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Let X be a family of finite groups satisfying certain conditions
and K be a field. We study composition factors, radicals, and so-
cles of biset and related functors defined on X over K. For such
a functor M and for a group H in X , we construct bijections
between some classes of maximal (respectively, simple) subfunctors
of M and some classes of maximal (respectively, simple) K Out(H)-
submodules of M(H). We use these bijections to relate the
multiplicity of a simple functor S H,V in M to the multiplicity of
V in a certain K Out(H)-module related to M(H). We then use
these general results to study the structure of one of the important
biset and related functors, namely the Burnside functor BK which
assigns to each group G in X its Burnside algebra BK(G) =
K ⊗Z B(G) where B(G) is the Burnside ring of G . We find the
radical and the socle of BK in most cases of X and K. For example,
if K is of characteristic p > 0 and X is a family of finite abelian
p-groups, we find the radical and the socle series of BK considered
as a biset functor on X over K. We finally study restrictions
of functors to nonfull subcategories. For example, we find some
conditions forcing a simple deflation functor to remain simple as
a Mackey functor. For an inflation functor M defined on abelian
groups over a field of characteristic zero, we also obtain a criterion
for M to be semisimple, in terms of the images of inflation and
induction maps on M .

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The main purpose of the paper is to develop some methods that can be used in order to find
composition factors of biset and related functors. We especially obtain some results allowing us to find
the radicals and the socles of arbitrary biset and related functors. We use these results to study the
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structure of the Burnside functor, aiming to find its radical and socle series. We also study restrictions
of functors to nonfull subcategories, for instance we study structures of inflation and deflation functors
considered as (global) Mackey functors.

The notion of biset functors was introduced and developed by Bouc [2]. One of the most important
examples of biset functors is the Burnside functor BK on X over K which assigns to each group G in
the family X its Burnside algebra K ⊗Z B(G) where K is a field and X is a family of finite groups
satisfying some certain conditions and B(G) is the Burnside ring of G .

For an arbitrary functor M and a group H in X , we first construct a bijective correspondence
between maximal subfunctors of M whose simple quotients have H as minimal groups and some
maximal K Out(H)-submodules of the Brauer quotient of M at H . These bijections allow us to find
maximal subfunctors of M in terms of the maximal K Out(H)-submodules of the Brauer quotients
of M at groups H in X , because determining maximal submodules of the Brauer quotients of M
are usually easier than determining maximal subfunctors of M . We already used a similar approach
in [17] to study the structure of Mackey functors for a fixed group. Therefore, we here (in Sections 4
and 6) extend some parts of [17] to functors defined globally.

The subfunctors of the Burnside functor BK , considered as a biset functor on the family of all
finite p-groups (p is a prime), are found explicitly in Bouc and Thévenaz [3] when the characteristic
of the field K is different from p. In this case each algebra BK(G) admits a K-basis consisting of
primitive idempotents, and these primitive idempotents are used in [3] in a crucial way. In a similar
case, when K is of characteristic p > 0 and X is a family of nilpotent p′-groups, the composition
factors of the Burnside functor considered as a biset functor on X over K is studied by Bourizk [8].
We mainly study the structure of BK in the remaining cases, and we also consider BK as an inflation,
a (global) Mackey, or a deflation functor and study its structure in each case. In most of the cases we
study the structure of BK , the Burnside algebra BK(G) is local and so it has no K-basis consisting of
idempotents. Biset functors together with these related functors are called globally defined Mackey
functors or group functors by some authors. We here do not use this terminology.

An important quotient functor of BK defined on p-groups is the rational representation functor
whose subfunctors are found in Bouc [2] (when the characteristic of K is 0) and in Bouc [4] (when
the characteristic of K is p > 0). The rational representation functor and its subfunctors are studied
also by Bourizk [7,9].

In Section 5 we study the radical of BK . We obtain some conditions that must be satisfied by BK

in order to have a maximal subfunctor. For instance, we show that the Burnside functor, considered
as a deflation or a Mackey functor on the family of all finite p-groups over a field of characteristic
p > 0, has no maximal subfunctors. In Theorem 5.4 we obtain that the Burnside functor BK , consid-
ered as a Mackey functor on a family X over K, has a maximal subfunctor J satisfying the property
that H is a minimal group of the simple functor BK/ J if and only if for any K ∈ X having a subgroup
isomorphic to H and for any subgroup A of K isomorphic to H the index |NK (A) : A| is not divis-
ible by the characteristic of the field K. One of the consequence of this result is that the Burnside
functor considered as a Mackey functor on a family of p′-groups over a field of characteristic p > 0 is
semisimple. A related result that can be found in Webb [15] states that over any field of characteristic
0 the category of (global) Mackey functors is semisimple.

We also obtain similar results related to simple subfunctors. For example, using a result of Bourizk
[6] we find in Proposition 7.4 that the socle of the Burnside functor, considered as a biset functor on
the family of all p-groups of order less than or equal to pm (m is a natural number with m � 2) over
a field of characteristic p > 0, is isomorphic to

⊕
H

S H,K

where H ranges over a complete set of isomorphism classes of all groups of order pm and S H,K is
the simple functor parameterized by the pair (H,K) (see Section 2).

We devote Section 8 to the study of the Burnside functor considered as a deflation or a Mackey
functor. We discover some results about the simple functors appearing in the radical quotients of
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the Burnside functor. For example, if we consider the Burnside functor BK as a Mackey functor on
the family of all p-groups of order less than or equal to pm (m is a natural number) over a field
of characteristic p > 0, we show that the simple functor S1,K (whose multiplicity in the Burnside
functor is 1) appears in the radical quotient Jm/ Jm+1 where Jk = Jack(BK) denotes the kth radical of
the Burnside functor.

In Section 9, we consider the Burnside functor as a biset functor on a family of finite abelian p-
groups, and find its radical and socle series. For instance, letting K be of characteristic p > 0 and X
be the family of all finite abelian p-groups, and considering the Burnside functor BK as a biset functor
on X over K, and for any natural number k � 1 putting Jk = Jack(BK), in Theorem 9.4 we find the
radical series of BK as follows:

BK/ J1 ∼= S1,K and Jk/ Jk+1
∼=

⊕
H

S H,K,

for any natural number k � 1, where H ranges over a complete set of isomorphism classes of all
groups of order pk+1 in X . We also observe that the radical and the socle series of BK coincides with
each other, except that the socle series reaches to BK only if one places a bound on the orders of the
groups in X .

We finally study restrictions of functors to nonfull subcategories. For instance, we observe that if
a simple Mackey functor S H,V parameterized by the pair (H, V ) is projective then the simple de-
flation functor S H,V parameterized by the pair (H, V ) remains to be simple when considered as a
Mackey functor. For another example, we obtain a semisimplicity criterion for inflation functors. That
is, an inflation functor M defined on a family X of abelian groups over a field of characteristic 0 is
semisimple if and only if

( ∑
N�H: N �=1

InfH
H/N M(H/N)

)
⊆

( ∑
P<H

IndH
P M(P )

)

for any H ∈ X .
Most of our notations are standard and tend to follow [2]. Let H � G � K be finite groups. By the

notation H g K ⊆ G we mean that g ranges over a complete set of representatives of double cosets of
(H, K ) in G . The notations S �G G and S �∗ G appearing in an index set both mean that S ranges over
all non-G-conjugate subgroups of G . The notation S <G G means that S �G G and S �= G . A quotient
group of a subgroup of G is called a section of G . Thus a section of G is of the form A/B where
B � A � G . By a proper section of G we mean a section of G whose order is less than the order of G .
For any set S we denote by |S| the number of elements in S . For any prime number p by a p′-group
we mean a group whose order is not divisible p. If p is the characteristic of a field and p = 0, by a
p′-group we mean any finite group.

For a functor M we denote by Jac(M) the Jacobson radical of M , the intersection of all maximal
subfunctors. It may happen that M has no maximal subfunctors, in which case we have Jac(M) = M .
In a dual way we denote by Soc(M) the socle of M , the sum of all simple subfunctors of M .
If M has no simple subfunctors then Soc(M) = 0. We also define the higher radicals and socles as:
Jaci(M) = Jac(Jaci−1(M)) and Soci(M)/Soci−1(M) = Soc(M/Soci−1(M)) for any natural number i � 1
where Jac0(M) = M and Soc0(M) = 0. One then has the radical and the socle series

M = Jac0(M) ⊇ Jac1(M) ⊇ Jac2(M) ⊇ · · · ,
0 = Soc0(M) ⊆ Soc1(M) ⊆ Soc2(M) ⊆ · · · .

The successive quotients of each series are either zero or semisimple, because a functor (whose eval-
uations at each group in X is a finite dimensional K-module), with zero radical is semisimple, see
the explanation given after 3.3. If there are only finitely many groups, up to isomorphism, in X and
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if M(G) is a finite dimensional K-module for each G ∈ X , it follows from the explanation given in
the next paragraph that the radical and the socle series reach to 0 and M , respectively, and they have
equal finite lengths called the Loewy length of M .

Let M be a functor on X and S be a simple functor on X parameterized by the pair (H, V ).
We sometimes write M X to indicate that we are considering M as a functor on X . We say that S is a
composition factor of M if there are subfunctors K ⊆ L of M such that L/K ∼= S . Let Y be a subfamily
of X (satisfying certain conditions) such that S Y �= 0. It follows from the explanation given after 3.8
that S X is a composition factor of M X if and only if S Y is a composition factor of M Y . By the
multiplicity of S in M we mean the multiplicity of S Z as a composition factor of M Z where Z is
the subfamily of X such that any group in Z is isomorphic to a section of H . Although M X may not
have a composition series, M Z must have a composition series. The reason for this is that M Z may
be identified with a module of the category algebra of the skeletal category of its domain category
(i.e., any of b, i, d, or m defined in Section 2), and it is a finite dimensional K-algebra because there
are only finitely many groups, up to isomorphism, in Z. See, for instance, Barker [1] and Webb [15]
for more details about the category algebras. Furthermore, it follows from above that if M X has a
composition series then the multiplicity of S X in M X is equal to the multiplicity of S Z in M Z . More
to the point, we observe in 4.10 that the multiplicity of S in M is equal to the multiplicity of V as a
composition factor of End(H)-module M(H).

Throughout the paper, R is a commutative unital ring, K is a field, and X is a family of finite
groups which is closed under taking subgroups, quotients, and isomorphisms.

2. Preliminaries

In this section, we simply collect some crucial results on bisets and functors in Bouc [2]. Let G , H ,
and K be finite groups. A (G, H)-biset is a finite set U having a left G-action and a right H-action
such that the two actions commute. Given a (G, H)-biset U and an (H, K )-biset V , the cartesian
product U × V becomes a right H-set with the action (u, v)h = (uh,h−1 v). If we let u ⊗ v denote
the H-orbit of U × V containing (u, v), then the set U ×H V of the H-orbits of U × V becomes a
(G, K )-biset with the actions g(u ⊗ v)k = gu ⊗ vk. Any (G, H)-biset U is a left G × H-set by the
action (g,h)u = guh−1, and conversely. Terminology for (G, H)-bisets is inherited from terminology
for G × H-sets. Thus transitive (G, H)-bisets are isomorphic to bisets of the form (G × H)/L where L
is a subgroup G × H . We write [U ] for the isomorphism class of a biset U .

Let L be a subgroup of G × H . We define

p1(L) = {
g ∈ G: ∃h ∈ H, (g,h) ∈ L

}
and k1(L) = {

g ∈ G: (g,1) ∈ L
}
,

p2(L) = {
h ∈ H: ∃g ∈ G, (g,h) ∈ L

}
and k2(L) = {

h ∈ H: (1,h) ∈ L
}
.

Then ki(L) is a normal subgroup pi(L), and k1(L) × k2(L) is a normal subgroup of L, and the three
quotient groups which we denote by q(L) are isomorphic. If L � G × H and M � H × K we write

L ∗ M = {
(g,k) ∈ G × K : ∃h ∈ H, (g,h) ∈ L, (h,k) ∈ M

}
.

Proposition 2.1. (See [2].) Let L � G × H and M � H × K . Then

(
(G × H)/L

) ×H
(
(H × K )/M

) ∼=
∑

p2(L)hp1(M)⊆H

(G × K )/
(
L ∗ (h,1)M

)
.

There are five types of basic bisets so that any transitive biset is isomorphic to a product of them.
For H � G � N and isomorphism of groups ψ : G → G ′ , they are
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IndG
H = (G × H)/

{
(h,h): h ∈ H

}
,

ResG
H = (H × G)/

{
(h,h): h ∈ H

}
,

InfG
G/N = (G × G/N)/

{
(g, gN): g ∈ G

}
,

DefG
G/N = (G/N × G)/

{
(gN, g): g ∈ G

}
,

IsoG ′
G (ψ) = (

G ′ × G
)
/
{(

ψ(g), g
)
: g ∈ G

}
.

Proposition 2.2. (See [2].) For any L � G × H we have

(G × H)/L ∼= IndG
p1(L) Infp1(L)

p1(L)/k1(L)
Isop1(L)/k1(L)

p2(L)/k2(L)
(ψ)Defp2(L)

p2(L)/k2(L)
ResH

p2(L)

where ψ(hk2(L)) = gk1(L) if and only if (g,h) ∈ L.

Let X be a family of finite groups closed under taking subgroups, taking isomorphisms and taking
quotients. We define the biset category b (on X over R), which is R-linear, as follows:

• The objects are the groups in X .
• If H and G are in X then Homb(H, G) = R B(G × H) is the Burnside group of (G, H)-bisets, with

coefficients in R .
• Composition of morphisms is obtained by R-linearity from the product (U , V ) �→ U ×H V .

Any R-linear (covariant) functor from the category b to the category of left R-modules is called a
biset functor (on X over R). We denote by Fb the category of biset functors, which is an abelian
category.

We also want to consider some nonfull subcategories of b and R-linear functors from these sub-
categories to the category of left R-modules. Let i be the subcategory of b with the same objects and
with the morphisms

Homi(H, G) =
⊕

L�∗ G×H: k2(L)=1

R
[
(G × H)/L

]
.

An R-linear functor from i to the category of left R-modules is called an inflation functor (on X
over R). We denote by Fi the category of inflation functors.

Let d be the subcategory of b with the same objects and with the morphisms

Homd(H, G) =
⊕

L�∗ G×H: k1(L)=1

R
[
(G × H)/L

]
.

An R-linear functor from d to the category of left R-modules is called a deflation functor (on X over
R). We denote by Fd the category of deflation functors.

Let m be the subcategory of b with the same objects and with the morphisms

Homm(H, G) =
⊕

L�∗ G×H: k1(L)=1=k2(L)

R
[
(G × H)/L

]
.

An R-linear functor from m to the category of left R-modules is called a (global) Mackey functor
(on X over R). We denote by Fm the category of Mackey functors. Mackey functors can also be
defined on a family X of finite groups closed under taking subgroups and taking isomorphism.
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These four functor categories have similar theories. For example their simple objects are param-
eterized in the same manner. From now on in this section, a functor means any of biset, inflation,
deflation or Mackey.

For any groups X and Y in X the composition of morphism gives an (End(Y ),End(X))-bimodule
structure on Hom(X, Y ), and for a functor M we have an End(X)-module structure on M(X) given by
f mX = M( f )(mX ).

For a group X in X and an End(X)-module V we define a functor L X,V and an its subfunctor J X,V

as follows:

L X,V (Y ) = Hom(X, Y ) ⊗End(X) V ,

L X,V ( f ) : L X,V (Y ) → L X,V (Z), θ ⊗ v �→ f θ ⊗ v,

J X,V (Y ) =
⋂

f ∈Hom(Y ,X)

Ker
(
L X,V ( f )

)
,

where Ker(L X,V ( f )) denotes the kernel of the map L X,V ( f ).
Having defined the functors L X,V we define two important functors between the functor cate-

gory F (i.e., any of Fb , Fi , Fd or Fm) and End(X)-module category.

L X,− : End(X)-Mod → F, V �→ L X,V ,

and if ϕ : V → W is an End(X)-module homomorphism then L X,−(ϕ) : L X,V → L X,W is the natural
transformation whose Y ∈ X component is the map L X,V (Y ) → L X,W (Y ), given by f ⊗ v �→ f ⊗ϕ(v).

e X : F → End(X)-Mod, M �→ M(X),

and if π : M → N is a morphism of functors (i.e., a natural transformation) then e X (π) is the X-
component πX : M(X) → N(X) of π .

Proposition 2.3. (See [2].) Let X be a group in X . Then:

(1) e X is an exact functor and L X,− is a right exact functor.
(2) (L X,−, e X ) is an adjoint pair.
(3) If V is a projective End(X)-module then L X,V is a projective functor.
(4) If V is an indecomposable End(X)-module then L X,V is an indecomposable functor.

