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Abstract

Let K denote a field and letV denote a vector space overK with finite positive dimension. We
consider an ordered pair of linear transformationsA :V → V andB :V → V which satisfy both (i),
(ii) below.

(i) There exists a basis forV with respect to which the matrix representingA is irreducible tridiag-
onal and the matrix representingB is diagonal.

(ii) There exists a basis forV with respect to which the matrix representingA is diagonal and the
matrix representingB is irreducible tridiagonal.

We call such a pair aLeonard pair onV . We introduce two canonical forms for Leonard pa
We call these theTD–D canonical formand theLB–UB canonical form. In the TD–D canonica
form the Leonard pair is represented by an irreducible tridiagonal matrix and a diagonal m
subject to a certain normalization. In the LB–UB canonical form the Leonard pair is repres
by a lower bidiagonal matrix and an upper bidiagonal matrix, subject to a certain normaliz
We describe the two canonical forms in detail. As an application we obtain the following re
Given square matricesA,B over K, with A tridiagonal andB diagonal, we display a necessa
and sufficient condition forA,B to represent a Leonard pair. Given square matricesA,B over K,
with A lower bidiagonal andB upper bidiagonal, we display a necessary and sufficient conditio
E-mail address:terwilli@math.wisc.edu.

0021-8693/$ – see front matter 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.05.033



2 P. Terwilliger / Journal of Algebra 291 (2005) 1–45

roblems

e
e ma-
nal,

nzero.

-
ir

etween

cussed
ailed

arise
a
the

con-
bject
been
ssocia-

ciation
A,B to represent a Leonard pair. We briefly discuss how Leonard pairs correspond to theq-Racah
polynomials and some related polynomials in the Askey scheme. We present some open p
concerning Leonard pairs.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We begin by recalling the notion of aLeonard pair[16,27–29,35,36]. We will use th
following terms. Throughout this paper, when we refer to a matrix, we mean a squar
trix. A matrix is calledtridiagonalwhenever each nonzero entry lies on either the diago
the subdiagonal, or the superdiagonal. A tridiagonal matrix is calledirreduciblewhenever
each entry on the subdiagonal is nonzero and each entry on the superdiagonal is no

We now define a Leonard pair. For the rest of this paperK will denote a field.

Definition 1.1 [35]. Let V denote a vector space overK with finite positive dimension. By
a Leonard pair onV we mean an ordered pair of linear transformationsA :V → V and
A∗ :V → V which satisfy both (i), (ii) below.

(i) There exists a basis forV with respect to which the matrix representingA is irreducible
tridiagonal and the matrix representingA∗ is diagonal.

(ii) There exists a basis forV with respect to which the matrix representingA is diagonal
and the matrix representingA∗ is irreducible tridiagonal.

Note 1.2. According to a common notational conventionA∗ denotes the conjugate
transpose ofA. We emphasize we are not using this convention. In a Leonard paA,
A∗, the linear transformationsA andA∗ are arbitrary subject to (i), (ii) above.

We give some background on Leonard pairs. There is a correspondence b
Leonard pairs and a family of orthogonal polynomials consisting of theq-Racah polynomi-
als and some related polynomials in the Askey scheme. This correspondence is dis
in [28,29], [35, Appendix A] and in Section 27 below. Reference [17] contains det
information about the Askey scheme.

Leonard pairs play a role in representation theory. For instance Leonard pairs
naturally in the representation theory of the Lie algebrasl2 [16], the quantum algebr
Uq(sl2) ([18–22], [25, Chapter 4], [27,36]), the Askey–Wilson algebra [7–9,37] and
tridiagonal algebra [16,35,36].

Leonard pairs play a role in combinatorics. For instance Leonard pairs can be
structed from certain partially ordered sets [28]. Also, there exists a combinatorial o
called aP - andQ-polynomial association scheme [1,2,24,30,34]. Leonard pairs have
used to describe certain irreducible modules for the subconstituent algebra of these a
tion schemes [31–33]. See [3–6,16] for more information on Leonard pairs and asso

schemes.
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Leonard pairs are closely related to the work of Grünbaum and Haine on the “bisp
problem” [11,12]. See [10,13–15] for related work.

The rest of this introduction contains a detailed summary of the present paper.
In this paper we introduce two canonical forms for Leonard pairs. The first of t

is called theTD–D canonical form. In this form the Leonard pair is represented by
irreducible tridiagonal matrix and a diagonal matrix, subject to a certain normalizatio
describe the second form we make a definition. A matrix is said to belower bidiagonal
whenever each nonzero entry lies on either the diagonal or the subdiagonal. A ma
said to beupper bidiagonalwhenever its transpose is lower bidiagonal. We call our sec
form theLB–UB canonical form. In this form the Leonard pair is represented by a low
bidiagonal matrix and an upper bidiagonal matrix, subject to a certain normalization

We fix some notation. Letd denote a nonnegative integer. We let Matd+1(K) denote the
K-algebra consisting of alld + 1 byd + 1 matrices which have entries inK. We index the
rows and columns by 0,1, . . . , d . Any K-algebra which is isomorphic to Matd+1(K) will
be called amatrix algebra overK of diameterd .

Before proceeding we sharpen our concept of a Leonard pair. LetA denote a matrix
algebra overK and letV denote an irreducible leftA-module. By aLeonard pair inA we
mean an ordered pair of elements taken fromA which act onV as a Leonard pair in th
sense of Definition 1.1. LetA, A∗ denote a Leonard pair inA. ThenA andA∗ together
generateA [29, Corollary 3.2]. By aLeonard pair overK we mean a sequenceA, A, A∗
whereA is a matrix algebra overK andA, A∗ is a Leonard pair inA. We callA the
ambient algebraand suppress it in the notation, referring only toA, A∗. Let A, A∗ denote
a Leonard pair overK. By thediameterof this pair we mean the diameter of its ambie
algebra. By theunderlying modulefor this pair we mean an irreducible left module for
ambient algebra. For the rest of this section, when we refer to a scalar we mean an e
of K. When we refer to a Leonard pair it is assumed to be overK.

We recall the notion of aneigenvalue sequencefor a Leonard pair. LetA, A∗ denote a
Leonard pair. By definition there exists a basis for the underlying module with resp
which the matrix representingA is diagonal and the matrix representingA∗ is irreducible
tridiagonal. In the matrix representingA the diagonal entries are the eigenvalues ofA and it
turns out these are mutually distinct [35, Lemma 1.3]. Therefore the sequence of di
entries gives an ordering of the eigenvalues ofA. We call this sequence aneigenvalue
sequencefor A, A∗. Given an eigenvalue sequence forA, A∗, if we invert the order of the
sequence we get another eigenvalue sequence forA, A∗. MoreoverA, A∗ has no further
eigenvalue sequence. To clarify this letd denote the diameter ofA, A∗. ThenA, A∗ has
exactly two eigenvalue sequences ifd � 1 and a single eigenvalue sequence ifd = 0. By a
dual eigenvalue sequencefor A, A∗ we mean an eigenvalue sequence for the Leonard
A∗, A.

A Leonard systemis essentially a Leonard pair, together with an eigenvalue sequ
and a dual eigenvalue sequence for that pair. For the duration of this section we ta
as the definition of a Leonard system. (In the main part of our paper we will defi
Leonard system in a slightly different manner in which the eigenvalues are replac
their corresponding primitive idempotents.)

We mentioned each Leonard system involves a Leonard pair; we call this pair tas-

sociatedLeonard pair. The set of Leonard systems associated with a given Leonard pair
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will be called theassociate classfor that pair. In order to describe the associate cla
we use the following notation. LetΦ denote a Leonard system. If we invert the order
on the eigenvalue sequence ofΦ we get a Leonard system which we denote byΦ⇓. If
we instead invert the ordering on the dual eigenvalue sequence ofΦ we get a Leonard
system which we denote byΦ↓. We view↓,⇓ as permutations on the set of all Leona
systems. These permutations are commuting involutions and therefore induce an a
the Klein 4-group on the set of all Leonard systems. The orbits of this action coincide
the associate classes.

We discuss the notion ofisomorphismfor Leonard pairs and Leonard systems. LetA,
A∗ andB, B∗ denote Leonard pairs. By anisomorphism of Leonard pairs fromA, A∗ to
B, B∗ we mean an isomorphism ofK-algebras from the ambient algebra ofA, A∗ to the
ambient algebra ofB, B∗ which sendsA to B andA∗ to B∗. We sayA, A∗ andB, B∗ are
isomorphicwhenever there exists an isomorphism of Leonard pairs fromA, A∗ to B, B∗.
We say two given Leonard systems areisomorphicwhenever

(i) their associated Leonard pairs are isomorphic;
(ii) their eigenvalue sequences coincide; and

(iii) their dual eigenvalue sequences coincide.

The set of Leonard systems is partitioned into both isomorphism classes and as
classes. These partitions are related as follows. LetA, A∗ denote a Leonard pair and letd

denote the diameter. Ifd � 1 then the corresponding associate class contains four Leo
systems and these are mutually nonisomorphic. Ifd = 0 then the corresponding associa
class contains a single Leonard system.

Before proceeding with Leonard systems we introduce the notion of aparameter array.
A parameter array is a finite sequence of scalars which satisfy a certain list of equatio
inequalities. We care about parameter arrays because it turns out they are in bijecti
the isomorphism classes of Leonard systems. A parameter array is defined as follo
d denote a nonnegative integer. By aparameter array of diameterd we mean a sequenc
of scalars (θi, θ

∗
i , i = 0, . . . , d ; ϕj ,φj , j = 1, . . . , d) which satisfy (i)–(v) below.

(i) ϕi �= 0, φi �= 0 (1� i � d).

(ii) θi �= θj , θ∗
i �= θ∗

j if i �= j (0� i, j � d).

(iii) ϕi = φ1
∑i−1

h=0
θh−θd−h

θ0−θd
+ (θ∗

i − θ∗
0 )(θi−1 − θd) (1 � i � d).

(iv) φi = ϕ1
∑i−1

h=0
θh−θd−h

θ0−θd
+ (θ∗

i − θ∗
0 )(θd−i+1 − θ0) (1� i � d).

(v) The expressions

θi−2 − θi+1

θi−1 − θi

,
θ∗
i−2 − θ∗

i+1

θ∗
i−1 − θ∗

i

are equal and independent ofi for 2� i � d − 1.
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We give a bijection from the set of isomorphism classes of Leonard systems to t
of parameter arrays. LetΦ denote a Leonard system. ToΦ we attach the following fou
sequences of scalars. The first two sequences are the eigenvalue sequence ofΦ and the
dual eigenvalue sequence ofΦ. Let us denote these byθ0, θ1, . . . , θd andθ∗

0 , θ∗
1 , . . . , θ∗

d ,
respectively. By a slightly technical construction which we omit for now, we obta
third sequence of scalarsϕ1, ϕ2, . . . , ϕd . We call this thefirst split sequenceof Φ. We let
φ1, φ2, . . . , φd denote the first split sequence forΦ⇓ and call this thesecond split sequenc
of Φ. By [35, Theorem 1.9] a sequence of scalarsp = (θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j =

1, . . . , d) is a parameter array if and only if there exists a Leonard systemΦ with eigen-
value sequenceθ0, θ1, . . . , θd , dual eigenvalue sequenceθ∗

0 , θ∗
1 , . . . , θ∗

d , first split sequence
ϕ1, ϕ2, . . . , ϕd , and second split sequenceφ1, φ2, . . . , φd . If Φ exists thenΦ is unique up
to isomorphism. In this case we callp theparameter array ofΦ. The map which sends
Leonard system to its parameter array induces the desired bijection from the set of i
phism classes of Leonard systems to the set of parameter arrays.

Earlier we described an action of the Klein 4-group on the set of Leonard sys
The above bijection induces an action of the same group on the set of parameter
We now describe this action. LetΦ denote a Leonard system and letp = (θi, θ

∗
i , i =

0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote the parameter array ofΦ. The parameter array o
Φ↓ is p↓ wherep↓ := (θi, θ

∗
d−i , i = 0, . . . , d;φd−j+1, ϕd−j+1, j = 1, . . . , d). The pa-

rameter array ofΦ⇓ is p⇓ where p⇓ := (θd−i , θ
∗
i , i = 0, . . . , d;φj ,ϕj , j = 1, . . . , d)

[35, Theorem 1.11].
Let A, A∗ denote a Leonard pair. By aparameter array ofA, A∗ we mean the paramete

array of an associated Leonard system. We observe that ifp is a parameter array ofA, A∗
then so arep↓, p⇓, p↓⇓ andA, A∗ has no further parameter arrays. We comment on
distinctness of these arrays. Letd denote the diameter ofA, A∗. Thenp, p↓, p⇓, p↓⇓
are mutually distinct ifd � 1 and identical ifd = 0. ThereforeA, A∗ has exactly four
parameter arrays ifd � 1 and just one parameter array ifd = 0.

We now describe the TD–D canonical form.
We define what it means for a given Leonard system to be in TD–D canonical form

Φ denote a Leonard system with eigenvalue sequenceθ0, θ1, . . . , θd and dual eigenvalu
sequenceθ∗

0 , θ∗
1 , . . . , θ∗

d . LetA, A∗ denote the associated Leonard pair. ThenΦ is in TD–D
canonical formwhenever

(i) the ambient algebra ofA, A∗ is Matd+1(K);
(ii) A is tridiagonal andA∗ is diagonal;

(iii) A has constant row sumθ0 andA∗
00 = θ∗

0 .

We describe the Leonard systems which are in TD–D canonical form. In order to d
we consider the set of parameter arrays. We define two functions on this set. We ca
functionsT andD. Let p = (θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote a parame

ter array. The imagepT is the tridiagonal matrix in Matd+1(K) which has the following
entries. The diagonal entries are

T ϕi ϕi+1

pii = θi +

θ∗
i − θ∗

i−1
+

θ∗
i − θ∗

i+1
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for 0 � i � d , whereϕ0 = 0, ϕd+1 = 0 and whereθ∗−1, θ
∗
d+1 denote indeterminates. Th

superdiagonal and subdiagonal entries are

pT
i−1,i = ϕi

∏i−2
h=0(θ

∗
i−1 − θ∗

h )∏i−1
h=0(θ

∗
i − θ∗

h )
, pT

i,i−1 = φi

∏d
h=i+1(θ

∗
i − θ∗

h )∏d
h=i (θ

∗
i−1 − θ∗

h )

for 1 � i � d . The imagepD is diag(θ∗
0 , θ∗

1 , . . . , θ∗
d ). The significance ofT andD is the

following. Given a Leonard system in TD–D canonical form the associated Leonar
is pT , pD wherep denotes the corresponding parameter array.

