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Abstract

Let K denote a field and le¥’ denote a vector space ovErwith finite positive dimension. We
consider an ordered pair of linear transformatiand’ — V andB: V — V which satisfy both (i),
(ii) below.

(i) There exists a basis far with respect to which the matrix representiags irreducible tridiag-
onal and the matrix representimis diagonal.

(ii) There exists a basis for with respect to which the matrix representiAgs diagonal and the
matrix representing is irreducible tridiagonal.

We call such a pair deonard pair onV. We introduce two canonical forms for Leonard pairs.
We call these th&@D-D canonical formand theLB-UB canonical formin the TD-D canonical

form the Leonard pair is represented by an irreducible tridiagonal matrix and a diagonal matrix,
subject to a certain normalization. In the LB—UB canonical form the Leonard pair is represented
by a lower bidiagonal matrix and an upper bidiagonal matrix, subject to a certain normalization.
We describe the two canonical forms in detail. As an application we obtain the following results.
Given square matriced, B over K, with A tridiagonal andB diagonal, we display a necessary
and sufficient condition for, B to represent a Leonard pair. Given square matriceB overK,

with A lower bidiagonal and upper bidiagonal, we display a necessary and sufficient condition for
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A, B to represent a Leonard pair. We briefly discuss how Leonard pairs correspond t@Rémah
polynomials and some related polynomials in the Askey scheme. We present some open problems
concerning Leonard pairs.
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1. Introduction

We begin by recalling the notion oflseonard pair[16,27—-29,35,36]. We will use the
following terms. Throughout this paper, when we refer to a matrix, we mean a square ma-
trix. A matrix is calledtridiagonalwhenever each nonzero entry lies on either the diagonal,
the subdiagonal, or the superdiagonal. A tridiagonal matrix is calleducible whenever
each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

We now define a Leonard pair. For the rest of this pdpevill denote a field.

Definition 1.1 [35]. Let V denote a vector space ovgrwith finite positive dimension. By
a Leonard pair onV we mean an ordered pair of linear transformatigns/ — V and
A*:V — V which satisfy both (i), (ii) below.

(i) There exists a basis faf with respect to which the matrix representifigs irreducible
tridiagonal and the matrix representidg is diagonal.

(i) There exists a basis far with respect to which the matrix representiags diagonal
and the matrix representingy® is irreducible tridiagonal.

Note 1.2. According to a common notational conventioti denotes the conjugate-
transpose ofA. We emphasize we are not using this convention. In a LeonardAair
A*, the linear transformationg and A* are arbitrary subject to (i), (ii) above.

We give some background on Leonard pairs. There is a correspondence between
Leonard pairs and a family of orthogonal polynomials consisting of tRacah polynomi-
als and some related polynomials in the Askey scheme. This correspondence is discussed
in [28,29], [35, Appendix A] and in Section 27 below. Reference [17] contains detailed
information about the Askey scheme.

Leonard pairs play a role in representation theory. For instance Leonard pairs arise
naturally in the representation theory of the Lie algeBlpa[16], the quantum algebra
U, (sl) ([18-22], [25, Chapter 4], [27,36]), the Askey—-Wilson algebra [7-9,37] and the
tridiagonal algebra [16,35,36].

Leonard pairs play a role in combinatorics. For instance Leonard pairs can be con-
structed from certain partially ordered sets [28]. Also, there exists a combinatorial object
called aP- and Q-polynomial association scheme [1,2,24,30,34]. Leonard pairs have been
used to describe certain irreducible modules for the subconstituent algebra of these associa-
tion schemes [31-33]. See [3-6,16] for more information on Leonard pairs and association
schemes.
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Leonard pairs are closely related to the work of Griinbaum and Haine on the “bispectral
problem” [11,12]. See [10,13-15] for related work.

The rest of this introduction contains a detailed summary of the present paper.

In this paper we introduce two canonical forms for Leonard pairs. The first of these
is called theTD-D canonical formIn this form the Leonard pair is represented by an
irreducible tridiagonal matrix and a diagonal matrix, subject to a certain normalization. To
describe the second form we make a definition. A matrix is said timler bidiagonal
whenever each nonzero entry lies on either the diagonal or the subdiagonal. A matrix is
said to baupper bidiagonaivhenever its transpose is lower bidiagonal. We call our second
form theLB—UB canonical formIn this form the Leonard pair is represented by a lower
bidiagonal matrix and an upper bidiagonal matrix, subject to a certain normalization.

We fix some notation. Lat denote a nonnegative integer. We let Mat(K) denote the
K-algebra consisting of all + 1 by d + 1 matrices which have entries&. We index the
rows and columns by.Q, ..., d. Any K-algebra which is isomorphic to Mat; (K) will
be called anatrix algebra ovefk of diameterd.

Before proceeding we sharpen our concept of a Leonard paitdLédnote a matrix
algebra oveliK and letV denote an irreducible lefi-module. By d_eonard pair in.A we
mean an ordered pair of elements taken frdmvhich act onV as a Leonard pair in the
sense of Definition 1.1. Le, A* denote a Leonard pair id. ThenA and A* together
generateA [29, Corollary 3.2]. By d_eonard pair overlK we mean a sequencé, A, A*
where A is a matrix algebra oveK and A, A* is a Leonard pair ind. We call A the
ambient algebraand suppress it in the notation, referring onlydpA*. Let A, A* denote
a Leonard pair oveK. By the diameterof this pair we mean the diameter of its ambient
algebra. By theinderlying moduldor this pair we mean an irreducible left module for its
ambient algebra. For the rest of this section, when we refer to a scalar we mean an element
of K. When we refer to a Leonard pair it is assumed to be &uer

We recall the notion of arigenvalue sequender a Leonard pair. Le#A, A* denote a
Leonard pair. By definition there exists a basis for the underlying module with respect to
which the matrix representing is diagonal and the matrix representiag is irreducible
tridiagonal. In the matrix representingthe diagonal entries are the eigenvalued aind it
turns out these are mutually distinct [35, Lemma 1.3]. Therefore the sequence of diagonal
entries gives an ordering of the eigenvaluesAofWe call this sequence agigenvalue
sequencéor A, A*. Given an eigenvalue sequence forA*, if we invert the order of the
sequence we get another eigenvalue sequence,fdr*. MoreoverA, A* has no further
eigenvalue sequence. To clarify this #£tenote the diameter of, A*. ThenA, A* has
exactly two eigenvalue sequenced i 1 and a single eigenvalue sequenc i 0. By a
dual eigenvalue sequenta A, A* we mean an eigenvalue sequence for the Leonard pair
A* A

A Leonard systerns essentially a Leonard pair, together with an eigenvalue sequence
and a dual eigenvalue sequence for that pair. For the duration of this section we take this
as the definition of a Leonard system. (In the main part of our paper we will define a
Leonard system in a slightly different manner in which the eigenvalues are replaced by
their corresponding primitive idempotents.)

We mentioned each Leonard system involves a Leonard pair; we call this pais-the
sociatedLeonard pair. The set of Leonard systems associated with a given Leonard pair
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will be called theassociate clas$or that pair. In order to describe the associate classes
we use the following notation. Le® denote a Leonard system. If we invert the ordering
on the eigenvalue sequence @fwe get a Leonard system which we denotedby. If
we instead invert the ordering on the dual eigenvalue sequendewé get a Leonard
system which we denote by*. We view |, || as permutations on the set of all Leonard
systems. These permutations are commuting involutions and therefore induce an action of
the Klein 4-group on the set of all Leonard systems. The orbits of this action coincide with
the associate classes.

We discuss the notion ésomorphisnfor Leonard pairs and Leonard systems. Ket
A* and B, B* denote Leonard pairs. By asomorphism of Leonard pairs from, A* to
B, B* we mean an isomorphism &f-algebras from the ambient algebra4f A* to the
ambient algebra oB, B* which sendsA to B andA* to B*. We sayA, A* andB, B* are
isomorphicwhenever there exists an isomorphism of Leonard pairs fiom* to B, B*.
We say two given Leonard systems &emorphicwhenever

() their associated Leonard pairs are isomorphic;
(i) their eigenvalue sequences coincide; and
(iii) their dual eigenvalue sequences coincide.

The set of Leonard systems is partitioned into both isomorphism classes and associate
classes. These partitions are related as follows A,et* denote a Leonard pair and lét
denote the diameter. f >> 1 then the corresponding associate class contains four Leonard
systems and these are mutually nonisomorphig.#f 0 then the corresponding associate
class contains a single Leonard system.

Before proceeding with Leonard systems we introduce the notiopafameter array
A parameter array is a finite sequence of scalars which satisfy a certain list of equations and
inequalities. We care about parameter arrays because it turns out they are in bijection with
the isomorphism classes of Leonard systems. A parameter array is defined as follows. Let
d denote a nonnegative integer. Bparameter array of diametef we mean a sequence
of scalarsd;,6/,i=0,...,d; ¢;,¢;, j =1,...,d) which satisfy (i)—(v) below.

() 9i #0,¢: #0(1<i <d).
(i) 6; #6;,6; #0607 if i #j (0<i,j<d).
(i) i = 1 Y 2t 4 (0F — 05) (01— 0a) (1< i < d).

(V) ¢ =1 Y )—p L2t 4 (0 — 03)(Ba—iv1 — o) (1< i <d).
(v) The expressions

Oi—2—0i11 05— 051
b_1—6; 0r  — 67

1

are equal and independentidbr 2 <i <d — 1.
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We give a bijection from the set of isomorphism classes of Leonard systems to the set
of parameter arrays. L& denote a Leonard system. @ we attach the following four
sequences of scalars. The first two sequences are the eigenvalue sequénaedothe
dual eigenvalue sequence ®f Let us denote these Wy, 61, ...,60, andds, 05, ..., 6],
respectively. By a slightly technical construction which we omit for now, we obtain a
third sequence of scalagg, ¢o, ..., ¢z. We call this thdirst split sequencef @. We let
&1, do, . .., pq denote the first split sequence #BF and call this thesecond split sequence
of @. By [35, Theorem 1.9] a sequence of scalars: (6;,6/,i =0,...,d; ¢, ¢;,j =
1,...,d) is a parameter array if and only if there exists a Leonard sygtewith eigen-
value sequence, 61, . .., 64, dual eigenvalue sequenég, 05, ..., 67, first split sequence
1, 92, ..., 94, and second split sequenge, ¢o, ..., ¢4. If @ exists thend is unique up
to isomorphism. In this case we callthe parameter array ofb. The map which sends a
Leonard system to its parameter array induces the desired bijection from the set of isomor-
phism classes of Leonard systems to the set of parameter arrays.

Earlier we described an action of the Klein 4-group on the set of Leonard systems.
The above bijection induces an action of the same group on the set of parameter arrays.
We now describe this action. L& denote a Leonard system and Jet= (6;,07,i =
0,....d;9j,¢;,j =1,...,d) denote the parameter array @ The parameter array of
@V is pt wherept == (6;,0% .,i =0,...,d; $a—j+1, ¢a—j+1, j = 1,...,d). The pa-
rameter array ofd! is pt where p¥ := (04_;,67,i =0,....d;¢j,0;.j =1,....d)

[35, Theorem 1.11].

Let A, A* denote a Leonard pair. Bymmarameter array ofd, A* we mean the parameter
array of an associated Leonard system. We observe tpasif parameter array of, A*
then so arg’, p¥, p*¥ andA, A* has no further parameter arrays. We comment on the
distinctness of these arrays. Létdenote the diameter of, A*. Thenp, p', p!, p*¥
are mutually distinct ifd > 1 and identical ifd = 0. ThereforeA, A* has exactly four
parameter arrays if > 1 and just one parameter arraylit= 0.

We now describe the TD-D canonical form.

We define what it means for a given Leonard system to be in TD-D canonical form. Let
@ denote a Leonard system with eigenvalue sequénad, ..., 6; and dual eigenvalue
sequencég, 6y, ...,0;. LetA, A* denote the associated Leonard pair. Ttheis in TD-D
canonical formwhenever

(i) the ambient algebra oA, A* is Mat;11(K);
(ii) A is tridiagonal andA* is diagonal,;
(i) A has constant row sufiy and Aj, = 6.

We describe the Leonard systems which are in TD-D canonical form. In order to do this
we consider the set of parameter arrays. We define two functions on this set. We call these
functionsT andD. Let p = (6;,6,i =0, ...,d;¢;,¢;,j =1,...,d) denote a parame-
ter array. The image’ is the tridiagonal matrix in Mat, 1 (K) which has the following
entries. The diagonal entries are

T _g + Di 4 Pi+1
b l i i—-1 91'* - ei*+l
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for 0 <i <d, wheregg =0, 441 = 0 and whereg*;, 07 ; denote indeterminates. The

superdiagonal and subdiagonal entries are

+1

2;20(0[*—1 B H}T )

PG

[Ti=i+2(67 = 6

T
Pii—1=%i—;
[Th—i 01 = 65

T
Pi—1i=¢9i

for 1 <i <d. The imagep? is diag6y, 61, ....07). The significance of" and D is the
following. Given a Leonard system in TD-D canonical form the associated Leonard pair
is pT', pP wherep denotes the corresponding parameter array.