Let M be a functor. A group H in X is called a minimal group of M if M(H) �= 0 and M(K ) = 0
for all K ∈ X with |K | < |H|.

Proposition 2.4. (See [2].) Let X be a group in X and let V be a simple End(X)-module. Then, J X,V is the
unique maximal subfunctor of L X,V and L X,V / J X,V is a simple functor whose evaluation at X is V . However,
X may not be a minimal subgroup of this simple functor.

Proposition 2.5. (See [2].) For a group G in X , there is a direct sum decomposition

End(G) = Ext(G) ⊕ IG

where IG is a two sided ideal of End(G) with an R-basis consisting of the elements [(G × G)/L] of End(G)

with |q(L)| < |G|, and Ext(G) is a unital subalgebra of End(G) isomorphic to the group algebra R Out(G) of
the group of outer automorphisms of G.
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A simple functor S with a minimal group H is denoted by S H,V if S(H) = V .

Theorem 2.6. (See [2].) In the following an R Out(H)-module is considered as an End(H)-module via the
natural projection map End(H) → Ext(H) ∼= R Out(H) given in 2.5.

(1) Let H be a group in X and let V be a simple R Out(H)-module. Then H is a minimal subgroup of the
simple functor LH,V / J H,V . So LH,V / J H,V = S H,V .

(2) Let S be a simple functor and let H be a minimal subgroup S. Then I H annihilates S(H), and S(H) is a
simple R Out(H)-module, and S ∼= S H,V where S(H) = V .

(3) S H,V ∼= S K ,W if and only if there is a group isomorphism H → K transporting V to W .
(4) If S H,V (G) �= 0 for some group G, then H is isomorphic to a section of G (to a subgroup of G in the case of

Mackey functors).

3. Linear functors in general

Throughout this section, A is an (small) R-linear category, and F is the category of R-linear (co-
variant) functors from A to the category of (left) R-modules.

Let M ∈ F be a functor and X be an object of A. Composition of morphisms of A induces an (left)
EndA(X)-module structure on the R-module M(X) defined by f m = M( f )(m) for any f ∈ EndA(X)

and any m ∈ M(X). The main purpose of this section is to find some relations between the maximal
(respectively, simple) subfunctors of M and the maximal (respectively, simple) EndA(X)-submodules
of M(X).

For a functor M ∈ F, an object X of A, and an EndA(X)-submodule V of M(X), we define two
subfunctors ImM

X,V and KerM
X,V of M whose evaluations at any object Y of A are given as

ImM
X,V (Y ) =

∑
f ∈HomA(X,Y )

M( f )(V ),

KerM
X,V (Y ) =

⋂
f ∈HomA(Y ,X)

M( f )−1(V ),

where for an f ∈ HomA(Y , X) we denote by M( f )−1(V ) the set of all elements y ∈ M(Y ) such that
M( f )(y) ∈ V . It is obvious from the definitions that they are subfunctors of M and that the evalu-
ations of subfunctors ImM

X,V and KerM
X,V at X are both equal to V . Moreover, ImM

X,V is the smallest
subfunctor of M in the sense that it is contained in any subfunctor I of M satisfying V ⊆ I(X), and
KerM

X,V is the largest subfunctor of M in the sense that it contains any subfunctor J of M satisfying
J (X) ⊆ V . We note that the subfunctor J X,V of L X,V described in Section 2 is the KerX,0 subfunctor
of L X,V . Some elementary properties and applications of these subfunctors can be found in [16].

Lemma 3.1. Let M ∈ F be a functor and X be an object of A. Then:

(1) The maps J → J (X) and KerM
X,V ← V define a bijective correspondence between the largest elements J

of the set of all subfunctors I of M satisfying the property ImM
X,M(X) � I , and the maximal EndA(X)-

submodules V of M(X).
(2) The maps J → J (X) and ImM

X,V ← V define a bijective correspondence between the smallest elements

J of the set of all subfunctors I of M satisfying the property I � KerM
X,0 , and the simple EndA(X)-

submodules V of M(X).

We skip the proof of the above result, which follows easily from the definitions of Im and Ker
subfunctors. Note that the largest (respectively smallest) subfunctors J considered in the above result
may not be the maximal (respectively simple) subfunctors of M unless ImM

X,M(X) = M (respectively

KerM
X,0 = 0). If we assume further that ImM

X,M(X) = M (respectively KerM
X,0 = 0) then the above result
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implies Propositions 3.3 and 3.5 in [16]. We also note that the conditions ImM
X,M(X) � I and I � KerM

X,0
are equivalent to the conditions I(X) �= M(X) and I(X) �= 0, respectively.

The following is an immediate consequence of 3.1.

Proposition 3.2. Let M ∈ F be a functor and X be an object of A. Then:

(1) The maps J → J (X) and KerM
X,V ← V define a bijective correspondence between the maximal subfunc-

tors J of M satisfying the property ImM
X,M(X) � J , and the maximal EndA(X)-submodules V of M(X)

satisfying the property

ImM
X,M(X) +KerM

X,V = M.

(2) The maps J → J (X) and ImM
X,V ← V define a bijective correspondence between the simple subfunctors J

of M satisfying the property J � KerM
X,0 , and the simple EndA(X)-submodules V of M(X) satisfying the

property

ImM
X,V ∩KerM

X,0 = 0.

The following characterization of simple functors (see, for instance, Corollary 3.6 of [16]) is an easy
consequence of 3.2.

Remark 3.3. Let M ∈ F be a functor and X be an object of A such that M(X) �= 0. Then, M is simple
if and only if M(X) is a simple EndA(X)-module, ImM

X,M(X) = M , and KerM
X,0 = 0.

Let M ∈ F be a functor and X be an object of A such that M(X) �= 0. It follows from 3.2 that any
maximal subfunctor of M which does not contain ImM

X,M(X) must be of the form KerM
X,V for some

maximal EndA(X)-submodule V of M(X), and so it contains KerM
X,0. Consequently, we must have that

KerM
X,0 ∩ ImM

X,M(X) ⊆ Jac(M) and Jac
(
M(X)

) ⊆ Jac(M)(X),

where Jac(M) denotes the radical of the functor M and Jac(M(X)) denotes the radical of the EndA(X)-
module M(X). Moreover, it is clear from the definitions that KerM

X,0 ∩ ImM
X,M(X) is equal to KerI X

X,0

where I X = ImM
X,M(X) . Now we assume further that Jac(M) = 0 and that M(Y ) is an artinian EndA(Y )-

module for each object Y of A. For any object Y of A, it follows from what we observed above that
M(Y ) is a semisimple EndA(Y )-module and that KerIY

Y ,0 = 0. Then, it follows from 3.3 that each IY is
a semisimple functor. Consequently, M must be a semisimple functor because M is equal to the sum
of the semisimple functors IY where Y is ranging in the set of all objects Y of A with M(Y ) �= 0.

We apply 3.3 to derive the following result.

Remark 3.4. Let B be a subcategory of A and FB be the category of R-linear functors from B to the
category of R-modules. Any functor M ∈ F defines a functor ↓A

B
M = M ◦ I ∈ FB , called the restriction

of M to B, where I : B → A is the inclusion functor. If B is a full subcategory of A and S ∈ F is a
simple functor, then the restriction of S to B is either zero or a simple functor in FB .

Lemma 3.5. Let M ∈ F be a semisimple functor and X be an object of A. For any EndA(X)-submodule V of
M(X),

ImM
X,M(X) +KerM

X,V = M and ImM
X,V ∩KerM

X,0 = 0.
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Proof. Letting T = M/KerM
X,V we may see that KerT

X,0 = 0. Therefore, S(X) �= 0 for any simple sub-
functor S of T . As T is semisimple, by using 3.3 and the definition of Im subfunctors we obtain that
ImT

X,T (X) = T , which implies that the sum of ImM
X,M(X) and KerM

X,V is M . What remains can be justified
similarly. �

The following refinement of 3.2 is an easy consequence of 3.5 and 3.2.

Proposition 3.6. Let M ∈ F be a semisimple functor and X be an object of A. Then:

(1) The maps J → J (X) and KerM
X,V ← V define a bijective correspondence between the maximal subfunc-

tors J of M satisfying the property J (X) �= M(X), and the maximal EndA(X)-submodules V of M(X).
(2) The maps J → J (X) and ImM

X,V ← V define a bijective correspondence between the simple subfunctors
J of M satisfying the property J (X) �= 0, and the simple EndA(X)-submodules V of M(X).

We have also the following relations between socles and Im subfunctors, and radicals and Ker
subfunctors.

Remark 3.7. Let M, N ∈ F be functors, S ∈ F be a simple functor, and X be an object of A such that
S(X) �= 0. Put I = ImM

X,M(X) and K = KerM
X,0. Then:

(1) If ImN
X,N(X) = N then HomF(N, M) ∼= HomF(N, I) as R-modules. In particular, the multiplicities of

S in the socles of M and I are equal.
(2) If KerN

X,0 = 0 then HomF(M, N) ∼= HomF(M/K , N) as R-modules. In particular, the multiplicities
of S in the heads of M and M/K are equal.

Proof. For any natural transformation π : N → M it follows that

π(N) = π
(
ImN

X,N(X)

) ⊆ ImM
X,M(X) = I,

and it follows from 3.3 that ImS
X,S(X) = S , proving the first part. The second part can be proved

similarly. �
Proposition 3.8. Let M, N ∈ F be functors and let X be an object of A. Let

φ : HomF(M, N) → HomEndA(X)

(
M(X), N(X)

)
, π �→ πX ,

be the R-module (R-algebra if M = N) homomorphism sending a natural transformation π to its X-
component πX . Then:

(1) If KerN
X,0 = 0 then φ is a monomorphism.

(2) If KerN
X,0 = 0 and ImM

X,M(X) = M then φ is an isomorphism.

Proof. (1) Let π : M → N be a natural transformation with πX = 0. Then,

0 = πX
(
M(X)

) = π(M)(X),

implying that

π(M) ⊆ KerN
X,0 = 0.

Thus, π = 0 if πX = 0.
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(2) Let f : M(X) → N(X) be an EndA(X)-module homomorphism. We will construct a natural
transformation π : M → N with πX = f . Let Y be an object of A and u ∈ M(Y ). As ImM

X,M(X) = M ,
there are elements v1, . . . , vn in M(X) and morphisms f1, . . . , fn in HomA(X, Y ) for some natural
number n, such that

u = M( f1)(v1) + · · · + M( fn)(vn).

We define πY as

πY (u) = N( f1)
(

f (v1)
) + · · · + N( fn)

(
f (vn)

)
.

One may see that π with this definition is a natural transformation with πX = f . We here justify
only that πY defined above is a well-defined map. For this end, let w1, . . . , wm be elements of M(X)

and g1, . . . , gm be morphisms in HomA(X, Y ) such that

M(g1)(w1) + · · · + M(gm)(wm) = 0.

We need to show that a = 0 where

a = N(g1)
(

f (w1)
) + · · · + N(gm)

(
f (wm)

)
.

Indeed, let g be any morphism in HomA(Y , X). Then, each g ◦ gi is in EndA(X), and as f is an
EndA(X)-module homomorphism we must have that N(g ◦ gi)( f (wi)) = f (M(g ◦ gi)(wi)). Hence,

N(g)(a) = N(g)
(
N(g1)

(
f (w1)

) + · · · + N(gm)
(

f (wm)
))

= N(g ◦ g1)
(

f (w1)
) + · · · + N(g ◦ gm)

(
f (wm)

)
= f

(
M(g ◦ g1)(w1)

) + · · · + f
(
M(g ◦ gm)(wm)

)
= f

(
M(g)

(
M(g1)(w1) + · · · + M(gm)(wm)

))
= f

(
M(g)(0)

) = 0,

showing that a ∈ KerN
X,0. Therefore, a = 0. �

Let M ∈ F be a functor and S ∈ F be a simple functor. Let B be a full subcategory of A such
that ↓A

B
S �= 0. Suppose that there are subfunctors K ⊆ L of ↓A

B
M such that L/K is isomorphic

to ↓A
B

S . Take any object X of B such that S(X) �= 0. It follows that HomEndB(X)(L(X), S(X)) is
nonzero. As EndB(X) is equal to EndA(X), we see by using 3.8 and 3.3 that HomF(ImM

X,L(X), S) is

nonzero. Therefore, S appears in the head of ImM
X,L(X), which is a subfunctor of M . Consequently, we

observed that if ↓A
B

S is a composition factor of ↓A
B

M then S is a composition factor of M . The
converse of this observation is also true and it follows from 3.4. A consequence of this observation is
that, for any simple functors S1 and S2 in F and for any full subcategory B of A, if ↓A

B
S1 and ↓A

B
S2

are nonzero isomorphic functors then S1 and S2 are isomorphic functors in F.
We have the following obvious consequence of 3.8.

Corollary 3.9. Let M ∈ F be a functor and X be an object of A such that ImM
X,M(X) = M and KerM

X,0 = 0.
Suppose

M = M1 ⊕ · · · ⊕ Mn
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is a decomposition of M into nonzero functors in F. Then,

M(X) = M1(X) ⊕ · · · ⊕ Mn(X)

is a decomposition of M(X) into nonzero EndA(X)-modules such that the functors Mi and M j are isomorphic
if and only if the EndA(X)-modules Mi(X) and M j(X) are isomorphic. Moreover, Mi is an indecomposable
functor if and only if Mi(X) is an indecomposable EndA(X)-module.

4. Maximal subfunctors and Brauer quotients

Throughout this section, by a functor we mean any of biset functor, inflation functor, (global)
Mackey functor, or deflation functor, defined on X over K. Whenever we consider Mackey functors,
we do not need to assume that the family X is closed under taking quotients, and the words “section”
may be replaced with the words “subgroup”.

We begin with recalling the notion of the Brauer quotient of a functor, see [15]. Let M be a functor
and H be a group in X , we put

bH (M) =
∑
f ,K

M( f )
(
M(K )

)

where K ranges over all groups in X having no sections isomorphic to H and f ranges in Hom(K , H).
It is clear that bH (M) is a K Out(H)-submodule of M(H). The quotient module M(H)/bH (M) is called
the Brauer quotient of M at H , and denoted by M(H).

For a functor M , and groups H and K in X , and f ∈ Hom(K , H), we sometimes use the notation f
to denote the K-module homomorphism M( f ) : M(K ) → M(H). For instance, by the expression I H M
in the below we mean the sum of all K-modules M( f )(M(H)) where f ranges in the ideal I H of
End(H) described in 2.5.

Remark 4.1. Let M be a functor and H be a group in X . Then, I H M ⊆ bH (M) so that bH (M) is
an End(H)-submodule of M(H) where I H is the ideal of End(H) described in 2.5. In particular, any
K Out(H)-submodule of M(H) containing bH (M) is an End(H)-submodule of M(H).

Proof. As the ideal I H of End(H) is spanned by the transitive (H, H)-bisets

[
(H × H)/L

]
with |q(L)| < |H|, by using 2.2 we may factorize

[
(H × H)/L

]
as f g for some K ∈ X with |K | < |H| and f ∈ Hom(K , H) and g ∈ Hom(H, K ). In particular, K has no
sections isomorphic to H . As M is a functor,

M( f g)
(
M(H)

) ⊆ M( f )
(
M(K )

) ⊆ bH (M). �
The above result shows that the notation KerM

H,V makes sense for K Out(H)-submodules V of

M(H) containing bH (M), where KerM
X,W subfunctors of a functor M are defined in the previous section

for End(X)-submodules W of M(X).
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Theorem 4.2. Let M be a functor and H be a group in X . Then, the maps J → J (H) and KerM
H,V ← V define

a bijective correspondence between the largest elements J of the set of all subfunctors I of M satisfying the
property that H is a minimal group of M/I , and the maximal K Out(H)-submodules V /bH (M) of M(H).
Moreover, M(H) = 0 if and only if M has no quotient functor having H as a minimal group.

Proof. Let I be a subfunctor of M satisfying the property that H is a minimal group of M/I . We will
observe that bH (M) ⊆ I(H). In particular, M(H) �= 0: Indeed, for any group K in X having no sections
isomorphic to H , and any L � H × K , we must have that |q(L)| < |H|, and then 2.2 implies that

[
(H × K )/L

]
can be factorized as f g for some A ∈ X with |A| < |H| and f ∈ Hom(A, H) and g ∈ Hom(K , A).
Moreover, M(A) = I(A) as H is a minimal group of M/I and as |A| < |H|. Now

M( f g)
(
M(K )

) ⊆ M( f )
(
M(A)

) = M( f )
(

I(A)
) ⊆ I(H).