Let Φ denote a Leonard system. By aTD–D canonical form forΦ, we mean a Leonar
system which is isomorphic toΦ and which is in TD–D canonical form. We show the
exists a unique TD–D canonical form forΦ.

Let A, A∗ denote a Leonard pair and consider its set of associated Leonard sy
From the construction this set contains at most one Leonard system which is in
canonical form. The case in which this Leonard system exists is of interest; to descri
case we define a TD–D canonical form for Leonard pairs. We do this as follows.

We define what it means for a Leonard pair to be in TD–D canonical form. LetA, A∗
denote a Leonard pair and letθ0, θ1, . . . , θd denote an eigenvalue sequence for this p
ThenA, A∗ is in TD–D canonical formwhenever

(i) the ambient algebra ofA, A∗ is Matd+1(K);
(ii) A is tridiagonal andA∗ is diagonal;

(iii) A has constant row sum and this sum isθ0 or θd .

We just defined the TD–D canonical form for Leonard pairs and earlier we define
form for Leonard systems. These two versions are related as follows. A given Leona
is in TD–D canonical form if and only if there exists an associated Leonard system w
is in TD–D canonical form.

Let A, A∗ denote a Leonard pair. By aTD–D canonical form forA, A∗ we mean a
Leonard pair which is isomorphic toA, A∗ and which is in TD–D canonical form. W
describe the TD–D canonical forms forA, A∗. To do this we give a bijection from the s
of parameter arrays forA, A∗ to the set of TD–D canonical forms forA, A∗. This bijection
sends each parameter arrayp to the pairpT , pD . To clarify this letd denote the diamete
of A, A∗. If d � 1 then there exists exactly four TD–D canonical forms forA, A∗. If d = 0
then there exists a unique TD–D canonical form forA, A∗.

We give several applications of our theory. For the first application letd denote a non
negative integer and letA, A∗ denote matrices in Matd+1(K). We give a necessary an
sufficient condition forA, A∗ to be a Leonard pair in Matd+1(K) which is in TD–D canon-
ical form. Indeed we show the following are equivalent:

(i) the pairA, A∗ is a Leonard pair in Matd+1(K) which is in TD–D canonical form;

(ii) there exists a parameter arrayp of diameterd such thatA = pT andA∗ = pD .
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Our second application is similar to the first but more general. Again letd denote a
nonnegative integer and letA, A∗ denote matrices in Matd+1(K). Let us assumeA is
tridiagonal andA∗ is diagonal. We give a necessary and sufficient condition forA, A∗ to
be a Leonard pair in Matd+1(K). This condition is given in Theorem 25.1.

This completes our description of the TD–D canonical form. Our description o
LB–UB canonical form runs along similar lines; we save the details for the main bo
the paper. We comment that in the main body of the paper it will be convenient to tre
LB–UB canonical form before the TD–D canonical form.

As we proceed through the paper we illustrate our results using two running exa
which involve specific parameter arrays.

Near the end of the paper we discuss how Leonard pairs correspond to theq-Racah
polynomials and some related polynomials in the Askey scheme. The general idea
following. Given a Leonard pairA, A∗ the corresponding polynomials give the entries
a transition matrix which takes a basis satisfying Definition 1.1(i) to a basis satisfyin
finition 1.1(ii). We compute these polynomials explicitly for our two examples. For t
examples the polynomials turn out to be Krawtchouk polynomials andq-Racah polynomi-
als.

At the end of the paper we present some open problems concerning Leonard pa

2. Leonard systems

We now begin our formal argument. Our first goal is to recall our working definitio
a Leonard system. We begin with some notation.

Let d denote a nonnegative integer. We letK
d+1 denote the vector space overK consist-

ing of all d +1 by 1 matrices which have entries inK. We index the rows by 0,1, . . . , d . We
view K

d+1 as a left module for Matd+1(K) under matrix multiplication. We observe th
module is irreducible. We letA denote aK-algebra isomorphic to Matd+1(K). From now
on when we refer to anA-module we mean a leftA-module. LetV denote an irreducible
A-module. We remark thatV is unique up to isomorphism ofA-modules, and thatV has
dimensiond + 1. Letv0, v1, . . . , vd denote a basis forV . ForX ∈ A andY ∈ Matd+1(K),
we sayY representsX with respect tov0, v1, . . . , vd wheneverXvj = ∑d

i=0 Yij vi for
0 � j � d . ForA ∈ A, we sayA is multiplicity-freewhenever it hasd + 1 distinct eigen-
values inK. AssumeA is multiplicity-free. Letθ0, θ1, . . . , θd denote an ordering of th
eigenvalues ofA, and for 0� i � d put

Ei =
∏

0�j�d
j �=i

A − θj I

θi − θj

, (1)

whereI denotes the identity ofA. We observe

(i) AEi = θiEi (0 � i � d);
(ii) EiEj = δijEi (0� i, j � d);

(iii)
∑d

i=0 Ei = I ;∑

(iv) A = d

i=0 θiEi .
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Let D denote the subalgebra ofA generated byA. Using (i)–(iv) we find the sequenc
E0,E1, . . . ,Ed is a basis for theK-vector spaceD. We callEi theprimitive idempotentof
A associated withθi . It is helpful to think of these primitive idempotents as follows. LeV

denote an irreducibleA-module. Then

V = E0V + E1V + · · · + EdV (direct sum). (2)

For 0� i � d , EiV is the (one-dimensional) eigenspace ofA in V associated with the
eigenvalueθi , andEi acts onV as the projection onto this eigenspace.

Definition 2.1. Letd denote a nonnegative integer and letA denote aK-algebra isomorphic
to Matd+1(K). Let A, A∗ denote an ordered pair consisting of multiplicity-free eleme
in A. By an idempotent sequencefor A, A∗ we mean an orderingE0,E1, . . . ,Ed of the
primitive idempotents ofA such that

EiA
∗Ej =

{
0, if |i − j | > 1,

�= 0, if |i − j | = 1
(0 � i, j � d).

We observe that ifE0,E1, . . . ,Ed is an idempotent sequence forA, A∗ then so is
Ed,Ed−1, . . . ,E0 andA, A∗ has no further idempotent sequence. By adual idempoten
sequencefor A, A∗ we mean an idempotent sequence forA∗, A.

Definition 2.2 [35]. Let d denote a nonnegative integer and letA denote aK-algebra
isomorphic to Matd+1(K). By aLeonard system inA we mean a sequence

Φ = (
A,A∗;Ei,E

∗
i , i = 0, . . . , d

)
(3)

which satisfies (i)–(iii) below.

(i) Each ofA, A∗ is a multiplicity-free element ofA.
(ii) E0,E1, . . . ,Ed is an idempotent sequence forA, A∗.

(iii) E∗
0,E∗

1, . . . ,E∗
d is a dual idempotent sequence forA,A∗.

We calld thediameterof Φ and sayΦ is overK. We callA theambient algebraof Φ.

3. The relatives of a Leonard system

A given Leonard system can be modified in several ways to get a new Leonard s
For instance, letΦ denote the Leonard system from (3), and letα, α∗, β, β∗ denote scalar
in K such thatα �= 0, α∗ �= 0. Then

(
αA + βI,α∗A∗ + β∗I ;Ei,E

∗
i , i = 0, . . . , d

)
(4)

is a Leonard system inA. Also, each of the following three sequences is a Leonard sy

in A.
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Φ∗ := (
A∗,A;E∗

i ,Ei, i = 0, . . . , d
)
,

Φ↓ := (
A,A∗;Ei,E

∗
d−i , i = 0, . . . , d

)
,

Φ⇓ := (
A,A∗;Ed−i ,E

∗
i , i = 0, . . . , d

)
.

We refer toΦ∗ (respectivelyΦ↓; respectivelyΦ⇓) as thedual (respectivelyfirst inversion;
respectivelysecond inversion) of Φ. Viewing ∗, ↓, ⇓ as permutations on the set of a
Leonard systems,

∗2 = ↓2 = ⇓2 = 1, (5)

⇓∗ = ∗↓, ↓∗ = ∗⇓, ↓⇓ = ⇓↓. (6)

The group generated by symbols∗, ↓, ⇓ subject to the relations (5), (6) is the dihed
groupD4. We recallD4 is the group of symmetries of a square, and has 8 elements
parently∗, ↓, ⇓ induce an action ofD4 on the set of all Leonard systems. Two Leon
systems will be calledrelativeswhenever they are in the same orbit of thisD4 action. The
relatives ofΦ are as follows:

Name Relative

Φ (A,A∗;Ei,E
∗
i
, i = 0, . . . , d)

Φ↓ (A,A∗;Ei,E
∗
d−i

, i = 0, . . . , d)

Φ⇓ (A,A∗;Ed−i ,E
∗
i
, i = 0, . . . , d)

Φ↓⇓ (A,A∗;Ed−i ,E
∗
d−i

, i = 0, . . . , d)

Φ∗ (A∗,A;E∗
i
,Ei, i = 0, . . . , d)

Φ↓∗ (A∗,A;E∗
d−i

,Ei , i = 0, . . . , d)

Φ⇓∗ (A∗,A;E∗
i
,Ed−i , i = 0, . . . , d)

Φ↓⇓∗ (A∗,A;E∗
d−i

,Ed−i , i = 0, . . . , d)

4. Leonard pairs and Leonard systems

In view of our comments in the previous section, when we discuss a Leonard syst
are often not interested in the orderings of the primitive idempotents, we just care ho
elementsA, A∗ interact. This brings us back to the notion of a Leonard pair.

Definition 4.1. Letd denote a nonnegative integer and letA denote aK-algebra isomorphic
to Matd+1(K). By a Leonard pair inA we mean an ordered pairA, A∗ which satisfies
(i)–(iii) below.

(i) Each ofA, A∗ is a multiplicity-free element ofA.
(ii) There exists an idempotent sequence forA, A∗.

∗
(iii) There exists a dual idempotent sequence forA, A .
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By [35, Lemma 1.7] the preceding definition of a Leonard pair is equivalent to
definition given in the Introduction.

Let Φ denote the Leonard system from (3). Then the pairA, A∗ from that line forms a
Leonard pair inA. We say this pair isassociatedwith Φ.

Each Leonard system is associated with a unique Leonard pair. LetA, A∗ denote a
Leonard pair. By theassociate classfor A, A∗ we mean the set of Leonard systems wh
are associated withA, A∗. By Definition 4.1 this associate class contains at least
Leonard systemΦ. Apparently this associate class containsΦ, Φ↓, Φ⇓, Φ↓⇓ and no other
Leonard systems.

Let A, A∗ denote the Leonard pair from Definition 4.1. Then the pairA∗,A is a Leonard
pair inA. We call this pair thedualof A, A∗. We observe two Leonard systems are relat
if and only if their associated Leonard pairs are equal or dual.

5. Isomorphisms of Leonard pairs and Leonard systems

We recall the notion ofisomorphismfor Leonard pairs and Leonard systems. We be
with a comment.

Lemma 5.1 [29, Corollary 3.2]. Let A, A∗ denote the Leonard pair from Definition4.1.
ThenA andA∗ together generateA.

Let Φ denote the Leonard system from (3) and letσ : A → A′ denote an isomorphism
of K-algebras. We writeΦσ := (Aσ ,A∗σ ;Eσ

i ,E∗σ
i , i = 0, . . . , d) and observeΦσ is a

Leonard system inA′.

Definition 5.2. Let Φ and Φ ′ denote Leonard systems overK. By an isomorphism of
Leonard systems fromΦ to Φ ′ we mean an isomorphismσ of K-algebras from the ambien
algebra ofΦ to the ambient algebra ofΦ ′ such thatΦσ = Φ ′. By Lemma 5.1 there exists a
most one isomorphism of Leonard systems fromΦ to Φ ′. We sayΦ andΦ ′ areisomorphic
whenever this isomorphism exists.

We now consider the notion of isomorphism for Leonard pairs.
Let A, A∗ denote the Leonard pair from Definition 4.1 and letσ :A → A′ denote an

isomorphism ofK-algebras. We observe the pairAσ ,A∗σ is a Leonard pair inA′.

Definition 5.3. Let A, A∗ andB, B∗ denote Leonard pairs overK. By an isomorphism of
Leonard pairs fromA,A∗ to B, B∗ we mean an isomorphismσ of K-algebras from the
ambient algebra ofA, A∗ to the ambient algebra ofB, B∗ such thatAσ = B andA∗σ = B∗.
By Lemma 5.1 there exists at most one isomorphism of Leonard pairs fromA, A∗ to B, B∗.
We sayA,A∗ andB, B∗ areisomorphicwhenever this isomorphism exists.

We have a comment.

Lemma 5.4. LetA, A∗ denote a Leonard pair and letd denote the diameter. Ifd � 1 then

the corresponding associate class contains four Leonard systems and these are mutually
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nonisomorphic. Ifd = 0 then the corresponding associate class contains a single Leo
system.

Proof. Let Φ denote a Leonard system associated withA, A∗. Then the associate class
Φ containsΦ, Φ↓, Φ⇓, Φ↓⇓ and no other Leonard systems. Supposed � 1. ThenΦ, Φ↓,
Φ⇓, Φ↓⇓ are mutually nonisomorphic; if not the isomorphism involved would stab
each ofA, A∗ and is therefore the identity map by Lemma 5.1. Supposed = 0. ThenΦ,
Φ↓, Φ⇓, Φ↓⇓ are identical by the construction.�

We finish this section with a remark. LetA denote a matrix algebra overK. Let
σ :A → A denote any map. By the Skolem–Noether theorem [26, Corollary 9.122]σ is
an isomorphism ofK-algebras if and only if there exists an invertibleS ∈ A such that
Xσ = SXS−1 for all X ∈A.

6. The adjacency relations

Definition 6.1. Let A, A∗ denote the Leonard pair from Definition 4.1. Consider the
consisting of the primitive idempotents ofA. We define a symmetric binary relation∼ on
this set. LetE0,E1, . . . ,Ed denote an idempotent sequence forA, A∗. For 0� i, j � d we
defineEi ∼ Ej whenever|i − j | = 1. We call∼ thefirst adjacency relationfor A, A∗. We
let ≈ denote the first adjacency relation for the Leonard pairA∗, A and call≈ thesecond
adjacency relationfor A, A∗.

We make several observations.

Lemma 6.2. Let A, A∗ denote the Leonard pair from Definition4.1. Let E0,E1, . . . ,Ed

(respectivelyE∗
0,E∗

1, . . . ,E∗
d ) denote an ordering of the primitive idempotents ofA (re-

spectivelyA∗). ThenE0,E1, . . . , Ed is an idempotent sequence forA, A∗ if and only if
E0 ∼ E1 ∼ · · · ∼ Ed . MoreoverE∗

0,E∗
1, . . . ,E∗

d is a dual idempotent sequence forA, A∗
if and only ifE∗

0 ≈ E∗
1 ≈ · · · ≈ E∗

d .

