/(x, + m3) & R/(xf, X2,Xx3,...,X,) is artinian level and its
Hilbert function is(2, n, (5) + 1).

Itis easy to see that this implies

If we want to use Theorem 18 to decide if a sequeigehs, . . ., hs) is cancellable we
must first see that it is the Hilbert function of a gradeanodule generated in degree 0 and
this can be checked by Macaulay’s theorem for modules.
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Proposition 26. A sequenceéh;); o is the Hilbert function of a grade&-module gener-
ated in degre® if and only if for eachi

hiv1 <qdimg Riy1 + [rili,
whereg is the quotient and the remainder when,; is divided bydimy R;.
Proof. This is a special case of Hulett [2, Corollary 6]0

Since the reverse of a level sequence, by dualization, is level it is interesting to look at
cancellable sequences whose reverse also is cancellable. We will see that not all such se-
guences are level, which is not surprising as indicated by the following argument. It is well
known that all cyclic artinian leveR-modules of type one, that is, all artinian Gorenstein
algebras, have symmetric Hilbert functions. The condition in Theorem 18 depends only on
three adjacent positions in the sequence at a time and it is unlikely that this would force a
sequence to be symmetric. Nevertheless it is interesting to see how many of the cancellable
sequences that are level and what we gain by looking at the reverse of the sequences. We
will do this in some special cases next.

Let s andr be integers and denote iy, , the set of all sequences of positive inte-
gersh = (1, n, ho, hs, ..., hy) such thatiy, = r and bothx and its reverse are bounded by
Macaulay’s theorem for modules, that is, satisfy the condition in Proposition 2&L.et
be the subset o/, ; of all cancellable sequences and Bt be the subset a¥/; ; of all
sequences whose reverse is cancellable. Denofe, pyhe set of all level sequences on
the form(1, n, ho, h3, ..., hy) wherehy =t. We have seen thdt, , C F,; N By ;.

Using Proposition 26 and Theorem 18 it is easy to generate th@fetsF; , and B ;
with a computer. In general we do not know very much about the setbut for some
values ofs, r andn we do. In [12, Theorem 4.2] Stanley describes precisely the set of all
Gorenstein sequences whert 3, that is, all cyclic artinian leveR-modules of type one.

Using this result we can generate the Bgt for all s whenr =1 andn < 3. Withn =3,
Geramita et al. in [13] use several different techniques to record thd.getfer all r > 2
whens < 5 and forr = 2 whens = 6. Thus forn = 3 we have complete knowledge of the
setsL, ; for all t whens <5 and forr < 2 whens = 6.

The number of elements in the séts ;, F;;, B, Fs,: N Bs; andL; ; for these values
of s and: are displayed in Tables 1-4. Note that it is whef; N Bs¢| < |F;,| that
we actually gain something by looking at the reverse of the sequences. We see that this
happens at several places in the tables and we have marked these places by writing the
corresponding numbers with bold face.

Table 1
Socle degree 6

t Me; Fer Be:r FerNBs:r Lo

1 34 23 23 22 11
2 148 85 81 71 58




622 J. Soderberg / Journal of Algebra 280 (2004) 610-623

Table 2
Socle degree 5
t Ms; Fs; Bs; F5;NBs; Ls;
1 12 10 10 10 4
2 44 31 29 27 23
3 59 39 41 37 34
4 56 38 45 36 34
5 49 34 42 33 32
6 49 30 39 30 26
7 37 24 32 24 22
8 27 19 26 19 18
9 20 16 20 16 15
10 15 12 15 12 12
11 15 11 15 11 10
12 10 8 10 8 8
13 7 6 7 6 6
14 5 5 5 5 5
15 5 4 5 4 4
16 3 3 3 3 3
17 2 2 2 2 2
18 2 2 2 2 2
19 1 1 1 1 1
20 1 1 1 1 1
21 1 1 1 1 1
Table 3
Socle degree 4
t May Fa; Bay FaiNBa; La;
1 5 5 5 5 4
2 14 11 10 10 10
3 17 13 13 13 12
4 14 11 13 11 11
5 14 10 11 10 9
6 10 8 10 8 8
7 7 6 7 6 6
8 5 5 5 5 5
9 5 4 5 4 4
10 3 3 3 3 3
11 2 2 2 2 2
12 2 2 2 2 2
13 1 1 1 1 1
14 1 1 1 1 1
15 1 1 1 1 1
Table 4
Socle degree 3
t M3, F3, B3; F3,NB3; L3,
1 2 2 2 2 1
2 5 4 4 4 4
3 4 4 4 4 4
4 4 3 4 3 3
5 3 3 3 3 3
6 2 2 2 2 2
7 2 2 2 2 2
8 1 1 1 1 1
9 1 1 1 1 1
10 1 1 1 1 1
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