Hence bH (M) ⊆ I(H).
Let A be the set of all subfunctors I of M satisfying the property that H is a minimal group of

M/I , and let B be the set of all subfunctors I of M satisfying the property that

ImM
H,M(H) � I,

so that we have A ⊆ B. We will show that any largest element J of the set A remains to be a largest
element in the set B: Indeed, let J be a largest element of A. If there is an element I of B such that
J ⊆ I , then

M(K ) = J (K ) ⊆ I(K )

for any group K in X with |K | < |H| because H is a minimal group of M/ J . This shows that H is
also a minimal group of M/I , and so I ∈ A proving that J = I .

Let V be a proper K Out(H)-submodule of M(H) containing bH (M). We will show that H is a
minimal group of the functor M/I where I = KerM

H,V . In particular, I is an element of the set A
defined above: Indeed, as I(H) = V the functor M/I is nonzero at H . Let K be a group in X such
that |K | < |H|. Then K has no sections isomorphic to H , implying for any subgroup L of H × K that

[
(H × K )/L

]
M(K ) ⊆ bH (M) ⊆ V .

Hence I(K ) = M(K ) which shows that H is a minimal group of M/I .
Finally, the theorem follows from part (1) of 3.1. �
The subfunctors J mentioned in the previous result may not be maximal subfunctors of M . For

maximal subfunctors we have the following result as an immediate consequence of 3.2 and 4.2.

Corollary 4.3. Let M be a functor and H be a group in X . Then, the maps J → J (H) and KerM
H,V ← V define a

bijective correspondence between the maximal subfunctors J of M satisfying the property that H is a minimal
group of M/ J , and the maximal K Out(H)-submodules V /bH (M) of M(H) satisfying the property that

ImM
H,M(H) +KerM

H,V = M.

In terms of multiplicities in heads, 4.3 may be stated as follows.
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Corollary 4.4. Let M be a functor and H be a group in X . For any simple K Out(H)-module V , let n be the
multiplicity of V in the K Out(H)-module M(H)/ Jac(M(H)) and let m be the multiplicity of the simple functor
S H,V in M/ Jac(M). Then, m � n. In particular, if m �= 0 and n = 1 then m = 1.

Proof. Firstly, it follows from 4.3 that the multiplicity of S H,V in M/ Jac(M) is finite. There are m
maximal subfunctors J1, . . . , Jm of M such that each quotient M/ J i is isomorphic to S H,V and such
that the product of natural epimorphisms

ψ : M →
m∏

i=1

M/ J i

is surjective. From 2.3, the evaluation functor eH is exact so that the H-component

ψH : M(H) →
m∏

i=1

M(H)/ J i(H)

of (the natural transformation) ψ is a surjective End(H)-module homomorphism. We know from 4.3
that each J i(H) contains bH (M) and J i(H)/bH (M) is a maximal K Out(H)-submodule of M(H) and
its quotient is isomorphic to V . Thus ψH induces a K Out(H)-module homomorphism

M(H) → mV

which is surjective. Hence, n � m. �
The previous two results will be the main tool we use to find the maximal subfunctors of a given

functor M and multiplicities of simple functors in the head of M . For this end, we first need to
find the maximal K Out(H)-submodules V /bH (M) of the Brauer quotients M(H) so that maximal
subfunctors are of the form KerM

H,V , but for KerM
H,V to be a maximal subfunctor, V must satisfy the

given condition in 4.3. The next result illustrate some groups H for which this condition satisfied
automatically for any maximal K Out(H)-submodules V /bH (M) of M(H).

Proposition 4.5. Let M be a functor and H be a group in X . Suppose that M(H) �= 0 and that M(K ) = 0 for
any group K in X having a proper section isomorphic to H. Then:

(1) The maps J → J (H) and KerM
H,V ← V define a bijective correspondence between the maximal subfunc-

tors J of M satisfying the property that H is a minimal group of M/ J , and the maximal K Out(H)-
submodules V /bH (M) of M(H).

(2) For any simple K Out(H)-module V , the multiplicity of V in M(H)/ Jac(M(H)) is equal to the multiplicity
of S H,V in M/ Jac(M).

Proof. (1) Let V /bH (M) be a maximal K Out(H)-submodule of M(H). From 4.3 it is enough to show
that I = M where I is the functor defined as

I = ImM
H,M(H) +KerM

H,V .

Assume that I �= M . Then M/I is nonzero, and so it has a minimal group K . It follows from 4.2 that
M(K ) �= 0. The condition on H implies that K has no proper sections isomorphic to H . Moreover, K is
not isomorphic to H because I(H) = M(H) and K is a minimal group of M/I . We will show that

M(K ) = KerM
H,V (K ) ⊆ I(K ),
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which contradicts the fact that K is a minimal group of M/I: The group K has no sections isomorphic
to H so that for any f ∈ Hom(K , H) we have

M( f )
(
M(K )

) ⊆ bH (M) ⊆ V .

Therefore M(K ) ⊆ KerM
H,V (K ), as desired.

(2) Let n be the multiplicity of V and m be the multiplicity of S H,V . The inequality m � n is known
from 4.4. There are n maximal K Out(H)-submodules V 1, . . . , Vn of M(H) containing bH (M) such that
each quotient M(H)/V i is isomorphic to V and such that the product of natural homomorphisms

φ : M(H) →
n∏

i=1

M(H)/V i

is surjective. From the first part, we know that each J i = KerM
H,V i

is a maximal subfunctor of M and
M/ J i is isomorphic to S H,V . We will show that the product of natural homomorphisms

ψ : M →
n∏

i=1

M/ J i

is surjective, which gives the inequality n � m. For this end, we first put

J̃ i =
n⋂

j=1: j �=i

J j

for any i. Surjectivity of ψ will follow if we show that J i + J̃ i = M for any i. Indeed, if the sum J i + J̃ i
is not M , then J̃ i ⊆ J i (as J i is a maximal subfunctor of M), implying that J̃ i(H) ⊆ J i(H), equivalently

n⋂
j=1: j �=i

V j ⊆ V i .

But then, for any v in M(H) which is not in V i , the element of

n∏
i=1

M(H)/V i

whose j-components are all equal to 0 for j �= i and whose i-component is v + V i has no preimage
under the map φ, contradicting to the surjectivity of φ. �
Proposition 4.6. Let M be a semisimple functor and H be a group in X . Then:

(1) The maps J → J (H) and KerM
H,V ← V define a bijective correspondence between the maximal subfunc-

tors J of M satisfying the property that H is a minimal group of M/ J , and the maximal K Out(H)-
submodules V /bH (M) of M(H).

(2) M(H) is a semisimple K Out(H)-module.
(3) For any simple K Out(H)-module V , the multiplicity of V in M(H) is equal to the multiplicity of S H,V

in M.
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Proof. (1) follows from 3.5 and 4.3.
(2) As M is semisimple, it follows from 3.3 that M(H) is a semisimple End(H)-module, and so

M(H)/I H M is a semisimple K Out(H)-module where I H is the ideal of End(H) described in 2.5.
We now obtain the result by using 4.1 stating that M(H) is a quotient of M(H)/I H M .

(3) follows from the previous parts, 4.4, and the proof of the second part of 4.5. �
For an arbitrary functor M , which is not necessarily semisimple, let

bH (M)/bH (M) = V 0/bH (M) ⊂ V 1/bH (M) ⊂ · · · ⊂ Vn/bH (M) = M(H)

be a composition series of the K Out(H)-module M(H). Letting Mi = KerM
H,V i

for each i, we obtain a
series

KerM
H,bH (M) = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

of the functor M . We see for each i that KerH,0 subfunctor of the quotient Mi/Mi−1 is 0, and then
we deduce by using 3.2 that Mi/Mi−1 has a unique simple subfunctor, namely its ImH,(Mi/Mi−1)(H)

subfunctor which is isomorphic to S H,V i/V i−1 . We then conclude that the multiplicity of S H,V i/V i−1 in
Mi/Mi−1 is 1 because (Mi/Mi−1)(H) ∼= V i/V i−1. Thus, we justified the following.

Proposition 4.7. Let M be a functor, H be a group in X , and V be a simple K Out(H)-module. Then, the
multiplicity of V in M(H) is equal to the multiplicity of S H,V in M/KerM

H,bH (M)
. In particular, the multiplicity

of V in M(H) is less than or equal to the multiplicity of S H,V in M.

Corollary 4.8. Let M be a functor and H ∈ X be a group with bH (M) = 0. For any simple K Out(H)-module V ,
the multiplicity of V in the K Out(H)-module M(H) is equal to the multiplicity of S H,V in M.

Proof. Put T = KerM
H,bH (M)

. As T (H) = bH (M) = 0, we see that T has no composition factor having H
as a minimal group. Therefore, the multiplicities of S H,V in M and M/T are equal. The result follows
from 4.7. �

The following result (in which bH (M) = 0) is an immediate consequence of 4.8.

Corollary 4.9. Let M be a functor and H ∈ X be a minimal group of M. For any simple K Out(H)-module V ,
the multiplicity of V in the K Out(H)-module M(H) is equal to the multiplicity of S H,V in M.

Remark 4.10. Let M be a functor, H be a group in X , and V be a simple K Out(H)-module. Then:

(1) The multiplicity of S H,V in M is equal to the multiplicity of the simple End(H)-module V in the
End(H)-module M(H).

(2) The multiplicity of S H,V in M is less than or equal to the multiplicity of the simple K Out(H)-
module V in the K Out(H)-module M(H).

Proof. (1) For any simple functor S H,V on X over any field K (which is not assumed to be alge-
braically closed), it follows from 3.8 that the endomorphism algebras EndF(S H,V ) and EndEnd(H)(V )

are isomorphic. Moreover, let P (V ) be the projective cover of the simple End(H)-module V and
let M be a functor on X over K. It follows from 2.3 that the K-spaces HomF(LH,P (V ), M) and
HomEnd(H)(P (V ), M(H)) are isomorphic. Therefore the result follows.

(2) Evaluating a composition series

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M
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of M at H yields a series

0 = M0(H) ⊆ M1(H) ⊆ · · · ⊆ Mn(H) = M(H)

of M(H) considered as an End(H)-module. Indeed, it follows from 3.3 that each

Mi(H)/Mi−1(H)

is a simple End(H)-module (if nonzero), which is also a simple K Out(H)-module isomorphic to V if
the simple functor Mi/Mi−1 is isomorphic to S H,V . The result follows. �

For a functor having a unique maximal subfunctor (i.e., a quotient functor of a projective indecom-
posable functor) we have the following result.

Remark 4.11. If a functor M has a unique maximal subfunctor, then there is a group H , unique up
to isomorphism, in X such that M(H) has a unique maximal K Out(H)-submodule and such that
ImM

H,M(H) = M .

Proof. Suppose that M has a unique maximal subfunctor J . Let H be a minimal group of the simple
functor S = M/ J . By the definition of Im subfunctors, the ImH,S(H) subfunctor of S is equal to

(
ImM

H,M(H) + J
)
/ J ,

which is also equal to M/ J (see 3.3). As J is the unique maximal subfunctor of M we obtain that
ImM

H,M(H) = M . Moreover, it follows from 4.3 that M(H) has a unique maximal K Out(H)-submodule.
Conversely, let H be a group satisfying the required properties. Then, 4.3 implies that M has a

maximal subfunctor whose simple quotient has H as a minimal group. �
Furthermore, for a functor M whose subfunctor lattice is a (possibly infinite) chain (i.e., M is a

uniserial functor), one may see that if M(H) and M(K ) are both nonzero for some groups H and K
then one of the groups H and K must be isomorphic to a section of the other.

The next result is an easy consequence of definitions and the decomposition of a transitive biset
given in 2.2.

Remark 4.12. Let M be a functor, H and K be groups in X , and let V be a K Out(H)-submodule of
M(H) containing bH (M).

(1) If M is a biset or an inflation functor, then

bH (M) =
∑
P<H

IndH
P M(P ) +

∑
N � H: N �=1

InfH
H/N M(H/N).

(2) If M is a Mackey or a deflation functor, then

bH (M) =
∑
P<H

IndH
P M(P ).

(3) If M is a biset or a deflation functor, then

KerM
H,V (K ) =

⋂
A,B, f

{
x ∈ M(K ): IsoH

A/B( f )DefA
A/B ResK

A x ∈ V
}
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where A ranges over all subgroups of K , and B ranges over all normal subgroups of A such that
the quotient group A/B is isomorphic to H , and f ranges over all isomorphisms from A/B to H .

(4) If M is a Mackey or an inflation functor, then

KerM
H,V (K ) =

⋂
A, f

{
x ∈ M(K ): IsoH

A ( f )ResK
A x ∈ V

}

where A ranges over all subgroups of K isomorphic to H , and f ranges over all isomorphisms
from A to H .

5. Radicals of Burnside functors

We now use the results of the previous section to study the radicals of Burnside functors. By a
functor we mean any of biset functor, inflation functor, (global) Mackey functor, or deflation functor,
defined on X over K.

We begin with recalling the definitions of Burnside algebras and the maps making them a functor,
see [2,3,10]. For a finite group H , the set of isomorphism classes of finite H-sets form a commutative
semiring under the operations disjoint union and cartesian product. The associated Grothendieck ring
BZ(H) is called the Burnside ring of H . The Burnside algebra of H over K is the K-algebra BK(H) =
K⊗Z BZ(H). Therefore, letting V runs over representatives of the conjugacy classes of subgroups of H ,
then [H/V ] comprise (without repetition) a K-basis of BK(H), where the notation [H/V ] denotes the
isomorphism class of transitive H-sets whose stabilizers are H-conjugates of V . The collection of
Burnside algebras form a functor with the following morphisms:

IndG
H

([H/V ]) = [G/V ], InfG
G/N

([
(G/N)/(V /N)

]) = [G/V ], IsoK
H ( f )

([H/U ]) = [
K/ f (U )

]
,

DefG
G/N

([G/V ]) = [
(G/N)/(N V /N)

]
, ResG

H

([G/W ]) =
∑

H gW ⊆G

[
H/

(
H ∩ g W

)]
.

The product in the algebra BK(G) of any basis elements [G/H] and [G/W ] is given by

[G/H][G/W ] =
∑

H gW ⊆G

[
G/

(
H ∩ g W

)]
,

which is equal to IndG
H ResG

H [G/W ]. Therefore, we have the next result, see [2], Section 8 of [3], and
Lemma 3.3 of [9].

Remark 5.1. M(G) is an ideal of the commutative algebra BK(G) for any subfunctor M of BK and
any group G . In particular, a K-linear combination of mutually orthogonal idempotents of BK(G) is in
M(G) if and only if each idempotent in the linear combination is in M(G).

Using 4.12 we can easily obtain the Brauer quotients of Burnside functors as follows.

Remark 5.2.

(1) Consider the Burnside functor BK as a biset or an inflation functor on X . Then, bG(BK) = BK(G)

for any G ∈ X with G �= 1 and b1(BK) = 0, in particular, the Brauer quotients of BK at nontrivial
groups are all zero.

(2) Consider the Burnside functor BK as a deflation or a Mackey functor on X . Then,

bG(BK) =
⊕

V < G

K[G/V ]

G
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for any G ∈ X with G �= 1 and b1(BK) = 0, in particular, the Brauer quotient of BK at any group
X ∈ X is the trivial K Out(X)-module.

If we consider the Burnside functor BK as a biset or an inflation functor on X over K then 5.2
and 4.5 imply that BK has a unique maximal subfunctor which is Ker1,0, whose corresponding quo-
tient is isomorphic to the simple functor S1,K . Indeed, this is a consequence of a well-known result.
From the definitions of functors L X,V described in Section 2, we easily see that BK is isomorphic to
the functor L1,K (see [2]), and so 2.3 and 2.6 imply that BK is the projective cover of the simple
functor S1,K , in particular BK has a unique maximal subfunctor. Here we investigate the maximal
subfunctors of BK considered as a deflation or a Mackey functor.

Proposition 5.3. Let K be of characteristic p > 0, and let any group in X be a p-group. Consider the Burnside
functor BK as a deflation (respectively, a Mackey) functor on X over K. If BK has a maximal subfunctor J ,
then BK/ J ∼= S H,K for some H ∈ X and there is no group in X having a proper section (respectively, a proper
subgroup) isomorphic to H.

Proof. We give a proof for deflation functors. The same proof works also for Mackey functors. Let J be
a maximal subfunctor of M where M = BK , and let H be a minimal group of the simple functor M/ J
(which is unique up to isomorphism). For any group G , we know from 5.2 that the Brauer quotient
M(G) is the trivial K Out(G)-module. Then 4.3 implies that

J = KerM
H,bH (M), M/ J ∼= S H,K

and that I + J = M where

I = ImM
H,M(H) .