Let @ denote a Leonard system. By&®-D canonical form foxp, we mean a Leonard
system which is isomorphic té& and which is in TD-D canonical form. We show there
exists a unique TD-D canonical form fer.

Let A, A* denote a Leonard pair and consider its set of associated Leonard systems.
From the construction this set contains at most one Leonard system which is in TD-D
canonical form. The case in which this Leonard system exists is of interest; to describe this
case we define a TD-D canonical form for Leonard pairs. We do this as follows.

We define what it means for a Leonard pair to be in TD-D canonical formAlL.et*
denote a Leonard pair and le3, 01, ..., 6; denote an eigenvalue sequence for this pair.
ThenA, A* is in TD-D canonical formwhenever

(i) the ambient algebra oA, A* is Maty11(K);
(i) A is tridiagonal andA* is diagonal;
(iii) A has constant row sum and this sunégr 6.

We just defined the TD-D canonical form for Leonard pairs and earlier we defined this
form for Leonard systems. These two versions are related as follows. A given Leonard pair
is in TD-D canonical form if and only if there exists an associated Leonard system which
is in TD-D canonical form.

Let A, A* denote a Leonard pair. By BD-D canonical form forA, A* we mean a
Leonard pair which is isomorphic ta, A* and which is in TD-D canonical form. We
describe the TD-D canonical forms far, A*. To do this we give a bijection from the set
of parameter arrays fot, A* to the set of TD—D canonical forms far, A*. This bijection
sends each parameter argayo the pairp”, p?. To clarify this letd denote the diameter
of A, A*. If d > 1 then there exists exactly four TD-D canonical forms4orA*. If d =0
then there exists a unique TD-D canonical formAqrA*.

We give several applications of our theory. For the first applicatiod E¢note a non-
negative integer and let, A* denote matrices in Mat 1(K). We give a necessary and
sufficient condition forA, A* to be a Leonard pair in Mat 1 (K) which is in TD-D canon-
ical form. Indeed we show the following are equivalent:

(i) the pairA, A* is a Leonard pair in Mat,1(K) which is in TD-D canonical form;
(i) there exists a parameter arrayof diameterd such thatd = p” andA* = pP.
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Our second application is similar to the first but more general. Agaid lé¢note a
nonnegative integer and let, A* denote matrices in Mat1(K). Let us assume&l is
tridiagonal andA* is diagonal. We give a necessary and sufficient conditiomfoA* to
be a Leonard pair in Mat 1 (K). This condition is given in Theorem 25.1.

This completes our description of the TD-D canonical form. Our description of the
LB-UB canonical form runs along similar lines; we save the details for the main body of
the paper. We comment that in the main body of the paper it will be convenient to treat the
LB—-UB canonical form before the TD-D canonical form.

As we proceed through the paper we illustrate our results using two running examples
which involve specific parameter arrays.

Near the end of the paper we discuss how Leonard pairs correspond geRheah
polynomials and some related polynomials in the Askey scheme. The general idea is the
following. Given a Leonard paid, A* the corresponding polynomials give the entries in
a transition matrix which takes a basis satisfying Definition 1.1(i) to a basis satisfying De-
finition 1.1(ii). We compute these polynomials explicitly for our two examples. For these
examples the polynomials turn out to be Krawtchouk polynomialsjaRécah polynomi-
als.

At the end of the paper we present some open problems concerning Leonard pairs.

2. Leonard systems

We now begin our formal argument. Our first goal is to recall our working definition of
a Leonard system. We begin with some notation.

Letd denote a nonnegative integer. Wellgt™! denote the vector space ovéiconsist-
ing of all 4 + 1 by 1 matrices which have entrieskh We index therows by A, ..., d. We
view K91 as a left module for Mat, 1(K) under matrix multiplication. We observe this
module is irreducible. We letl denote &-algebra isomorphic to Mat 1(K). From now
on when we refer to apl-module we mean a leftl-module. LetV denote an irreducible
A-module. We remark that is unique up to isomorphism od-modules, and that has
dimensiond + 1. Letwg, vy, ..., vy denote a basis fo¥. For X € A andY € Mat;1(K),
we sayY representsX with respect tovg, vy, ..., vy WheneverXv; = Z?:o Y;v; for
0< j <d.ForAe A, we sayA is multiplicity-freewhenever it hag + 1 distinct eigen-
values inK. AssumeA is multiplicity-free. Letég, 61, ..., 6; denote an ordering of the
eigenvalues ofi, and for 0< i < d put

A—01
Ei= — 1
=11 55 1)
0<j<d :
j#i

wherel denotes the identity ofl. We observe

(i) AE;=6,E; (0<i <d);

(i) E;E;=6;E; (0<i,j<d),
(i) Y4 Ei=1;

(iv) A=Y 6E;.
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Let D denote the subalgebra of generated byA. Using (i)—(iv) we find the sequence
Eg, E1, ..., E; is a basis for th&-vector spac®. We call E; the primitive idempotendf

A associated witld; . It is helpful to think of these primitive idempotents as follows. et
denote an irreduciblgl-module. Then

V=EoV+E1V+---+ E;V (direct sum. 2

For 0<i <d, E;V is the (one-dimensional) eigenspaceAin V associated with the
eigenvalug);, andE; acts onV as the projection onto this eigenspace.

Definition 2.1. Letd denote a nonnegative integer and4edenote &-algebra isomorphic

to Mat;+1(K). Let A, A* denote an ordered pair consisting of multiplicity-free elements
in A. By anidempotent sequender A, A* we mean an orderin@p, E1, ..., E; of the
primitive idempotents oft such that

0, if i —j|>1,

40, ifji—jl=1 Osiisd

E;A*E; ={

We observe that ifEg, E1, ..., Eq iS an idempotent sequence far, A* then so is
Eq,Eq—1,..., Eo andA, A* has no further idempotent sequence. Bgual idempotent
sequencéor A, A* we mean an idempotent sequenceddr A.

Definition 2.2 [35]. Let d denote a nonnegative integer and Jtdenote aK-algebra
isomorphic to Maj1(K). By aLeonard system il we mean a sequence

@ = (A, A% E, Ef,i=0,....d) ©)
which satisfies (i)—(iii) below.
(i) Each ofA, A* is a multiplicity-free element ofd.
(i) Eo, E1,..., Eqis anidempotent sequence far A*.

(i) EG, E7, ..., E}is adual idempotent sequence forA*.

We calld thediameterof @ and say® is overKK. We call.A theambient algebraf &.

3. Therdativesof aLeonard system
A given Leonard system can be modified in several ways to get a new Leonard system.
For instance, le® denote the Leonard system from (3), anddet™, 8, 8* denote scalars
in K such thatr # 0, «* # 0. Then
(¢A+BI,a*A* + B*I; Ei Ef,i=0,....d) 4)

is a Leonard system i. Also, each of the following three sequences is a Leonard system
in A.
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®* = (A*, A;Ef,E;,i=0,...,d),
V.= (A, A E; E}_;,i=0,...,d),
oV = (A, A" E4 i, E},i=0,....d).
We refer tod* (respectivelyd; respectivelyd V) as thedual (respectivelyfirst inversion

respectivelysecond inversionof @. Viewing %, |, | as permutations on the set of all
Leonard systems,

=== 5)
Pr=xd,  bx=xl, W=U. (6)

The group generated by symbals |, || subject to the relations (5), (6) is the dihedral
group D4. We recallD4 is the group of symmetries of a square, and has 8 elements. Ap-
parentlyx, |, || induce an action oD, on the set of all Leonard systems. Two Leonard
systems will be calledelativeswhenever they are in the same orbit of tiiig action. The
relatives of® are as follows:

Name Relative

@ (A, A% E; E},i=0,....d)

ot (A, A% E; E d o =o, )
ot (A, A% Eq_, oo d)
oVl (A, A*; E4_ ,,Ed l,‘:O,...,d)
o* (A*, A;EF E;,i=0,....d)
PI* (A*, A; E; +Eii=0,....d)
@l (A*, A;EF E4_ ,,1_0,...,d)
Plix (A*, A; E;; i+ Eq_ii=0,....d)

4. Leonard pairsand Leonard systems

In view of our comments in the previous section, when we discuss a Leonard system we
are often not interested in the orderings of the primitive idempotents, we just care how the
elementsA, A* interact. This brings us back to the notion of a Leonard pair.

Definition 4.1. Letd denote a nonnegative integer andAedenote &-algebra isomorphic
to Mat;4+1(K). By aLeonard pair in.A we mean an ordered pair, A* which satisfies
(i)—(iii) below.

() Each ofA, A* is a multiplicity-free element ofd.
(i) There exists an idempotent sequenceAQrA*.
(iii) There exists a dual idempotent sequence4AorA*.
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By [35, Lemma 1.7] the preceding definition of a Leonard pair is equivalent to the
definition given in the Introduction.

Let @ denote the Leonard system from (3). Then the pain* from that line forms a
Leonard pair ind. We say this pair igssociatedvith @.

Each Leonard system is associated with a unique Leonard pai Lat* denote a
Leonard pair. By th@ssociate claskr A, A* we mean the set of Leonard systems which
are associated witld, A*. By Definition 4.1 this associate class contains at least one
Leonard systen®. Apparently this associate class containsp V, @V, @+ and no other
Leonard systems.

Let A, A* denote the Leonard pair from Definition 4.1. Then the pdirA is a Leonard
pair in A. We call this pair thelualof A, A*. We observe two Leonard systems are relatives
if and only if their associated Leonard pairs are equal or dual.

5. Isomorphisms of Leonard pairsand L eonard systems

We recall the notion cisomorphisnfor Leonard pairs and Leonard systems. We begin
with a comment.

Lemma 5.1 [29, Corollary 3.2] Let A, A* denote the Leonard pair from Definitioh1
ThenA and A* together generated.

Let @ denote the Leonard system from (3) anddet4 — A’ denote an isomorphism
of K-algebras. We writeb? := (A, A*; E7,E?,i =0,...,d) and observep? is a
Leonard system it!'.

Definition 5.2. Let @ and @’ denote Leonard systems ovEr. By anisomorphism of
Leonard systems frodh to @’ we mean an isomorphismof K-algebras from the ambient
algebra of® to the ambient algebra d@f’ such that?? = @’. By Lemma 5.1 there exists at
most one isomorphism of Leonard systems frdrto ¢’. We say® and®’ areisomorphic
whenever this isomorphism exists.

We now consider the notion of isomorphism for Leonard pairs.
Let A, A* denote the Leonard pair from Definition 4.1 anddetA — A’ denote an
isomorphism ofK-algebras. We observe the pdif, A* is a Leonard pair ird’.

Definition 5.3. Let A, A* and B, B* denote Leonard pairs ové&t. By anisomorphism of
Leonard pairs fromA, A* to B, B* we mean an isomorphism of K-algebras from the
ambient algebra ofl, A* to the ambient algebra &, B* such thatA® = B andA*® = B*.
By Lemma 5.1 there exists at most one isomorphism of Leonard pairs4toftti to B, B*.
We sayA, A* and B, B* areisomorphicwhenever this isomorphism exists.

We have a comment.

Lemmab.4. Let A, A* denote a Leonard pair and let denote the diameter. if > 1 then
the corresponding associate class contains four Leonard systems and these are mutually
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nonisomorphic. I/ = 0 then the corresponding associate class contains a single Leonard
system.

Proof. Let @ denote a Leonard system associated Wittt *. Then the associate class of
@ contains®, @V, @Y, @+ and no other Leonard systems. Suppésel. Then®, &V,

oY, 4 are mutually nonisomorphic; if not the isomorphism involved would stabilize
each ofA, A* and is therefore the identity map by Lemma 5.1. Suppbse0. Then®,

o'V, oV, o' are identical by the construction.o

We finish this section with a remark. Led denote a matrix algebra ovéf. Let
o:A— A denote any map. By the Skolem—Noether theorem [26, Corollary 9.&28],
an isomorphism ofK-algebras if and only if there exists an invertitfe=s A such that
X =SXxSlforall X € A.

6. Theadjacency relations

Definition 6.1. Let A, A* denote the Leonard pair from Definition 4.1. Consider the set
consisting of the primitive idempotents df We define a symmetric binary relationon

this set. LetEg, E1, ..., E; denote an idempotent sequencedord™. For 0< i, j < d we
defineE; ~ E; wheneveli — j| = 1. We call~ thefirst adjacency relatiofior A, A*. We

let ~ denote the first adjacency relation for the Leonard @é&irA and call~ the second
adjacency relatiorfor A, A*.

We make several observations.