Lemma 6.3. Let A, A∗ denote the Leonard pair from Definition4.1. LetE andF denote
primitive idempotents ofA. Then the following are equivalent:

(i) E ∼ F ;
(ii) E �= F andEA∗F �= 0;

(iii) E �= F andFA∗E �= 0.

LetE∗ andF ∗ denote primitive idempotents ofA∗. Then the following are equivalent:

(i) E∗ ≈ F ∗;
(ii) E∗ �= F ∗ andE∗AF ∗ �= 0;
(iii) E∗ �= F ∗ andF ∗AE∗ �= 0.
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7. The eigenvalue sequences

Definition 7.1. Let Φ denote the Leonard system from (3). For 0� i � d we let θi

(respectivelyθ∗
i ) denote the eigenvalue ofA (respectivelyA∗) associated withEi (respec-

tively E∗
i ). We call θ0, θ1, . . . , θd the eigenvalue sequenceof Φ. We call θ∗

0 , θ∗
1 , . . . , θ∗

d

the dual eigenvalue sequenceof Φ. We observeθ0, θ1, . . . , θd are mutually distinct and
contained inK. Similarly θ∗

0 , θ∗
1 , . . . , θ∗

d are mutually distinct and contained inK.

Definition 7.2. Let A, A∗ denote a Leonard pair. By aneigenvalue sequencefor this pair,
we mean the eigenvalue sequence for an associated Leonard system. We remar
θ0, θ1, . . . , θd is an eigenvalue sequence forA, A∗ then so isθd, θd−1, . . . , θ0 andA, A∗
has no further eigenvalue sequence. By adual eigenvalue sequencefor A, A∗ we mean an
eigenvalue sequence for the Leonard pairA∗, A.

We will use the following results.

Lemma 7.3. Let d denote a nonnegative integer and letA, A∗ denote a Leonard pair in
Matd+1(K). Assume

(i) A is lower triangular; and
(ii) A∗

ij = 0 if j − i > 1 (0� i, j � d).

Then the sequence of diagonal entriesA00,A11, . . . ,Add is an eigenvalue sequence f
A, A∗. MoreoverA∗

j−1,j �= 0 for 1 � j � d .

Proof. We assume the pairA, A∗ is a Leonard pair soA is multiplicity-free. We assumeA
is lower triangular so the sequence of diagonal entriesA00,A11, . . . ,Add gives an ordering
of the eigenvalues ofA. We show this sequence is an eigenvalue sequence forA, A∗. For
0 � i � d let Ei denote the primitive idempotent ofA associated with the eigenvalueAii .
We showEj−1 ∼ Ej for 1� j � d . This will follow once we show

Ei � Ej if j − i > 1 (0 � i, j � d). (7)

We abbreviateV = K
d+1. For 0� r � d let Vr denote the subspace ofV consisting of

those vectors which have 0 in coordinates 0,1, . . . , r − 1. The matrixA is lower triangular
soAVr ⊆ Vr . The restriction ofA to Vr has eigenvaluesArr, . . . ,Add soVr = ErV +· · ·+
EdV . ApparentlyErV ⊆ Vr and moreover each ofE0, . . . ,Er−1 vanishes onVr . From
our assumption aboutA∗ we find A∗Vr ⊆ Vr−1 for 1 � r � d . Let i, j denote integers
(0� i, j � d) and assumej − i > 1. From our above comments we find

EiA
∗EjV ⊆ EiA

∗Vj ⊆ EiVj−1 = 0.

ApparentlyEiA
∗EjV = 0 soEiA

∗Ej = 0. Now Ei � Ej by Lemma 6.3. We now hav
(7) and it followsEj−1 ∼ Ej for 1� j � d . Applying Lemma 6.2 we findE0,E1, . . . ,Ed
is an idempotent sequence forA, A∗. Now A00,A11, . . . ,Add is an eigenvalue sequence
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for A, A∗ by Definition 7.2. To finish the proof we showA∗
j−1,j �= 0 for 1� j � d . Let j

be given and supposeA∗
j−1,j = 0. ThenA∗Vj ⊆ Vj . We mentioned earlier thatAVj ⊆ Vj .

The matricesA andA∗ together generate Matd+1(K) by Lemma 5.1 soXVj ⊆ Vj for all
X ∈ Matd+1(K). The spaceV is irreducible as a module for Matd+1(K), so Vj = 0 or
Vj = V . From the definition ofVj and since 1� j � d we findVj �= 0 andVj �= V . This
is a contradiction and we concludeA∗

j−1,j �= 0. �
Lemma 7.4. Let d denote a nonnegative integer and letA, A∗ denote a Leonard pair in
Matd+1(K). Assume

(i) A is upper triangular; and
(ii) A∗

ij = 0 if i − j > 1 (0� i, j � d).

Then the sequence of diagonal entriesA00,A11, . . . ,Add is an eigenvalue sequence f
A, A∗. MoreoverA∗

i,i−1 �= 0 for 1� i � d .

Proof. Using Definition 4.1 we findAt,A∗t is a Leonard pair in Matd+1(K), where t

denotes transpose. To obtain the result apply Lemma 7.3 to this pair.�
We give a corollary to Lemmas 7.3 and 7.4. In order to state it we make a definitio

Definition 7.5. Let d denote a nonnegative integer and letA denote a matrix in Matd+1(K).
We sayA is lower bidiagonalwhenever each nonzero entry lies on either the diag
or the subdiagonal. We sayA is upper bidiagonalwhenever the transpose ofA is lower
bidiagonal.

Corollary 7.6. Letd denote a nonnegative integer and letA, A∗ denote a Leonard pair in
Matd+1(K). AssumeA is lower bidiagonal andA∗ is upper bidiagonal. Then(i)–(iv) hold
below.

(i) The sequenceA00,A11, . . . ,Add is an eigenvalue sequence forA, A∗.
(ii) Ai,i−1 �= 0 for 1� i � d .

(iii) The sequenceA∗
00,A

∗
11, . . . ,A

∗
dd is a dual eigenvalue sequence forA, A∗.

(iv) A∗
i−1,i �= 0 for 1� i � d .

Proof. (i) and (iv). Apply Lemma 7.3 toA, A∗.
(ii) and (iii). Apply Lemma 7.4 to the Leonard pairA∗, A. �
The following fact may seem intuitively clear from Definition 4.1, but strictly speak

it requires proof.

Corollary 7.7. Letd denote a nonnegative integer and letA, A∗ denote a Leonard pair in

Matd+1(K). AssumeA is tridiagonal andA∗ is diagonal. Then(i), (ii) hold below.
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(i) A is irreducible.
(ii) The sequenceA∗

00,A
∗
11, . . . ,A

∗
dd is a dual eigenvalue sequence forA, A∗.

Proof. (i) Applying Lemma 7.4 to the Leonard pairA∗, A we find Ai,i−1 �= 0 for 1 �
i � d . Applying Lemma 7.3 toA∗, A we findAi−1,i �= 0 for 1� i � d .

(ii) Apply Lemma 7.3 to the Leonard pairA∗, A. �

8. The split sequences

In Definition 7.1 we defined the eigenvalue sequence and the dual eigenvalue se
of a Leonard system. There are two more parameter sequences of interest to us. In
define these, we review some results from [16,29,35]. LetΦ denote the Leonard system
(3) and letV denote an irreducibleA-module. For 0� i � d we define

Ui = (
E∗

0V + E∗
1V + · · · + E∗

i V
) ∩ (EiV + Ei+1V + · · · + EdV ). (8)

We showed in [35, Lemma 3.8] that each ofU0,U1, . . . ,Ud has dimension 1, and that

V = U0 + U1 + · · · + Ud (direct sum). (9)

The elementsA andA∗ act on theUi as follows. By [35, Lemma 3.9], both

(A − θiI )Ui = Ui+1 (0 � i � d − 1), (A − θdI )Ud = 0, (10)
(
A∗ − θ∗

i I
)
Ui = Ui−1 (1� i � d),

(
A∗ − θ∗

0I
)
U0 = 0, (11)

where theθi , θ∗
i are from Definition 7.1. Pick an integeri (1 � i � d). By (11) we find

(A∗ − θ∗
i I )Ui = Ui−1 and by (10) we find(A − θi−1I )Ui−1 = Ui . ApparentlyUi is an

eigenspace for(A − θi−1I )(A∗ − θ∗
i I ) and the corresponding eigenvalue is a nonz

element ofK. We denote this eigenvalue byϕi . We display a basis forV which illuminates
the significance ofϕi . Settingi = 0 in (8) we findU0 = E∗

0V . Combining this with (10)
we find

Ui = (A − θi−1I ) · · · (A − θ1I )(A − θ0I )E∗
0V (0� i � d). (12)

Let η∗
0 denote a nonzero vector inE∗

0V . From (12) we find that for 0� i � d the vector
(A − θi−1I ) · · · (A − θ0I )η∗

0 is a basis forUi . From this and (9) we find the sequence
(A − θi−1I ) · · · (A − θ1I )(A − θ0I )η∗
0 (0 � i � d) (13)
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([23],
is a basis forV . With respect to this basis the matrices representingA andA∗ are




θ0 0
1 θ1

1 θ2
· ·

· ·
0 1 θd




,




θ∗
0 ϕ1 0

θ∗
1 ϕ2

θ∗
2 ·

· ·
· ϕd

0 θ∗
d




, (14)

respectively. We call the sequenceϕ1, ϕ2, . . . , ϕd the first split sequenceof Φ. We let
φ1, φ2, . . . , φd denote the first split sequence forΦ⇓ and call this thesecond split sequenc
of Φ. For notational convenience we defineϕ0 = 0, ϕd+1 = 0, φ0 = 0, φd+1 = 0.

9. A classification of Leonard systems

We recall our classification of Leonard systems.

Theorem 9.1 [35, Theorem 1.9]. Letd denote a nonnegative integer and let

θ0, θ1, . . . , θd; θ∗
0 , θ∗

1 , . . . , θ∗
d ; ϕ1, ϕ2, . . . , ϕd ; φ1, φ2, . . . , φd

denote scalars inK. Then there exists a Leonard systemΦ over K with eigenvalue
sequenceθ0, θ1, . . . , θd , dual eigenvalue sequenceθ∗

0 , θ∗
1 , . . . , θ∗

d , first split sequence
ϕ1, ϕ2, . . . , ϕd and second split sequenceφ1, φ2, . . . , φd if and only if (i)–(v) hold below.

(i) ϕi �= 0, φi �= 0 (1� i � d).

(ii) θi �= θj , θ∗
i �= θ∗

j if i �= j (0 � i, j � d).

(iii) ϕi = φ1
∑i−1

h=0
θh−θd−h

θ0−θd
+ (θ∗

i − θ∗
0 )(θi−1 − θd) (1 � i � d).

(iv) φi = ϕ1
∑i−1

h=0
θh−θd−h

θ0−θd
+ (θ∗

i − θ∗
0 )(θd−i+1 − θ0) (1� i � d).

(v) The expressions

θi−2 − θi+1

θi−1 − θi

,
θ∗
i−2 − θ∗

i+1

θ∗
i−1 − θ∗

i

are equal and independent ofi for 2� i � d − 1.

Moreover, if (i)–(v) hold above thenΦ is unique up to isomorphism of Leonard system

We view Theorem 9.1 as a linear algebraic version of a theorem of D.A. Leonard

[1, p. 260]). This is discussed in [35].
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10. The notion of a parameter array

In view of Theorem 9.1 we make the following definition.

Definition 10.1. Let d denote a nonnegative integer. By aparameter array overK with di-
ameterd , we mean a sequence(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) of scalars taken

from K which satisfy conditions (i)–(v) in Theorem 9.1.

We give several examples of a parameter array.

Example 10.2. Let d denote a nonnegative integer and consider the following scalarsK.

θi = d − 2i, θ∗
i = d − 2i (0 � i � d),

ϕi = −2i(d − i + 1), φi = 2i(d − i + 1) (1 � i � d).

To avoid degenerate situations, we assume the characteristic ofK is zero or an odd prime
greater thand . Then the sequence(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) is a paramete

array overK.

Proof. The sequence(θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) satisfies Theorem 9.1(i)–(

so this sequence is a parameter array overK. �
Example 10.3. Let d denote a nonnegative integer. Letq, s, s∗, r1, r2 denote nonzero
scalars inK such thatr1r2 = ss∗qd+1. Assume none ofqi , r1q

i , r2q
i , s∗qi/r1, s∗qi/r2 is

equal to 1 for 1� i � d and that neither ofsqi , s∗qi is equal to 1 for 2� i � 2d . Define

θi = q−i + sqi+1, θ∗
i = q−i + s∗qi+1

for 0� i � d and

ϕi = q1−2i
(
1− qi

)(
1− qi−d−1)(1− r1q

i
)(

1− r2q
i
)
,

φi = q1−2i
(
1− qi

)(
1− qi−d−1)(r1 − s∗qi

)(
r2 − s∗qi

)/
s∗

for 1� i � d . Then the sequence(θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) is a paramete

array overK.

Proof. The sequence(θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) satisfies Theorem 9.1(i)–(

so this sequence is a parameter array overK. �

11. Parameter arrays and Leonard systems

In this section we discuss the relationship between parameter arrays and Leona

tems.
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Definition 11.1. Let Φ denote a Leonard system overK, with eigenvalue sequenc
θ0, θ1, . . . , θd , dual eigenvalue sequenceθ∗

0 , θ∗
1 , . . . , θ∗

d , first split sequenceϕ1, ϕ2, . . . , ϕd ,
and second split sequenceφ1, φ2, . . . , φd . By Theorem 9.1 the sequence(θi, θ

∗
i , i =

0, . . . , d;ϕj ,φj , j = 1, . . . , d) is a parameter array overK. We call this array thepara-
meter array ofΦ.

We remark that by Theorem 9.1 the map which sends a given Leonard system
parameter array induces a bijection from the set of isomorphism classes of Leonard s
overK to the set of parameter arrays overK.

Earlier we discussed several ways to modify a given Leonard system to get
Leonard system. We now consider how these modifications affect the correspondi
rameter array.

Lemma 11.2. LetΦ denote the Leonard system from(3)and let(θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj ,

j = 1, . . . , d) denote the corresponding parameter array. Letα, α∗, β, β∗ denote scalars
in K such thatα �= 0, α∗ �= 0. Then the Leonard system(4) has parameter array

(
αθi + β,α∗θ∗

i + β∗, i = 0, . . . , d; αα∗ϕj ,αα∗φj , j = 1, . . . , d
)
.