Take any group K in X . Then I(K ) + J (K ) = M(K ). It is well known from [10] that M(K ) is a local
K-algebra so that it has a unique maximal ideal. As I(K ) and J (K ) are ideals of M(K ) by 5.1, we must
have that

M(K ) = I(K ) or M(K ) = J (K ).

Suppose for a moment that K has a proper section isomorphic to H , say B � A � K and A/B ∼= H
and |H| < |K |. Then M(K ) �= J (K ), because

IsoH
A/B DefA

A/B ResK
A [K/K ] = [H/H] /∈ bH (M)

which, together with 4.12, imply that [K/K ] /∈ J (K ). We now also observe that M(K ) �= I(K ) which
finishes the proof. Indeed, since |H| < |K | the group H has no sections isomorphic to K . Definitions
of Im subfunctors and Brauer quotients imply then that

I(K ) ⊆ bK (M) �= M(K ). �
The above results shows that the Burnside functor, considered as a deflation or a Mackey functor

on the family of all finite p-groups over a field of characteristic p > 0, has no maximal subfunctors.
Over arbitrary characteristics and families we have the following result.

Theorem 5.4. Consider the Burnside functor BK as a Mackey functor on X over K. Then, BK has a maximal
subfunctor J satisfying the property that H is a minimal group of the simple functor BK/ J if and only if for any
K ∈ X having a subgroup isomorphic to H and for any subgroup A of K isomorphic to H the index |NK (A) : A|
is not divisible by the characteristic of the field K.
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Proof. As in the proof of 5.3, we see by using 5.2 and 4.3 that maximal subfunctors of M are precisely
the subfunctors J X with X ∈ X satisfying the property S X + J X = M where

M = BK, S X = ImM
X,M(X), J X = KerM

X,bX (M) .

Moreover, if J X is a maximal subfunctor of M then M/ J X ∼= S X,K .
We know from 5.1 that S X (K ) + J X (K ) is an ideal of M(K ) for any K ∈ X . Hence, it is equal to

M(K ) if and only if it contains the unity [K/K ] of the algebra M(K ). Furthermore, 4.12 implies that
J X (K ) = M(K ) if K has no subgroups isomorphic to X . Consequently, the condition S X + J X = M is
equivalent to the condition [K/K ] ∈ S X (K )+ J X (K ) for all K ∈ X having a subgroup isomorphic to X .

Suppose that M has a maximal subfunctor J . Then J = J H for some H ∈ X and M/ J H is iso-
morphic to S H,K . Take any group K in X having a subgroup isomorphic to H . Then, as [K/K ] ∈
S H (K ) + J H (K ) there is an xK ∈ S H (K ) such that [K/K ] − xK ∈ J H (K ), and 4.12 implies that

IsoH
A ( f )ResK

A

([K/K ] − xK
) = [H/H] − IsoH

A ( f )ResK
A (xK ) ∈ bH (M) =

⊕
V <H H

K[H/V ]

for any subgroup A of K isomorphic to H and any isomorphism f from A to H .
We will show that we may assume

xK ∈
⊕

U�K K : U∼=H

K[K/U ].

Indeed, as xK ∈ S H (K ) it follows that xK is in the sum of the spaces

[
(K × H)/L

]
M(H)

where L � K × H with k1(L) = k2(L) = 1. Firstly, we observe that if Y , Z , T , D, E are groups with
D � Y × Z and E � Z × T then it follows easily that

k2(E) � k2(D ∗ E) � p2(D ∗ E) � p2(E),

in particular |q(D ∗ E)| � |q(E)|. If T = Y and |q(E)| < |Y | then this observation implies that the
product

[
(Y × Z)/D

][
(Z × Y )/E

]
is in the ideal IY of End(Y ) described in 2.5. Therefore, if L � K × H with k1(L) = k2(L) = 1 and
|q(L)| < |H| then the product

IsoH
A ( f )ResK

A

[
(K × H)/L

]
is in the ideal I H of End(H), so from 4.1 we get that

IsoH
A ( f )ResK

A

[
(K × H)/L

]
M(H) ⊆ I H M ⊆ bH (M).

Hence, we may assume that

xK ∈
∑

B�K : B∼H

IndK
B M(B).
=
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Now, if a transitive basis element [K/U ] of M(K ) appears in the decomposition of xK then U is a
subgroup of a group B � K with B ∼= H , and if

IsoH
A ( f )ResK

A [K/U ] =
∑

AgU⊆K

IsoH
A ( f )

[
A/

(
A ∩ g U

)]
/∈ bH (M)

then A ∩ g U = A ∼= H for some g ∈ K , and as |U | � |H| we see that g U = A and so U ∼= H .
Thus we may assume that

xK =
∑

U�K K : U∼=H

λU [K/U ]

for some λU ∈ K. Then we see from the preceding paragraph that

IsoH
A ( f )ResK

A (xK ) + bH (M) = λA IsoH
A ( f )ResK

A

([K/A]) + bH (M)

= λA
∣∣NK (A) : A

∣∣[H/H] + bH (M).

As a result, we must have for any A � K with A ∼= H that λA |NK (A) : A| = 1 or |NK (A) : A| is not
divisible by the characteristic of the field K.

Conversely, suppose that the condition on the indexes are satisfied. We will show that J H is a
maximal subfunctor of M by illustrating that S H + J H = M . Indeed, for any K having a subgroup
isomorphic to H if we let

xK =
∑

U�K K : U∼=H

∣∣NK (U ) : U
∣∣−1[K/U ] ∈ S H (K ),

then it follows from what we observed in the first part of the proof that [K/K ] − xK ∈ J H (K ) so that
S H + J H = M . Thus J H is a maximal subfunctor of M , and clearly M/ J H is isomorphic to S H,K . �

Manipulating the proof of 5.4 one may obtain the following result.

Remark 5.5. Consider the Burnside functor BK as a deflation functor on X over K. Then, BK has a
maximal subfunctor J satisfying the property that H is a minimal group of the simple functor M/ J
if and only if the following conditions hold:

(i) Any group in X having a section isomorphic to H has a subgroup isomorphic to H .
(ii) For any G ∈ X having a subgroup isomorphic to H and for any subgroup U of G isomorphic to

H the index |NG(U ) : U | is nonzero in the field K.
(iii) For any group G ∈ X having a section isomorphic to H and for any section P/Q of G isomorphic

to H ,

∑
U�G G: U∼=H

|{P gU ⊆ G: (P ∩ g U )Q = P }|
|NG(U ) : U | = 1

in the field K.

We now obtain some consequences of 5.4.
It is known that any Mackey functor over any field of characteristic 0 is semisimple [15]. In the

next result we show that more is true for the Burnside functor.
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Corollary 5.6. Consider the Burnside functor BK as a Mackey functor on X over K. If K is of characteristic
p � 0 and if any group in X is a p′-group, then BK is semisimple and

BK
∼=

⊕
H

S H,K

where H ranges over a complete set of isomorphism classes of all groups in X .

Proof. From 5.4 and its proof, we know in this case that the maximal subfunctors of M are precisely
J H with H ∈ X where

M = BK, J H = KerM
H,bH (M),

and each quotient M/ J H is isomorphic to S H,K . As each M(H) is a trivial K Out(H)-module, it follows
from 4.4 that the multiplicity of S H,K in M/ Jac(M) is 1. We will show that the intersection J =
Jac(M) of all functors J H where H ranges over all groups in X is 0, which completes the proof.
Indeed, let K be a group in X and let x be an element of J (K ). Write x as a linear combination of
transitive K -sets, say

x =
∑

V �K K

λV [K/V ].

Take a maximal element U of the set {V �K K : λV �= 0}. Note that such a maximal element U exits
unless x is zero. As x ∈ J (K ) ⊆ J U (K ), it follows from 4.12 that ResK

U (x) ∈ bU (M). But we see that

ResK
U (x) + bU (M) = λU

∣∣NK (U ) : U
∣∣[U/U ] + bU (M),

and so ResK
U (x) ∈ bU (M) implies that λU |NK (U ) : U | = 0. Since K is a p′-group, λU must be zero,

implying that x = 0. �
Let M be the simple deflation (respectively inflation) functor S H,V . Considering M as a Mackey

functor we may see that M = ImM
H,V (respectively KerM

H,0 = 0). It can be deduced from 3.1 that the
simple deflation functor M has a unique maximal Mackey subfunctor whose quotient is isomorphic to
the simple Mackey functor S H,V , and that the simple inflation functor M has a unique simple Mackey
subfunctor isomorphic to the simple Mackey functor S H,V . See Propositions 3.8 and 7.6 of [16]. In the
case of 5.6 each quotient functor of a subfunctor of BK is semisimple as a Mackey functor, and so the
next result follows. See also Section 10, especially (the proof of) 10.4.

Corollary 5.7. Consider the Burnside functor BK as a deflation (respectively, an inflation) functor on X over K.
If K is of characteristic p � 0 and if any group in X is a p′-group, then composition factors of BK are precisely
the simple deflation (respectively, inflation) functors S H,K , with multiplicities equal to one, where H ranges
over a complete set of isomorphism classes of all groups in X .

Let M be the simple biset functor S H,V . Considering M as an inflation (respectively a deflation)
functor we may see that M = ImM

H,V (respectively KerM
H,0 = 0). It can be deduced from 3.1 that the

simple biset functor M has a unique maximal inflation subfunctor whose quotient is isomorphic to
the simple inflation functor S H,V , and that the simple biset functor M has a unique simple deflation
subfunctor isomorphic to the simple deflation functor S H,V . See Propositions 3.12 and 7.6 of [16]. See
also Section 10 for more details. Therefore, the following is an easy consequence of 5.7.
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Corollary 5.8. (See [5, Proposition 5.5.1].) Let K be of characteristic p � 0 and let any group in X be a p′-
group. Consider the Burnside functor BK as a biset functor on X over K. If a simple functor S H,V appears as a
composition factor of BK with multiplicity n, then n � 1 and V = K, the trivial K Out(H)-module.

More is known in the case of the previous result (see [5, Proposition 5.5.1]). Indeed, it is shown in
[2] by using the properties of the primitive idempotents of Burnside algebras that composition factors
of the Burnside functor, considered as a biset functor on all finite groups over a field of character-
istic 0, are precisely the simple functors S H,K where H ranges over some groups called b-groups.
Moreover, all subfunctors of the Burnside functor, considered as a biset functor on all finite p-groups
over a field of characteristic q �= p, are found in [3] explicitly.

We next investigate semisimplicity of the Burnside functor.

Corollary 5.9. Let K be of characteristic p � 0.

(1) Consider the Burnside functor BK as a Mackey functor on X over K. If BK is semisimple, then any group
in X is a p′-group.

(2) Consider the Burnside functor BK as a deflation functor on X over K. Suppose that BK is semisimple.
If p = 0 then any group in X is trivial. Moreover, if p > 0 then p divides |G| − 1 for any G ∈ X .

(3) Consider the Burnside functor BK as an inflation functor on X over K. If BK is semisimple, then any group
in X is trivial.

(4) Consider the Burnside functor BK as a biset functor on X over K. If BK is semisimple, then any group G in
X is a cyclic group such that ϕ(|G|) is not divisible by p where ϕ denotes the Euler totient function.

Proof. We put M = BK . Suppose that M is semisimple.
(1) It follows from 4.6 that J = KerM

1,0 is a maximal subfunctor of M and that 1 is a minimal group
of M/ J . For any G ∈ X we obtain from 5.4 that |G| is not divisible by p.

(2) As in the first part we see from 4.6 that M has a maximal subfunctor J and that 1 is a minimal
group M/ J . For any G ∈ X , if we apply the condition (iii) of 5.5 to the section G/G of G then we
obtain that 1

|G| = 1 in K. Therefore, the result follows.

(3) For any nontrivial group H , the Brauer quotient M(H) is zero. So, 4.6 implies that M is iso-
morphic to S1,K . In particular, T = 0 where T = KerM

1,0 (see 3.3). Take any G ∈ X with G �= 1.
If p does not divide |G| then

x = 1

|G| [G/1] − [G/G]

is nonzero element of M(G), and using 4.12 we see that

x ∈ T (G) = {
x ∈ M(G): ResG

1 x = 0
}
.

If p divides |G| then x = [G/1] is nonzero element of M(G) in T (G).
(4) As in the previous part we see that M ∼= S1,K . We will compare the dimensions of the K-spaces

M(G) and S1,K(G) for any G ∈ X , and we use [14] to deduce the result. Take any G ∈ X . Let A be
the square matrix whose rows and columns are indexed by the conjugacy classes (H) of subgroups
H of G , and let the entry of A in the (H)th row and in the (K )th column be the number of double
cosets H g K of H and K in G . It follows from [2] that the dimension of S1,K(G) is equal to the rank
of the matrix A over K. It is proved in [14] that the rank of A over any field of characteristic 0 is
equal to the number of conjugacy classes cyclic subgroups G , and for a cyclic group G of order n
it is proved in [14] that the determinant of A is equal to the product

∏
d ϕ(d) where d ranges over

divisors of n. The result follows. �
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Converses of each parts, except the second, of the previous result are all true. Indeed, the converse
of the first part is 5.6, and it is clear from its justification that the converse of the fourth part is true.
For the converse of the second part we may state the following.

If K is of characteristic p > 0 and if any group in X is an elementary abelian q-group for some
prime number q such that p divides q − 1, then the Burnside functor BK , considered as a deflation
functor on X over K, is semisimple. Indeed, in this case it follows from 5.7 that the composition
factors of BK are precisely the simple deflation functors S H,K , with multiplicities equal to one. So it
is enough to show that S H,K appears in the head of BK for any H ∈ X . This may proved easily by
using 5.5.

As a biset or an inflation functor the Burnside functor defined on any family over any field is
indecomposable (because the Brauer quotients of it at nontrivial groups are all equal to 0 so that it
has a unique maximal subfunctor, or because we know from [2] that it is the projective cover of the
simple functor S1,K). Considering it as a deflation or a Mackey functor we have the following result.

Remark 5.10. Consider the Burnside functor BK as a deflation or a Mackey functor on X over K. If K
is of characteristic p > 0 and if any group in X is a p-group, then BK is indecomposable.

Proof. Letting M = BK , suppose that M = M1 ⊕ M2 for some subfunctors M1 and M2 of M . We know
from 5.1 that each Mi(H) is an ideal of the algebra M(H). As the dimension of M(1) is 1, we may
assume that M1(1) = M(1) and M2(1) = 0. Let H be a minimal group of M2. We see that [H/1] is in
M1(H). As M2(H) is nonzero, both of the ideals M1(H) and M2(H) of M(H) are proper. Therefore,
the sum of the ideals M1(H) and M2(H) cannot be equal to M(H), because we know from [10] that
M(H) is a local algebra and so it has a unique maximal ideal. �
6. Simple subfunctors and restriction kernels

Throughout this section also, by a functor we mean any of biset functor, inflation functor, (global)
Mackey functor, or deflation functor, defined on X over K.

We first recall the notion of the restriction kernel of a functor, see [15]. Let M be a functor and H
be a group in X , by the restriction kernel of M at H we mean the K-module

M(H) =
⋂
f ,K

Ker
(

f : M(H) → M(K )
)

where K rages over all groups in X having no sections isomorphic to H and f ranges in Hom(H, K ).
It is clear that M(H) is a K Out(H)-submodule of M(H). Moreover, there is a K Out(H)-module iso-
morphism M(H) ∼= (M∗(H))∗ induced by taking K-duals, see [15]. Therefore, any result concerning
Brauer quotients has a dual concerning restriction kernels. Our first aim is to collect these dual re-
sults in this section. We skip the proofs of similar results.

Remark 6.1. Let M be a functor and H be a group in X . Then, the ideal I H of End(H) described in 2.5
annihilates M(H) so that M(H) is also an End(H)-submodule of M(H) whose K Out(H)-submodules
and End(H)-submodules are the same.

The above result shows that the notation ImM
H,V makes sense also for K Out(H)-submodules V of

M(H), where ImM
X,W subfunctors of a functor M are defined in Section 3 for End(X)-submodules W

of M(X).

Theorem 6.2. Let M be a functor and H be a group in X . Then, the maps J → J (H) and ImM
H,V ← V define

a bijective correspondence between the smallest elements J of the set of all subfunctors I of M satisfying
the property that H is a minimal group of I , and the simple K Out(H)-submodules V of M(H). Moreover,
M(H) = 0 if and only if M has no subfunctor having H as a minimal group.
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The subfunctors J mentioned in the above result may not be simple subfunctors of M .