Lemma 6.2. Let A, A* denote the Leonard pair from Definitighl Let Eq, E1, ..., Eq
(respectivelyEg, E7, ..., E}) denote an ordering of the primitive idempotentsAofre-
spectivelyA*®). ThenEy, E1, ..., E4 is an idempotent sequence far A* if and only if
Eo~ E1~---~ E4. MoreoverEg, E7, ..., E} is a dual idempotent sequence fér A*
ifand only if Ef ~ E] ~ --- ~ EJ.

Lemma 6.3. Let A, A* denote the Leonard pair from Definitighl Let £ and F denote
primitive idempotents od. Then the following are equivalent

(i) E~F;
(i) E+#FandEA*F #0;
(i) E# FandFA*E #0.

Let E* and F* denote primitive idempotents af. Then the following are equivalent
(i) E*~ F*,

(i) E*# F* and E*AF* £ 0;
(i) E* # F* and F*AE* #0.
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7. The eigenvalue sequences

Definition 7.1. Let @ denote the Leonard system from (3). FoxQ < d we let §;
(respectivelyv*) denote the eigenvalue df (respectivelyA*) associated witlE; (respec-
tively E7). We call 6o, 61, ..., 0, the eigenvalue sequenadf ¢. We call 3,65, ...,0;
the dual eigenvalue sequenoé @. We observed, 61, ..., 6; are mutually distinct and
contained irk. Similarly 63, 67, ..., 67 are mutually distinct and containedliu

Definition 7.2. Let A, A* denote a Leonard pair. By aigenvalue sequender this pair,

we mean the eigenvalue sequence for an associated Leonard system. We remark that if
0o, 01, ..., 0, is an eigenvalue sequence far A* then so is9;,6,-1,...,60 and A, A*

has no further eigenvalue sequence. Rjual eigenvalue sequenta A, A* we mean an
eigenvalue sequence for the Leonard pgir A.

We will use the following results.

Lemma 7.3. Letd denote a nonnegative integer and et A* denote a Leonard pair in
Mat; 1 (K). Assume

(i) A is lower triangular, and
(i) A;;=0if j—i>1(0<i,j<d).

Then the sequence of diagonal entriégo, A11, ..., Agq IS an eigenvalue sequence for
A, A*, MoreoverAj_lj #0forl<j<d.

Proof. We assume the pait, A* is a Leonard pair sd is multiplicity-free. We assumgd
is lower triangular so the sequence of diagonal enttigs A11, . .., Agg gives an ordering
of the eigenvalues of. We show this sequence is an eigenvalue sequencs, fai. For
0 <i <d let E; denote the primitive idempotent @f associated with the eigenvalde; .
We showE;_1 ~ E; for 1< j <d. This will follow once we show

We abbreviateV = K¢+1. For 0< r < d let V, denote the subspace bf consisting of
those vectors which have 0 in coordinated4,0. ., — 1. The matrixA is lower triangular
S0AV, C V.. Therestriction ofd to V, has eigenvalues,,, ..., Ags SOV, = E,V+---+
E, V. ApparentlyE, V C V, and moreover each dfg, ..., E,_1 vanishes orV,. From
our assumption about* we find A*V, C V,_1 for 1 < r <d. Let i, j denote integers
(0<i,j <d)andassumg — i > 1. From our above comments we find

E,‘A*EjV - E,‘A*Vj - E,‘Vj_]_ =0.
ApparentlyE;A*E;V =0 soE;A*E; =0. Now E; ~ E; by Lemma 6.3. We now have

(7)and it followsE;_;1 ~ E; for 1 < j <d. Applying Lemma 6.2 we findo, E1, ..., Eq
is an idempotent sequence far A*. Now Aqo, A11, ..., Agq IS @n eigenvalue sequence
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for A, A* by Definition 7.2. To finish the proof we showj'f_l’j #0forl<j<d.Letj
be given and suppos€;_; ; =0. ThenA™V; C V;. We mentioned earlier thatV; < V;.
The matricesA and A* together generate Mat; (K) by Lemma 5.1 s&X'V; C V; for alll
X e Maty11(K). The spaceV is irreducible as a module for Mat;(K), soV; =0 or
V; = V. From the definition ofV; and since K j <d we findV; # 0 andV; # V. This
is a contradiction and we concludk%ffl’j #0. O

Lemma 7.4. Letd denote a nonnegative integer and ket A* denote a Leonard pair in
Mat; 1 (K). Assume

(i) A isupper triangularand
(i) A;"]:Oifi—j >10<i,j<d).

Then the sequence of diagonal entriégo, A11, ..., Agq IS an eigenvalue sequence for
A, A*. MoreoverA?, ;#0for1<i<d.

Proof. Using Definition 4.1 we findA’, A* is a Leonard pair in Mat;1(K), wherer
denotes transpose. To obtain the result apply Lemma 7.3 to this air.

We give a corollary to Lemmas 7.3 and 7.4. In order to state it we make a definition.

Definition 7.5. Let d denote a nonnegative integer anddedenote a matrix in Mat; 1 (K).

We sayA is lower bidiagonalwhenever each nonzero entry lies on either the diagonal
or the subdiagonal. We say is upper bidiagonalwhenever the transpose dfis lower
bidiagonal.

Corollary 7.6. Letd denote a nonnegative integer and et A* denote a Leonard pair in
Maty+1(K). Assumed is lower bidiagonal andd* is upper bidiagonal. The()—(iv) hold
below.

(i) The sequencdgg, A11, ..., Agq IS an eigenvalue sequence far A*.

(i) Aji—1#0forl<i<d.
(i_ii) The sequencag,, A3y, ..., A}, is a dual eigenvalue sequence oy A*.
(v) A7 ;;#0forl<i<d.

Proof. (i) and (iv). Apply Lemma 7.3 t4, A*.
(i) and (iii). Apply Lemma 7.4 to the Leonard pair, A. O

The following fact may seem intuitively clear from Definition 4.1, but strictly speaking
it requires proof.

Corollary 7.7. Letd denote a nonnegative integer and ket A* denote a Leonard pair in
Mat,+1(K). Assume is tridiagonal andA* is diagonal. Therti), (i) hold below.
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(i) Aisirreducible.
(i) The sequencag,, A3y, ..., A}, is adual eigenvalue sequence for A*.

Proof. (i) Applying Lemma 7.4 to the Leonard pait*, A we find A; ;_1 # 0 for 1<

i <d.Applying Lemma 7.3 tA*, Awe findA;_1; #0for 1<i <d.
(i) Apply Lemma 7.3 to the Leonard pait*, A. O

8. The split sequences

In Definition 7.1 we defined the eigenvalue sequence and the dual eigenvalue sequence
of a Leonard system. There are two more parameter sequences of interest to us. In order to
define these, we review some results from [16,29,35] gt eenote the Leonard system in
(3) and letV denote an irreduciblgl-module. For < i < d we define

Ui=(E{V+EV+-+EV)N(EV+Ei1V+-+EqV). (8)
We showed in [35, Lemma 3.8] that eachléf, Us, . .., U, has dimension 1, and that
V=Uyg+U1+---+U; (directsum. (9)

The elementgl andA* act on thel; as follows. By [35, Lemma 3.9], both

(A—6;DU; =Ujy1 (0<i<d—-1), (A—6040)Us=0, (10)
(A*—6:1)Ui=Ui—1 (1<i<d), (A*=651)Uo=0, (11)

where thes;, 6;* are from Definition 7.1. Pick an integér(1 < i < d). By (11) we find
(A* = 07IU; = U;—1 and by (10) we findA — 6;_11)U;_1 = U;. ApparentlyU; is an
eigenspace fofA — 6;_11)(A* — 6*1) and the corresponding eigenvalue is a nonzero
element ofK. We denote this eigenvalue by. We display a basis for which illuminates

the significance of;. Settingi = 0 in (8) we findUp = E;V. Combining this with (10)
we find

U=(A—-6_10)---(A—011)(A—6E;V (0<i<d). (12)

Let g denote a nonzero vector iy V. From (12) we find that for & i < d the vector
(A—06;_1I)---(A—60I)ng is a basis fow;. From this and (9) we find the sequence

(A=0;—aD)--- (A= 01D)(A =6y (0<i<d) (13)
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is a basis fofv. With respect to this basis the matrices represenlirrmmd A* are

6o 0 98 01 0
1 6 07 @2
1 6> 9; . (14)
. . . (pd
0 1 6, 0 05

respectively. We call the sequenge, ¢, ..., ¢; the first split sequencef @. We let
é1, d2, . .., pq denote the first split sequence B# and call this thesecond split sequence
of @. For notational convenience we defipg= 0, ¢4+1 =0, po =0, ¢p4+1 =0.

9. A classification of Leonard systems
We recall our classification of Leonard systems.

Theorem 9.1 [35, Theorem 1.9]Letd denote a nonnegative integer and let

90501770(17 98,0;,,9;, (Pl,(ﬂ2vv§0dv ¢17¢2”¢d

denote scalars irnkK. Then there exists a Leonard syst@nover K with eigenvalue
sequenced, 61, ..., 04, dual eigenvalue sequencg, oy, ...,07, first split sequence
01, 92, ..., 9q and second split sequenge, ¢, .. ., ¢4 if and only if (i)—(v) hold below.

() ¢ #0,¢: #0 (1<i < d).
(i) 0 #0;, 07 #0%ifi#j (0<i, j<d).
(i) @i =1 Y6 2t + (6 — 03) (61— 0a) (1< i < d).

(V) ¢ =1 Yo L2t 4 (07 — 03)(Ba—iva — o) (1< i <d).
(v) The expressions

Oi—2 —6;11 6 =6
b1—6 67,6

are equal and independentofor 2 <i <d — 1.

Moreover, if (i)—(v) hold above ther is unique up to isomorphism of Leonard systems.

We view Theorem 9.1 as a linear algebraic version of a theorem of D.A. Leonard ([23],
[1, p. 260]). This is discussed in [35].
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10. Thenoction of a parameter array

In view of Theorem 9.1 we make the following definition.
Definition 10.1. Let d denote a nonnegative integer. Bparameter array oveK with di-
ameterd, we mean a sequence;, 67,i =0,....d; ¢;,¢;, j =1,...,d) of scalars taken
from K which satisfy conditions (i)—(v) in Theorem 9.1.

We give several examples of a parameter array.

Example 10.2. Let d denote a nonnegative integer and consider the following scal&ts in

0;=d—2i, 6f=d-2i (0<i<d),
pi=-2id—i+1), ¢;=2id—i+1) @1A<i<d).
To avoid degenerate situations, we assume the characteri&iésofero or an odd prime

greater thaw. Then the sequencé;, 6,i =0, ...,d: ¢, ¢;, j =1,...,d) isaparameter
array overk.

Proof. The sequenc®;,60",i =0, ...,d;¢;,¢;, j =1,...,d) satisfies Theorem 9.1(i)—(v)
so this sequence is a parameter array @ver O

Example 10.3. Let d denote a nonnegative integer. Lgts, s*, r1, r» denote nonzero

scalars ink such thatirp = ss*¢“*1. Assume none of, r1ig’, raq’, s*q' /r1, s*q" /r2 is
equal to 1 for 1< i < d and that neither ofg’, s*¢' is equal to 1 for X i < 2d. Define

9[ :qii +Sqi+l, 91‘* :qii +S*qi+l
for0<i <dand

0i=q"7(1-¢")1-q" ) (1-rig") (1 - r2q').
b qufzi(l_qi)(l_qifdfl)(rl _ S*qi)(rz —s*qi)/s*

for 1<i <d.Thenthe sequena§;,6",i =0,....d;¢;,¢;,j=1,...,d) is a parameter
array overk.

Proof. The sequenc®;,6",i =0, ...,d;¢;,¢;, j =1,...,d) satisfies Theorem 9.1(i)—(v)
so this sequence is a parameter array @&ver O
11. Parameter arraysand Leonard systems

In this section we discuss the relationship between parameter arrays and Leonard sys-
tems.



P. Terwilliger / Journal of Algebra 291 (2005) 1-45 17

Definition 11.1. Let ¢ denote a Leonard system OVE&r, with eigenvalue sequence
6o, 61, ..., 04, dual eigenvalue sequeneg, 07, ..., 67, first split sequences, ¢2, ..., g4,
and second split sequen@g, ¢2, ..., ¢s. By Theorem 9.1 the sequence;,0,i =
0,....d;9,¢;,j=1,...,d) is a parameter array ovéf. We call this array thqnara-
meter array of®.

We remark that by Theorem 9.1 the map which sends a given Leonard system to its
parameter array induces a bijection from the set of isomorphism classes of Leonard systems
overK to the set of parameter arrays o¥ér

Earlier we discussed several ways to modify a given Leonard system to get a new
Leonard system. We now consider how these modifications affect the corresponding pa-
rameter array.