Proof. Routine. �
Lemma 11.3 [35, Theorem 1.11]. LetΦ denote a Leonard system and letp = (θi, θ

∗
i , i =

0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote the corresponding parameter array. Then(i)–(iii)
hold below.

(i) The parameter array ofΦ∗ is p∗ wherep∗ := (θ∗
i , θi , i = 0, . . . , d;ϕj ,φd−j+1, j =

1, . . . , d).

(ii) The parameter array ofΦ↓ isp↓ wherep↓ := (θi, θ
∗
d−i , i = 0, . . . , d;φd−j+1, ϕd−j+1,

j = 1, . . . , d).

(iii) The parameter array ofΦ⇓ is p⇓ wherep⇓ := (θd−i , θ
∗
i , i = 0, . . . , d;φj ,ϕj , j =

1, . . . , d).

The following equations will be useful.

Corollary 11.4. Let d denote a positive integer and let(θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j =

1, . . . , d) denote a parameter array overK. Then(i)–(iii) hold below.

(i) θi−θd−i

θ0−θd
= θ∗

i −θ∗
d−i

θ∗
0 −θ∗

d
(0� i � d).

(ii) ϕi = φd

∑i−1
h=0

θh−θd−h

θ0−θd
+ (θi − θ0)(θ

∗
i−1 − θ∗

d ) (1� i � d).

(iii) φi = ϕd

∑i−1
h=0

θh−θd−h

θ0−θd
+ (θd−i − θd)(θ∗

i−1 − θ∗
d ) (1 � i � d).

Proof. Each of (i)–(iii) is an algebraic consequence of the conditions in Theorem
Below we give a more intuitive proof using Lemma 11.3. LetΦ denote a Leonard syste

overK which has the given parameter array.
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(i) Applying Theorem 9.1(iv) toΦ∗ and using Lemma 11.3(i) we obtain

φd−i+1 = ϕ1

i−1∑
h=0

θ∗
h − θ∗

d−h

θ∗
0 − θ∗

d

+ (θi − θ0)
(
θ∗
d−i+1 − θ∗

0

)
(15)

for 1 � i � d . To finish the proof, in (15) replacei by d − i + 1 and compare the resu
with Theorem 9.1(iv).

(ii) Apply Theorem 9.1(iii) to Φ∗ and simplify the result using (i) above an
Lemma 11.3(i).

(iii) Apply (ii) above toΦ⇓ and use Lemma 11.3(iii). �

12. The parameter arrays of a Leonard pair

In this section we define the notion of a parameter array for a Leonard pair.

Definition 12.1. Let A, A∗ denote a Leonard pair. By aparameter array ofA, A∗ we mean
the parameter array of an associated Leonard system.

The parameter arrays of a Leonard pair are related as follows.

Lemma 12.2. Let A, A∗ denote the Leonard pair from Definition4.1. Letp = (θi, θ
∗
i , i =

0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote a parameter array ofA, A∗. Then the following are
parameter arrays ofA, A∗.

p = (
θi, θ

∗
i , i = 0, . . . , d; ϕj ,φj , j = 1, . . . , d

)
,

p↓ = (
θi, θ

∗
d−i , i = 0, . . . , d; φd−j+1, ϕd−j+1, j = 1, . . . , d

)
,

p⇓ = (
θd−i , θ

∗
i , i = 0, . . . , d; φj ,ϕj , j = 1, . . . , d

)
,

p↓⇓ = (
θd−i , θ

∗
d−i , i = 0, . . . , d; ϕd−j+1, φd−j+1, j = 1, . . . , d

)
.

The Leonard pairA, A∗ has no further parameter arrays.

Proof. By Definition 12.1 there exists a Leonard systemΦ which is associated withA,
A∗ and which has parameter arrayp. The above sequences are the parameter arrays fΦ,
Φ↓, Φ⇓, Φ↓⇓ and these are the Leonard systems associated withA, A∗. �
Corollary 12.3. Let A, A∗ denote the Leonard pair from Definition4.1. ThenA, A∗ has
exactly four parameter arrays ifd � 1 and a unique parameter array ifd = 0.

Proof. Referring to Lemma 12.2, the parameter arraysp, p↓, p⇓, p↓⇓ are mutually dis-
tinct if d � 1 and identical ifd = 0. �
We have a comment.
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Lemma 12.4. Let A, A∗ denote a Leonard pair overK and letB, B∗ denote a Leonard
pair overK. These pairs are isomorphic if and only if they share a parameter array. In
case the set of parameter arrays forA, A∗ coincides with the set of parameter arrays f
B, B∗.

Proof. SupposeA, A∗ andB, B∗ share a parameter arrayp. By Definition 12.1 there exist
a Leonard systemΦ which is associated withA, A∗ and which has parameter arrayp.
Similarly there exists a Leonard systemΦ ′ which is associated withB, B∗ and which
has parameter arrayp. ObserveΦ, Φ ′ are isomorphic since they have the same param
array. Observe the isomorphism involved is an isomorphism of Leonard pairs fromA, A∗
to B, B∗. ApparentlyA, A∗ andB, B∗ are isomorphic. The remaining claims of the lem
are clear. �

13. The LB–UB canonical form; preliminaries

We now turn our attention to the LB–UB canonical form. We begin with some c
ments.

Definition 13.1. Let Φ denote the Leonard system from (3) and letV denote an irreducible
A-module. By aΦ-LB–UB basisfor V we mean a sequence of the form (13), wh
θ0, θ1, . . . , θd denotes the eigenvalue sequence forΦ andη∗

0 denotes a nonzero vector
E∗

0V .

Lemma 13.2. Let Φ denote the Leonard system from(3). Let θ0, θ1, . . . , θd denote the
eigenvalue sequence forΦ. Let V denote an irreducibleA-module and letv0, v1, . . . , vd

denote a sequence of vectors inV , not all zero. Then this sequence is aΦ-LB–UB basis
for V if and only if both

(i) v0 ∈ E∗
0V ; and

(ii) Avi = θivi + vi+1 for 0� i � d − 1.

Proof. Routine. �
Definition 13.3. Let Φ denote the Leonard system from (3). We define a map
 :A →
Matd+1(K) as follows. LetV denote an irreducibleA-module. For allX ∈ A we let X


denote the matrix in Matd+1(K) which representsX with respect to aΦ-LB–UB basis
for V . We observe
 :A → Matd+1(K) is an isomorphism ofK-algebras. We call
 the
LB–UB canonical mapfor Φ.

Before proceeding we introduce some notation.

Definition 13.4. Consider the set of all parameter arrays overK. We define two functions

on this set. We call these functionsL andU . Let p = (θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j =
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1, . . . , d) denote a parameter array overK. The imagespL andpU are the following ma-
trices in Matd+1(K).

pL =




θ0 0
1 θ1

1 θ2
· ·

· ·
0 1 θd




, pU =




θ∗
0 ϕ1 0

θ∗
1 ϕ2

θ∗
2 ·

· ·
· ϕd

0 θ∗
d




.

Lemma 13.5. LetΦ denote the Leonard system from(3). Let
 denote the LB–UB canonica
map for Φ, from Definition13.3. ThenA
 = pL and A∗
 = pU , wherep denotes the
parameter array forΦ.

Proof. Write p = (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d). Each ofA
,pL is equal to

the matrix on the left in (14) soA
 = pL. Each ofA∗
,pU is equal to the matrix on th
right in (14) soA∗
 = pU . �

14. The LB–UB canonical form for Leonard systems

In this section we introduce the LB–UB canonical form for Leonard systems. We d
what it means for a given Leonard system to be in LB–UB canonical form. We des
the Leonard systems which are in LB–UB canonical form. We show every Leonard s
is isomorphic to a unique Leonard system which is in LB–UB canonical form.

Definition 14.1. Let Φ denote the Leonard system from (3). Letθ0, θ1, . . . , θd (respectively
θ∗

0 , θ∗
1 , . . . , θ∗

d ) denote the eigenvalue sequence (respectively dual eigenvalue seq
of Φ. We sayΦ is in LB–UB canonical formwhenever (i)–(iv) hold below.

(i) A = Matd+1(K).
(ii) A is lower bidiagonal andA∗ is upper bidiagonal.

(iii) Ai,i−1 = 1 for 1� i � d .
(iv) A00 = θ0 andA∗

00 = θ∗
0 .

Lemma 14.2. Let Φ denote the Leonard system from(3). AssumeΦ is in LB–UB canon-
ical form, so thatA = Matd+1(K) by Definition14.1(i). For 0 � i � d let vi denote the
vector inK

d+1 which hasith coordinate1 and all other coordinates0. Then the sequenc
v0, v1, . . . , vd is aΦ-LB–UB basis forKd+1. Let
 denote the LB–UB canonical map forΦ,
from Definition13.3. Then
 is the identity map.

Proof. Let θ0, θ1, . . . , θd (respectivelyθ∗
0 , θ∗

1 , . . . , θ∗
d ) denote the eigenvalue sequence (

spectively dual eigenvalue sequence) forΦ. By Definition 14.1,A is lower bidiagonal
with Ai,i−1 = 1 for 1� i � d . By Corollary 7.6(i) and sinceA00 = θ0 we findAii = θi for
0 � i � d . ApparentlyAvi = θivi + vi+1 for 0 � i � d − 1. By Definition 14.1,A∗ is up-

per bidiagonal withA∗

00 = θ∗
0 . Apparentlyv0 is an eigenvector forA∗ with eigenvalueθ∗

0 .
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Thereforev0 ∈ E∗
0V . Applying Lemma 13.2 (withV = K

d+1) we findv0, v1, . . . , vd is a
Φ-LB–UB basis forKd+1. From the construction each element in Matd+1(K) represents
itself with respect tov0, v1, . . . , vd . Therefore
 is the identity map in view of Defini
tion 13.3. �
Theorem 14.3. Let Φ denote the Leonard system from(3) and assumeΦ is in LB–UB
canonical form. ThenA = pL andA∗ = pU , whereL,U are from Definition13.4andp

is the parameter array ofΦ.

Proof. Let 
 denote the LB–UB canonical map forΦ, from Definition 13.3. We as
sumeΦ is in LB–UB canonical form, so
 is the identity map by Lemma 14.2. Applyin
Lemma 13.5 we findA = pL andA∗ = pU . �
Corollary 14.4. LetΦ andΦ ′ denote Leonard systems overK which are in LB–UB canon
ical form. Then the following are equivalent:

(i) Φ andΦ ′ are isomorphic;
(ii) Φ = Φ ′.

Proof. (i) ⇒ (ii). The Leonard systemsΦ, Φ ′ have a common parameter array which
denote byp. By Theorem 14.3 the Leonard pair associated with each ofΦ, Φ ′ is equal to
pL,pU . ApparentlyΦ andΦ ′ are in the same associate class. By this and sinceΦ, Φ ′ are
isomorphic we findΦ = Φ ′ in view of Lemma 5.4.

(ii) ⇒ (i). Clear. �
Definition 14.5. Let Φ denote the Leonard system from (3). By anLB–UB canonical form
for Φ we mean a Leonard system overK which is isomorphic toΦ and which is in LB–UB
canonical form.

Theorem 14.6. LetΦ denote the Leonard system from(3). Then there exists a unique LB
UB canonical form forΦ. This form isΦ
, where
 denotes the LB–UB canonical ma
for Φ from Definition13.3.

Proof. We first showΦ
 is an LB–UB canonical form forΦ. SinceΦ is a Leonard sys
tem inA and since
 :A → Matd+1(K) is an isomorphism ofK-algebras, we findΦ
 is a
Leonard system in Matd+1(K) which is isomorphic toΦ. We showΦ
 is in LB–UB canon-
ical form. To do this we showΦ
 satisfies conditions (i)–(iv) of Definition 14.1. Obser
Φ
 satisfies Definition 14.1(i) since Matd+1(K) is the ambient algebra ofΦ
. ObserveΦ


satisfies Definition 14.1(ii)–(iv) by Definition 13.4 and Lemma 13.5. We have now sh
Φ
 satisfies Definition 14.1(i)–(iv) soΦ
 is in LB–UB canonical form. ApparentlyΦ
 is a
Leonard system overK which is isomorphic toΦ and which is in LB–UB canonical form
ThereforeΦ
 is an LB–UB canonical form forΦ by Definition 14.5. To finish the proof w
let Φ ′ denote an LB–UB canonical form forΦ and showΦ ′ = Φ
. ObserveΦ ′,Φ
 are iso-
morphic since they are both isomorphic toΦ. The Leonard systemsΦ ′,Φ
 are isomorphic

′ 

and in LB–UB canonical form soΦ = Φ by Corollary 14.4. �
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Corollary 14.7. Consider the set of Leonard systems overK which are in LB–UB canonica
form. We give a bijection from this set to the set of parameter arrays overK. The bijection
sends each Leonard system to its own parameter array.

Proof. By the remark following Definition 11.1, the map which sends a given Leo
system to its parameter array induces a bijection from the set of isomorphism clas
Leonard systems overK to the set of parameter arrays overK. By Theorem 14.6 each o
these isomorphism classes contains a unique element which is in LB–UB canonica
The result follows. �

15. The LB–UB canonical form for Leonard pairs

In this section we define and discuss the LB–UB canonical form for Leonard pair
begin with a comment.

Lemma 15.1. Let A, A∗ denote the Leonard pair from Definition4.1. Then there exists a
most one Leonard system which is associated withA, A∗ and which is in LB–UB canonica
form.

Proof. Let Φ andΦ ′ denote Leonard systems which are associated withA, A∗ and which
are in LB–UB canonical form. We showΦ = Φ ′. SinceΦ, Φ ′ are in the same associa
class, this will follow once we showΦ, Φ ′ have the same eigenvalue sequence and
same dual eigenvalue sequence. Observe by Theorem 14.3 that the sequence of
entries forA is the common eigenvalue sequence forΦ, Φ ′. Similarly the sequence o
diagonal entries forA∗ is the common dual eigenvalue sequence forΦ, Φ ′. Apparently
Φ = Φ ′. �

Referring to the above lemma, we now consider those Leonard pairs for which the
ists an associated Leonard system which is in LB–UB canonical form. In order to de
these we introduce the LB–UB canonical form for Leonard pairs.

Definition 15.2. Let A, A∗ denote the Leonard pair from Definition 4.1. We say this p
is in LB–UB canonical formwhenever (i)–(iii) hold below.

(i) A = Matd+1(K).
(ii) A is lower bidiagonal andA∗ is upper bidiagonal.

(iii) Ai,i−1 = 1 for 1� i � d .

