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1. Introduction

Let V be a vertex operator algebra (VOA) and G a finite automorphism subgroup. 
The fixed point subspace V G of G in V forms a vertex operator subalgebra (subVOA). 
This subalgebra is called the orbifold subVOA and the study of the fixed point subVOA 
V G and its representation theory is often referred to as orbifold theory. There are many 
interesting and important examples. For instance, Frenkel–Lepowsky–Meurman Moon-
shine VOA V � [16] was constructed as an extension of the fixed point subVOA V θ

Λ by 
its simple module V T,θ

Λ , where VΛ is the lattice VOA associated to the Leech lattice, θ
is a lift of the −1 isometry of Λ and V T

Λ is the unique irreducible θ-twisted module of 
VΛ and V T,θ

Λ is fixed point of θ in V T
Λ . It was also conjectured [13] that one can obtain 

a similar construction of the Moonshine VOA V � by using a fixed-point free isometry 
of the Leech lattice with prime order. In fact, orbifold theory is an important tool for 
constructing new VOAs from a known one [13,28,30,32]. Unfortunately, orbifold theory 
is very difficult to study since the structure of the fixed point subVOA V G is often very 
complicated.

When V = VL is a lattice VOA and θ is an order 2 automorphism induced by the 
−1 isometry of L, the orbifold subVOA V θ

L has been studied extensively [1–3,10,15]. It 
is known that V θ

L is C2-cofinite and rational [1,4,15,36] and any irreducible V θ
L -module 

is contained in some irreducible V -module or irreducible θ-twisted module of V [2,10]. 
Moreover, the fusion rules for V θ

L were completely determined in [3]. Nevertheless, very 
little is known about the VOA V G in general even when G is a cyclic group.

Motivated by the study of certain W3-algebras and the 3A-elements of the Monster 
simple group [9,12,21,22,27], an orbifold VOA V τ√

2A2
was studied, where 

√
2A2 denotes 

the 
√

2 times of the root lattice of type A2 and τ is a lift of a fixed point free isometry 
of order 3 in the automorphism group of 

√
2A2. In [34], all irreducible modules of V τ√

2A2
are classified by using certain W3-algebras. It was also shown that V τ√

2A2
is C2-cofinite 

and rational. Moreover, the fusion rules among some irreducible modules were partially 
determined in [33,35]. On the other hand, certain extensions of the VOA (V τ√

2A2
)⊗� were 

studied in [22,35]. In particular, some integral lattice LC×D is constructed as an extension 
of the lattice (

√
2A2)⊕� from an F4-code C and an Z3-code D. Moreover, the irreducible 

modules for the orbifold VOA V τ
LC×D

were studied in [22,35]. Under certain assumptions 
(that C and D are self-dual and the minimal weight of C is ≥ 4), Tanabe–Yamada [35]
showed that all irreducible modules for V τ

LC×D
are simple current modules and the fusion 

ring of V τ
LC×D

is isomorphic to the group ring of an elementary abelian group of order 32.
The purpose of this article is to determine the fusion rules for all irreducible 

V τ
LC×D

-modules for arbitrary C and D. The main tool is an explicit embedding of the 
subVOA (V τ√

2A2
)⊗� into V τ

LC×D
and the decomposition of V τ

LC×D
as a direct sum of irre-

ducible (V τ√
2A2

)⊗�-modules. The quantum dimensions and the fusion rules for irreducible 
V τ√

2A2
-modules, which are determined in [5], also play fundamental roles in our calcu-

lations. Usually, there are two major steps for determining the fusion rules. First, one 
has to obtain some lower bounds for the fusion rules, which is usually achieved by ex-
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plicit constructions of certain intertwining operators. The second step is to show that the 
bounds obtained in Step 1 is tight by using Frenkel–Zhu A(V )-bimodule theory [17,25]. 
Nevertheless, it is extremely difficult to determine the structures of the A(V )-bimodule 
A(M) for an irreducible module M . Therefore, determining the fusion rules is often very 
difficult. Recently, a new theory on quantum dimensions has been developed in [7]. Along 
with other results, it was shown that the quantum dimension is multiplicative with re-
spect to the fusion product if the underlining VOA is C2-cofinite, rational, self-dual and 
of CFT-type. Since the quantum dimension is defined as a certain limit associated to 
the characters of modules (cf. Definition 2.2), it is often computable and it provides an 
alternative method for obtaining certain bounds for the fusion rules. In fact, the fusion 
rules for irreducible V τ√

2A2
-modules are obtained by using quantum dimensions in [5]

(see [6] for more examples).
In this article, we will compute the quantum dimensions for all irreducible V τ

LC×D
-

modules and determine the fusion rules for arbitrary C and D. In particular, we show that 
all irreducible V τ

LC×D
-modules are simple current modules if the F4-code C is self-dual. 