Lemmall.2. Let® denote the Leonard system fr¢8)and let(6;,6",i =0, ....d; ¢;, ¢;,

Jj=1,....d) denote the corresponding parameter array. ketx*, 8, 8* denote scalars
in K such thatx #£ 0, a* # 0. Then the Leonard systef) has parameter array

(a@i + 8,070 + B, i=0,....d; aa’pj, a0 p;, j=1,.. d)
Proof. Routine. O
Lemma 11.3 [35, Theorem 1.11]Let® denote a Leonard system and jet= (6;,0,i =
0,....d;9;,¢;,j=1,...,d) denote the corresponding parameter array. Ttgn(iii)

hold below.

() The parameter array ob* is p* wherep* := (67,0;,i =0,...,d;¢;, pa—j+1, ] =

., d).
(i) The parameterarray op¥ is p¥ wherept := (6;,60%_,,i =0, ....d; pa—j+1, Pa—j+1.
i=1....d).
(i) The parameter array o®V is p¥ wherep! := (6,;,07,i =0,....d; ¢j,¢;, j =
., d).

The following equations will be useful.

Corollary 11.4. Letd denote a positive integer and 164;,607,i =0, ...,d; ¢, ¢;,j =
1,...,d) denote a parameter array ov&. Then(i)—(iii)) hold below.

N 0i—0ai _ 0 =05
() g = e 9* - (0<i<a).

() 91 = Yo "2 + 6 = 60064 = 0) (1< <d),
(i) 91 = ga i =i + (ai — 0G4 —6) A<i <.

Proof. Each of (i)—(iii) is an algebraic consequence of the conditions in Theorem 9.1.
Below we give a more intuitive proof using Lemma 11.3. Ketlenote a Leonard system
overK which has the given parameter array.
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(i) Applying Theorem 9.1(iv) ta>* and using Lemma 11.3(i) we obtain

i—-1
0F —6%_
Gi-it1 =01 e+ 6 = 00) (0] 111~ 65) (15)
h=0 O d

for 1 <i < d. To finish the proof, in (15) replaceby d — i + 1 and compare the result
with Theorem 9.1(iv).

(i) Apply Theorem 9.1(iii) to @* and simplify the result using (i) above and
Lemma 11.3(i).

(iii) Apply (i) above to @ ¥ and use Lemma 11.3(jii). O

12. Theparameter arraysof aLeonard pair
In this section we define the notion of a parameter array for a Leonard pair.

Definition 12.1. Let A, A* denote a Leonard pair. Bypsmrameter array ofd, A* we mean
the parameter array of an associated Leonard system.

The parameter arrays of a Leonard pair are related as follows.

Lemma 12.2. Let A, A* denote the Leonard pair from Definitighl Letp = (6;,6",i =

s
0,....d;9;,¢;,j=1,...,d) denote a parameter array of, A*. Then the following are
parameter arrays ofi, A*.

p=1(6:.6], i=0,....d; ;. ¢;, j=1,....d),
pr=6,0;_;, i=0,....d; du_j+1,0a—j+1, j=1,...,d),
p¥=(04-1,67, i=0,....d; ¢j,0j, j=1,....d),
P =(04-i,0)_;, i=0,....d; Qu_j+1,a—j+1, j=1,....d).
The Leonard paitA, A* has no further parameter arrays.

Proof. By Definition 12.1 there exists a Leonard systémwhich is associated with,
A* and which has parameter array The above sequences are the parameter arrays, for
o'V, ot @'V and these are the Leonard systems associatedAyitti. 0O

Corollary 12.3. Let A, A* denote the Leonard pair from Definitighl ThenA, A* has
exactly four parameter arrays if > 1 and a unique parameter array if = 0.

Proof. Referring to Lemma 12.2, the parameter arrayg*, pt, p*¥ are mutually dis-
tinctif d > 1 and identical it =0. O

We have a comment.
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Lemma 12.4. Let A, A* denote a Leonard pair oveK and let B, B* denote a Leonard
pair overKK. These pairs are isomorphic if and only if they share a parameter array. In this
case the set of parameter arrays far A* coincides with the set of parameter arrays for
B, B*.

Proof. Supposed, A* andB, B* share a parameter arrpayBy Definition 12.1 there exists

a Leonard systen® which is associated witid, A* and which has parameter array
Similarly there exists a Leonard systefi which is associated wittB, B* and which

has parameter arrgy. Observed, @' are isomorphic since they have the same parameter
array. Observe the isomorphism involved is an isomorphism of Leonard pairsAfroti

to B, B*. ApparentlyA, A* andB, B* are isomorphic. The remaining claims of the lemma
are clear. O

13. TheLB-UB canonical form; preliminaries

We now turn our attention to the LB—UB canonical form. We begin with some com-
ments.

Definition 13.1. Let @ denote the Leonard system from (3) andWedenote an irreducible
A-module. By a®-LB-UB basisfor V we mean a sequence of the form (13), where
6o, 61, ..., 04 denotes the eigenvalue sequencedoand n denotes a nonzero vector in
E}XV.

0

Lemma 13.2. Let @ denote the Leonard system frd@). Let 6p, 61, ..., 0, denote the
eigenvalue sequence far. Let V denote an irreducibled-module and lebg, v1, ..., vg
denote a sequence of vectorslin not all zero. Then this sequence isbalLB-UB basis
for V if and only if both

() voe EgV;and
(i) Av; =6jv; +vjy1for0<i <d—1.

Proof. Routine. O

Definition 13.3. Let @ denote the Leonard system from (3). We define a mag —
Maty1(K) as follows. LetV denote an irreduciblel-module. For allX € A we let X*
denote the matrix in Mat.1(K) which represents( with respect to ab-LB—UB basis
for V. We observe;: A — Maty;1(K) is an isomorphism oK-algebras. We calf the
LB—UB canonical major &.

Before proceeding we introduce some notation.

Definition 13.4. Consider the set of all parameter arrays déeiWe define two functions
on this set. We call these functiodsandU. Let p = (6;,6;",i =0, ..., d: ¢, ¢;,j =
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1,...,d) denote a parameter array oMér The imagep’ and pY are the following ma-
trices in Mag1(K).

6o 0 05 1 0

1 6, 07 @2

1 0 0x

pL — .2 , pU — 2
. . . (pd
0 1 64 0 9;;

Lemma 13.5. Let® denote the Leonard system fr¢®). Leth denote the LB—UB canonical
map for @, from Definition13.3 ThenA? = pL and A** = pY, where p denotes the
parameter array ford.

Proof. Write p = (6;,6%,i =0,...,d;¢;,¢;, j =1,...,d). Each of A%, p’ is equal to
the matrix on the left in (14) sa® = p’. Each ofA*%, pV is equal to the matrix on the
rightin (14) soA* = pY. 0O

14. TheLB-UB canonical form for Leonard systems

In this section we introduce the LB-UB canonical form for Leonard systems. We define
what it means for a given Leonard system to be in LB—UB canonical form. We describe
the Leonard systems which are in LB-UB canonical form. We show every Leonard system
is isomorphic to a unique Leonard system which is in LB—UB canonical form.

Definition 14.1. Let @ denote the Leonard system from (3). Bgt61, ..., 6, (respectively
65,67, ...,07) denote the eigenvalue sequence (respectively dual eigenvalue sequence)
of @. We say® is in LB-UB canonical fornwhenever (i)—(iv) hold below.

(i) A=Maty;1(K).

(ii) A is lower bidiagonal andi* is upper bidiagonal.
(i) A;;—1=1forl<i<d.
(iv) Ago=6o andAgo = 96.

Lemma 14.2. Let @ denote the Leonard system fr¢8). Assumep is in LB-UB canon-
ical form, so that4 = Mat,41(K) by Definition14.1(i). For 0 < i < d let v; denote the
vector inK?*1 which hasith coordinatel and all other coordinate®. Then the sequence
Vo, V1, . .., vq is a®-LB-UB basis foik?*1. Lety denote the LB—UB canonical map far,
from Definition13.3 Theny is the identity map.

Proof. Letfo,61,...,60, (respectivelds, 07, ..., 07) denote the eigenvalue sequence (re-
spectively dual eigenvalue sequence) dor By Definition 14.1,A is lower bidiagonal
with A; j_1=1for 1<i <d. By Corollary 7.6(i) and sincé oo = 0o we find A;; = 6; for
0<i <d. ApparentlyAv; = 6;v; + v;+1 for 0<i < d — 1. By Definition 14.1,A* is up-
per bidiagonal withA§, = 6;. Apparentlyuvg is an eigenvector foA* with eigenvalue);.
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Thereforevg € E;V. Applying Lemma 13.2 (withV = K?*1) we find v, v1, ..., vs is @
@-LB-UB basis forK?*1. From the construction each element in Mat(K) represents
itself with respect tovg, v1, ..., vg. Thereforey is the identity map in view of Defini-
tion 13.3. O

Theorem 14.3. Let @ denote the Leonard system frd3) and assumed is in LB-UB
canonical form. Them = pl and A* = pY, whereL, U are from Definition13.4and p
is the parameter array ob.

Proof. Let 1 denote the LB-UB canonical map fab, from Definition 13.3. We as-
sume@ is in LB-UB canonical form, sq is the identity map by Lemma 14.2. Applying
Lemma 13.5 we findt = pL andA* = pY. O

Corollary 14.4. Let® and®’ denote Leonard systems o¥&mhich are in LB—UB canon-
ical form. Then the following are equivalent

(i) @ and®’ are isomorphic
(i) @ =9

Proof. (i) = (ii). The Leonard system@, @' have a common parameter array which we
denote byp. By Theorem 14.3 the Leonard pair associated with each,@b’ is equal to
pL, pU. Apparently® and®’ are in the same associate class. By this and sincg’ are
isomorphic we findd = @’ in view of Lemma 5.4.

(i) = (i). Clear. O

Definition 14.5. Let @ denote the Leonard system from (3). ByleB-UB canonical form
for @ we mean a Leonard system o¥emhich is isomorphic t@ and which is in LB-UB
canonical form.

Theorem 14.6. Let @ denote the Leonard system fr@¢8). Then there exists a unique LB—
UB canonical form for®@. This form is®”, wheret denotes the LB—UB canonical map
for @ from Definition13.3

Proof. We first show®? is an LB—UB canonical form fo. Since® is a Leonard sys-
tem in A and since;: A — Maty,1(K) is an isomorphism oK-algebras, we find? is a
Leonard system in Mat 1 (K) which is isomorphic ta. We showd? is in LB—UB canon-
ical form. To do this we showp? satisfies conditions (i)—(iv) of Definition 14.1. Observe
" satisfies Definition 14.1(i) since Mat; (K) is the ambient algebra @$”. Observed®
satisfies Definition 14.1(ii)—(iv) by Definition 13.4 and Lemma 13.5. We have now shown
@' satisfies Definition 14.1(i)—(iv) s@? is in LB—UB canonical form. Apparentlg? is a
Leonard system oveéf which is isomorphic tad and which is in LB-UB canonical form.
Therefored® is an LB—UB canonical form fo@ by Definition 14.5. To finish the proof we
let ' denote an LB—UB canonical form fdr and showd’ = @°. Observep’, " are iso-
morphic since they are both isomorphio®o The Leonard system®’, & are isomorphic
and in LB-UB canonical form s@’ = &% by Corollary 14.4. O
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Corollary 14.7. Consider the set of Leonard systems dievhich are in LB—UB canonical
form. We give a bijection from this set to the set of parameter arraysldvé&he bijection
sends each Leonard system to its own parameter array.

Proof. By the remark following Definition 11.1, the map which sends a given Leonard
system to its parameter array induces a bijection from the set of isomorphism classes of
Leonard systems ovék to the set of parameter arrays o¥€r By Theorem 14.6 each of
these isomorphism classes contains a unique element which is in LB-UB canonical form.
The result follows. O

15. TheLB-UB canonical form for Leonard pairs

In this section we define and discuss the LB—UB canonical form for Leonard pairs. We
begin with a comment.

Lemma15.1. Let A, A* denote the Leonard pair from Definitighl Then there exists at
most one Leonard system which is associated wjth* and which is in LB—UB canonical
form.

Proof. Let @ and®’ denote Leonard systems which are associated Aith* and which

are in LB—UB canonical form. We sho@ = &’. Since®, @’ are in the same associate
class, this will follow once we showp, @’ have the same eigenvalue sequence and the
same dual eigenvalue sequence. Observe by Theorem 14.3 that the sequence of diagonal
entries forA is the common eigenvalue sequence dor®’. Similarly the sequence of
diagonal entries foA* is the common dual eigenvalue sequencedqrd’. Apparently

®=9¢'. O

Referring to the above lemma, we now consider those Leonard pairs for which there ex-
ists an associated Leonard system which is in LB—UB canonical form. In order to describe
these we introduce the LB—UB canonical form for Leonard pairs.