We just defined the LB–UB canonical form for Leonard pairs, and in Definition
we defined this form for Leonard systems. We now compare these two versions. W

use the following definition.
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Definition 15.3. Let d denote a nonnegative integer and letA, A∗ denote a Leonard pair i
Matd+1(K). We assumeA is lower bidiagonal andA∗ is upper bidiagonal. We make som
comments and definitions.

(i) By Corollary 7.6(i) the sequenceA00,A11, . . . ,Add is an eigenvalue sequence f
A, A∗. We call this sequence thedesignated eigenvalue sequencefor A, A∗.

(ii) By Corollary 7.6(iii) the sequenceA∗
00,A

∗
11, . . . ,A

∗
dd is a dual eigenvalue sequen

for A, A∗. We call this sequence thedesignated dual eigenvalue sequencefor A, A∗.
(iii) By the designated Leonard systemfor A, A∗ we mean the Leonard system whi

is associated withA, A∗ and which has eigenvalue sequenceA00,A11, . . . ,Add and
dual eigenvalue sequenceA∗

00,A
∗
11, . . . ,A

∗
dd .

(iv) By the designated parameter arrayfor A, A∗ we mean the parameter array of t
designated Leonard system forA, A∗.

Lemma 15.4. Let A, A∗ denote the Leonard pair from Definition4.1. Then the following
are equivalent:

(i) A, A∗ is in LB–UB canonical form;
(ii) there exists a Leonard systemΦ which is associated withA, A∗ and which is in LB–UB

canonical form.

Suppose(i), (ii) hold. ThenΦ is the designated Leonard system ofA, A∗.

Proof. (i) ⇒ (ii). Let Φ denote the designated Leonard system forA, A∗, from Defini-
tion 15.3(iii). From the constructionΦ is associated withA, A∗ and in LB–UB canonica
form.

(ii) ⇒ (i). Compare Definitions 14.1 and 15.2.
Now suppose (i), (ii) hold. ThenΦ is the designated Leonard system forA, A∗ by

Lemma 15.1 and the proof of (i)⇒ (ii) above. �
Corollary 15.5. We give a bijection from the set of Leonard systems overK which are in
LB–UB canonical form, to the set of Leonard pairs overK which are in LB–UB canonica
form. The bijection sends each Leonard system to its associated Leonard pair. The
bijection sends each Leonard pair to its designated Leonard system.

Proof. This is a reformulation of Lemma 15.4.�
Theorem 15.6. We give a bijection from the set of parameter arrays overK to the set
of Leonard pairs overK which are in LB–UB canonical form. The bijection sends e
parameter arrayp to the Leonard pairpL, pU . The inverse bijection sends each Leon
pair to its designated parameter array.

Proof. Composing the inverse of the bijection from Corollary 14.7, with the bijec
from Corollary 15.5, we obtain a bijection from the set of parameter arrays overK to

the set of Leonard pairs overK which are in LB–UB canonical form. Letp denote a
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parameter array overK and letA, A∗ denote the image ofp under this bijection. We show
A = pL andA∗ = pU . By Corollary 14.7 there exists a unique Leonard system oveK

which is in LB–UB canonical form and which has parameter arrayp. Let us denote this
system byΦ. By the constructionA, A∗ is associated withΦ. Applying Theorem 14.3
to Φ we find A = pL and A∗ = pU . To finish the proof we showp is the designated
parameter array forA, A∗. We mentionedA, A∗ is associated withΦ andΦ is in LB–UB
canonical form soΦ is the designated Leonard system forA, A∗ by Corollary 15.5. We
mentionedp is the parameter array forΦ sop is the designated parameter array forA, A∗
by Definition 15.3(iv). �
Definition 15.7. Let A, A∗ denote the Leonard pair from Definition 4.1. By anLB–UB
canonical form forA, A∗ we mean a Leonard pair overK which is isomorphic toA, A∗
and which is in LB–UB canonical form.

Theorem 15.8. LetA, A∗ denote the Leonard pair from Definition4.1. We give a bijection
from the set of parameter arrays forA, A∗ to the set of LB–UB canonical forms forA, A∗.
This bijection sends each parameter arrayp to the pairpL,pU . (The parameter arrays
for A, A∗ are given in Lemma12.2.)The inverse bijection sends each LB–UB canon
form forA, A∗ to its designated parameter array.

Proof. Let B, B∗ denote a Leonard pair overK which is in LB–UB canonical form. Le
p denote the designated parameter array forB, B∗. In view of Theorem 15.6 it suffices t
show the following are equivalent: (i)A, A∗ andB, B∗ are isomorphic; (ii)p is a paramete
array forA, A∗. These statements are equivalent by Lemma 12.4.�
Corollary 15.9. LetA, A∗ denote the Leonard pair from Definition4.1. If d � 1 then there
exist exactly four LB–UB canonical forms forA, A∗. If d = 0 there exists a unique LB–U
canonical form forA, A∗.

Proof. Immediate from Theorem 15.8 and Corollary 12.3.�

16. How to recognize a Leonard pair in LB–UB canonical form

Let d denote a nonnegative integer and letA,A∗ denote matrices in Matd+1(K). Let
us assumeA is lower bidiagonal andA∗ is upper bidiagonal. We give a necessary a
sufficient condition forA, A∗ to be a Leonard pair which is in LB–UB canonical form.

Theorem 16.1. Let d denote a nonnegative integer and letA,A∗ denote matrices in
Matd+1(K). AssumeA is lower bidiagonal andA∗ is upper bidiagonal. Then the followin
(i), (ii) are equivalent.

(i) The pairA, A∗ is a Leonard pair inMatd+1(K) which is in LB–UB canonical form.
(ii) There exists a parameter array(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) overK such
that
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Aii = θi, A∗
ii = θ∗

i (0� i � d), (16)

Ai,i−1 = 1, A∗
i−1,i = ϕi (1 � i � d). (17)

Suppose(i), (ii) hold. Then the parameter array in(ii) above is uniquely determined b
A, A∗. This parameter array is the designated parameter array forA, A∗ in the sense o
Definition15.3.

Proof. This is a reformulation of Theorem 15.6.�

17. Leonard pairs A, A∗ with A lower bidiagonal and A∗ upper bidiagonal

Let d denote a nonnegative integer and letA,A∗ denote matrices in Matd+1(K). Let
us assumeA is lower bidiagonal andA∗ is upper bidiagonal. We give a necessary a
sufficient condition forA, A∗ to be a Leonard pair.

Theorem 17.1. Let d denote a nonnegative integer and letA,A∗ denote matrices in
Matd+1(K). AssumeA lower bidiagonal andA∗ is upper bidiagonal. Then the followin
(i), (ii) are equivalent.

(i) The pairA, A∗ is a Leonard pair inMatd+1(K).
(ii) There exists a parameter array(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) overK such

that

Aii = θi, A∗
ii = θ∗

i (0� i � d), (18)

Ai,i−1A
∗
i−1,i = ϕi (1� i � d). (19)

Suppose(i), (ii) hold. Then the parameter array in(ii) above is uniquely determined b
A, A∗. This parameter array is the designated parameter array forA, A∗ in the sense o
Definition15.3.

Proof. (i) ⇒ (ii). By Corollary 7.6(ii) we haveAi,i−1 �= 0 for 1 � i � d . Let S denote
the diagonal matrix in Matd+1(K) which has diagonal entriesSii = A10A21 · · ·Ai,i−1
for 0 � i � d . Each ofS00, S11, . . . , Sdd is nonzero soS−1 exists. Letσ : Matd+1(K) →
Matd+1(K) denote the isomorphism ofK-algebras which satisfiesXσ = S−1XS for all
X ∈ Matd+1(K). From the constructionAσ (respectivelyA∗σ ) is lower bidiagonal (re-
spectively upper bidiagonal) with entries

Aσ
ii = Aii, A∗σ

ii = A∗
ii (0 � i � d), (20)

Aσ
i,i−1 = 1, A∗σ

i−1,i = Ai,i−1A
∗
i−1,i (1 � i � d). (21)

ApparentlyAσ ,A∗σ is a Leonard pair in Matd+1(K) which is in LB–UB canonical form

Applying Theorem 16.1 to this pair we find there exists a parameter array(θi, θ

∗
i , i =
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0, . . . , d;ϕj ,φj , j = 1, . . . , d) overK such that bothAσ
ii = θi , A∗σ

ii = θ∗
i for 0� i � d and

A∗σ
i−1,i = ϕi for 1 � i � d . Combining these facts with (20), (21) we find this parame

array satisfies (18), (19).
(ii) ⇒ (i). For 1 � i � d we have Ai,i−1 �= 0 by (19) and sinceϕi �= 0. Let

σ : Matd+1(K) → Matd+1(K) denote the isomorphism ofK-algebras from the proof o
(i) ⇒ (ii) above. We routinely find bothAσ

ii = θi , A∗σ
ii = θ∗

i for 0 � i � d and both
Aσ

i,i−1 = 1, A∗σ
i−1,i = ϕi for 1 � i � d . ApparentlyAσ ,A∗σ satisfies Theorem 16.1(ii

Applying that theorem to this pair we findAσ ,A∗σ is a Leonard pair in Matd+1(K) which
is in LB–UB canonical form. In particularAσ ,A∗σ is a Leonard pair in Matd+1(K). By
this and sinceσ is an isomorphism we findA, A∗ is a Leonard pair in Matd+1(K).

Suppose (i), (ii) hold above. Letp denote a parameter array which satisfies (ii) abo
We showp is the designated parameter array forA, A∗. We first showp is a paramete
array forA, A∗. Observep is a parameter array forAσ ,A∗σ by Theorem 16.1 and th
proof of (ii) ⇒ (i) above. AlsoA, A∗ is isomorphic toAσ ,A∗σ sop is a parameter arra
for A, A∗. Observep is the designated parameter array forA, A∗ by Definition 15.3. �

18. Examples of Leonard pairs A, A∗ with A lower bidiagonal and A∗ upper
bidiagonal

Example 18.1. Let d denote a nonnegative integer. LetA andA∗ denote the following
matrices in Matd+1(K).

A =




d 0
−1 d − 2

−2 ·
· ·

· ·
0 −d −d




, A∗ =




d 2d 0
d − 2 2d − 2

· ·
· ·

· 2
0 −d




.

To avoid degenerate situations, we assume the characteristic ofK is zero or an odd prime
greater thand . Then the pairA, A∗ is a Leonard pair in Matd+1(K). The corresponding
designated parameter array from Definition 15.3 is the parameter array given in E
ple 10.2.

Proof. Let (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote the parameter array fro

Example 10.2. We routinely find this parameter array satisfies Theorem 17.1(ii); a
ing that theorem we findA, A∗ is a Leonard pair in Matd+1(K). The parameter arra
(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) is the designated parameter array ofA, A∗ by

the last line of Theorem 17.1.�
Example 18.2. Let d, q, s, s∗, r1, r2 be as in Example 10.3. LetA andA∗ denote the fol-
lowing matrices in Matd+1(K). The matrixA is lower bidiagonal with entries
Aii = q−i + sqi+1 (0� i � d),
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Ai,i−1 = (
1− q−i

)(
1− r1q

i
)

(1 � i � d).

The matrixA∗ is upper bidiagonal with entries

A∗
ii = q−i + s∗qi+1 (0 � i � d),

A∗
i−1,i = (

q−d − q1−i
)(

1− r2q
i
)

(1 � i � d).

Then the pairA, A∗ is a Leonard pair in Matd+1(K). The corresponding designated pa
meter array from Definition 15.3 is the parameter array given in Example 10.3.

Proof. Let (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote the parameter array fro

Example 10.3. We routinely find this array satisfies Theorem 17.1(ii); applying tha
orem we findA, A∗ is a Leonard pair in Matd+1(K). The parameter array(θi, θ

∗
i , i =

0, . . . , d;ϕj ,φj , j = 1, . . . , d) is the designated parameter array forA, A∗ by the last line
of Theorem 17.1. �

19. The TD–D canonical form; preliminaries

We now turn our attention to the TD–D canonical form. We begin with some comm

Lemma 19.1 [29, Lemma 5.1]. LetΦ denote the Leonard system from(3) and letV denote
an irreducibleA-module. Letη0 denote a nonzero vector inE0V . Then the sequence

E∗
0η0,E

∗
1η0, . . . ,E

∗
dη0 (22)

is a basis forV .

Definition 19.2. Let Φ denote the Leonard system from (3) and letV denote an irreducible
A-module. By aΦ-TD–D basisfor V we mean a sequence of the form (22), whereη0
denotes a nonzero vector inE0V .

The concept of aΦ-TD–D basis will play an important role in what follows. Therefo
we examine it carefully. In each of the next two lemmas we give a characterization o
type of basis.

Lemma 19.3. LetΦ denote the Leonard system from(3) and letV denote an irreducibleA-
module. Letv0, v1, . . . , vd denote a sequence of vectors inV , not all 0. Then this sequenc
is aΦ-TD–D basis forV if and only if both(i), (ii) hold below.

(i) vi ∈ E∗
i V for 0� i � d .∑d
(ii) i=0 vi ∈ E0V .
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Proof. To prove the lemma in one direction, assumev0, v1, . . . , vd is a Φ-TD–D ba-
sis for V . By Definition 19.2 there exists a nonzeroη0 ∈ E0V such thatvi = E∗

i η0 for
0 � i � d . Apparentlyvi ∈ E∗

i V for 0 � i � d so (i) holds. LetI denote the identity ele
ment ofA and observeI = ∑d

i=0 E∗
i . Applying this toη0 we findη0 = ∑d

i=0 vi and (ii)
follows. We have now proved the lemma in one direction. To prove the lemma in the
direction, assumev0, v1, . . . , vd satisfy (i), (ii) above. We defineη0 = ∑d

i=0 vi and ob-
serveη0 ∈ E0V . Using (i) we findE∗

i vj = δij vj for 0 � i, j � d ; it follows vi = E∗
i η0

for 0 � i � d . Observeη0 �= 0 since at least one ofv0, v1, . . . , vd is nonzero. Now
v0, v1, . . . , vd is aΦ-TD–D basis forV by Definition 19.2. �

We recall some notation. Letd denote a nonnegative integer and letB denote a matrix
in Matd+1(K). Let α denote a scalar inK. ThenB is said to haveconstant row sumα
wheneverBi0 + Bi1 + · · · + Bid = α for 0� i � d .

Lemma 19.4. Let Φ denote the Leonard system from(3). Let θ0, θ1, . . . , θd (respectively
θ∗

0 , θ∗
1 , . . . , θ∗

d ) denote the eigenvalue sequence(respectively dual eigenvalue sequen)
ofΦ. LetV denote an irreducibleA-module and letv0, v1, . . . , vd denote a basis forV . Let
B (respectivelyB∗) denote the matrix inMatd+1(K) which representsA (respectivelyA∗)
with respect to this basis. Thenv0, v1, . . . , vd is a Φ-TD–D basis forV if and only if (i),
(ii) hold below.