Corollary 6.3. Let M be a functor and H be a group in X . Then, the maps J → J (H) and ImM
H,V ← V define

a bijective correspondence between the simple subfunctors J of M satisfying the property that H is a minimal
group of J , and the simple K Out(H)-submodules V of M(H) satisfying for the property that

ImM
H,V ∩KerM

H,0 = 0.

Corollary 6.4. Let M be a functor and H be a group in X . For any simple K Out(H)-module V , let n be the
multiplicity of V in the K Out(H)-module Soc(M(H)) and let m be the multiplicity of the simple functor S H,V

in Soc(M). Then, m � n. In particular, if m �= 0 and n = 1 then m = 1.

Proposition 6.5. Let M be a functor and H be a group in X . Suppose that M(H) �= 0 and that M(K ) = 0 for
any group K in X having a proper section isomorphic to H. Then:

(1) The maps J → J (H) and ImM
H,V ← V define a bijective correspondence between the simple subfunctors

J of M satisfying the property that H is a minimal group of J , and the simple K Out(H)-submodules V
of M(H).

(2) For any simple K Out(H)-module V , the multiplicity of V in Soc(M(H)) is equal to the multiplicity of
S H,V in Soc(M).

Proposition 6.6. Let M be a semisimple functor and H be a group in X . Then:

(1) The maps J → J (H) and ImM
H,V ← V define a bijective correspondence between the simple subfunctors

J of M satisfying the property that H is a minimal group of J , and the simple K Out(H)-submodules V
of M(H).

(2) M(H) is a semisimple K Out(H)-module.
(3) For any simple K Out(H)-module V , the multiplicity of V in M(H) is equal to the multiplicity of S H,V

in M.

For an arbitrary functor M , which is not necessarily semisimple, let

0 = V 0 ⊂ V 1 ⊂ · · · ⊂ Vn = M(H)

be a composition series of the K Out(H)-module M(H). Letting Mi = ImM
H,V i

for each i, we obtain a
series

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = ImM
H,M(H)

of the functor M . We see for each i that ImH,(Mi/Mi−1)(H) subfunctor of the quotient Mi/Mi−1 is
Mi/Mi−1, and then we deduce by using 3.2 that Mi/Mi−1 has a unique maximal subfunctor, namely
its KerH,0 subfunctor whose quotient is isomorphic to S H,V i/V i−1 . We then conclude that the multiplic-
ity of S H,V i/V i−1 in Mi/Mi−1 is 1 because (Mi/Mi−1)(H) ∼= V i/V i−1. Thus, we justified the following.

Proposition 6.7. Let M be a functor, H be a group in X , and V be a simple K Out(H)-module. Then, the
multiplicity of V in M(H) is equal to the multiplicity of S H,V in ImM

H,M(H) . In particular, the multiplicity of V
in M(H) is less than or equal to the multiplicity of S H,V in M.

Remark 6.8. Let M be a functor, H and K be groups in X , and let V be a K Out(H)-submodule
of M(H).
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(1) If M is a biset or a deflation functor, then

M(H) =
( ⋂

P<H

Ker ResH
P

)
∩

( ⋂
N � H: N �=1

Ker DefH
H/N

)
.

(2) If M is a Mackey or an inflation functor, then

M(H) =
⋂

P<H

Ker ResH
P .

(3) If M is a biset or an inflation functor, then

ImM
H,V (K ) =

∑
A,B, f

IndK
A InfA

A/B IsoA/B
H ( f )V

where A ranges over all subgroups of K , and B rages over all normal subgroups of A such that
the quotient group A/B is isomorphic to H , and f ranges over all isomorphisms from H to A/B .

(4) If M is a Mackey or a deflation functor, then

ImM
H,V (K ) =

∑
A, f

IndK
A IsoA

H ( f )V

where A ranges over all subgroups of K isomorphic to H , and f ranges over all isomorphisms
from H to A.

7. Socles of Burnside functors

In this section we try to describe simple subfunctors of the Burnside functor. For this end we
need to describe simple submodules of restriction kernels. Finding restriction kernels of the Burnside
functor is more difficult than finding its Brauer quotients. We find them below in a special case.
We begin with the simple subfunctors parameterized by trivial modules.

Proposition 7.1. Let K be of characteristic p > 0 and let any group in X be a p-group. Consider the Burnside
functor BK as a Mackey functor on X over K. If BK has a simple subfunctor isomorphic to S H,K for some H
in X , then there is no group in X which is a split extension of a nontrivial group by H.

Proof. Let S be a simple subfunctor of M isomorphic to S H,K where M = BK . It follows from 6.3 that
S = ImM

H,V for some simple K Out(H)-submodule V of M(H) isomorphic to the trivial module, and

that S ∩ J = 0 where J = KerM
H,0. Assuming the existence of a K ∈ X having subgroups 1 �= N � K � H

with N ∩ H = 1, we will show that S(K ) ∩ J (K ) �= 0, which completes the proof.
Let x = IndK

H v where v is a nonzero element of V . Note that x ∈ S(K ) by 6.8. We will show that
x ∈ J (K ) by justifying

[
(H × K )/L

]
x = 0

for any L � H × K with k1(L) = k2(L) = 1.
If |q(L)| < |H| then, as in the proof of 5.4, we see that the product

[
(H × K )/L

]
IndK

H
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is in the ideal I H of End(H) described in 2.5, and so we obtain from 6.1 that

[
(H × K )/L

]
x ∈ I H v ⊆ I H M(H) = 0.

If |q(L)| = |H|, then 2.1 and 2.2 imply that

[
(H × K )/L

] = IsoH
A ( f )ResK

A

where A = p2(L) and f : A → H is an isomorphism, and that

[
(H × K )/L

]
x = IsoH

A ( f )ResK
A IndK

H v =
∑

Ag H⊆K

IsoH
A ( f ) IndA

A∩g H IsoA∩g H
g A∩H (i g)ResH

Ag∩H v

where i g is the conjugation by g . If A and H are not K -conjugate, then A g ∩ H < H for any g ∈ K
(because A ∼= H) and so

ResH
Ag∩H v = 0.

Hence we conclude that [(H × K )/L]x = 0 unless A =K H . Now, let A = Ha for some a ∈ K . By using
2.1 and 2.2 and using the fact that ResH

X v = 0 for any X < H , we see that

[
(H × K )/L

]
x = [

(H × K )/(1,a)L
]
x = IsoH

H ( f ia−1)ResK
H IndK

H v =
∑

g H⊆NK (H)

IsoH
H ( f ia−1 i g)v,

implying that [(H × K )/L]x = 0 because K Out(H) acts on V trivially.
Having showed that x ∈ S(K )∩ J (K ), we finish by justifying that x �= 0. Indeed, by using 2.1 and 2.2

we easily see that

IsoH
K/N DefK

K/N x = IsoH
K/N DefK

K/N IndK
H v = v �= 0,

and so x �= 0. �
One half of the following result already appeared in Lemme 2 of [6]. More explicitly, it is shown

in [6] that if K is of characteristic p > 0 and G is a nontrivial p-group, then ResG
P y = 0 for any P < G

with |G| � p2, and DefG
G/N y = 0 for any N � G with N �= 1 where

y = [G/1] −
∑

V �G: |V |=p

[G/V ] ∈ BK(G).

We below show in addition that any element x of BK(G) mapped to zero under such maps ResG
P and

DefG
G/N must be a K-multiple of y.

Lemma 7.2. Let K be of characteristic p > 0 and let any group in X be a p-group. Consider the Burnside
functor BK as a biset or a deflation functor on X over K. Then,

BK(G) = K

(
[G/1] −

∑
V �G: |V |=p

[G/V ]
)

for any G ∈ X with |G| �= p, and BK(G) = 0 for any G ∈ X with |G| = p.
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Proof. Let G ∈ X and x ∈ M(G) where M = BK . From Lemma 7.11 of [17] we know that

⋂
P<G

Ker ResG
P ⊆

⊕
V �G

K[G/V ].

So 6.8 implies that

x =
∑
V �G

λV [G/V ]

for some constants λV , and that

0 = DefG
G/N x =

∑
V �G

λV
[
(G/N)/(N V /N)

]

for any N � G with N �= 1. In particular, the coefficient of [(G/N)/(N/N)] in DefG
G/N x is 0, implying

that

0 =
∑

V �G: V �N

λV

for any N � G with N �= 1.
For any N � G with |N| = p, we see from

0 =
∑

V �G: V �N

λV = λ1 + λN

that λN = −λ1.
We will show by induction on the order of N that λN = 0 for any N � G with |N| � p2: Indeed, if

N � G with |N| = p2 then

0 =
∑

V �G: V �N

λV = λ1 − |A|λ1 + λN

where A = {V � G: V � N, |V | = p}. We now observe that |A| ≡ 1 (mod p), which implies that
λN = 0. Indeed, as N is normal in G , the group G acts on the set B = {V � N: |V | = p} by conjugation
and its set of fixed elements B G is equal to A. It is well known (see, for instance, Theorem 4.8 of [13],
stating that the number of subgroups of a p-group X having order equal to any fixed given number
less than or equal to |X | is congruent to 1 modulo p) that |B| ≡ 1 (mod p). As G is a p-group,
|B| ≡ |B G | (mod p) and so |A| ≡ 1 (mod p), as desired.

We now assume that λK = 0 for all K � G with p2 � |K | � pn . Then, we have for any N � G with
|N| = pn+1 that

0 =
∑

V �G: V �N

λV = λ1 − |C|λ1 +
( ∑

V ∈D
λV

)
+ λN

where C = {V � G: V � N, |V | = p} and D = {V � G: V � N, p2 � |V | � pn}. As in the preceding
paragraph we may see that |C| ≡ 1 (mod p), and it follows from the induction hypothesis that λV = 0
for any V ∈ D. Hence λN = 0.
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As a result, we have just showed that if x in M(G) then x = λy for some λ in K where

y = [G/1] −
∑

V �G: |V |=p

[G/V ].

Conversely, if G ∈ X with |G| = p then y = [G/1] − [G/G] and so ResG
1 yλ = λ[1/1], implying that

M(G) = 0. Moreover, y = [1/1] for G = 1 and so M(1) = M(1) = Ky. Let now G ∈ X with |G| � p2.
Then it follows from the result of [6] explained at the beginning of the present result that ResG

P y = 0
for any P < G and DefG

G/N y = 0 for any N � G with N �= 1. �
Remark 7.3. Let K be of characteristic p > 0 and X be any family of finite p-groups. Consider the
Burnside functor BK as a deflation functor on X over K. Then:

(1) BK has a simple subfunctor isomorphic to S1,K .
(2) Suppose that BK has a simple subfunctor isomorphic to S H,V for some H ∈ X with H �= 1. Then:

(i) V = K and |H| �= p.
(ii) For any K ∈ X with H � K and |K : H| = p, the element xK

H of BK(K ) is 0 where

xK
H =

∑
A�K : A∼=H

IndK
A

(
[A/1] −

∑
V � A: |V |=p

[A/V ]
)

= 0.

Proof. (1) Let S be the subfunctor of M generated by M(1) = M(1) = K[1/1] ∼= K where M = BK .
That is S = ImM

1,M(1) . We see that S(G) = K[G/1] for any G ∈ X . One may easily check that S ∩ K = 0

where K = KerM
1,0. Then 6.3 implies that S ∼= S1,K .

(2) First part follows from 7.2 and 6.3. Same results imply also that any simple subfunctor of M
isomorphic to S H,V must be equal to I = ImM

H,KyH
and it must satisfy the property I ∩ J = 0 where

yH = [H/1] −
∑

V � H: |V |=p

[H/V ], J = KerM
H,0 .

By using 7.2 and its proof we easily see that xK
H ∈ I(K ) ∩ J (K ) so that it must be zero. �

The coefficient of [K/1] in the element xK
H of BK(K ) defined in 7.3 is |{A � K : A ∼= H}|, which

is 1 in K if X contains (for instance) only elementary abelian p-groups. Thus, if we consider BK as a
deflation functor on the family of all elementary abelian p-groups over K then it has a unique simple
subfunctor isomorphic to S1,K . In the general case, one may see that |{A � K : A ∼= H}| is equal to
| Inj(K , H)|/|Aut(H)| where Inj(K , H) is the set of all injective group homomorphisms from K to H .

We use another result of [6] to see that the Burnside functor, considered as a biset functor on all
finite p-groups over a field of characteristic p > 0, has no simple subfunctor.

Proposition 7.4. Let K be of characteristic p > 0 and X be the family of all finite p-groups of order less than
or equal to pm where m is a natural number with m � 2. Consider the Burnside functor BK as a biset functor
on X over K. Then,

Soc(BK) ∼=
⊕

H

S H,K

where H ranges over a complete set of isomorphism classes of all groups of order pm in X .
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Proof. We know from 6.3 and 7.2 that simple subfunctors of M are precisely the subfunctors S X , with
X ∈ X and |X | �= p, satisfying the property S X ∩ K X = 0, where

M = BK, S X = ImM
X,M(X), K X = KerM

X,0 .

We will show that S X ∩ K X �= 0 unless |X | = pm: Indeed, let p < |X | < pm and choose a Y ∈ X with
X < Y and |Y : X | = p. Let

y X = [X/1] −
∑

V � X: |V |=p

[X/V ].

We know from 7.2 that M(X) = Ky X . In [6], a subfunctor F X of M is defined and shown that F X has
a unique maximal subfunctor J X (see Proposition 1 of [6]). We notice easily that these subfunctors
F X and J X are indeed related to Im and Ker subfunctors studied here as follows:

F X = S X , J X = S X ∩ K X

(so that, for instance, the result of [6] mentioned above is an immediate consequence of 3.1). The
result of [6] we want to use here is its Lemme 4 stating that

F X (Y ) = J X (Y ) ⊕
( ∑

N�Y : Y /N∼=X

K InfY
Y /N yY /N

)
.

Suppose for a moment that S X (Y ) ∩ K X (Y ) = 0 so that J X (Y ) = 0. This would imply

S X (Y ) =
∑

N�Y : Y /N∼=X

K InfY
Y /N yY /N ,

which is certainly not true, because (for instance) IndY
X y X belongs to the left-hand side but not to

the right-hand side. Consequently, we conclude that if S X is a simple subfunctor of M then |X | = 1
or |X | = pm .

We now exclude the case |X | = 1. Indeed, S1 cannot be simple, because S1 = M and yH ∈ K1(H)

for any |H| ∈ X with |H| � p2.
Finally, it follows from 6.5 and 7.2 that for any X ∈ X with |X | = pm the functors S X are simple,

and moreover S X ∼= S X,K whose multiplicity in Soc(M) is equal to 1. �
Let K, X , and BK be as in 7.4. In the case m = 1, not covered in 7.4, we may see that BK is

isomorphic to S1,K .
The socle of the Burnside functor, considered as a Mackey functor for a fixed p-group over an

algebraically closed field of characteristic p > 0, is studied in Nicollerat [11,12], and the socle and
the restriction kernels are determined when the fixed group is taken from some classes of abelian
p-groups.

8. Radical series as Mackey functors

In this section we consider the Burnside functor as a Mackey or a deflation functor on a family
of finite p-groups over a field of characteristic p > 0. Our aim is to study the radical series of the
Burnside functor. We begin with the following consequence of 3.4, see also Remark 3.11 of [16].
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Remark 8.1. Let Y be a subfamily of X closed under taking subgroups, taking isomorphisms, and
taking quotients. Let S H,V be the simple functor (i.e., any of biset, inflation, Mackey, or deflation)
defined on X . Then, its restriction to Y is the simple functor S H,V defined on Y if H ∈ Y , and 0
otherwise.

Proposition 8.2. Let K be of characteristic p > 0 and X be the family of all finite p-groups of order less than
or equal to pm where m is a natural number. Consider the Burnside functor BK as a Mackey or a deflation
functor on X over K. Let Jn = Jacn(BK) for any natural number n. If a simple functor S H,V appears in the
quotient Jn/ Jn+1 , then |H| � pm−n, and in the case |H| = pm−n the K Out(H)-module V must be trivial.

Proof. It follows from the results 4.5, 5.2 and 5.3 that

J0/ J1 ∼=
⊕

H

S H,K

where H ranges over a complete set of isomorphism classes of all groups of order pm in X . Thus the
result is true for n = 0. We prove the result by induction on n. For any functor M defined on any
family Z we use the notation M Z to stress that we are considering M as a functor on Z .