Definition 15.2. Let A, A* denote the Leonard pair from Definition 4.1. We say this pair
is in LB—UB canonical fornwhenever (i)—(iii) hold below.

() A=Maty;1(K).
(ii) A is lower bidiagonal andi* is upper bidiagonal.
(i) A;j—1=1for1<i <d.

We just defined the LB-UB canonical form for Leonard pairs, and in Definition 14.1
we defined this form for Leonard systems. We now compare these two versions. We will
use the following definition.
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Definition 15.3. Let d denote a nonnegative integer andAetA* denote a Leonard pair in
Maty+1(K). We assumet is lower bidiagonal andi* is upper bidiagonal. We make some
comments and definitions.

(i) By Corollary 7.6(i) the sequencggg, A11, ..., Agq IS an eigenvalue sequence for
A, A*. We call this sequence thiesignated eigenvalue sequerfaeA, A*.

(i) By Corollary 7.6(iii) the sequencd(,, A;. ..., A}, is a dual eigenvalue sequence
for A, A*. We call this sequence tliesignated dual eigenvalue sequefared, A*.

(iii) By the designated Leonard systefior A, A* we mean the Leonard system which
is associated witd, A* and which has eigenvalue sequent®, A11, ..., Agg and
dual eigenvalue sequengg,, A7,,..., A%,

(iv) By the designated parameter arrdipr A, A* we mean the parameter array of the
designated Leonard system far A*.

Lemma 15.4. Let A, A* denote the Leonard pair from Definitighl Then the following
are equivalent

(i) A, A*isin LB-UB canonical form
(ii) there exists a Leonard systebrwhich is associated with, A* and whichis in LB-UB
canonical form.

Supposi), (i) hold. Thend is the designated Leonard systenigfA*.

Proof. (i) = (ii). Let @ denote the designated Leonard systemAorA*, from Defini-
tion 15.3(iii). From the constructio® is associated witld, A* and in LB—UB canonical
form.

(ii) = (i). Compare Definitions 14.1 and 15.2.

Now suppose (i), (ii) hold. Thew is the designated Leonard system foy A* by
Lemma 15.1 and the proof of @ (ii) above. O

Corollary 15.5. We give a bijection from the set of Leonard systems Bveihich are in
LB-UB canonical form, to the set of Leonard pairs oewhich are in LB—UB canonical

form. The bijection sends each Leonard system to its associated Leonard pair. The inverse
bijection sends each Leonard pair to its designated Leonard system.

Proof. This is a reformulation of Lemma 15.4.0

Theorem 15.6. We give a bijection from the set of parameter arrays o¥eto the set

of Leonard pairs oveifK which are in LB—UB canonical form. The bijection sends each
parameter arrayp to the Leonard paip’, pU. The inverse bijection sends each Leonard
pair to its designated parameter array.

Proof. Composing the inverse of the bijection from Corollary 14.7, with the bijection
from Corollary 15.5, we obtain a bijection from the set of parameter arrays dver
the set of Leonard pairs ové& which are in LB-UB canonical form. Lep denote a
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parameter array ovéf and letA, A* denote the image gf under this bijection. We show
A = pl andA* = pY. By Corollary 14.7 there exists a unique Leonard system &ver
which is in LB-UB canonical form and which has parameter agralzet us denote this
system by®. By the constructiom, A* is associated witl®. Applying Theorem 14.3
to @ we find A = pL and A* = pV. To finish the proof we show is the designated
parameter array fod, A*. We mentionedi, A* is associated witlb and® is in LB-UB
canonical form sap is the designated Leonard system for A* by Corollary 15.5. We
mentionedp is the parameter array fa@r so p is the designated parameter array fgrA*
by Definition 15.3(iv). O

Definition 15.7. Let A, A* denote the Leonard pair from Definition 4.1. By BB-UB
canonical form forA, A* we mean a Leonard pair ov& which is isomorphic t4, A*
and which is in LB—-UB canonical form.

Theorem 15.8. Let A, A* denote the Leonard pair from Definitighl We give a bijection
from the set of parameter arrays fdr, A* to the set of LB—UB canonical forms fdr, A*.
This bijection sends each parameter arrayto the pair pZ, pU. (The parameter arrays
for A, A* are given in Lemmd2.2.) The inverse bijection sends each LB-UB canonical
form for A, A* to its designated parameter array.

Proof. Let B, B* denote a Leonard pair ov& which is in LB—UB canonical form. Let
p denote the designated parameter arrayBpB*. In view of Theorem 15.6 it suffices to
show the following are equivalent: (§, A* andB, B* are isomorphic; (i} is a parameter
array forA, A*. These statements are equivalent by Lemma 12:4.

Corollary 15.9. Let A, A* denote the Leonard pair from Definitighl If 4 > 1 then there
exist exactly four LB—UB canonical forms far A*. If d = 0 there exists a unique LB-UB
canonical form forA, A*.

Proof. Immediate from Theorem 15.8 and Corollary 12.3]

16. How torecognizea Leonard pair in LB-UB canonical form

Let d denote a nonnegative integer and 4gtA* denote matrices in Maf 1(K). Let
us assumed is lower bidiagonal andA* is upper bidiagonal. We give a necessary and
sufficient condition forA, A* to be a Leonard pair which is in LB-UB canonical form.

Theorem 16.1. Let d denote a nonnegative integer and lét A* denote matrices in
Mat;+1(K). Assumed is lower bidiagonal andd* is upper bidiagonal. Then the following
(i), (ii) are equivalent.

(i) The pairA, A* is a Leonard pair inMat,1(K) which is in LB—UB canonical form.
(i) There exists a parameter arr&y;,67,i =0, ...,d; ¢;,¢;, j=1,...,d) overK such
that
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Aii=6;, A5, =067 (0<i<d), (16)

i

Aiica=1 Al =@ (1<i<d). (17)

Supposdi), (i) hold. Then the parameter array ifii) above is uniquely determined by
A, A*. This parameter array is the designated parameter array4prA* in the sense of
Definition15.3

Proof. This is a reformulation of Theorem 15.60

17. Leonard pairs A, A* with A lower bidiagonal and A* upper bidiagonal

Let d denote a nonnegative integer and #gtA* denote matrices in Mat 1(K). Let
us assumeA is lower bidiagonal andd* is upper bidiagonal. We give a necessary and
sufficient condition ford, A* to be a Leonard pair.

Theorem 17.1. Let d denote a nonnegative integer and lét A* denote matrices in
Maty+1(K). Assumed lower bidiagonal andA* is upper bidiagonal. Then the following
(), (ii) are equivalent.

(i) The pairA, A* is a Leonard pair inMat, 1 (K).
(i) There exists a parameter arr&y;,67,i =0, ...,d; ¢;,¢;, j=1,...,d) overK such
that

Aii=6;, A;;=6" (0<i<d), (18)

1

Aii1A7 1 =¢; (1<i<d). (19)

Suppossdi), (i) hold. Then the parameter array ifiil) above is uniquely determined by
A, A*. This parameter array is the designated parameter array4pr™ in the sense of
Definition15.3

Proof. (i) = (ii). By Corollary 7.6(ii) we haveA; ;_1 # 0 for 1<i < d. Let S denote
the diagonal matrix in Mat.1(K) which has diagonal entrieS;; = A10421--- Aji—1
for 0<i < d. Each ofSpo, S11, ..., Sqq is nonzero s&~1 exists. Leto : Maty1(K) —
Mat,1(K) denote the isomorphism d@-algebras which satisfie§” = s~1x S for all
X € Maty;1(K). From the constructiom® (respectivelyA*®) is lower bidiagonal (re-
spectively upper bidiagonal) with entries

A% = Ay, A=A, (0<i<a), (20)
A‘?,_l = 1, ;kfl’i = Ai,iflA;ﬁ_Li (1 < i < d)~ (21)

i,

ApparentlyA?, A* is a Leonard pair in Mat; 1 (K) which is in LB-UB canonical form.
Applying Theorem 16.1 to this pair we find there exists a parameter affag;,i =
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0,....d:¢j,¢;,j=1,...,d) overK such that bot?. = 6;, A¥7 =6 for0<i <d and
A%, ;=@ for 1<i <d. Combining these facts with (20), (21) we find this parameter
array satisfies (18), (19).

(i) = (). For 1<i <d we haveA;;_1 # 0 by (19) and sincep; # 0. Let
o :Maty;1(K) — Mat,;1(K) denote the isomorphism df-algebras from the proof of
(i) = (ii) above. We routinely find botm?, = 6;, A} =67 for 0 <i < d and both
A7, 1=1 A7, =¢i for 1<i <d. Apparently A”, A** satisfies Theorem 16.1(ii).
Applying that theorem to this pair we findi®, A*° is a Leonard pair in Mat, 1 (K) which
is in LB-UB canonical form. In particulan®, A* is a Leonard pair in Mat.1(K). By
this and since is an isomorphism we find, A* is a Leonard pair in Mat, 1 (K).

Suppose (i), (i) hold above. Let denote a parameter array which satisfies (ii) above.
We showp is the designated parameter array forA*. We first showp is a parameter
array for A, A*. Observep is a parameter array fot, A*> by Theorem 16.1 and the
proof of (ii) = (i) above. AlsoA, A* is isomorphic toA?, A*® so p is a parameter array

for A, A*. Observep is the designated parameter array fgrA* by Definition 15.3. O
18. Examplesof Leonard pairs A, A* with A lower bidiagonal and A* upper
bidiagonal

Example 18.1. Let d denote a nonnegative integer. L&tand A* denote the following
matrices in Mai, 1(K).

d 0 d 2 0
-1 d-2 d—2 2d-2
A: _2 ’ s A*_ :
. .2
0 —d —d 0 —d

To avoid degenerate situations, we assume the characteri&iésofero or an odd prime
greater thani. Then the paitd, A* is a Leonard pair in Mat,1(K). The corresponding
designated parameter array from Definition 15.3 is the parameter array given in Exam-
ple 10.2.

Proof. Let (6;,6/,i =0,...,d;9;,¢;,j =1,...,d) denote the parameter array from
Example 10.2. We routinely find this parameter array satisfies Theorem 17.1(ii); apply-
ing that theorem we findi, A* is a Leonard pair in Mat.1(K). The parameter array
6;,6F,i=0,...,d;9;,¢;,j=1,...,d) is the designated parameter arrayAgfA* by

the last line of Theorem 17.1.0

Example 18.2. Letd, q, s, s*,r1, r2 be as in Example 10.3. Let and A* denote the fol-
lowing matrices in Mat,1(K). The matrixA is lower bidiagonal with entries

Aii=q " +s5¢'™ (0<i<a),
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Aiic1=(1-q7")(1-rg") (A<i<a).
The matrixA* is upper bidiagonal with entries
A=q7 45" (0<i<a),
=0 =g (1-ry') A<i<a.

Then the paird, A* is a Leonard pair in Mat; 1(K). The corresponding designated para-
meter array from Definition 15.3 is the parameter array given in Example 10.3.

Proof. Let (6;,6/,i =0,...,d;9;,¢;,j =1,...,d) denote the parameter array from
Example 10.3. We routinely find this array satisfies Theorem 17.1(ii); applying that the-
orem we findA, A* is a Leonard pair in Mat,.1(K). The parameter arragp;, 6", i =
0,....d;9;,¢;,j=1,...,d) is the designated parameter array forA* by the last line

of Theorem 17.1. O

19. The TD-D canonical form; preliminaries

We now turn our attention to the TD-D canonical form. We begin with some comments.

Lemma19.1[29, Lemma 5.1]Let® denote the Leonard system fr¢&) and letV denote
an irreducible A-module. Letjo denote a nonzero vector ifipV. Then the sequence

Egno, Eino, ..., Ejno (22)
is a basis forV.

Definition 19.2. Let @ denote the Leonard system from (3) andWedenote an irreducible
A-module. By a®-TD-D basisfor V we mean a sequence of the form (22), whege
denotes a nonzero vector EpV'.

The concept of @-TD-D basis will play an important role in what follows. Therefore
we examine it carefully. In each of the next two lemmas we give a characterization of this
type of basis.

Lemma19.3. Let® denote the Leonard system fr¢&) and letV denote anirreducibled-
module. Letyg, v1, ..., vy denote a sequence of vectorsiinnot all 0. Then this sequence
is a@-TD-D basis forV if and only if both(i), (i) hold below.