(i) B has constant row sumθ0.
(ii) B∗ = diag(θ∗

0 , θ∗
1 , . . . , θ∗

d ).

Proof. Observe

A

d∑
j=0

vj =
d∑

i=0

vi(Bi0 + Bi1 + · · · + Bid).

RecallE0V is the eigenspace forA and eigenvalueθ0. ApparentlyB has constant row
sumθ0 if and only if

∑d
i=0 vi ∈ E0V . Recall that for 0� i � d , E∗

i V is the eigenspace fo
A∗ and eigenvalueθ∗

i . ApparentlyB∗ = diag(θ∗
0 , θ∗

1 , . . . , θ∗
d ) if and only if vi ∈ E∗

i V for
0� i � d . The result follows in view of Lemma 19.3.�

20. The TD–D canonical map

Let Φ denote the Leonard system from (3). In this section we useΦ to define a certain
isomorphism� :A → Matd+1(K). We call� theTD–D canonical mapfor Φ. We describe
the entries ofA� andA∗�.

Definition 20.1. Let Φ denote the Leonard system from (3). We define a map� : A →
Matd+1(K) as follows. LetV denote an irreducibleA-module. For allX ∈ A we let X�
denote the matrix in Matd+1(K) which representsX with respect to aΦ-TD–D basis forV .
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We observe� :A → Matd+1(K) is an isomorphism ofK-algebras. We call� the TD–D
canonical mapfor Φ.

Referring to Definition 20.1, we now describeA� andA∗�. We begin with a comment.

Lemma 20.2. Let Φ denote the Leonard system from(3). Let θ0, θ1, . . . , θd (respectively
θ∗

0 , θ∗
1 , . . . , θ∗

d ) denote the eigenvalue sequence(respectively dual eigenvalue sequen)
of Φ. Let� denote the TD–D canonical map forΦ, from Definition20.1. Then(i), (ii) hold
below.

(i) A� has constant row sumθ0.
(ii) A∗� = diag(θ∗

0 , θ∗
1 , . . . , θ∗

d ).

Proof. Combine Lemma 19.4 and Definition 20.1.�
Referring to Definition 20.1, we now describeA� andA∗� from another point of view

We use the following notation.

Definition 20.3. Consider the set of all parameter arrays overK. We define two functions
on this set. We call these functionsT andD. Let p = (θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j =

1, . . . , d) denote a parameter array overK. The imagepT is the tridiagonal matrix in
Matd+1(K) which has the following entries. The diagonal entries are

pT
ii = θi + ϕi

θ∗
i − θ∗

i−1
+ ϕi+1

θ∗
i − θ∗

i+1

for 0 � i � d , where we recallϕ0 = 0, ϕd+1 = 0 and whereθ∗−1, θ∗
d+1 denote indetermi

nates. The superdiagonal and subdiagonal entries are

pT
i−1,i = ϕi

∏i−2
h=0(θ

∗
i−1 − θ∗

h )∏i−1
h=0(θ

∗
i − θ∗

h )
, pT

i,i−1 = φi

∏d
h=i+1(θ

∗
i − θ∗

h )∏d
h=i (θ

∗
i−1 − θ∗

h )

for 1� i � d . The imagepD is the following matrix in Matd+1(K):

pD = diag
(
θ∗

0 , θ∗
1 , . . . , θ∗

d

)
.

Theorem 20.4. Let Φ denote the Leonard system from(3). Let � denote the TD–D canon
ical map forΦ, from Definition20.1. ThenA� = pT andA∗� = pD , wherep denotes the
parameter array forΦ.

Proof. ObserveA∗� = pD by Lemma 20.2(ii). We haveA� = pT by [29, Theo-
rem 11.2]. �
We finish this section with an observation.
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Corollary 20.5. Let p = (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote a paramete

array overK. Then the matrixpT has constant row sumθ0.

Proof. By the remark after Definition 11.1 there exists a Leonard systemΦ overK which
has parameter arrayp. For notational convenience let us assumeΦ is the Leonard sys
tem (3). Let� denote the TD–D canonical map forΦ, from Definition 20.1. ThenA� has
constant row sumθ0 by Lemma 20.2 andA� = pT by Theorem 20.4 sopT has constan
row sumθ0. �

21. The TD–D canonical form for Leonard systems

In this section we introduce the TD–D canonical form for Leonard systems. We d
what it means for a given Leonard system to be in TD–D canonical form. We describ
Leonard systems which are in TD–D canonical form. We show every Leonard sys
isomorphic to a unique Leonard system which is in TD–D canonical form.

Definition 21.1. Let Φ denote the Leonard system from (3). Letθ0, θ1, . . . , θd (respectively
θ∗

0 , θ∗
1 , . . . , θ∗

d ) denote the eigenvalue sequence (respectively dual eigenvalue seq
of Φ. We sayΦ is in TD–D canonical formwhenever (i)–(iii) hold below.

(i) A = Matd+1(K).
(ii) A is tridiagonal andA∗ is diagonal.

(iii) A has constant row sumθ0 andA∗
00 = θ∗

0 .

Lemma 21.2. Let Φ denote the Leonard system from(3). AssumeΦ is in TD–D canon-
ical form, so thatA = Matd+1(K) by Definition21.1(i). For 0 � i � d let vi denote the
vector inK

d+1 which hasith coordinate1 and all other coordinates0. Then the sequenc
v0, v1, . . . , vd is a Φ-TD–D basis forKd+1. Let � denote the TD–D canonical map forΦ,
from Definition20.1. Then� is the identity map.

Proof. Observev0, v1, . . . , vd is a basis forKd+1, and that with respect to this basis ea
element of Matd+1(K) represents itself. Letθ∗

0 , θ∗
1 , . . . , θ∗

d denote the dual eigenvalue s
quence forΦ. By Corollary 7.7(ii) and sinceA∗

00 = θ∗
0 we findA∗ = diag(θ∗

0 , θ∗
1 , . . . , θ∗

d ).
Applying Lemma 19.4 (withV = K

d+1), we find v0, v1, . . . , vd is a Φ-TD–D basis
for K

d+1. We mentioned each element in Matd+1(K) represents itself with respect
v0, v1, . . . , vd , so� is the identity map in view of Definition 20.1.�
Theorem 21.3. Let Φ denote the Leonard system from(3), and assumeΦ is in TD–D
canonical form. ThenA = pT andA∗ = pD , whereT ,D are from Definition20.3andp

is the parameter array forΦ.

Proof. Let � denote the TD–D canonical map forΦ, from Definition 20.1. We assumeΦ is
in TD–D canonical form, so� is the identity map by Lemma 21.2. Applying Theorem 2

T ∗ D
we findA = p andA = p . �
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Corollary 21.4. LetΦ andΦ ′ denote Leonard systems overK which are in TD–D canon
ical form. Then the following are equivalent:

(i) Φ andΦ ′ are isomorphic;
(ii) Φ = Φ ′.

Proof. (i) ⇒ (ii). The Leonard systemsΦ, Φ ′ have a common parameter array which
denote byp. By Theorem 21.3 the Leonard pair associated with each ofΦ, Φ ′ is equal to
pT , pD . ApparentlyΦ andΦ ′ are in the same associate class. By this and sinceΦ, Φ ′ are
isomorphic we findΦ = Φ ′ in view of Lemma 5.4.

(ii) ⇒ (i). Clear. �
Definition 21.5. Let Φ denote the Leonard system from (3). By aTD–D canonical form
for Φ we mean a Leonard system overK which is isomorphic toΦ and which is in TD–D
canonical form.

Theorem 21.6. Let Φ denote the Leonard system from(3). Then there exists a uniqu
TD–D canonical form forΦ. This isΦ�, where� denotes the TD–D canonical map forΦ

from Definition20.1.

Proof. We first showΦ� is a TD–D canonical form forΦ. SinceΦ is a Leonard system i
A and since� :A → Matd+1(K) is an isomorphism ofK-algebras, we findΦ� is a Leonard
system in Matd+1(K) which is isomorphic toΦ. We showΦ� is in TD–D canonical form
To do this we showΦ� satisfies conditions (i)–(iii) of Definition 21.1. ObserveΦ� satisfies
Definition 21.1(i) since Matd+1(K) is the ambient algebra ofΦ�. ObserveΦ� satisfies De-
finition 21.1(ii), (iii) by Lemma 20.2 and Theorem 20.4. We have now shownΦ� satisfies
Definition 21.1(i)–(iii) soΦ� is in TD–D canonical form. ApparentlyΦ� is a Leonard sys
tem overK which is isomorphic toΦ and which is in TD–D canonical form. ThereforeΦ�

is a TD–D canonical form forΦ by Definition 21.5. To finish the proof we letΦ ′ denote
a TD–D canonical form forΦ and showΦ ′ = Φ�. ObserveΦ ′, Φ� are isomorphic since
they are both isomorphic toΦ. The Leonard systemsΦ ′, Φ� are isomorphic and in TD–D
canonical form soΦ ′ = Φ� by Corollary 21.4. �
Corollary 21.7. Consider the set of Leonard systems overK which are in TD–D canonica
form. We give a bijection from this set to the set of parameter arrays overK. The bijection
sends each Leonard system to its own parameter array.

Proof. By the remark following Definition 11.1, the map which sends a given Leo
system to its parameter array induces a bijection from the set of isomorphism clas
Leonard systems overK to the set of parameter arrays overK. By Theorem 21.6 each o
these isomorphism classes contains a unique element which is in TD–D canonica

The result follows. �
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22. The TD–D canonical form for Leonard pairs

In this section we define and discuss the TD–D canonical form for Leonard pair
begin with a comment.

Lemma 22.1. Let A, A∗ denote the Leonard pair from Definition4.1. Then there exists a
most one Leonard system which is associated withA, A∗ and which is in TD–D canonica
form.

Proof. Let Φ and Φ ′ denote Leonard systems which are associated withA, A∗ and
which are in TD–D canonical form. We showΦ = Φ ′. Let θ0, θ1, . . . , θd (respectively
θ ′

0, θ
′
1, . . . , θ

′
d ) denote the eigenvalue sequence forΦ (respectivelyΦ ′). Let θ∗

0 , θ∗
1 , . . . , θ∗

d

(respectively θ∗ ′
0 , θ∗ ′

1 , . . . , θ∗ ′
d ) denote the dual eigenvalue sequence forΦ (respec-

tively Φ ′). ObserveΦ, Φ ′ are in the same associate class soΦ ′ is one ofΦ, Φ↓, Φ⇓,
Φ↓⇓. Thereforeθ ′

i = θi for 0 � i � d or θ ′
i = θd−i for 0 � i � d . Also θ∗ ′

i = θ∗
i for

0 � i � d or θ∗ ′
i = θ∗

d−i for 0 � i � d . To showΦ = Φ ′ it suffices to showθi = θ ′
i and

θ∗
i = θ∗ ′

i for 0 � i � d . Each ofθ0, θ
′
0 is equal to the common row sums ofA soθ0 = θ ′

0.
Apparentlyθi = θ ′

i for 0 � i � d . Each ofθ∗
0 , θ∗ ′

0 is equal toA∗
00 soθ∗

0 = θ∗ ′
0 . Apparently

θ∗
i = θ∗ ′

i for 0� i � d . We concludeΦ = Φ ′. �
Referring to the above lemma, we now consider those Leonard pairs for which

exists an associated Leonard system which is in TD–D canonical form. In order to de
these we introduce the TD–D canonical form for Leonard pairs.

Definition 22.2. LetA, A∗ denote the Leonard pair from Definition 4.1 and letθ0, θ1, . . . , θd

denote an eigenvalue sequence for this pair. We sayA, A∗ is in TD–D canonical form
whenever (i)–(iii) hold below.

(i) A = Matd+1(K).
(ii) A is tridiagonal andA∗ is diagonal.

(iii) A has constant row sum and this sum isθ0 or θd .

We just defined the TD–D canonical form for Leonard pairs, and in Definition 21.
defined this form for Leonard systems. We now compare these two versions. We w
the following definition.

Definition 22.3. Let A, A∗ denote the Leonard pair from Definition 4.1, and assume
pair is in TD–D canonical form. We make several comments and definitions.

(i) By Definitions 22.2(iii) and 7.2, there exists a unique eigenvalue sequenceθ0, θ1, . . . , θd

for A, A∗ such thatA has constant row sumθ0. We call this thedesignated eigenvalu
sequencefor A, A∗.

(ii) By Corollary 7.7(ii) the sequenceA∗
00,A

∗
11, . . . ,A

∗
dd is a dual eigenvalue sequen
for A, A∗. We call this thedesignated dual eigenvalue sequencefor A, A∗.
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(iii) By the designated Leonard systemfor A, A∗ we mean the Leonard system whi
is associated withA, A∗ and which has eigenvalue sequenceθ0, θ1, . . . , θd and dual
eigenvalue sequenceA∗

00,A
∗
11, . . . ,A

∗
dd .

(iv) By the designated parameter arrayfor A, A∗ we mean the parameter array of t
designated Leonard system forA, A∗.

Lemma 22.4. Let A, A∗ denote the Leonard pair from Definition4.1. Then the following
are equivalent:

(i) A, A∗ is in TD–D canonical form;
(ii) there exists a Leonard systemΦ which is associated withA, A∗ and which is in TD–D

canonical form.

Suppose(i), (ii) hold. ThenΦ is the designated Leonard system ofA, A∗.

Proof. (i) ⇒ (ii). Let Φ denote the designated Leonard system forA, A∗, from Defini-
tion 22.3(iii). From the constructionΦ is associated withA, A∗ and in TD–D canonica
form.

(ii) ⇒ (i). Compare Definitions 21.1 and 22.2.
Now suppose (i), (ii) hold. ThenΦ is the designated Leonard system forA, A∗ by

Lemma 22.1 and the proof of (i)⇒ (ii) above. �
Corollary 22.5. We give a bijection from the set of Leonard systems overK which are in
TD–D canonical form, to the set of Leonard pairs overK which are in TD–D canonica
form. The bijection sends each Leonard system to its associated Leonard pair. The
bijection sends each Leonard pair to its designated Leonard system.

Proof. This is a reformulation of Lemma 22.4.�
Theorem 22.6. We give a bijection from the set of parameter arrays overK to the set
of Leonard pairs overK which are in TD–D canonical form. The bijection sends e
parameter arrayp to the Leonard pairpT , pD . The inverse bijection sends each Leon
pair to its designated parameter array.