Assume now that the result is true for any natural number less than n. Let S H,V be a simple
functor appearing in Jn/ Jn+1. We want to show that |H| � pm−n . Indeed, let Y be the family of all
finite p-groups of order less than or equal to pm−n . From the induction hypothesis, |K | � pm−(n−1)

for any simple functor S K ,W appearing as a composition factor of J0/ Jn . So, restricting the functors

BX
K

= J X
0 ⊇ J X

n ⊇ J X
n+1

to the family Y , we see that

BY
K

= J Y
0 = J Y

n ⊇ J Y
n+1.

It follows from 8.1 that J Y
n / J Y

n+1
∼= ( Jn/ Jn+1)

Y is either zero or semisimple, implying that

BY
K

= J Y
n ⊇ J Y

n+1 ⊇ Jac
(
BY

K

)
.

If H /∈ Y then |H| > pm−n . In the case H ∈ Y , we see from 8.1 that the simple functor S Y
H,V appears

in BY
K

/ Jac(BY
K

), and it follows from 5.3 that |H| = pm−n and that V is the trivial module. �
We try to improve 8.2 in the case of Mackey functors. We first need some preliminary results. The

following result will be used to show that the converse of 8.2 is true for simple functors S H,K with
|H| = pm−n .

Lemma 8.3. Let K be of characteristic p > 0 and let any group in X be a p-group. Consider the Burnside
functor BK as a Mackey functor on X over K. Then,

bG(M) ⊆ KerM
H,bH (M)(G)

for any groups H and G in X , where M = BK .
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Proof. If G has no subgroup isomorphic to H , then 4.12 implies that

J (G) = M(G) ⊇ bG(M)

where J = KerM
H,bH (M)

. Now, let A be a subgroup of G isomorphic to H . For any group X , it follows
from 5.2 that the transitive basis elements [X/U ] of M(X) with U < X form a basis for bX (M). For
any V < G , the coefficient of [H/H] in

x = IsoH
A ResG

A[G/V ] =
∑

AgV ⊆G

IsoH
A

[
A/A ∩g V

]

is equal to the number of the elements of the set

{
AgV ⊆ G: A ∩ g V = A

} = {
gV ⊆ G: A � g V

}
,

which is G/V A , the set of the A-fixed points of G/V , on which A acts by left multiplication. As V < G
and as A and G be p-groups, |G/V A | ≡ |G/V | ≡ 0 (mod p). Thus, the coefficient of [H/H] in x is 0
for any V < G , so that x ∈ bH (G). This shows that [G/V ] ∈ J (G) for any V < G (see 4.12), finishing
the proof. �
Lemma 8.4. Let K, X , m, and Jn be as in 8.2. Consider the Burnside functor M = BK as a Mackey functor
on X over K. Then, for any G ∈ X and any n with n � m we have:

(1) Jn(G) = M(G) if |G| � pm−n.
(2) Jn(G) ⊆ bG(M) if |G| > pm−n.
(3) Jn(G) = bG(M) if |G| = pm−n+1 and n � 1.
(4) Jn(G) = bG(M) if |G| = pm−n+2 and n � 2.

Proof. (1) Let Y be the family of all p-groups of order less than or equal to pm−n . From 8.2 we know
that any composition factor S K ,W of M/ Jn satisfies K /∈ Y . Thus, 8.1 implies that the restriction of
M/ Jn to Y is 0, showing that M(G) = Jn(G) for any G ∈ Y .

(2) and (3) It follows from 4.5, 5.2 and 5.3 that

J1 =
⋂

H∈X : |H|=pm

KerM
H,bH (M) .

Using 4.12 we see that J1(G) = bG(M) for any G with |G| = pm . Thus the result is true for n = 1.
Assume now that the result is true for any n less than k. Take any G with |G| > pm−k . We want
to show that Jk(G) ⊆ bG( Jk). Indeed, for any A ∈ X with |A| > pm−(k−1) the induction hypothesis
implies that

bA(M) ⊇ Jk−1(A) ⊇ Jk(A).

So the result is true for k and for groups of order greater than m − (k − 1).
We assume now that |G| = pm−k+1. By the first part of this result we see that

Jk−1(G) = M(G) and bG( Jk−1) = bG(M).

We will describe the maximal subfunctors of Jk−1, a minimal group of whose simple quotient has
order |G|. For this end, for any H ∈ X with |H| = |G| we let



144 E. Yaraneri / Journal of Algebra 335 (2011) 113–162
R H = Ker
Jk−1
H,bH (M)

and S H = Im
Jk−1
H,M(H),

and we want to find those groups H satisfying the condition S H + R H = Jk−1 (because if an H
satisfies this condition then it follows from 4.3 that J H is a maximal subfunctor of Jk−1). For any
X ∈ X having no subgroup isomorphic to H we know from 4.12 that

R H (X) = Jk−1(X).

Moreover, if Y is any group isomorphic to H we know by the definition of Im subfunctor that

S H (Y ) = Jk−1(Y ).

Lastly, for any group Z ∈ X having a proper subgroup isomorphic to H , as |Z | > |H| = pm−k+1, the
induction hypothesis gives that

Jk−1(Z) ⊆ bZ (M).

Applying 8.3 we then see that

Jk−1(Z) ⊆ bZ (M) ⊆ KerM
H,bH (M)(Z)

and so that

Jk−1(Z) ⊆ KerM
H,bH (M)(Z) ∩ Jk−1(Z) = R H (Z).

As a result, we have just shown that

S H + R H = Jk−1.

Then, from 4.3 and 5.2, the maximal subfunctors of Jk−1 we want to describe are precisely the sub-
functors R H for any H ∈ X with |H| = pm−k+1. Now Jk , the radical of Jk−1, is the intersection

( ⋂
H∈X : |H|=pm−k+1

R H

)
∩

(⋂
R
)

where the maximal subfunctors R in the second intersection all satisfy the property that the order of
a minimal group of the simple quotient Jk−1/R is greater than |G| (see 8.2). Therefore,

R(G) = Jk−1(G).

Furthermore, we see by using 4.12 that

R H (G) = bG(M) if G ∼= H and R H (G) = Jk−1(G) if G � H .

Consequently, Jk(G) = bG(M).
(4) Let n � 2 and |G| = pm−n+2. Using the first and the third part of this result we see that the

Brauer quotient of Jn−1 at G is 0. Then, 4.3 implies that Jn−1 has no simple quotient whose minimal
group is isomorphic to G . Let S K ,U be a simple functor appearing in Jn−1/ Jn . We will show that
S K ,U (G) = 0, implying that
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Jn(G) = Jn−1(G),

which is equal from the third part of this result to bG(M). Indeed, |K | � pm−n+1 from 8.2. If |K | =
pm−n+1 then arguing as in the proof of the third part of this result we see that S K ,U is isomorphic to
Jn−1/ J where

J = Ker Jn−1
K ,bK ( Jn−1)

,

and that J (G) = Jn−1(G) (and also that U = K). Thus S K ,U (G) = 0 in the case |K | = pn−m+1. Con-
sequently, if S K ,U (G) �= 0 then |K | � pn−m+2 so that G ∼= K (because |G| = pn−m+2 and because
S K ,U (G) �= 0 implies that K is isomorphic to a subgroup of G), which is not the case. Hence,
S K ,U (G) = 0. �

Reading the proof of 8.4 carefully one may easily deduce the next result.

Theorem 8.5. Let K, X , m, and Jn be as in 8.2. Consider the Burnside functor BK as a Mackey functor on X
over K. For any n with n � m we have:

(1) If S H,V appears in Jn/ Jn+1 then |H| � pm−n and |H| �= pm−n+1 .
(2) If |H| = pm−n and S H,V appears in Jn/ Jn+1 then V = K.
(3) For any H ∈ X with |H| = pm−n, the multiplicity of S H,K in Jn/ Jn+1 is 1. In particular, S1,K , whose

multiplicity in BK is 1, appears in Jm/ Jm+1 .

We notice the similarity between the above result and Theorem 7.3 of [17] where the radical series
of the Burnside functor considered as a (ordinary) Mackey functor for a fixed group is studied.

We find below first few radical layers of BK which can be justified arguing as in the proof of 8.4.
The multiplicities of simple functors appearing in the higher radical layers become more complicated.
The first part is valid also for BK considered as a deflation functor. The notation H ∈iso X in the
following result means that H ranges over a complete set of isomorphism classes of all groups in X .

Proposition 8.6. Let K, X , m, n, Jn, and BK be as in 8.5. Suppose that m � 2. For any H ∈ X we denote by
MH the K Out(H)-module

⊕
V �H H: |H :V |=p

K[H/V ].

(1) J0/ J1 ∼=
⊕

H∈iso X : |H|=pm

S H,K, J1/ J2 ∼=
⊕

H∈iso X : |H|=pm−1

S H,K.

(2) J2/ J3 ∼=
( ⊕

H∈iso X : |H|=pm−2

S H,K

)
⊕

( ⊕
H∈iso X : |H|=pm

(⊕
V

λH,V S H,V

))

where V ranges over a complete set of isomorphism classes of simple K Out(H)-modules and λH,V is the
multiplicity of V in MH/ Jac(MH ).

As a final result in this section we find the radical series of the Burnside functor defined on cyclic
p-groups. To justify it, one may use the bijective correspondence described in 4.3 and 4.5. Details are
left to the reader. For any natural number n we denote by Cn the cyclic group of order n, and for any
rational number s we denote by �s� the largest integer less than or equal to s.



146 E. Yaraneri / Journal of Algebra 335 (2011) 113–162
Remark 8.7. Let K be of characteristic p > 0 and X be the family of all cyclic p-groups of order less
than or equal to pm where m is a natural number with m � 2. For any natural number n we put
Jn = Jacn(BK).

(1) Consider the Burnside functor BK as a deflation or a Mackey functor on X over K. Then, for any
natural number n with n � m we have

Jn/ Jn+1 ∼=
�n/2�⊕
k=0

SC pm−n+2k ,K.

(2) Consider the Burnside functor BK as a deflation functor on X over K. Then, for any natural
number r with 1 � r � m − 2,

Jm+r/ Jm+r+1 ∼=
�(m−r)/2�⊕

k=1

SC pr+2k ,K
∼= Jm−2−r/ Jm−1−r .

Moreover, the Loewy length of BK is 2m − 1.
(3) Consider the Burnside functor BK as a Mackey functor on X over K. Then, for any natural number

r with 1 � r � m,

Jm+r/ Jm+r+1 ∼=
�(m−r)/2�⊕

k=0

SC pr+2k ,K
∼= Jm−r/ Jm−r+1.

Moreover, the Loewy length of BK is 2m + 1.

The difference between the starting numbers of indices k in the last two parts of 8.7 is caused
mainly by the difference between dimensions of the simple Mackey and the simple deflation functors
parameterized by the trivial group. There are no differences between dimensions of the simple Mackey
and the simple deflation functors (over characteristic p > 0) parameterized by the nontrivial cyclic p-
groups and trivial modules, explaining the similarity between the series as Mackey and as deflation
functors. It may be easily justified that as an inflation functor on cyclic p-groups the radical series of
BK must be the following.

Remark 8.8. Let K be of characteristic p > 0 and X be the family of all cyclic p-groups. For any
natural number n we put Jn = Jacn(BK). Consider the Burnside functor BK as an inflation functor
on X over K. Then,

BK/ J1 ∼= S1,K and Jn/ Jn+1 ∼= nSC pn ,K

for any natural number n with n � 1.

By using 8.1 we may obtain the following as an easy consequence of 8.7 and 8.8.

Corollary 8.9. Let K be a field of characteristic p > 0 and X be any family. Let G be a cyclic p-group of order
pm in X where m is a natural number, and V be a simple K Out(G)-module. Then:

(1) Consider the Burnside functor BK as a Mackey functor on X over K. If SG,V appears in BK then V = K
and its multiplicity is equal to m + 1.

(2) Consider the Burnside functor BK as a deflation or an inflation functor on X over K. If SG,V appears in BK

then V = K, and its multiplicity is equal to m for m �= 0, and is equal to 1 for m = 0.
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9. Radical and socle series as biset functors

In this section we first want to find the radical series of the Burnside functor BK considered
as a biset functor on the family of all finite abelian p-groups over a field of characteristic p > 0.
Throughout this section, by a functor we mean a biset functor.

To find the radical series we repeatedly use the bijective correspondence given in 4.3, according
to which maximal subfunctors of a functor M are of the form KerM

H,V . For a subfunctor M of BK ,

it follows from 4.12 that the evaluation KerM
H,V (K ) at a group K is the intersection of preimages of

the maps of the form IsoH
A/B DefA

A/B ResK
A . The images of the transitive basis elements [K/U ] of BK(K )

under the maps of the above form are complicated. We use another basis for BK(K ) with whose
elements the evaluations KerM

H,V (K ) are easy to find.

For a p-group G and its normal subgroup N we define the element f G
N ∈ BK(G) as follows:

f G
N = [G/N] −

∑
V �G: N�V ,|V /N|=p

[G/V ].

It is obvious that f G
N = InfG

G/N f G/N
N/N , and for |G| �= p we note that f G

1 is the basis element of the
restriction kernel of BK at G (see 7.2).

Lemma 9.1. Let K be of characteristic p > 0 and G be an abelian p-group. For any subgroup V of G we have

[G/V ] =
∑

N�G: N�V

f G
N .

In particular, the elements f G
N with N � G form a K-basis of the algebra BK(G).

Proof. An elementary way of proving this result is to use a simple induction argument on the index
of a subgroup V in G . Here we give another proof by the referee who suggested to define f G

N as

f G
N =

∑
N�V �G

μ�G(N, V )[G/V ]

where μ�G is the Möbius function of the poset of normal subgroups of G . In the case G is abelian,
this is the ordinary Möbius function μ of the poset of subgroups of G . If V is a p-group, then

μ(N, V ) = 0 if V /N is not elementary abelian, and μ(N, V ) = (−1)k p(k
2) if V is elementary abelian of

rank k. Hence, μ(N, V ) is equal to 0 modulo p, unless N = V , and then μ(N, V ) = 1, or |V : N| = p,
and then μ(N, V ) = −1. Therefore, if K is of characteristic p > 0 and G is an abelian p-group, this
definition of f G

N coincides with the definition of f G
N given before 9.1. Moreover, with this definition

of f G
N , the result follows from the Möbius inversion theorem. �

Lemma 9.2. Let K be of characteristic p > 0 and G be an abelian p-group. Then:

(1) For any N � H � G we have

IndG
H f H

N =
∑

K�G: K�N,K∩H=N

f G
K .

(2) InfG
G/M f G/M

N/M = f G
N for any M � N � G.

(3) IsoG ′
G (φ) f G

N = f G ′
φ(N) for any N � G and any isomorphism φ : G → G ′ .
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(4) Let M and N be subgroups of G. Then, DefG
G/M f G

N = f G/M
N/M if M � N, and DefG

G/M f G
N = 0 if M � N.

(5) For any subgroups H and N of G,

ResG
H f G

N =

⎧⎪⎨
⎪⎩

f H
H∩N , if G = H N,

− f H
H , if G �= H N and |G : N| = p,

0, if G �= H N and |G : N| � p2.

Proof. (1) Using the definition of f H
N and 9.1 we obtain that

IndG
H f H

N = [G/N] −
∑

V �H: N�V ,|V /N|=p

[G/V ]

=
∑

K�G: K�N

f G
K −

∑
V �H: N�V ,|V /N|=p

( ∑
Y �G: Y �V

f G
Y

)

=
∑

K�G: K�N

f G
K −

∑
Y �G: Y >N

λY f G
Y ,

where λY is equal to the number of elements of the set

{
V /N � H/N: |V /N| = p, V � Y

} = {
V /N � (Y ∩ H)/N: |V /N| = p

}
,

which is empty if Y ∩ H = N , so that λY = 0 in this case. We finish by noting that if Y ∩ H �= N then
λY ≡ 1 (mod p).

(2) and (3) Obvious.
(4) Writing f G

N = InfG
G/N f G/N

N/N , and using the results 2.1 and 2.2, we see that

DefG
G/M f G

N = DefG
G/M InfG

G/N f G/N
N/N

= InfG/M
(G/M)/(N M/M) Iso(G/M)/(N M/M)

(G/N)/(MN/N) (π)DefG/N
(G/N)/(MN/N) f G/N

N/N

where π is the natural isomorphism. It follows from Lemme 2 of [6] (see the explanation given
before 7.2) that

DefG/N
(G/N)/(MN/N) f G/N

N/N = 0

if MN/N �= 1, equivalently if M � N . In the case M � N , the above equality of DefG
G/M f G

N becomes

DefG
G/M f G

N = InfG/M
(G/M)/(N/M) Iso(G/M)/(N/M)

(G/N)/(N/N) (π) f (G/N)/(N/N)

(N/N)/(N/N) = f G/M
N/M .