(i) vieEVfor0<i<d.
(i) Y% gvi e EgV.
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Proof. To prove the lemma in one direction, assumgvs, ..., vy is a ®-TD-D ba-

sis for V. By Definition 19.2 there exists a nonzeyg € EqV such thaty; = Eno for

0<i <d. Apparentlyy; € E*V for 0 <i < d so (i) holds. Letl denote the identity ele-
ment of 4 and observd = Z —o EF. Applying this tono we find o = Z _o Vi and (ii)
follows. We have now proved the Iemma in one direction. To prove the lemma in the other
direction, assumey, v1, ..., vy satisfy (i), (i) above. We defingg = Zf:o v; and ob-
serveno € EoV. Using (i) we findEv; = §;;v; for 0 < i, j <d; it follows v; = Efno

for 0 < i < d. Observeng # 0 since at least one afgp, v1, ..., vy iS nonzero. Now

V0, V1, . . ., Ug IS @®@-TD-D basis forV by Definition 19.2. O

We recall some notation. Let denote a nonnegative integer and Betlenote a matrix
in Mat;+1(K). Let « denote a scalar iiK. Then B is said to haveconstant row suna
wheneverB;o + Bj1+ -+ Bijg =a for 0<i <d.

Lemma 19.4. Let @ denote the Leonard system fr@B). Let6o, 01, ..., 6, (respectively
05,061, ...,07) denote the eigenvalue sequerfeespectively dual eigenvalue sequence
of @. LetV denote anirreducibled-module and letg, vy, .. ., vg denote a basis foV . Let

B (respectivelyB*) denote the matrix ifat; . 1 (K) which representsl (respectivelyA*)
with respect to this basis. Theg, v, ..., vy is a @-TD-D basis forV if and only if (i),

(i) hold below.

(i) B has constant row suiy.
(i) B* =diagtg,67,....07).

Proof. Observe

d
AY vj=Y vi(Bio+ Bii+-- + Bia).
j i=0

Recall EqV is the eigenspace fot and eigenvalu®y. Apparently B has constant row
sumé if and only if Zf:o v; € EgV. Recall thatfor 6< i < d, E]'V is the eigenspace for
A* and eigenvalu@;*. Apparently B* = diag(6;, 07, ..., 0)) if and only if v; € EFV for

0 < i <d. The result follows in view of Lemma 19.3.0

20. The TD-D canonical map

Let @ denote the Leonard system from (3). In this section wedise define a certain
isomorphisn : A — Mat,1(K). We callb the TD-D canonical magor ¢. We describe
the entries ofA” and A*".

Definition 20.1. Let @ denote the Leonard system from (3). We define a mapl —
Mat,1(K) as follows. LetV denote an irreduciblel-module. For allX € A we let X”
denote the matrix in Mat, 1 (K) which represent¥ with respect to &-TD-D basis forV .
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We observeb: A — Mat,1(K) is an isomorphism oK-algebras. We calh the TD-D
canonical magor @.

Referring to Definition 20.1, we now descridé and A**. We begin with a comment.

Lemma 20.2. Let @ denote the Leonard system frdB). Let 6o, 61, ..., 6, (respectively
05,61, ...,07) denote the eigenvalue sequerfoespectively dual eigenvalue sequence
of @. Letb denote the TD-D canonical map fér, from Definition20.1 Then(i), (ii) hold
below.

(i) A® has constant row suip.
(i) A* =diag®g,0;,...,0%).

Proof. Combine Lemma 19.4 and Definition 20.10

Referring to Definition 20.1, we now descrila and A*> from another point of view.
We use the following notation.

Definition 20.3. Consider the set of all parameter arrays deiVe define two functions
on this set. We call these functiofsand D. Let p = (6;,6,i =0, ..., d: ¢, ¢;,j =
1,...,d) denote a parameter array ot The imagep” is the tridiagonal matrix in
Maty+1(K) which has the following entries. The diagonal entries are
i Pi+1
=0 + +
p ii 9 0[* 1 91‘* _ 0[*+1

1

for 0<i <d, where we recalpy = 0, ps41 = 0 and wher&*,, 07 1 denote indetermi-
nates. The superdiagonal and subdiagonal entries are

i-2 d
o= ]_[ 91— 0 ol =g [Th=i+16 —03)
o l_[ (9* o) SR TS

for 1 <i <d. The imagep? is the following matrix in Maj.1 (K):
D _ 4 *  k *
= diag(65, 65, ....0}).
Theorem 20.4. Let @ denote the Leonard system fr¢8). Letb denote the TD-D canon-
ical map for®, from Definition20.1 ThenA® = pT and A* = p?, wherep denotes the

parameter array for®.

Proof. Observe A* = p? by Lemma 20.2(ii)). We haveA® = p” by [29, Theo-
rem11.2]. O

We finish this section with an observation.
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Corollary 20.5. Let p = (6;,607,i =0,...,d; ¢;,¢;,j =1,...,d) denote a parameter
array overKK. Then the matrixp” has constant row suiy.

Proof. By the remark after Definition 11.1 there exists a Leonard sysbeower K which
has parameter arrgy. For notational convenience let us assuénés the Leonard sys-
tem (3). Letb denote the TD-D canonical map faér, from Definition 20.1. Them” has
constant row sump by Lemma 20.2 andt” = p” by Theorem 20.4 sp” has constant
row sumép. 0O

21. The TD-D canonical form for Leonard systems

In this section we introduce the TD-D canonical form for Leonard systems. We define
what it means for a given Leonard system to be in TD-D canonical form. We describe the
Leonard systems which are in TD-D canonical form. We show every Leonard system is
isomorphic to a unique Leonard system which is in TD-D canonical form.

Definition 21.1. Let @ denote the Leonard system from (3). Bgt61, ..., 6, (respectively
05,61, ...,07) denote the eigenvalue sequence (respectively dual eigenvalue sequence)
of @. We say® is in TD-D canonical fornwhenever (i)—(iii) hold below.

(i) A=Maty1(K).
(ii) A is tridiagonal andd* is diagonal.
(i) A has constant row sufiy and Aj, = 6.

Lemma 21.2. Let @ denote the Leonard system frqB). Assumep is in TD—-D canon-
ical form, so that4 = Mat,1(K) by Definition21.1(i). For 0 < i < d let v; denote the
vector inK?*1 which hasith coordinatel and all other coordinate®. Then the sequence
o, V1, . .., vq is @ ®-TD-D basis fork?*1, Letb denote the TD-D canonical map fdr,
from Definition20.1 Thenb is the identity map.

Proof. Observevg, v1, ..., vq is a basis foiK?*1, and that with respect to this basis each
element of Maf,1(K) represents itself. Lety, 07, ..., 6] denote the dual eigenvalue se-
quence for®. By Corollary 7.7(ii) and sincelj, = 65 we find A* = diag6;., 67, ..., 0)).
Applying Lemma 19.4 (withV = K?*1), we find vg, v1,...,vs is a @-TD-D basis
for K4t1, We mentioned each element in Mat(K) represents itself with respect to
vo, V1, ..., Vg, SOb is the identity map in view of Definition 20.1.0

Theorem 21.3. Let @ denote the Leonard system frqB), and assumed is in TD-D
canonical form. Themt = p” and A* = p?, whereT, D are from Definition20.3and p
is the parameter array fod.

Proof. Letb denote the TD-D canonical map f@r, from Definition 20.1. We assuni is
in TD-D canonical form, so is the identity map by Lemma 21.2. Applying Theorem 20.4
we findA = pT andA* = pP. O
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Corollary 21.4. Let® and®’ denote Leonard systems od€mwhich are in TD-D canon-
ical form. Then the following are equivalent

(i) @ and®’ are isomorphi¢
(i) @ =9

Proof. (i) = (ii). The Leonard system&, @’ have a common parameter array which we
denote byp. By Theorem 21.3 the Leonard pair associated with each,@b’ is equal to
pT, pP. Apparently® and®’ are in the same associate class. By this and sincg’ are
isomorphic we findd = @’ in view of Lemma 5.4.

(i) = (i). Clear. DO

Definition 21.5. Let @ denote the Leonard system from (3). ByB-D canonical form
for @ we mean a Leonard system oW&mhich is isomorphic tad and which is in TD-D
canonical form.

Theorem 21.6. Let @ denote the Leonard system frdB). Then there exists a unique
TD-D canonical form forp. This is®”, whereb denotes the TD-D canonical map fér
from Definition20.1

Proof. We first showd" is a TD-D canonical form fo@. Since® is a Leonard system in
A and since : A — Maty1(K) is an isomorphism dK-algebras, we find" is a Leonard
system in Maj, 1 (K) which is isomorphic tap. We showa®" is in TD-D canonical form.
To do this we showd” satisfies conditions (i)—(iii) of Definition 21.1. Obserg satisfies
Definition 21.1(i) since Mat, 1 (K) is the ambient algebra @f’. Observep® satisfies De-
finition 21.1(ii), (iii) by Lemma 20.2 and Theorem 20.4. We have now shdéWrsatisfies
Definition 21.1(i)—(iii) so®" is in TD-D canonical form. Apparentlg® is a Leonard sys-
tem overK which is isomorphic tad and which is in TD-D canonical form. Therefoge
is a TD-D canonical form fo® by Definition 21.5. To finish the proof we I&’ denote
a TD-D canonical form fo> and showd’ = @°. Observed’, ®° are isomorphic since
they are both isomorphic t@. The Leonard systems’, & are isomorphic and in TD-D
canonical form s@’ = " by Corollary 21.4. O

Corollary 21.7. Consider the set of Leonard systems d¢ewxhich are in TD-D canonical
form. We give a bijection from this set to the set of parameter arraysldvé&he bijection
sends each Leonard system to its own parameter array.

Proof. By the remark following Definition 11.1, the map which sends a given Leonard
system to its parameter array induces a bijection from the set of isomorphism classes of
Leonard systems ovéf to the set of parameter arrays oW€r By Theorem 21.6 each of
these isomorphism classes contains a unique element which is in TD-D canonical form.
The result follows. O



32 P. Terwilliger / Journal of Algebra 291 (2005) 1-45

22. The TD-D canonical form for Leonard pairs

In this section we define and discuss the TD-D canonical form for Leonard pairs. We
begin with a comment.

Lemma22.1. Let A, A* denote the Leonard pair from Definiti@ghl Then there exists at
most one Leonard system which is associated wjth* and which is in TD—D canonical
form.

Proof. Let @ and @’ denote Leonard systems which are associated wWitl* and
which are in TD-D canonical form. We sho# = &'. Let 6p, 01, ...,0, (respectively
6o, 01, - .., 0;) denote the eigenvalue sequencedofrespectivelyd’). Let 6,07, ...,05

(respectively63’,07',...,65') denote the dual eigenvalue sequence dor(respec-
tively @’). Observe®, @’ are in the same associate classdsois one of®, @V, oV,

@ VY. Therefored] = 6; for 0<i <d or ¢/ =6,_; for 0< i < d. Also 6}' = 0 for

0<i<doreg =65 for0<i <d.Toshowe = @' it suffices to shows; =6/ and
6 =6 for 0<i < d. Each oftp, 6 is equal to the common row sums 4fso6p = 6.

Apparentlys; = 6/ for 0 <i < d. Each ofg§, 65" is equal toA§, so65 = 65'. Apparently
6 =67 for0<i <d.We concluder =&'. O

Referring to the above lemma, we now consider those Leonard pairs for which there
exists an associated Leonard system which is in TD-D canonical form. In order to describe
these we introduce the TD-D canonical form for Leonard pairs.

Definition 22.2. Let A, A* denote the Leonard pair from Definition 4.1 anddgtoy, .. ., 64
denote an eigenvalue sequence for this pair. Weay* is in TD-D canonical form
whenever (i)—(iii) hold below.

() A=Maty;1(K).
(ii) A is tridiagonal andd* is diagonal.
(iif) A has constant row sum and this sundégsor 6.

We just defined the TD-D canonical form for Leonard pairs, and in Definition 21.1 we
defined this form for Leonard systems. We now compare these two versions. We will use
the following definition.

Definition 22.3. Let A, A* denote the Leonard pair from Definition 4.1, and assume this
pair is in TD—D canonical form. We make several comments and definitions.

(i) By Definitions 22.2(iii) and 7.2, there exists a unique eigenvalue sequenee. .. ., 6,
for A, A* such thatd has constant row sutiy. We call this thelesignated eigenvalue
sequencéor A, A*.

(i) By Corollary 7.7(ii) the sequencdy,, A7;, ..., A}, is a dual eigenvalue sequence
for A, A*. We call this thedesignated dual eigenvalue sequefareA, A*.
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(iii) By the designated Leonard systefor A, A* we mean the Leonard system which
is associated witht, A* and which has eigenvalue sequedggds, ..., 0, and dual
eigenvalue sequenck),, A7, ..., A%,

(iv) By the designated parameter arrafpr A, A* we mean the parameter array of the
designated Leonard system fér A*.

Lemma 22.4. Let A, A* denote the Leonard pair from Definitighl Then the following
are equivalent

(i) A, A*isin TD-D canonical form
(i) there exists a Leonard systebwhich is associated witlh, A* and which is in TD-D
canonical form.

Suppos€i), (i) hold. Thend is the designated Leonard systen4gfA*.

Proof. (i) = (ii). Let @ denote the designated Leonard systemAorA*, from Defini-
tion 22.3(iii). From the constructio® is associated wittd, A* and in TD-D canonical
form.