Proof. Composing the inverse of the bijection from Corollary 21.7, with the bijec
from Corollary 22.5, we obtain a bijection from the set of parameter arrays overK to the
set of Leonard pairs overK which are in TD–D canonical form. Letp denote a paramete
array overK and letA, A∗ denote the image ofp under this bijection. We showA = pT

andA∗ = pD . By Corollary 21.7 there exists a unique Leonard system overK which is in
TD–D canonical form and which has parameter arrayp. Let us denote this system byΦ. By
the constructionA, A∗ is associated withΦ. Applying Theorem 21.3 toΦ we findA = pT

andA∗ = pD . To finish the proof we showp is the designated parameter array forA, A∗.
We mentionedA, A∗ is associated withΦ andΦ is in TD–D canonical form soΦ is the
designated Leonard system forA, A∗ by Corollary 22.5. We mentionedp is the paramete

∗
array forΦ sop is the designated parameter array forA, A by Definition 22.3(iv). �
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Definition 22.7. Let A, A∗ denote the Leonard pair from Definition 4.1. By aTD–D canon-
ical form for A, A∗ we mean a Leonard pair overK which is isomorphic toA, A∗ and
which is in TD–D canonical form.

Theorem 22.8. LetA, A∗ denote the Leonard pair from Definition4.1. We give a bijection
from the set of parameter arrays forA, A∗ to the set of TD–D canonical forms forA, A∗.
This bijection sends each parameter arrayp to the pairpT , pD . (The parameter arrays
for A, A∗ are given in Lemma12.2.)The inverse bijection sends each TD–D canon
form forA, A∗ to its designated parameter array.

Proof. Let B, B∗ denote a Leonard pair overK which is in TD–D canonical form. Letp
denote the designated parameter array forB, B∗. In view of Theorem 22.6 it suffices t
show the following are equivalent: (i)A, A∗ andB, B∗ are isomorphic; (ii)p is a paramete
array forA, A∗. These statements are equivalent by Lemma 12.4.�
Corollary 22.9. LetA, A∗ denote the Leonard pair from Definition4.1. If d � 1 then there
exist exactly four TD–D canonical forms forA, A∗. If d = 0 then there exists a uniqu
TD–D canonical form forA, A∗.

Proof. Immediate from Theorem 22.8 and Corollary 12.3.�

23. How to recognize a Leonard pair in TD–D canonical form

Let d denote a nonnegative integer and letA,A∗ denote matrices in Matd+1(K). Let us
assumeA is tridiagonal andA∗ is diagonal. We give a necessary and sufficient condi
for A, A∗ to be a Leonard pair which is in TD–D canonical form. We present two vers
of our result.

Theorem 23.1. Let d denote a nonnegative integer and letA,A∗ denote matrices in
Matd+1(K). AssumeA is tridiagonal andA∗ is diagonal. Then the following(i), (ii) are
equivalent.

(i) The pairA, A∗ is a Leonard pair inMatd+1(K) which is in TD–D canonical form.
(ii) There exists a parameter array(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) overK such

that

Aii = θi + ϕi

θ∗
i − θ∗

i−1
+ ϕi+1

θ∗
i − θ∗

i+1
(0 � i � d),

Ai−1,i = ϕi

∏i−2
h=0(θ

∗
i−1 − θ∗

h )∏i−1
h=0(θ

∗
i − θ∗

h )
(1� i � d),

Ai,i−1 = φi

∏d
h=i+1(θ

∗
i − θ∗

h )∏d
h=i (θ

∗
i−1 − θ∗

h )
(1 � i � d),
A∗
ii = θ∗

i (0 � i � d).
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Suppose(i), (ii) hold. Then the parameter array in(ii) above is uniquely determined b
A, A∗. This parameter array is the designated parameter array forA, A∗ in the sense o
Definition22.3.

Proof. This is a reformulation of Theorem 22.6.�
Theorem 23.2. Let d denote a nonnegative integer and letA,A∗ denote matrices in
Matd+1(K). AssumeA is tridiagonal andA∗ is diagonal. Then the following(i), (ii) are
equivalent.

(i) The pairA, A∗ is a Leonard pair inMatd+1(K) which is in TD–D canonical form.
(ii) There exists a parameter array(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) overK such

thatA has constant row sumθ0 and

Ai−1,i = ϕi

∏i−2
h=0(θ

∗
i−1 − θ∗

h )∏i−1
h=0(θ

∗
i − θ∗

h )
(1� i � d),

Ai,i−1 = φi

∏d
h=i+1(θ

∗
i − θ∗

h )∏d
h=i (θ

∗
i−1 − θ∗

h )
(1 � i � d),

A∗
ii = θ∗

i (0 � i � d).

Suppose(i), (ii) hold. Then the parameter array in(ii) above is uniquely determined b
A, A∗. This parameter array is the designated parameter array forA, A∗ in the sense o
Definition22.3.

Proof. Combine Theorem 23.1 and Corollary 20.5.�

24. Examples of Leonard pairs in TD–D canonical form

In this section we give a few examples of Leonard pairs which are in TD–D cano
form.

Example 24.1. Let d denote a nonnegative integer. LetA andA∗ denote the following
matrices in Matd+1(K).

A =




0 d 0
1 0 d − 1

2 · ·
· · ·

· · 1




, A∗ = diag(d, d − 2, d − 4, . . . ,−d).
0 d 0
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To avoid degenerate situations, we assume the characteristic ofK is zero or an odd prime
greater thand . Then the pairA, A∗ is a Leonard pair in Matd+1(K) which is in TD–D
canonical form. The corresponding designated parameter array from Definition 22.3
parameter array given in Example 10.2.

Proof. Let (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote the parameter array from E

ample 10.2. We routinely verify this parameter array satisfies Theorem 23.2(ii); app
that theorem we findA, A∗ is a Leonard pair in Matd+1(K) which is in TD–D canoni-
cal form. The parameter array(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) is the designated

parameter array forA, A∗ by the last line of Theorem 23.2.�
Example 24.2. Let d, q, s, s∗, r1, r2 be as in Example 10.3. LetA andA∗ denote the fol-
lowing matrices in Matd+1(K). The matrixA is tridiagonal with entries

A01 = (1− q−d)(1− r1q)(1− r2q)

1− s∗q2
,

Ai−1,i = (1− qi−d−1)(1− s∗qi)(1− r1q
i)(1− r2q

i)

(1− s∗q2i−1)(1− s∗q2i )
(2 � i � d),

Ai,i−1 = (1− qi)(1− s∗qi+d+1)(r1 − s∗qi)(r2 − s∗qi)

s∗qd(1− s∗q2i )(1− s∗q2i+1)
(1 � i � d − 1),

Ad,d−1 = (1− qd)(r1 − s∗qd)(r2 − s∗qd)

s∗qd(1− s∗q2d)

and constant row sum 1+ sq. The matrixA∗ is diagonal with entries

A∗
ii = q−i + s∗qi+1 (0 � i � d).

Then the pairA, A∗ is a Leonard pair in Matd+1(K) which is in TD–D canonical form
The corresponding designated parameter array from Definition 22.3 is the paramete
given in Example 10.3.

Proof. Let (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote the parameter array from E

ample 10.3. We routinely verify this parameter array satisfies Theorem 23.2(ii); app
that theorem we findA, A∗ is a Leonard pair in Matd+1(K) which is in TD–D canoni-
cal form. The parameter array(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) is the designated

parameter array forA, A∗ by the last line of Theorem 23.2.�

25. Leonard pairs A, A∗ with A tridiagonal and A∗ diagonal

Let d denote a nonnegative integer and letA,A∗ denote matrices in Matd+1(K). Let us
assumeA is tridiagonal andA∗ is diagonal. We give a necessary and sufficient condi

for A, A∗ to be a Leonard pair.
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Theorem 25.1. Let d denote a nonnegative integer and letA,A∗ denote matrices in
Matd+1(K). AssumeA is tridiagonal andA∗ is diagonal. Then the following(i), (ii) are
equivalent.

(i) The pairA, A∗ is a Leonard pair inMatd+1(K).
(ii) There exists a parameter array(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) overK such

that

Aii = θi + ϕi

θ∗
i − θ∗

i−1
+ ϕi+1

θ∗
i − θ∗

i+1
(0 � i � d), (23)

Ai,i−1Ai−1,i = ϕiφi

∏i−2
h=0(θ

∗
i−1 − θ∗

h )∏i−1
h=0(θ

∗
i − θ∗

h )

∏d
h=i+1(θ

∗
i − θ∗

h )∏d
h=i (θ

∗
i−1 − θ∗

h )
(1 � i � d), (24)

A∗
ii = θ∗

i (0 � i � d). (25)

Suppose(i), (ii) hold and letR denote the set of parameter arrays which satisfy(ii) above.
ThenR consists of the parameter arrays(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) for A,

A∗ which satisfyθ∗
i = A∗

ii for 0 � i � d . If (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) is

in R then so is(θd−i , θ
∗
i , i = 0, . . . , d;φj ,ϕj , j = 1, . . . , d) and R contains no further

elements.

Proof. (i) ⇒ (ii). We assumeA is tridiagonal andA∗ is diagonal soA∗
00,A

∗
11, . . . ,A

∗
dd is

a dual eigenvalue sequence forA, A∗ by Corollary 7.7(ii). For notational convenienc
we set θ∗

i = A∗
ii for 0 � i � d . By Definition 7.2 there exists a Leonard systemΦ

which is associated withA, A∗ and which has dual eigenvalue sequenceθ∗
0 , θ∗

1 , . . . , θ∗
d .

Let θ0, θ1, . . . , θd denote the eigenvalue sequence forΦ. Let ϕ1, ϕ2, . . . , ϕd (respectively
φ1, φ2, . . . , φd ) denote the first (respectively second) split sequence forΦ. We abbreviate
p = (θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) and observep is the parameter array forΦ.

We showp satisfies the conditions of (ii) above. Observep is overK since the Leonard
pair A, A∗ is over K. We showp satisfies (23)–(25). Let� denote the TD–D canon
cal map forΦ. We recallA� = pT andA∗� = pD by Theorem 20.4. Since Matd+1(K)

is the ambient algebra ofΦ the domain of� is equal to Matd+1(K). Since the range o
� is equal to Matd+1(K) as well, there exists an invertible matrixS ∈ Matd+1(K) such
that X� = SXS−1 for all X ∈ Matd+1(K). ObserveA∗� = A∗ so SA∗ = A∗S. The ma-
trix A∗ is diagonal with diagonal entries mutually distinct soS is diagonal. From this an
sinceA� = SAS−1 we findA

�
ii = Aii for 0 � i � d andA

�
i,i−1A

�
i−1,i = Ai,i−1Ai−1,i for

1 � i � d . By these comments the parameter arrayp satisfies (23) and (24). From th
constructionp satisfies (25).

(ii) ⇒ (i). Let p := (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote a parameter a

ray overK which satisfies (23)–(25). LetΦ denote a Leonard system overK which has
parameter arrayp. RecallΦ is only determined up to isomorphism; replacingΦ with an
isomorphic Leonard system if necessary we may assumeΦ is in TD–D canonical form by
Theorem 21.6. LetB, B∗ denote the Leonard pair associated withΦ. ThenB = pT and

B∗ = pD by Theorem 21.3. ApparentlyB∗ = A∗; moreoverBii = Aii for 0 � i � d and
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Bi,i−1Bi−1,i = Ai,i−1Ai−1,i for 1� i � d . LetS denote the diagonal matrix in Matd+1(K)

which has diagonal entriesSii = ∏i
h=1 Ai,i−1/Bi,i−1 for 0� i � d . We observeSii �= 0 for

0 � i � d soS−1 exists. Letσ : Matd+1(K) → Matd+1(K) denote the isomorphism ofK-
algebras which satisfiesXσ = SXS−1 for all X ∈ Matd+1(K). From our above commen
we findBσ = A andB∗σ = A∗. By this and sinceB, B∗ is a Leonard pair in Matd+1(K)

we findA, A∗ is a Leonard pair in Matd+1(K).
Suppose (i), (ii) hold. LetR′ denote the set of parameter arrays forA, A∗ which have

dual eigenvalue sequenceA∗
00,A

∗
11, . . . ,A

∗
dd . From Lemma 12.2 we find that if(θi, θ

∗
i , i =

0, . . . , d;ϕj ,φj , j = 1, . . . , d) is in R′ then so is(θd−i , θ
∗
i , i = 0, . . . , d;φj ,ϕj , j =

1, . . . , d) and R′ contains no further elements. We now showR = R′. From the proof
of (i) ⇒ (ii) above we findR′ ⊆ R. We showR ⊆ R′. Let (θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j =

1, . . . , d) denote a parameter array inR. By the proof of (ii)⇒ (i) above we find this array
is for A, A∗ in the sense of Definition 12.1. By (25) we findθ∗

i = A∗
ii for 0� i � d . Appar-

ently (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) is contained inR′ and it followsR ⊆ R′.

We have now shownR = R′ and the proof is complete.�

26. How to compute the parameter arrays which satisfy Theorem 25.1(ii)

Let d denote a positive integer and letA, A∗ denote a Leonard pair in Matd+1(K).
Let us assumeA is tridiagonal andA∗ is diagonal. Suppose we wish to verify th
A, A∗ is a Leonard pair. In order to do this it suffices to display a parameter
(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) which satisfies Theorem 25.1(ii). We give

method for obtaining this array from the entries ofA andA∗. Our method is summarized a
follows. From (25) we findθ∗

i = A∗
ii for 0 � i � d . To obtain the rest of the array we pr

ceed in two steps: (i) we obtainθ0, θd as the roots of a certain quadratic polynomial wh
coefficients are rational expressions involvingA00,A11,Add,A10A01 andθ∗

0 , θ∗
1 , . . . , θ∗

d ;
(ii) we obtainθi (1 � i � d − 1) andϕi,φi (1 � i � d) as rational expressions involvin
θ0, θd,A00,Add andθ∗

0 , θ∗
1 , . . . , θ∗

d . For convenience we discuss step (ii) before step
To prepare for step (ii) we give a lemma.

Lemma 26.1. Let d denote a positive integer and let(θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j =

1, . . . , d) denote a parameter array overK. For notational convenience we define

ϑi :=
i−1∑
h=0

θ∗
h − θ∗

d−h

θ∗
0 − θ∗

d

(0 � i � d). (26)

Then(i)–(iii) hold below.

(i) θi = θ0 + ϕi−φdϑi

θ∗
i−1−θ∗

d
(1 � i � d).

(ii) θi = θd + ϕi+1−φ1ϑi+1
θ∗
i+1−θ∗

0
(0� i � d − 1).