Moreover, the fusion ring for V τ
LC×D

is isomorphic to a group ring of an elementary abelian 
3-group and the set of all inequivalent irreducible V τ

LC×D
-modules forms a quadratic space 

over Z3 if C is self-dual. The main results are as follows:

Main Theorem 1 (See Theorem 4.14 and Section 3 for the notations). Let C be a self-
orthogonal F4-code of length � and let D be a self-orthogonal Z3-code of the same length. 
Let C⊥

≡τ denote the set of all τ -orbits in C⊥. The quantum dimensions of irreducible 
V τ
LC×D

-modules are as follows.

(i) qdimV τ
LC×D

VLC×(δ+D) [ε] = 1;
(ii) qdimV τ

LC×D
VL(λ+C)×(δ+D) = 3;

(iii) qdimV τ
LC×D

V T,η
LC×D

(τ i)[ε] = 2�

|C| ,

where i = 1, 2, ε ∈ Z3, 0 �= λ + C ∈ C⊥
≡τ mod C, η ∈ D⊥ mod D and δ + D ∈ D⊥/D.

In particular, when C is self-dual, we have C⊥/C = 0, |C| = 2� and the quantum 
dimensions for all irreducible V τ

LC×D
-modules are 1.

Main Theorem 2 (See Section 5). Let C be a self-orthogonal F4-code of length � and let 
D be a self-orthogonal Z3-code of the same length. Then the fusion rules for irreducible 
V τ
LC×D

-modules are as follows.

(i) VLC×(δ1+D)
[ε1] × VLC×(δ2+D)

[ε2] = VLC×(δ1+δ2+D)
[ε1 + ε2];

(ii) VLC×(δ1+D)
[ε1] × VL(λ+C)×(δ2+D)

= VL(λ+C)×(δ1+δ2+D)
;

(iii) VLC×(δ1+D)
[ε1] × V T,δ2

LC×D
(τ i)[ε2] = V T,δ2−iδ1

LC×D
(τ i)[iε1 + ε2];

(iv) VL 1 1 × VL 2 2 =
∑2

h=0 VL 1 h 2 1 2 ;

(λ +C)×(δ +D) (λ +C)×(δ +D) (λ +ω λ +C)×(δ +δ +D)
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(v) VL(λ+C)×(δ1+D)
× V T,δ2

LC×D
(τ i)[ε] =

∑2
ρ=0 V

T,δ2

LC×D
(τ i)[ρ];

(vi)
V T,η1

LC×D
(τ)[ε1] × V T,η2

LC×D
(τ2)[ε2]

= VLC×(η2−η1+D)
[ε1 − ε2] ⊕

⊕
0 �=γ∈C⊥

≡τ
mod C

VL(γ+C)×(η2−η1+D)
;

(vii)
V T,η1

LC×D
(τ i)[ε1] × V T,η2

LC×D
(τ i)[ε2]

=
∑

ε=0,1,2

2�−2d + (−1)�Ξ(�− ε)
3 V

T,−(η1+η2)
LC×D

(τ2i)[ε− ε1 − ε2].

In the above, δ1 + D, δ2 + D ∈ D⊥/D, 0 �= λ + C, λ1 + C, λ2 + C ∈ C⊥
≡τ mod C, 

η1, η2 ∈ D⊥ mod D and ε1, ε2 ∈ Z3. The function Ξ : Z → {−1, 2} is defined by 
Ξ(n) = 2 if 3 divides n and Ξ(n) = −1 if n is not a multiple of 3.

This article is organized as follows. In Section 2, we review some basic properties 
of the VOA V τ√

2A2
and the notion of quantum dimensions. In Section 3, we review 

a construction of the integral lattice LC×D from some F4 and Z3-codes. Some basic 
facts about the lattice VOA VLC×D and its Z3-orbifold V τ

LC×D
will also be recalled. In 

Section 4, we compute the quantum dimensions of the orbifold VOA V τ
LC×D

. In Section 5, 
we compute the fusion rules among irreducible V τ

LC×D
-modules.

1.1. Table of notations

Notation Explanation
Z+ non-negative integers.

C an F4-code of length �.
D a Z3-code of length �.
WC(X, Y ) the Hamming weight enumerator of C.
W ′

C(X, Y ) W ′
C(X, Y ) := 1

3 (WC(X, Y ) − X�).

Sε Sε := {x := (x1, · · · , x�) ∈ Z
�
3 |

∑
xi ≡ ε mod 3}.

Wε(X, Y ) Wε(X, Y ) := ∑
x∈Sε

X�−wt(x)Y wt(x),
the weight enumerator of the set Sε.

γ, δ, · · · codewords of length �. We denote γ = (γ1, · · · , γ�), etc.

C⊥ the dual code of C.
C⊥

≡τ the set of all τ-orbits in C⊥.

x · y inner product of codewords x and y.
LC×D the lattice associated to codes C and D.
K⊥ the dual lattice of the lattice K.
ξ e2πi/3, the cubic root of unity.