(5) As in the previous part, writing f G
N = InfG

G/N f G/N
N/N , and using the results 2.1 and 2.2, we see

that

ResG
H f G

N = ResG
H InfG

G/N f G/N
N/N = InfH

H/H∩N IsoH/H∩N
H N/N (π)ResG/N

H N/N f G/N
N/N

where π is the natural isomorphism. For |G/N| � p2 and H N/N �= G/N , it follows from Lemme 2
of [6] that
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ResG/N
H N/N f G/N

N/N = 0,

and so ResG
H f G

N = 0. Using the definitions, the remaining cases in which |G/N| � p2 or H N/N = G/N
can be analyzed easily to finish the proof. �

We now ready to find the radical series of BK . However, to facilitate reading of its proof we first
state the following.

Lemma 9.3. Let K be of characteristic p > 0 and X be any family of finite abelian p-groups. Consider the
Burnside functor BK as a biset functor on X over K. For any natural number n � 1 and any G ∈ X we define

In(G) =
⊕

N�G: |G:N|�pn+1

K f G
N .

Then, for each natural number n � 1 we have:

(1) In is a subfunctor of BK .
(2) Let G ∈ X . Then, In(G) �= 0 if and only if |G| = pn+1 . Moreover, if |G| = pn+1 then In(G) ∼= In(G) = K f G

1
is the trivial K Out(G)-module.

(3) In+1 is the radical of In, and

In/In+1 ∼=
⊕

H

S H,K

where H ranges over a complete set of isomorphism classes of all groups of order pn+1 in X .

Proof. (1) It is enough to show that In is invariant under the five types of basic bisets Ind, Inf, Iso,
Def, and Res. It is immediate from 9.2 that In is invariant under the maps Inf, Iso, and Def. Let H � G
be groups in X .

Take an arbitrary basis element f H
M of In(H), where M is a subgroup of H satisfying |H : M| �

pn+1. Applying 9.2 we write

IndG
H f H

M

as a sum of basis elements f G
K of BK(G) satisfying M � K � G and K ∩ H = M . For such a K we see

that

pn+1 � |H : M| = |H : K ∩ H| = |H K : K | � |G : K |,

and so f G
K ∈ In(G). Thus,

IndG
H In(H) ⊆ In(G).

Let f G
N be an arbitrary basis element of In(G), where N � G and |G : N| � pn+1 � p2 (as n � 1).

It follows from 9.2 that if

ResG
H f G

N �= 0

then
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ResG
H f G

N = f H
H∩N and G = H N,

implying that

pn+1 � |G : N| = |H N : N| = |H : H ∩ N|.
Thus, ResG

H f G
N ∈ In(H), so that

ResG
H In(G) ⊆ In(H).

(2) We first show that bG(In) = In(G) for any G in X with |G| � pn+2. Indeed, for such a group G ,
it follows from 4.12 that any basis element f G

N of In(G) with N �= 1 is in bG(In), because

f G
N = InfG

G/N f G/N
N/N and f G/N

N/N ∈ In(G/N).

For the basis element f G
1 of In(G), we choose a subgroup H of G with |G : H| = p, and then we see

by using 9.2 that

IndG
H f H

1 =
∑

K�G: K∩H=1

f G
K = f G

1 +
∑

K�G: K �=1,K∩H=1

f G
K .

As |H| � pn+1, the element f H
1 is in In(H), and hence IndG

H f H
1 ∈ bG(In). Furthermore, for K � G with

K �= 1 and K ∩ H = 1, we see that

|G : K | � |K H : K | = |H : H ∩ K | = |H| � pn+1,

which gives that f G
K ∈ In(G). For a basis element f G

K of In(G) with K �= 1, we already observed that
f G

K ∈ bG(In). Thus, f G
1 ∈ bG(In). Consequently, we have shown that

In(G) = bG(In) or equivalently In(G) = 0

for any G ∈ X with |G| � pn+2.
Conversely, it is clear from the definition of In that the minimal groups of In are precisely the

groups G in X with |G| = pn+1. This shows that bG(In) = 0, and so that

In(G) ∼= In(G) = K f G
1 ,

which is the trivial K Out(G)-module, for any G with |G| = pn+1.
(3) Having found the Brauer quotients of In in the previous part, we apply 4.5 to conclude that the

maximal subfunctors of In are precisely the subfunctors KerIn
H,0 where H ranges over all groups in X

of order pn+1. The radical J of In is the intersection of all these subfunctors KerIn
H,0. For any G ∈ X

we obtain by using 4.12 that

J (G) =
⋂

H∈X : |H|=pn+1

KerIn
H,0(G) =

⋂
A,B

Ker
(
DefA

A/B ResG
A : In(G) → In(A/B)

)

where A ranges over all subgroups of G and B ranges over all subgroups of A with |A/B| = pn+1.
We first show that any basis element f G

N of In(G) with |G : N| � pn+2 is in J (G). Take any sub-
groups B � A of G with |A/B| = pn+1. We note that |G : N| > p2. If
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DefA
A/B ResG

A f G
N �= 0

then we use 9.2 to obtain that G = AN and B � A ∩ N , which is impossible according to the observa-
tion

pn+2 � |G : N| = |AN : N| = |A : A ∩ N| � |A : B| = pn+1.

Consequently, an element

x =
∑

N�G: |G:N|�pn+1

λN f G
N

of In(G) is in J (G) if and only if

y =
∑

N�G: |G:N|=pn+1

λN f G
N

is in J (G). Take a subgroup M of G with |G/M| = pn+1. If y ∈ J (G) then DefG
G/M y = 0. Using 9.2 we

then obtain

0 = DefG
G/M y = λM f G/M

M/M ,

so λM = 0. Thus, if y ∈ J (G) then y = 0. As a result, J = In+1.
Finally, to find the simple functors appearing in the semisimple functor In/In+1, we note from 4.5

that In/KerIn
H,0 is isomorphic to S H,K for each maximal subfunctor, because In(H) is the trivial

K Out(H)-module. Moreover, as In(X) �= 0 if and only if |X | = pn+1, it follows from 4.5 that the mul-
tiplicity of S H,K in In/In+1 is 1 for any H ∈ X with |H| = pn+1. This completes the proof. �
Theorem 9.4. Let K be of characteristic p > 0 and let X be any family of finite abelian p-groups. Consider
the Burnside functor BK as a biset functor on X over K. For any natural number k � 1 we put Jk = Jack(BK).
Then:

(1) For any G ∈ X and any natural number k � 1,

Jk(G) =
⊕

N�G: |G:N|�pk+1

K f G
N .

(2) BK/ J1 ∼= S1,K , and

Jk/ Jk+1
∼=

⊕
H

S H,K,

for any natural number k � 1, where H ranges over a complete set of isomorphism classes of all groups of
order pk+1 in X .

Proof. The results 5.2, 4.3 and 4.5 imply that M has a unique maximal subfunctor, which is KerM
1,0,

and that M/KerM
1,0

∼= S1,K where M = BK . Thus, it is enough to show that the radical J1 = KerM
1,0

of M is equal to the subfunctor I1 of M defined in 9.3.
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For any G ∈ X , it follows from 4.12 that

J1(G) =
⋂

A�G

Ker
(
DefA

A/A ResG
A : M(G) → M(A/A)

)
.

Let f G
N be a basis element of M(G) with |G : N| � p2. Then, f G

N ∈ J1(G), because if

DefA
A/A ResG

A f G
N �= 0

for some A � G then 9.2 implies that G = AN and A � A ∩ N (forcing that N = G). So, an element

x =
∑
N�G

λN f G
N

of M(K ) is in J1(G) if and only if

y = λG f G
G +

∑
N�G: |G:N|=p

λN f G
N

is in J1(G).
Suppose now that y ∈ J1(G). We will show that y = 0, which proves that J1 = I1, and completes

the proof: Indeed, we get from 9.2 that

0 = DefG
G/G y = λG f G/G

G/G ,

and so λG = 0. Let M be any subgroup of G with |G : M| = p. As y ∈ J1(G) we see from 9.2 that

0 = DefM
M/M ResG

M y = −λM f M/M
M/M ,

implying that λM = 0. Therefore, y = 0, as desired. �
Applying 8.1 we obtain the following immediate consequence of 9.4.

Corollary 9.5. Let K be of characteristic p > 0. Consider the Burnside functor BK as a biset functor on any
family X over K. Let G be an abelian p-group in X and V be a simple K Out(G)-module. Then:

(1) If SG,V appears in BK , then |G| �= p and V = K.
(2) If |G| �= p then the multiplicity of SG,K in BK is 1.

We finally proceed to obtain the socle series.

Lemma 9.6. Let K be of characteristic p > 0 and let X be the family of all abelian p-groups of order less than
or equal to pm where m is a natural number with m � 2. Consider the Burnside functor M = BK as a biset
functor on X over K. For any natural number n with n � m − 1 and any G ∈ X we define

Ln(G) =
⊕

|G:N|�pm−n+1

K f G
N .

Then, for each n we have:
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(1) Ln is a subfunctor of BK .
(2) 0 = L0 ⊂ L1 ⊂ · · · ⊂ Lm−1 ⊂ BK .
(3) Let G be any group in X . Then, Ln(G) = 0 if and only if |G| � pm−n.
(4) (M/Ln)(G) = 0 for any G ∈ X with |G| � pm−n+1 .

(5) (M/Ln)(G) ∼= K f G
1 for any G ∈ X with |G| = pm−n and any n with n � m − 2.

(6) For any n with n � m − 2, the socle of M/Ln is Ln+1/Ln and

Ln+1/Ln ∼=
⊕

H

S H,K

where H ranges over a complete set of isomorphism classes of all groups of order pm−n in X .

Proof. (1) We here justify that

ResG
H Ln(G) ⊆ Ln(H)

for any groups H � G in X . The invariance of Ln under the other four basic bisets Ind, Inf, Iso, and
Def can be justified similarly. Let f G

N be an arbitrary basis element of Ln(G), so that |G : N| � pm−n+1.
If

ResG
H f G

N �= 0,

it follows from 9.2 that

G = H N or |G : N| = p.

The case |G : N| = p can be eliminated by using the condition n � m − 1. In the case G = H N we see
that

|H : H ∩ N| = |G : N|,
from which we deduce by using 9.2 that

ResG
H f G

N = f H
H∩N ∈ Ln(H).

(2) and (3) Obvious from the definition of Ln .
(4) Let |G| � pm−n+1. Take an arbitrary element x of (M/Ln)(G). We may write x as

x =
∑

N�G: |G:N|�pm−n

λN
(

f G
N + Ln(G)

)

for some constants λN ∈ K. If x ∈ (M/Ln)(G), then it follows from 6.8 that

DefG
G/K y ∈ Ln(G/K )

for any K � G with K �= 1 where

y =
∑

N�G: |G:N|�pm−n

λN f G
N ,
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because x = y + Ln(G). Thus, for any such K ,

DefG
G/K y =

∑
N�G: |G:N|�pm−n,K�N

λN f G/K
N/K ∈ Ln(G/K ) =

⊕
|G/K :U/K |�pm−n+1

K f G/K
U/K ,

implying that ∑
N�G: |G:N|�pm−n,K�N

λN = 0.

Ranging K over all subgroups of G of indexes 1, p, p2, . . . , pm−n respectively we see that each coeffi-
cient λN in y and so y is 0. We also note that K �= 1 if K � G with |G : K | � pm−n (as |G| � pm−n+1)
so that we may range K as above. Hence, x = Ln(G) (as y = 0) so that the restriction kernel of M/Ln
at G is 0.

(5) Let Y be the family of all abelian p-groups of order less than or equal to pm−n . Then, from the
third part of this result we see by restricting to the family Y that

(M/Ln)
Y ∼= BY

K
.

Noting that if |G| = pm−n then G ∈ Y and |G| � p2, the result follows from 7.2.
(6) Let Y be as in the previous part. Note that m − n � 2. Let M/Ln have a simple subfunctor

isomorphic to S H,V for some H ∈ X and module V . It follows from 6.3 and from the fourth part of
this result that H ∈ Y . Restricting to the family Y we see by using 8.1 that (M/Ln)Y has a simple
subfunctor isomorphic to S Y

H,V . As

(M/Ln)
Y ∼= BY

K
,

the result 7.4 implies that |H| = pm−n .
Now, it follows from 6.5 that the simple subfunctors of M/Ln are precisely the subfunctors T H

with H ∈ X and |H| = pm−n where T H is the subfunctor of M/Ln generated by the restriction kernel

(M/Ln)(H) ∼= K f H
1

(because this restriction kernel is the trivial K Out(H)-module). A further consequence of 6.5 is that
T H is isomorphic to S H,K and its multiplicity in the socle of M/Ln is 1.

We finish the proof by justifying that the sum of the simple subfunctors T H is equal to Ln+1/Ln .
Indeed, we see from the definition of Im subfunctors that the sum of such subfunctors T H is equal to

(
Ln +

∑
H∈X : |H|=pm−n

ImM
H,K f H

1

)
/Ln.

Let G be a group in X . Take an element f G
N in Ln+1(G) but not in Ln(G). Then |G : N| = pm−n . As

f G
N = InfG

G/N f G/N
N/N ,

the element f G
N is in the subfunctor of M generated by M(G/N) = K f G/N

N/N . This shows that

Ln+1 ⊆ Ln +
∑

H∈X : |H|=pm−n

ImM
H,K f H

1
.

The converse inclusion can be seen easily by using 9.2. �
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Theorem 9.7. Let K be of characteristic p > 0 and let X be the family of all abelian p-groups of order less than
or equal to pm where m is a natural number with m � 2. Consider the Burnside functor BK as a biset functor
on X over K. For any natural number n we put Sn = Socn(BK). Then:

(1) The Loewy length of BK is m, and for any n with n � m − 1 and any G ∈ X ,

Sn(G) =
⊕

|G:N|�pm−n+1

K f G
N .

(2) BK/Sm−1 ∼= S1,K , and for any n with n � m − 2,

Sn+1/Sn =
⊕

H

S H,V

where H ranges over a complete set of isomorphism classes of all groups of order pm−n in X .

Proof. By the virtue of 9.6 we only need to show that M/Sm−1 ∼= S1,K where M = BK . This can be
shown (for instance) by justifying the conditions: M/Sm−1 is generated by its evaluation at 1, and
Ker1,0 subfunctor of M/Sm−1 is 0, and that (M/Sm−1)(1) is trivial module. Using 9.2 and definitions
one may easily justify these conditions. �

If we consider the Burnside functor BK as a biset functor on a family X of abelian p-groups over
a field of characteristic p > 0, then the results 9.4 and 9.7 show that the radical and the socle series
of BK coincide with each other, except that the socle series is defined only if one places a bound on
the orders of the p-groups in X .

10. Restriction to nonfull subcategories

Let M be a functor (i.e., any of biset, inflation, deflation, or Mackey) defined on X , and let Y be a
subfamily of X closed under taking subgroups, quotients, and isomorphisms. We may consider M as
a functor defined on Y , for which we use the notation ↓X

Y M . As the morphism sets of the categories

which are domains of the functors M and ↓X
Y M are the same, ↓X

Y M is the restriction of M to a full
subcategory. Restricting a functor to a full subcategory is not interesting, because there is a complete
analogy between restricting a functor to a full subcategory and restricting a module V of an algebra
A to the module eV of the algebra e Ae where e is an idempotent of A. See Remark 8.1, and see [15,
Section 3].

We here study restriction of a functor to a nonfull subcategory. For example, we try to describe
the structure of a given deflation functor as a Mackey functor.

To facilitate the reading we usually use the letters b, i,d, and m for things that are related re-
spectively to biset, inflation, deflation, and Mackey functors. For example, Fb denotes the category
of biset functors, Si

H,V denotes the simple inflation functor parameterized by the pair (H, V ), and
↓d

m denotes the restriction functor from Fd to Fm , that is, for any deflation functor M we denote
by ↓d

m M the functor M considered as a Mackey functor. For another example, if M is a biset functor
we use ImM,i

H,M(H) to denote the ImH,M(H) subfunctor of the inflation functor ↓b
i

M and we use KerM,m
H,0

to denote the KerH,0 subfunctor of the Mackey functor ↓b
m M .

The following is extracted from [16].

Lemma 10.1. Let X be any family and K be any field.

(1) For any simple biset functor Sb
H,V on X over K, the functor ↓b

i
Sb

H,V has a unique maximal inflation

subfunctor, and its head is isomorphic to Si
H,V .
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(2) For any simple biset functor Sb
H,V on X over K, the functor ↓b

d Sb
H,V has a unique simple deflation sub-

functor, and its socle is isomorphic to Sd
H,V .