(ii) = (i). Compare Definitions 21.1 and 22.2.

Now suppose (i), (ii) hold. Thew is the designated Leonard system foy A* by
Lemma 22.1 and the proof of > (ii) above. O

Corollary 22.5. We give a bijection from the set of Leonard systems Bverich are in

TD-D canonical form, to the set of Leonard pairs o¥&mwhich are in TD-D canonical

form. The bijection sends each Leonard system to its associated Leonard pair. The inverse
bijection sends each Leonard pair to its designated Leonard system.

Proof. This is a reformulation of Lemma 22.4.0

Theorem 22.6. We give a bijection from the set of parameter arrays o¥eto the set

of Leonard pairs ovefk which are in TD—D canonical form. The bijection sends each
parameter arrayp to the Leonard paip”, p”. The inverse bijection sends each Leonard
pair to its designated parameter array.

Proof. Composing the inverse of the bijection from Corollary 21.7, with the bijection
from Corollary 22.5, we obtain a bijection from the set of parameter arrayskverthe
set of Leonard pairs ovéi which are in TD-D canonical form. Let denote a parameter
array overK and letA, A* denote the image g under this bijection. We show = p”
andA* = pP. By Corollary 21.7 there exists a unique Leonard system Bveich is in
TD-D canonical form and which has parameter apalyet us denote this system k. By
the constructiom, A* is associated witkb. Applying Theorem 21.3 té we findA = p”
andA* = pP. To finish the proof we show is the designated parameter array fgrA*.
We mentionedd, A* is associated witl® and @ is in TD-D canonical form s@ is the
designated Leonard system far A* by Corollary 22.5. We mentionegd is the parameter
array for® so p is the designated parameter array fgrA* by Definition 22.3(iv). O
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Definition 22.7. Let A, A* denote the Leonard pair from Definition 4.1. By B-D canon-
ical form for A, A* we mean a Leonard pair ov& which is isomorphic ta4, A* and
which is in TD-D canonical form.

Theorem 22.8. Let A, A* denote the Leonard pair from Definitighl We give a bijection
from the set of parameter arrays far, A* to the set of TD—D canonical forms far, A*.
This bijection sends each parameter arrayto the pairp”, pP. (The parameter arrays
for A, A* are given in Lemmd2.2.) The inverse bijection sends each TD-D canonical
form for A, A* to its designated parameter array.

Proof. Let B, B* denote a Leonard pair ov& which is in TD—D canonical form. Lep
denote the designated parameter arrayHoiB*. In view of Theorem 22.6 it suffices to
show the following are equivalent: (§, A* andB, B* are isomorphic; (i) is a parameter
array forA, A*. These statements are equivalent by Lemma 124.

Corollary 22.9. Let A, A* denote the Leonard pair from Definitighl If 4 > 1 then there
exist exactly four TD-D canonical forms fer, A*. If d = 0 then there exists a unique
TD-D canonical form forA, A*.

Proof. Immediate from Theorem 22.8 and Corollary 12.31

23. How torecognize a Leonard pair in TD-D canonical form

Let d denote a nonnegative integer andAetA™ denote matrices in Mat 1(K). Let us
assumea is tridiagonal andd* is diagonal. We give a necessary and sufficient condition
for A, A* to be a Leonard pair which is in TD-D canonical form. We present two versions
of our result.

Theorem 23.1. Let d denote a nonnegative integer and lét A* denote matrices in
Maty+1(K). AssumeA is tridiagonal andA* is diagonal. Then the following), (ii) are
equivalent.

(i) The pairA, A* is a Leonard pair inMat, 1 (K) which is in TD-D canonical form.
(i) There exists a parameter arr&y;,67,i =0, ...,d; ¢;,¢;, j=1,...,d) overK such
that

% Pi+1 .
Aii = 0; + + 0<i<a),
0 =671 60 =07,

; ;

o, D=1 =)
[Tizo(6; —6)

[Thoisa 67 — 6

ITi=i 61— 6

AL =0 (0<i<d).

1

A=

Aiic1=¢;
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Suppossi), (i) hold. Then the parameter array ifii) above is uniquely determined by
A, A*. This parameter array is the designated parameter array4pi* in the sense of
Definition22.3

Proof. This is a reformulation of Theorem 22.60

Theorem 23.2. Let d denote a nonnegative integer and lét A* denote matrices in
Maty+1(K). AssumeA is tridiagonal andA* is diagonal. Then the following), (ii) are
equivalent.

(i) The pairA, A* is a Leonard pair inMat, 1 (K) which is in TD-D canonical form.
(i) There exists a parameter arra&y;,67,i =0, ...,d; ¢;,¢;, j=1,...,d) overK such
that A has constant row suié and

Ai1i =g —;1;2()(9i*_1 — o
| [T,-56 —6p)

[Tiisa (6] — 6
ITi=i 61— 6
AL =60 (0<i<d).

1

1<i<d),

Aiic1=¢; 1<i<d),

Supposdi), (i) hold. Then the parameter array ifiil) above is uniquely determined by
A, A*. This parameter array is the designated parameter array4Apr* in the sense of
Definition22.3

Proof. Combine Theorem 23.1 and Corollary 20.53

24. Examplesof Leonard pairsin TD-D canonical form

In this section we give a few examples of Leonard pairs which are in TD-D canonical
form.

Example 24.1. Let d denote a nonnegative integer. L&tand A* denote the following
matrices in Maj1(K).

0 d 0
10 d—1
a=| 2 . A =diagd,d—2,d—4, ..., —d).
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To avoid degenerate situations, we assume the characteri®iésafero or an odd prime
greater thani. Then the pairA, A* is a Leonard pair in Mat.1(K) which is in TD-D
canonical form. The corresponding designated parameter array from Definition 22.3 is the
parameter array given in Example 10.2.

Proof. Let(6;,6,i =0,...,d;¢;,¢;,j=1,...,d) denote the parameter array from Ex-
ample 10.2. We routinely verify this parameter array satisfies Theorem 23.2(ii); applying
that theorem we findi, A* is a Leonard pair in Mat.1(K) which is in TD-D canoni-

cal form. The parameter array;, 6,i =0, ....d; ¢, ¢;, j =1,...,4d) is the designated
parameter array foA, A* by the last line of Theorem 23.2.00

Example 24.2. Letd, q, s, s*,r1, r2 be as in Example 10.3. Let and A* denote the fol-
lowing matrices in Mat,1(K). The matrixA is tridiagonal with entries

_1-¢"HA-rng)A-raq)
1-— s*q2 ’
1-q" 1 -s*¢HA - r1gH (A - r2g")
(1—k€*q2i_l)(l—s*q2i)
(1— gL —s*q" T+ (ry — s*¢)) (r2 — 5s*q")
s*qd(l— s*q2i)(1 _ S*q2i+l)
_a- g (r1 —s*q) (ra — s*q%)
s*qd(l— s*qzd)

Ao1

A= 2<i<ad),

Aji1=

(I<i<d-1,

Aga-

and constant row sum-t sq. The matrixA* is diagonal with entries
Afi=q " +5* " (0<i<d).

Then the pairA, A* is a Leonard pair in Mat, 1(K) which is in TD-D canonical form.
The corresponding designated parameter array from Definition 22.3 is the parameter array
given in Example 10.3.

Proof. Let(6;,6/,i =0,...,d;¢;,¢;,j=1,...,d) denote the parameter array from Ex-
ample 10.3. We routinely verify this parameter array satisfies Theorem 23.2(ii); applying
that theorem we findi, A* is a Leonard pair in Mat1(K) which is in TD-D canoni-

cal form. The parameter array;, 6,i =0, ...,d; ¢;,¢;, j =1,...,d) is the designated
parameter array foA, A* by the last line of Theorem 23.2.00

25. Leonard pairs A, A* with A tridiagonal and A* diagonal
Letd denote a nonnegative integer andAetA* denote matrices in Mat 1(K). Let us

assumea is tridiagonal andd* is diagonal. We give a necessary and sufficient condition
for A, A* to be a Leonard pair.
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Theorem 25.1. Let d denote a nonnegative integer and lét A* denote matrices in
Mat,+1(K). AssumeA is tridiagonal andA* is diagonal. Then the following), (ii) are
equivalent.

(i) The pairA, A* is a Leonard pair inMaty1(K).
(i) There exists a parameter arr&y;,67,i =0, ...,d; ¢;,¢;, j=1,...,d) overK such
that

A =06; + 67 _(plei*_l + Qi*(p_l;t*ﬂ O<i<d), (23)
H;‘f%w* =00 [Ti—i4267 = 6))
[T=o®; =65 TThei 0y — 60

A% =6 (0<i<d). (25)

1

Ajic1Ai—1i = ¢id;

A<i<d), (24

Supposi), (i) hold and letR denote the set of parameter arrays which sat{gjyabove.
ThenR consists of the parameter array®;, 6,i =0, ..., d; ¢;,¢;, j=1,...,d) for A,
A* which satisfyg = A7, for 0<i <d. If (6;,0,i =0,....d;¢9;,¢;,j=1,...,d) is
in R then so is(0y—;,6/,i =0,...,d;¢j,¢;,j=1,...,d) and R contains no further
elements.

Proof. (i) = (ii). We assume is tridiagonal andA* is diagonal sady,, A7q, ..., A%, IS
a dual eigenvalue sequence far A* by Corollary 7.7(ii). For notational convenience
we setf* = A% for 0 < i < d. By Definition 7.2 there exists a Leonard systebn
which is associated witd, A* and which has dual eigenvalue sequefger;. ..., 0.
Let 6g, 01, ..., 0, denote the eigenvalue sequencedarlLet g1, @2, ..., pq (respectively
qbl, P2, ..., ¢q) denote the first (respectively second) split sequence@fdiVe abbreviate
=(6:,07,i=0,...,d;9;,¢;,j=1,...,d) and observe is the parameter array far.
We showp satisfies the conditions of (ii) above. Obsepvés overK since the Leonard
pair A, A* is over K. We showp satisfies (23)—(25). Let denote the TD-D canoni-
cal map for®. We recallA” = p” and A* = p? by Theorem 20.4. Since Mat1(K)
is the ambient algebra @b the domain of> is equal to Mat;1(K). Since the range of
b is equal to Mat;1(K) as well, there exists an invertible matrfxe Mat;;1(K) such
that X> = SXS~1 for all X € Maty41(K). ObserveA* = A* so SA* = A*S. The ma-
trix A* is d|agonal with dlagonal entries mutually distinct$ds diagonal. From this and
sinceA” = SAS~ we find A), = A;; for 0<i < d andA” WA = Api1Aiq for
1<i <d. By these comments the parameter arpayatlsfles (23) and (24). From the
constructionp satisfies (25)

(i) = (). Let p:=(6;,07,i =0,...,d;¢9;,¢;,j =1,...,d) denote a parameter ar-
ray overK which satisfies (23)—(25). Leb denote a Leonard system ovErwhich has
parameter array. Recall® is only determined up to isomorphism; replaciégwith an
isomorphic Leonard system if necessary we may assirisein TD—D canonical form by
Theorem 21.6. LeB, B* denote the Leonard pair associated withThenB = p’ and
B* = pP by Theorem 21.3. ApparentlB* = A*; moreoverB;; = A;; for 0< i <d and
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Bii—1Bi_1; =A;i—14,_1, for 1 <i < d. LetS denote the diagonal matrix in Mat; (K)
which has diagonal entries; = [],,_; Ai.i_1/Bi.i_1 for 0<i < d.We observes;; # 0 for
0<i <dsoS1exists. Lets : Maty1(K) — Maty,1(K) denote the isomorphism &-
algebras which satisfies’ = X5~ for all X € Maty,1(K). From our above comments
we find B° = A and B*® = A*. By this and sinceB, B* is a Leonard pair in Mat, 1(KK)
we find A, A* is a Leonard pair in Mat, 1 (K).