(iii) ϕi+1−φ1ϑi+1∗ ∗ = ϕi−φdϑi∗ ∗ + θ − θ (1 � i � d − 1).

θi+1−θ0 θi−1−θd

0 d
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Proof. (i) Let the integeri be given. Evaluating Corollary 11.4(ii) using Corollary 11.4
we findϕi = φdϑi + (θi − θ0)(θ

∗
i−1 − θ∗

d ). Solving this equation forθi we get the result.
(ii) Similar to the proof of (i) above, except use Theorem 9.1(iii) instead of Co

lary 11.4(ii).
(iii) Combine (i), (ii) above. �

Theorem 26.2. Let d denote a positive integer and letA, A∗ denote a Leonard
pair in Matd+1(K). AssumeA is tridiagonal and A∗ is diagonal. Let (θi, θ

∗
i , i =

0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote a parameter array which satisfies Theorem25.1(ii).
Thenθi (1 � i � d − 1) and ϕi,φi (1 � i � d) are obtained fromθ0, θd,A00,Add and
θ∗

0 , θ∗
1 , . . . , θ∗

d as follows.

(i) To obtainϕ1, ϕd,φ1, φd use

ϕ1 = (A00 − θ0)
(
θ∗

0 − θ∗
1

)
, ϕd = (Add − θd)

(
θ∗
d − θ∗

d−1

)
, (27)

φ1 = (A00 − θd)
(
θ∗

0 − θ∗
1

)
, φd = (Add − θ0)

(
θ∗
d − θ∗

d−1

)
. (28)

(ii) To obtainϕ2, ϕ3, . . . , ϕd−1 recursively apply Lemma26.1(iii).
(iii) To obtainθ1, θ2, . . . , θd−1 use Lemma26.1(i)or (ii) .
(iv) To obtainφ2, φ3, . . . , φd−1 use Theorem9.1(iv).

Proof. (i) To obtain the equation on the left (respectively right) in (27) seti = 0 (respec-
tively i = d) in (23) and rearrange terms. Equation (28) is just (27) with the original p
meter array replaced by the parameter array(θd−i , θ

∗
i , i = 0, . . . , d;φj ,ϕj , j = 1, . . . , d).

(ii)–(iv). Clear. �
Theorem 26.3. With reference to Theorem26.2, the scalarsθ0, θd are the roots of the
quadratic polynomial

(λ − A00)(λ − α/ε) − A10A01/ε, (29)

whereε,α are defined as follows. Ifd = 1 thenε = 1 andα = A11. If d � 2 then

ε = (θ∗
1 − θ∗

d )(θ∗
1 − θ∗

d−1) · · · (θ∗
1 − θ∗

2 )

(θ∗
0 − θ∗

d )(θ∗
0 − θ∗

d−1) · · · (θ∗
0 − θ∗

2 )
(30)

and

α = A11
θ∗

1 − θ∗
2

θ∗
0 − θ∗

2
− A00

θ∗
1 − θ∗

d

θ∗
0 − θ∗

2

θ∗
0 − θ∗

1

θ∗
0 − θ∗

d

+ Add

θ∗
d−1 − θ∗

d

θ∗
0 − θ∗

2

θ∗
0 − θ∗

1

θ∗
0 − θ∗

d

. (31)

Proof. First supposed = 1. Thenθ0, θd are the roots of the characteristic polynomial oA

and this polynomial is(λ − A00)(λ − A11) − A10A01. Next supposed � 2. We claim the

scalarε from (30) satisfies
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ε = 1− θ∗
0 − θ∗

1

θ∗
0 − θ∗

2

θ∗
0 + θ∗

1 − θ∗
d−1 − θ∗

d

θ∗
0 − θ∗

d

. (32)

To obtain (32) we recall by Corollary 20.5 thatpT has constant row sumθ0, wherep =
(θi, θ

∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d). Considering row 1 ofpT we findpT

10 + pT
11 +

pT
12 = θ0. We evaluate the left-hand side of this equation using Definition 20.3. In

resulting equation we eliminateϕ1, ϕ2 using Theorem 9.1(iii) and we simplify the resu
using Corollary 11.4(i). Equation (32) follows and our claim is proved. To showθ0, θd are
the roots of (29) we show both

θ0 + θd = A00 + α/ε, (33)

θ0θd = A00α/ε − A10A01/ε. (34)

To verify (33) we consider the expressionα given in (31). We simplify this expressio
by evaluatingA11 in terms ofθ0, θd,A00,Add and θ∗

0 , θ∗
1 , . . . , θ∗

d using (23) and Theo
rem 26.2. Simplifying the result further using (32) we findα = ε(θ0 + θd − A00) and (33)
follows. To verify (34) we evaluate the productA10A01 in terms ofθ0, θd,A00,Add and
θ∗

0 , θ∗
1 , . . . , θ∗

d using (24) and Theorem 26.2. Simplifying the result using (30) we ob
A10A01 = −ε(A00−θ0)(A00−θd). Combining this with (33) we routinely obtain (34).�

27. Transition matrices and polynomials

Let Φ denote a Leonard system overK and let (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j =

1, . . . , d) denote the corresponding parameter array. LetA denote the ambient algeb
of Φ. Let� :A → Matd+1(K) denote the TD–D canonical map forΦ, from Definition 20.1.
Let � :A → Matd+1(K) denote the TD–D canonical map forΦ∗. We describe how� and�

are related. To do this we cite some facts from [29, Section 16]. For 0� i, j � d we define
the scalar

Pij =
d∑

n=0

(θi − θ0)(θi − θ1) · · · (θi − θn−1)(θ
∗
j − θ∗

0 )(θ∗
j − θ∗

1 ) · · · (θ∗
j − θ∗

n−1)

ϕ1ϕ2 · · ·ϕn

. (35)

Let P denote the matrix in Matd+1(K) which has entries

Pij = kjPij (0� i, j � d),

wherePij is from (35) and wherekj equals

ϕ1ϕ2 · · ·ϕj

φ1φ2 · · ·φj
times
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(θ∗
0 − θ∗

1 )(θ∗
0 − θ∗

2 ) · · · (θ∗
0 − θ∗

d )

(θ∗
j − θ∗

0 ) · · · (θ∗
j − θ∗

j−1)(θ
∗
j − θ∗

j+1) · · · (θ∗
j − θ∗

d )

for 0 � j � d . ThenPi0 = 1 for 0� i � d andX�P = PX� for all X ∈ A. Let P ∗ denote
the matrix in Matd+1(K) which has entries

P ∗
ij = k∗

jPji (0� i, j � d),

wherePji is from (35) andk∗
j equals

ϕ1ϕ2 · · ·ϕj

φdφd−1 · · ·φd−j+1

times

(θ0 − θ1)(θ0 − θ2) · · · (θ0 − θd)

(θj − θ0) · · · (θj − θj−1)(θj − θj+1) · · · (θj − θd)

for 0 � j � d . ThenP ∗
i0 = 1 for 0� i � d andX�P ∗ = P ∗X� for all X ∈ A. Moreover

PP ∗ = νI where

ν = (θ0 − θ1)(θ0 − θ2) · · · (θ0 − θd)(θ∗
0 − θ∗

1 )(θ∗
0 − θ∗

2 ) · · · (θ∗
0 − θ∗

d )

φ1φ2 · · ·φd

.

We comment on (35). For 0� i, j � d , Pij is a polynomial of degreej in θi and a
polynomial of degreei in θ∗

j . The class of polynomials which can be obtained from a
rameter array in this fashion coincides with the class of polynomials which are con
in the Askey scheme [17] and which are orthogonal with respect to a measure whi
finitely many nonzero values. This class consists of the Krawtchouk, Hahn, dual
Racah, theq-analogs of these, and some polynomials obtained from theq-Racah by let-
ting q = −1. See [35, Appendix A] and [1, p. 260] for more details. To illustrate this
obtain some Krawtchouk andq-Racah polynomials from the parameter arrays give
Examples 10.2 and 10.3, respectively.

Example 27.1 [29, Section 16]. Let (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote the

parameter array in Example 10.2. Referring to the discussion in the first part of this se
for 0� i, j � d we have

Pij =
d∑

n=0

(−i)n(−j)n2n

(−d)nn! (36)

where
(a)n := a(a + 1)(a + 2) · · · (a + n − 1), n = 0,1,2, . . . .
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Moreover

kj =
(

d

j

)
, k∗

j =
(

d

j

)
(0� j � d)

andν = 2d . We haveP = P ∗ andP 2 = 2dI . For 0� i, j � d the expression on the righ
in (36) is equal to the hypergeometric series

2F1

( −i,−j

−d

∣∣∣∣ 2

)
. (37)

From this we findPij is a Krawtchouk polynomial of degreej in θi and a Krawtchouk
polynomial of degreei in θ∗

j .

Example 27.2 [29, Section 16]. Let (θi, θ
∗
i , i = 0, . . . , d;ϕj ,φj , j = 1, . . . , d) denote the

parameter array in Example 10.3. Referring to the discussion in the first part of this se
for 0� i, j � d we have

Pij =
d∑

n=0

(q−i;q)n(sq
i+1;q)n(q

−j ;q)n(s
∗qj+1;q)nq

n

(r1q;q)n(r2q;q)n(q−d ;q)n(q;q)n
(38)

where

(a;q)n := (1− a)(1− aq)
(
1− aq2) · · · (1− aqn−1), n = 0,1,2 . . . .

Moreover

kj = (r1q;q)j (r2q;q)j (q
−d ;q)j (s

∗q;q)j (1− s∗q2j+1)

sj qj (q;q)j (s∗q/r1;q)j (s∗q/r2;q)j (s∗qd+2;q)j (1− s∗q)
,

k∗
j = (r1q;q)j (r2q;q)j (q

−d ;q)j (sq;q)j (1− sq2j+1)

s∗j qj (q;q)j (sq/r1;q)j (sq/r2;q)j (sqd+2;q)j (1− sq)

for 0� j � d and

ν = (sq2;q)d(s∗q2;q)d

rd
1 qd(sq/r1;q)d(s∗q/r1;q)d

.

For 0� i, j � d the expression on the right in (38) is equal to the basic hypergeom
series

4φ3

(
q−i , sqi+1, q−j , s∗qj+1

r1q, r2q, q−d

∣∣∣∣ q, q

)
.

By this and sincer1r2 = ss∗qd+1 we findPij is aq-Racah polynomial of degreej in θi∗
and aq-Racah polynomial of degreei in θj .
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28. Directions for further research

In this section we give some suggestions for further research.

Problem 28.1. Let Φ denote the Leonard system from (3). Letα,α∗, β,β∗ denote scalar
in K such thatα �= 0 andα∗ �= 0. Recall the sequence(αA + βI,α∗A∗ + β∗I ;Ei,E

∗
i , i =

0, . . . , d) is a Leonard system inA. In some cases this system is isomorphic to a rela
of Φ; describe all the cases where this occurs.

Problem 28.2. Let d denote a nonnegative integer. Find all Leonard pairsA, A∗ in
Matd+1(K) which satisfy the following two conditions:

(i) A is irreducible tridiagonal;
(ii) A∗ is lower bidiagonal withAi,i−1 = 1 for 1� i � d .

Problem 28.3. Let d denote a nonnegative integer. Find all Leonard pairsA, A∗ in
Matd+1(K) such that each ofA,A∗ is irreducible tridiagonal.

Problem 28.4. Let d denote a nonnegative integer. Find all Leonard pairsA, A∗ in
Matd+1(K) which satisfy the following two conditions:

(i) each ofA, A∗ is irreducible tridiagonal;
(ii) there exists a diagonal matrixH in Matd+1(K) such thatA = HA∗H−1.

Problem 28.5. Let A, A∗ denote the Leonard pair from Definition 4.1. Determine wh
does there exist invertible elementsU,U∗ in A which satisfy (i)–(iii) below:

(i) UA = AU ;
(ii) U∗A∗ = A∗U∗;

(iii) UA∗U−1 = U∗−1AU∗.

This problem arises naturally in the context of a spin model contained in a Bose–M
algebra ofP - andQ-polynomial type [5].

Problem 28.6. Let V denote a vector space overK with finite positive dimension. By
a Leonard triple onV , we mean a three-tuple of linear transformationsA :V → V ,
A∗ :V → V , Aε :V → V which satisfy conditions (i)–(iii) below.

(i) There exists a basis forV with respect to which the matrix representingA is diagonal
and the matrices representingA∗ andAε are each irreducible tridiagonal.

(ii) There exists a basis forV with respect to which the matrix representingA∗ is diagonal
and the matrices representingA andAε are each irreducible tridiagonal.

(iii) There exists a basis forV with respect to which the matrix representingAε is diagonal
and the matrices representingA andA∗ are each irreducible tridiagonal.
Find all the Leonard triples.
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Remark 28.7. Referring to Problem 28.5, letAε denote the common value ofUA∗U−1,
U∗−1AU∗. ThenA, A∗, Aε is a Leonard triple.

Conjecture 28.8. Let Φ denote the Leonard system from(3) and letI denote the identity
element ofA. Then for allX ∈A the following are equivalent:

(i) both

EiXEj = 0 if |i − j | > 1 (0 � i, j � d),

E∗
i XE∗

j = 0 if |i − j | > 1 (0 � i, j � d);
(ii) X is a K-linear combination ofI , A, A∗, AA∗, A∗A.

Conjecture 28.9. Let Φ denote the Leonard system from(3). Then for0 � r � d the ele-
ments

E∗
0,E∗

1, . . . ,E∗
r ,Er,Er+1, . . . ,Ed

together generateA.

Acknowledgments

The author thanks John Caughman and Hjalmar Rosengren for a conversation
inspired Problem 28.5. The author thanks Brian Curtin, Mark MacLean, and Raim
Vidunas for giving this manuscript a close reading and offering many valuable sugge

References

[1] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1
[2] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer, Berlin, 1989.
[3] J.S. Caughman IV, The Terwilliger algebras of bipartiteP - and Q-polynomial schemes, Discret

Math. 196 (1–3) (1999) 65–95.
[4] B. Curtin, K. Nomura, Distance-regular graphs related to the quantum enveloping algebra ofsl(2), J. Alge-

braic Combin. 12 (1) (2000) 25–36.
[5] B. Curtin, Distance-regular graphs which support a spin model are thin, in: 16th British Combina

Conference, London, 1997, Discrete Math. 197/198 (1999) 205–216.
[6] J. Go, The Terwilliger algebra of the Hypercube, European J. Combin. 23 (4) (2002) 399–429.
[7] Ya.I. Granovskĭı, A.S. Zhedanov, Nature of the symmetry group of the 6j -symbol, Zh. Eksper. Teore

Fiz. 94 (10) (1988) 49–54.
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