(3) For any simple deflation functor Sd
H,V on X over K, the functor ↓d

m Sd
H,V has a unique maximal Mackey

subfunctor, and its head is isomorphic to Sm
H,V .

(4) For any simple inflation functor Si
H,V on X over K, the functor ↓i

m Si
H,V has a unique simple Mackey

subfunctor, and its socle is isomorphic to Sm
H,V .

Proof. We here give brief justifications. For details see Propositions 3.8, 3.12, and 7.6 of [16]. Let
S1 = Sb

H,V , S2 = Si
H,V , and S3 = Sd

H,V . As H is a minimal group of each Si , by using the factorization
of a transitive biset given in 2.2 one may see that

ImS1,i
H,S1(H) = S1, KerS1,d

H,0 = 0, ImS3,m
H,S2(H) = S3, and KerS2,m

H,0 = 0.

We may deduce the result by using 3.2. For instance, it follows from 3.2 that KerS1,i
H,0 is the unique

maximal inflation subfunctor of S1 =↓b
i

S1. �
It is known that the category Fm of the Mackey functors over any field of characteristic 0 is

semisimple, see [15]. Therefore, for any finite group H and any simple K Out(H)-module V , it follows
from 10.1 that over any field of characteristic 0 we have

↓i
m Si

H,V
∼= Sm

H,V and ↓d
m Sd

H,V
∼= Sm

H,V ,

see [16, Theorem 3.10]. See also [15, Section 9] for a related result.
Since in a semisimple category every object is projective and injective, over a field of arbitrary

characteristic we have the following slightly stronger result.

Proposition 10.2. Let X be any family and K be any field.

(1) For any simple deflation functor Sd
H,V on X over K, if ↓d

m Sd
H,V is not isomorphic to Sm

H,V then Sm
H,V is

not projective.
(2) For any simple inflation functor Si

H,V on X over K, if ↓i
m Si

H,V is not isomorphic to Sm
H,V then Sm

H,V is
not injective.

Proof. Only the first part is proved here. The second part may be proved similarly. Suppose that
Sm

H,V is projective. We will show that ↓d
m Sd

H,V
∼= Sm

H,V : Indeed, letting M =↓d
m Sd

H,V we see from 10.1
that M has a unique maximal subfunctor J and that M/ J is isomorphic to Sm

H,V . Then, there is an
epimorphism

M → M/ J ∼= Sm
H,V

of Mackey functors, which must split by the projectivity. Therefore, M has a simple subfunctor S
isomorphic to Sm

H,V . As J is the unique maximal subfunctor of M , if S �= M then S ⊆ J . But, this is
impossible because J (H) = 0. Hence S = M . �

The following is an immediate consequence of 10.2, see also Proposition 4.5 of [16].

Corollary 10.3. Let K be of characteristic 0 and X be any family.

(1) Let M be an inflation functor on X over K. Then, for any simple inflation functor Si
H,V , the multiplicity of

Si
H,V in M is equal to the multiplicity of the simple Mackey functor Sm

H,V in ↓i
m M.
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(2) Let M be a deflation functor on X over K. Then, for any simple deflation functor Sd
H,V , the multiplicity of

Sd
H,V in M is equal to the multiplicity of the simple Mackey functor Sm

H,V in ↓d
m M.

We have also the following result related to 10.2.

Proposition 10.4. Let K be of characteristic p � 0, and let X be any family of p′-groups such that there are
finitely many groups, up to isomorphism, in X . For any H ∈ X we have the following isomorphism of functors
on X over K:

↓i
m Si

H,K
∼= Sm

H,K
∼=↓d

m Sd
H,K.

Proof. We will show that ↓i
m Si

H,K
∼= Sm

H,K
, the second isomorphism may be shown similarly. Consider

a composition series

BK = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0

of the Burnside functor BK as an inflation functor on X over K. (A composition series exists by
the condition on X .) We know from 5.6 that BK is semisimple as a Mackey functor on X over K.
In particular, each simple inflation functor Mi/Mi+1 must be semisimple as Mackey functors. Then,
it follows from part (4) of 10.1 that if Mi/Mi+1 ∼= Si

Hi ,V i
then

↓i
m Si

Hi ,V i
∼= Sm

H,V i
.

Therefore, the series

BK = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0

is also a composition series of BK as a Mackey functor. Finally, we use again the result 5.6 to deduce
that there must be an i for which Mi/Mi+1 ∼= Si

H,K
, finishing the proof. �

For restriction of biset functors to inflation functors, using part (1) of 10.1 we may imitate the
proof of 10.2 to obtain the result: if ↓b

i
Sb

H,V is not isomorphic to Si
H,V then Si

H,V is not projec-
tive. Therefore, it may be useful to determine projective simple inflation functors. Indeed, if a simple
functor S H,V is projective then 2.3 implies that S H,V = LH,V and that the module V is projective
as End(H)-module and hence as K Out(H)-module (because the ideal I H of End(H) described in 2.5
annihilates V ). However, the following result suggests that most of simple inflation functors are not
projective.

In the following result we denote by eG
H the primitive idempotent of the Burnside algebra BK(G)

indexed by the conjugacy class of the subgroup H of G . See Section 8 of [3] for more details about
primitive idempotents of BK(G).

Proposition 10.5. Let K be of characteristic p � 0 and q be a prime number with q �= p. Consider the Burnside
functor BK as an inflation functor on X over K. For any natural number k we put Jk = Jack(BK) and Sk =
Soc(BK).

(1) If X is the family of all finite q-groups, then

Jk =
⊕

H�G: |H|�qk

KeG
H and Jk/ Jk+1

∼=
⊕

H

S H,K

where H ranges over a complete set of isomorphism classes of all groups of order qk in X .
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(2) If X is the family of all q-groups of order less than or equal to qm where m is a natural number, then the
Loewy length of BK is m + 1, and for any k with 0 � k � m + 1 we have

Sk = Jm+1−k =
⊕

H�G: |H|�qm+1−k

KeG
H and Sk+1/Sk

∼=
⊕

H

S H,K

where H ranges over a complete set of isomorphism classes of all groups of order qm−k in X .

Proof. We will prove the first part, second part can be proved similarly. For any k and any G in X
we define

Ik(G) =
⊕

H�G: |H|�qk

KeG
H .

Using the images of primitive idempotents eG
H of BK(G) under the maps Ind, Inf, Iso, and Res (see

Lemma (8.1) in [3]) one may see that each Ik is a subfunctor of BK . Next, we may observe that
the Brauer quotient of Ik at a group G is zero unless |G| = qk . It follows from 4.5 that maximal
subfunctors of Ik are precisely the functors R K = KerIk

K ,0 where K is any group of order qk , and it
follows that Ik/R K is isomorphic to S K ,K and that the multiplicity of S K ,K in the head of Ik is 1. It
then follows from 4.12 that the evaluation J (G) of the radical J of Ik at any G ∈ X satisfies

J (G) =
⋂

K�G: |K |=qk

R K =
⋂

K�G: |K |=qk

{
x ∈ Ik(G): ResG

K x = 0
}
.

We may see by using Lemma (8.1) of [3] that J = Ik+1. As I0 = BK the result follows. �
Let S be a simple functor which is projective. For any functor M , as the spaces HomF(S, M) and

HomF(S,Soc(M)) are isomorphic it follows that S does not appear in M/Soc(M). Now, in the case
of 10.5 we know that each simple inflation functor Si

H,K
with |H| < qm appears in BK/Soc(BK) so

that they are not projective.
We finally study restrictions of the functors L X,V defined in Section 2. It is shown in Proposi-

tion 3.12 of [16] that if H is an abelian group and V is a simple K Out(H)-module then the biset
functor Lb

H,V has a unique maximal inflation subfunctor. We now observe that there is a similar re-
sult about the deflation functor Ld

H,V , and obtain some consequences.

Lemma 10.6. Let K be of characteristic p � 0, and X be any family, and H ∈ X be an abelian p′-group, and
V be a simple K Out(H)-module. Then, on X over K, the functor ↓d

m Ld
H,V has a unique maximal Mackey

subfunctor, and its head is isomorphic to Sm
H,V .

Proof. Letting L = Ld
H,V , we first show that L is generated as a Mackey functor by its value L(H) at H ,

that is L = ImL,m
H,L(H): Indeed, by its definition it is clear that L is generated as a deflation functor by

its value L(H) at H , that is L = ImL,d
H,L(H) . Thus, for any G ∈ X we see that L(G) is equal to the sum

of the spaces of the form

[
(G × H)/M

] ⊗Endd(H) V = IndG
R IsoR

P/Q DefP
P/Q ResH

P ⊗Endd(H)V

where M ranges over subgroups of G × H with k1(M) = 1, and where R = p1(M), P = p2(M), and
k2(M) = Q . As P/Q is a section of the abelian group H , it follows from the duality of abelian groups
that there is a subgroup K of H such that K is isomorphic to P/Q . Taking an isomorphism f : R → K ,
as H is an abelian p′-group we see by using 2.1 that
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1

|H : K | IsoR
K

(
f −1)ResH

K IndH
K IsoK

R ( f )

is the identity of the morphism set Endd(R). Therefore,

IndG
R IsoR

P/Q DefP
P/Q ResH

P ⊗Endd(H)V

is equal to

IndG
R

(
1

|H : K | IsoR
K

(
f −1) ResH

K IndH
K IsoK

R ( f )

)
IsoR

P/Q DefP
P/Q ResH

P ⊗Endd(H)V ,

which is equal to

1

|H : K | IndG
R IsoR

K

(
f −1)ResH

K ⊗Endd(H) IndH
K IsoK

R ( f ) IsoR
P/Q DefP

P/Q ResH
P V .

As the ideal IdH of Endd(H) described in 2.5 annihilates V , we see that if

[
(G × H)/M

] ⊗Endd(H) V �= 0

then |P/Q | = |q(M)| = H , implying that k2(M) = 1. This shows that L is generated as a Mackey
functor by its value L(H) at H , that is L = ImL,m

H,L(H) , as desired.

Now, it follows from 3.2 that I = KerL,m
H,0 is the unique maximal Mackey subfunctor of L. We finish

the proof by observing that the Mackey functor L/I is isomorphic to Sm
H,V : Indeed, if L(G) �= 0, we

observed in the above paragraph that there is a subgroup M of G × H with k1(M) = 1 such that
|q(M)| = |H|, implying that H is isomorphic to a section of G . As (L/I)(H) ∼= V , it follows that H is a
minimal group of the simple Mackey functor L/I and that L/I is isomorphic to Sm

H,V . �
In the proof of 10.6 it is shown that if Ld

H,V (G) �= 0 then H is isomorphic to a section of G . Under

the assumptions of 10.6 we may also justify in a similar way that if the value Li
H,V (G) of the inflation

functor Li
H,V is nonzero at a group G then H is isomorphic to a section of G . See also Lemma (9.1)

of [3] for the related result about the biset functor Lb
H,V .

Proposition 10.7. Let K be of characteristic 0, and X be any family, and H ∈ X be an abelian group, and V
be a simple K Out(H)-module. Then, on X over K, we have that Ld

H,V
∼= Sd

H,V .

Proof. As K is of characteristic 0, the category of Mackey functors is semisimple, see [15]. Thus, 10.6
and part (3) of 10.1 imply respectively that

↓d
m Ld

H,V
∼= Sm

H,V and ↓d
m Sd

H,V
∼= Sm

H,V ,

so that ↓d
m Ld

H,V
∼=↓d

m Sd
H,V . Then, the result follows because Sd

H,V is a (the unique simple) quotient
of the deflation functor Ld

H,V , see Section 2. �
Corollary 10.8. Let K be of characteristic 0, and X be any family, and H ∈ X be an abelian group, and V be a
simple K Out(H)-module. For any deflation functor M on X over K, the multiplicity of Sd

H,V in the socle of M
is equal to the multiplicity of V in the K Out(H)-module M(H).



160 E. Yaraneri / Journal of Algebra 335 (2011) 113–162
Proof. Let m be the multiplicity of Sd
H,V in Soc(M), and let n be the multiplicity of V in M(H) (which

is a semisimple K Out(H)-module because K is of characteristic 0), and let r be the multiplicity of V
in the K Out(H)-module M0(H) defined as

M0(H) = {
x ∈ M(H): IdH x = 0

}
where IdH is the ideal of Endd(H) described in 2.5.

As IdH annihilates V , the image of any Endd(H)-module homomorphism V → M(H) is in M0(H),
so that the K-spaces HomEndd(H)(V , M(H)) and HomK Out(H)(V , M0(H)) are isomorphic. Then, us-
ing 10.7 and the adjointness of the pair (LH,−, eH ) given in 2.3 we obtain the isomorphisms of the
following K-spaces:

HomFd

(
Sd

H,V ,Soc(M)
) ∼= HomFd

(
Sd

H,V , M
)

∼= HomFd

(
Ld

H,V , M
)

∼= HomEndd(H)

(
V , M(H)

)
∼= HomK Out(H)

(
V , M0(H)

)
.

This shows that m = r, because it follows from 3.8 that the endomorphism algebra of the deflation
functor Sd

H,V is isomorphic to the endomorphism algebra of the K Out(H)-module V .
On the other hand, it is clear from part (1) of 6.8 that M(H) ⊆ M0(H). So, n � r.
Finally, the equality m = n follows by the virtue of 6.4 stating that m � n. �
Applying the notion of the dual of a functor (see [2] for details), one may obtain the following

result that is the dual of 10.8.

Corollary 10.9. Let K be of characteristic 0, and X be any family, and H ∈ X be an abelian group, and V be a
simple K Out(H)-module. For any inflation functor M on X over K, the multiplicity of Si

H,V in the head of M

is equal to the multiplicity of V in the K Out(H)-module M(H).

Corollary 10.10. Let K be of characteristic 0, and X be any family, and H ∈ X be an abelian group, and V be
a simple K Out(H)-module.

(1) For any deflation functor M on X over K, the multiplicity of Sd
H,V in M/Soc(M) is equal to the multiplicity

of V in the K Out(H)-module

(↓d
m M

)
(H)/M(H)

where (↓d
m M)(H) is the restriction kernel of the Mackey functor ↓d

m M at H and M(H) is the restriction
kernel of the deflation functor M at H.

(2) For any inflation functor M on X over K, the multiplicity of Si
H,V in Jac(M) is equal to the multiplicity of

V in the K Out(H)-module

bH (M)/bH
(↓i

m M
)

which is the kernel of the canonical epimorphism from the Brauer quotient (↓i
m M)(H) of the Mackey

functor ↓i
m M at H to the Brauer quotient M(H) of the inflation functor at H.
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Proof. We only prove the first part, the second part may be proved similarly. Let S = Sd
H,V , and n be

the multiplicity of S in M , and m be the multiplicity of S in Soc(M). Then, n − m is the multiplicity
of S in M/Soc(M).

It follows from 10.3 that n is equal to the multiplicity of the simple Mackey functor Sm
H,V in ↓d

m M ,
which is equal by the virtue of 6.6 to the multiplicity of the simple K Out(H)-module V in the
restriction kernel (↓d

m M)(H) of the Mackey functor ↓d
m M at H (because K is of characteristic 0 and

any Mackey functor over K is semisimple).
On the other hand, we know from 10.8 that m is equal to the multiplicity of the simple K Out(H)-

module V in the restriction kernel M(H) of the deflation functor M at H .
Since M(H) is a subset of (↓d

m M)(H) (see 6.8), the result follows. �
As a last result we obtain the following semisimplicity criterion for an inflation or a deflation

functor defined on abelian groups over a field of characteristic 0.

Corollary 10.11. Let K be of characteristic 0 and X be any family of abelian groups.

(1) A deflation functor M on X over K is semisimple if and only if

( ⋂
P<H

Ker
(
ResH

P : M(H) → M(P )
)) ⊆

( ⋂
N�H: N �=1

Ker
(
DefH

H/N : M(H) → M(H/N)
))

for any H ∈ X .
(2) An inflation functor M on X over K is semisimple if and only if

( ∑
N�H: N �=1

InfH
H/N M(H/N)

)
⊆

( ∑
P<H

IndH
P M(P )

)

for any H ∈ X .

Proof. Here we prove the second part, the first part may be proved similarly. Let M be an inflation
functor. Then, M is semisimple if and only if Jac(M) = 0, which is equivalent by part (2) of 10.10 to
the condition

bH (M)/bH
(↓i

m M
) = 0.

The result follows from 4.12, stating that

bH (M) =
∑
P<H

IndH
P M(P ) +

∑
N�H: N �=1

InfH
H/N M(H/N),

bH
(↓i

m M
) =

∑
P<H

IndH
P M(P ). �
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