Suppose (i), (ii) hold. LeRR’ denote the set of parameter arrays figrA* which have
dual eigenvalue sequendg,, A3, ..., A,. From Lemma 12 2 we find that @;, 0, i =
0,....d;¢j.¢j,j=1,...,d) is in R/ then so is(64—;,0%,i =0,....d;¢j,¢;,j =
1,...,d) and R’ contalns no further elements. We now shﬁw: R/. From the proof
of (i) = (i) above we findR’ € R. We showR C R'. Let (6;,6*,i =0,...,d; ¢, ¢;, j =
1,...,d) denote a parameter array i By the proof of (ii)= (i) above we find this array
is for A, A* in the sense of Definition 12.1. By (25) we fiafi = A}; for 0<i < d. Appar-
ently (6;,6,i =0,....d;¢;,¢;,j=1,...,d) is contained inR" and it followsR € R'.
We have now show® = R’ and the proof is complete.0

26. How to compute the parameter arrayswhich satisfy Theorem 25.1(ii)

Let d denote a positive integer and lat A* denote a Leonard pair in Mat; (K).
Let us assumeA is tridiagonal andA* is diagonal. Suppose we wish to verify that
A, A* is a Leonard pair. In order to do this it suffices to display a parameter array
6;,67,i =0,....,d:9j,¢;,j = 1,...,d) which satisfies Theorem 25.1(ii). We give a
method for obtaining this array from the entriessohnd A*. Our method is summarized as
follows. From (25) we find;* = A}, for 0 <i < d. To obtain the rest of the array we pro-
ceed in two steps: (i) we obtaily, 6; as the roots of a certain quadratic polynomial whose
coefficients are rational expressions involviAgo, A11, Aqa, A10401 anddg, 65, ..., 07,
(ii) we obtaing; (1<i <d—1) andg;, ¢; (1 <i <d) as rational expressions involving
60, 64, Aoo, Aqa @NA6g, 61, ...,07. For convenience we discuss step (ii) before step (i).
To prepare for step (ii) we give a lemma.

Lemma 26.1. Let d denote a positive integer and le8;,6,i =0,...,d;¢;,9;,j =
., d) denote a parameter array ov&t. For notational convenience we define

i—1 px% *
9/1 - 9{1—/1

%= ) g

h=0

0<i<d). (26)

Then(i)=(iii) hold below.

() 6 =60+ F=22 (1<i<d).
009_4y+ﬂﬂiﬂ%émgzgd—m.
+

(i) “rp—Ppet = G0t + 60— 6g (1<i <d —1).
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Proof. (i) Let the integeli be given. Evaluating Corollary 11.4(ii) using Corollary 11.4(i)
we findg; = ¢49; + (6; — 60)(07_1 — 6)). Solving this equation fof; we get the result.

(ii) Similar to the proof of (i) above, except use Theorem 9.1(iii) instead of Corol-
lary 11.4(ii).

(iif) Combine (i), (ii) above. O

Theorem 26.2. Let d denote a positive integer and let, A* denote a Leonard
pair in Maty1(K). AssumeA is tridiagonal and A* is diagonal. Let(6;,6,i =
0,....d;9;,¢;,j=1,...,d) denote a parameter array which satisfies Theo&i (ii).
Thend; 1<i<d-1 andg;,¢; (1<i <d) are obtained fronvg, 6,4, Ago, Ayq and

65,671, ....0; as follows.
(i) To obtaings, ¢4, 1, da Use

@1 = (Aoo — 60) (95 — 67), @a = (Aaa —02) (0] —0_1), (27)
$1= (Ao — 0a) (6§ — 7). $a = (Aga — 00) (6 — 0]_1). (28)
(i) To obtaingy, @3, ..., ps—1 recursively apply Lemm26.1(iii).

(i) To obtainéq, 62, ..., 0,1 use Lemma6.1(i)or (ii).
(iv) To obtaingy, ¢3, ..., ¢ps—1 use Theorerd.1(iv).

Proof. (i) To obtain the equation on the left (respectively right) in (27)isetO (respec-

tively i = d) in (23) and rearrange terms. Equation (28) is just (27) with the original para-

meter array replaced by the parameter actay.;, 6,i =0, ..., d: ¢, ¢;, j=1,....d).
(iiy—(iv). Clear. O

Theorem 26.3. With reference to Theore6.2 the scalarsdg, 6; are the roots of the
guadratic polynomial

(A — Ago) (A — a/e) — A10A01/e, (29)
whereg, o are defined as follows. if = 1thens =1 anda = Aj11. If d > 2then

_ O —0DE — 65107 —63)

= (30)
@5 — 60 — ;- O —65)

and

0p =05, 610565 -6f | O 1-0;65—0]

. 31
oc—05 "Por—ozer—or "Yor—e; 050 1)

a=A11

Proof. First supposd = 1. Thend, 6, are the roots of the characteristic polynomialof
and this polynomial igA — Ago) (A — A11) — A10A01. Next suppose > 2. We claim the
scalare from (30) satisfies
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05 — 65 0 +07 —0;_1—0;

=1-—
T e 66

(32)

To obtain (32) we recall by Corollary 20.5 thaf has constant row suy, wherep =
0;,0F,i=0,....d;9j,¢;, j=1,...,d). Considering row 1 op” we find p],+ p{, +

psz = 6p. We evaluate the left-hand side of this equation using Definition 20.3. In the
resulting equation we eliminatg;, g2 using Theorem 9.1(iii) and we simplify the result
using Corollary 11.4(i). Equation (32) follows and our claim is proved. To sk, are

the roots of (29) we show both

00 + 64 = Aco+ o/, (33)
0004 = Aoox/e — A10Ao1/€. (34)

To verify (33) we consider the expressiangiven in (31). We simplify this expression
by evaluatingA1; in terms off, 64, Ao, Auq @nd6g, 05, ..., 605 using (23) and Theo-
rem 26.2. Simplifying the result further using (32) we fimd-= £(6p + 6, — Ago) and (33)
follows. To verify (34) we evaluate the produdtpAogz in terms offg, 64, Aog, Agq and
03,067, ...,07 using (24) and Theorem 26.2. Simplifying the result using (30) we obtain
A10A01 = —&(Ago—00) (Ago—04)- Combining this with (33) we routinely obtain (34) O

27. Transition matricesand polynomials

Let @ denote a Leonard system ov&r and let (6;,6,i =0,...,d;¢;,¢;,j =
1,...,d) denote the corresponding parameter array. Aedenote the ambient algebra
of @. Letb: A — Mat,1(K) denote the TD-D canonical map fér, from Definition 20.1.
Lett: A — Maty1(K) denote the TD-D canonical map fér*. We describe how andg
are related. To do this we cite some facts from [29, Section 16]. Koi,§ < d we define
the scalar

9 (6 — 00) (O — 61) -+~ (6; — 0 1) (0F — 63)(0F —0F) -+~ (0F — 07_y)

Pii=)

n=0 P12 Pn

(35)

Let P denote the matrix in Mat, 1(K) which has entries
Pij=kjPi; (0<i,j<d),
whereP;; is from (35) and wheré; equals

prp2---Qj

D102+ -

times
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05 — 01O —03) -~ 05— 0))
(9;< —65) - (97 — 9;‘_1)(9;‘ — 97+1) ‘e (9;‘ —6))

for0< j <d.ThenP,o=1for0<i <d andX*P = PX" for all X € A. Let P* denote
the matrix in May 1 (K) which has entries

P =kiP;i (0<i,j<a),
whereP;; is from (35) andc;? equals

Q1P2- - Qj
Qaa—1- Pa—j+1

times

(6o — 61) (6o — B2) - - - (B0 — 6a)
0 —00)---(0; —0j-1)(0; —0j11)---(0; —0ba)

for 0< j <d. ThenPjy=1for 0<i <d andX’P* = P*X* for all X € A. Moreover
PP*=vI where

b (6o — 01) (6o — 02) - - - (B0 — 6a) (65 — O07) (05 — 65) --- (65 — 6)
B P12 Pa '

We comment on (35). For € i, j < d, P;; is a polynomial of degreg in 6; and a
polynomial of degree in 6%*. The class of polynomials which can be obtained from a pa-
rameter array in this fashion coincides with the class of polynomials which are contained
in the Askey scheme [17] and which are orthogonal with respect to a measure which has
finitely many nonzero values. This class consists of the Krawtchouk, Hahn, dual Hahn,
Racah, they-analogs of these, and some polynomials obtained frongtRacah by let-
ting ¢ = —1. See [35, Appendix A] and [1, p. 260] for more details. To illustrate this we
obtain some Krawtchouk angtRacah polynomials from the parameter arrays given in
Examples 10.2 and 10.3, respectively.

Example 27.1 [29, Section 16]Let (9;,67,i =0, ...,d;¢;,¢;,j =1,...,d) denote the
parameter array in Example 10.2. Referring to the discussion in the first part of this section,
for0<i, j <d we have

d .
(=Dn(=)n2"
Pij = X_; Tl (36)

where

(@), =a@a+1@+2)---(a+n—-1), n=012....



42 P. Terwilliger / Journal of Algebra 291 (2005) 1-45

kj = (d> K= (") (0<j<d)
J J

andv = 2¢. We haveP = P* and P? = 2] . For 0< i, j < d the expression on the right
in (36) is equal to the hypergeometric series

2F1< _i’_;j ' 2). 37)

From this we findP;; is a Krawtchouk polynomial of degregin 6; and a Krawtchouk
polynomial of degree in 9;.‘.

Moreover

Example 27.2 [29, Section 16]Let (0;,67,i =0, ...,d;¢;,¢;,j =1,...,d) denote the
parameter array in Example 10.3. Referring to the discussion in the first part of this section,
for0<i, j <d we have

d . —i. i+1. —j. * o j+1. n
7’,-,-=Z(q s Dn (g ™ On(q™ s On (5™ g7 @Ing (38)

= (g Onr2q: D@ On(g Dn

where
(a; q)p = (1—a)(1—aq)(1—aq2) e (l—aq”_l), n=0,12....

Moreover

(r1459);(r2q: 9) (4~ 9)(*q: 9) (1 — s )

 siqi(q;q)j(s*q/r1:q)(s*q/r2: @) (s*q9T2 q) j(L— s*q)’
2j+1)

J

o — (r19;9)j(r24: ) (745 9)j(sq; ¢) j (1 — sq
o stgi(q;q)j(sq/r1 @) j(sq/r2; q)j(sq4t?; q) j(1—sq)

for0< j <dand

(3¢5 as*9% q)a
rdq?(sq/r1: @a(s*q/r1: Q)a

For 0< i, j < d the expression on the right in (38) is equal to the basic hypergeometric

series
q, 6])~

By this and since1r, = ss*¢¢+1 we find P;; is ag-Racah polynomial of degregin 6;
and ag-Racah polynomial of degredn 9;!‘.

—i gqitl g=i. gtgitl
a3 q q q —dq
rig, rz2q, q
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28. Directionsfor further research
In this section we give some suggestions for further research.

Problem 28.1. Let @ denote the Leonard system from (3). ketx*, 8, 8* denote scalars

in K such thatr # 0 anda™ # 0. Recall the sequence A + 81, a*A* + B*I; E;, Ef,i =
0,...,d) is a Leonard system igl. In some cases this system is isomorphic to a relative
of @; describe all the cases where this occurs.

Problem 28.2. Let d denote a nonnegative integer. Find all Leonard pairsA* in
Maty+1(K) which satisfy the following two conditions:

(i) Aisirreducible tridiagonal,
(i) A*is lower bidiagonal with4; ;_1 =1 for 1<i <d.

Problem 28.3. Let 4 denote a nonnegative integer. Find all Leonard pairsA* in
Maty+1(K) such that each od, A* is irreducible tridiagonal.

Problem 28.4. Let 4 denote a nonnegative integer. Find all Leonard pairsA* in
Maty+1(K) which satisfy the following two conditions:

(i) each ofA, A* isirreducible tridiagonal,
(i) there exists a diagonal matrii in Maty1(K) such thatd = HA*H 1.

Problem 28.5. Let A, A* denote the Leonard pair from Definition 4.1. Determine when
does there exist invertible elemerifsU* in A which satisfy (i)—(iii) below:

() UA=AU;

(i) U*A* = A*U*;

iy vA*U"l=U*1AU*.
(iif)

This problem arises naturally in the context of a spin model contained in a Bose—Mesner
algebra ofP- and Q-polynomial type [5].

Problem 28.6. Let V denote a vector space ovEr with finite positive dimension. By
a Leonard triple onV, we mean a three-tuple of linear transformatioasV — V,
A*:V — V, A%V — V which satisfy conditions (i)—(iii) below.

() There exists a basis far with respect to which the matrix representiags diagonal
and the matrices representing and A¢ are each irreducible tridiagonal.
(i) There exists a basis fdr with respect to which the matrix representiagis diagonal
and the matrices representinigand A are each irreducible tridiagonal.
(iii) There exists a basis for with respect to which the matrix representiagis diagonal
and the matrices representidgand A* are each irreducible tridiagonal.

Find all the Leonard triples.
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Remark 28.7. Referring to Problem 28.5, let® denote the common value éfA*U 1,
U*LAU*. ThenA, A*, A® is a Leonard triple.

Conjecture 28.8. Let @ denote the Leonard system fr¢8) and let/ denote the identity
element ofd. Then for allX € A the following are equivalent

(i) both

EXE;=0 if|li—j|>1(0<i,j<d),
EfXE;=0 if|i—j|>10<i,j<d);

(i) X is aK-linear combination off, A, A*, AA*, A*A.

Conjecture 28.9. Let @ denote the Leonard system fr@B). Then forO < r < d the ele-
ments

E§ Ef,....,Ef E,, Erq1,..., Eq

together generatel.
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