L L =
√

2A2.
L(i,j) cosets of L in L⊥.

ω a root of x2 + x + 1 = 0 over F2. We denote F4 = {0, 1, ω, ̄ω}.

τ a fixed point free isometry of the root lattice A2 of order 3.
We also use τ to denote its extension to larger lattices or corresponding 
VOAs.
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Notation Explanation

V T,i
L (τj) τj-twisted VL-modules.

VL(λ+C)×(δ+D) irreducible VLC×D -modules,
V T,η
LC×D

(τj) τj-twisted VLC×D -modules,

U [i] U [i] := {x ∈ U | τx = ξix} for i = 0, 1, 2.
M ′ the contragredient dual of the module M .

IV
( M3

M1, M2

)
the space of intertwining operators of V -modules of type 

( M3

M1, M2

)
.

NV

( M3

M1, M2

)
NV

( M3

M1, M2

)
= dim IV

( M3

M1, M2

)
.

NC×D
( −
−, −

)
NC×D

( −
−, −

)
= dim IVLC×D

( −
−, −

)
,

Nτ
C×D

( −
−, −

)
Nτ

C×D
( −
−, −

)
= dim IV τ

LC×D

( −
−, −

)
,

N⊗
( −
−, −

)
N⊗

( −
−, −

)
= dim I(V τ

L
)⊗�

( −
−, −

)
,

Nτ
◦
( −
−, −

)
Nτ

◦
( −
−, −

)
= dim IV τ

L

( −
−, −

)
.

T [ε], TC×D [ε], Tη
C×D [ε] T [ε] = TC×D [ε] := V T,0

LC×D
(τ)[ε]; Tη

C×D [ε] := V T,η
LC×D

(τ)[ε],
Ť [ε], ŤC×D [ε], Ťη

C×D [ε] Ť [ε] = ŤC×D [ε] := V T,0
LC×D

(τ2)[ε]; Ťη
C×D [ε] := V T,η

LC×D
(τ2)[ε],

S[ε] S[ε] := VLC×D [ε].

RM (v, g, h; z) the trace function of the module M ,
M(g, h; z), ZM (g, h; z) M(g, h; z) = ZM (g, h; z) := RM (1, g, h; z),
M(z) M(z) := ZM (id, id; z).
A.B, A:B,
A·B

extension of normal subgroup A by quotient B, split extension, nonsplit 
extension, respectively.

NG(A), CG(A) the normalizer and centralizer of A in G,
Stab(X) the stabilize of X.

2. Preliminaries and basic properties

The VOAs V√
2A2

and V τ√
2A2

In this paragraph, we review some facts about the orbifold 
VOA V τ√

2A2
[22,34]. For general background concerning lattice VOA, we refer to [16,26].

Let α1, α2 be the simple roots of type A2 and set α0 = −(α1 +α2). Then 〈αi, αi〉 = 2
and 〈αi, αj〉 = −1 if i �= j, i, j ∈ {0, 1, 2}. Set βi =

√
2αi and let L = Zβ1 + Zβ2 be the 

lattice spanned by β1 and β2. Then L is isometric to 
√

2A2.
Let F4 = {0, 1, ω, ω̄} denote the Galois field of four elements, where ω is a root of 

x2 +x +1 = 0 over F2. We adopt the similar notation as in [22,12] and denote the cosets 
of L in the dual lattice L⊥ = {α ∈ Q ⊗Z L | 〈α, L〉 ⊂ Z}, as follows:

L0 = L, L1 = −β1 + β2

3 + L, L2 = β1 − β2

3 + L,

L0 = L, L1 = β2

2 + L, Lω = β0

2 + L, Lω̄ = β1

2 + L, (2.1)

and

L(i,j) = Li + Lj ,

for i ∈ F4 and j ∈ Z3. Then, L(i,j), i ∈ F4, j ∈ Z3 = {0, 1, 2} are all the cosets of L in
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L⊥ and L⊥/L ∼= Z2 ×Z2 ×Z3. It is shown in [14] that there are exactly 12 isomorphism 
classes of irreducible VL-modules, which are given by VL(i,j) , i ∈ F4 and j ∈ Z3.

Consider the isometry τ : L → L defined by β1 
→ β2 
→ β0 
→ β1. Then τ is fixed point 
free of order three and can be lifted naturally to an automorphism of VL by mapping 
a1(−n1) · · · ak(−nk)eb 
−→ (τa1)(−n1) · · · (τak)(−nk)eτb. By abuse of notation, we also 
use τ to denote the lift. Note that τ also acts as an isometry on the dual lattice L⊥ and 
induces an action on the Fock space VL⊥ = S(h−

Z
) ⊗ C{L⊥} (see [22, Section 4]).

For the orbifold VOA V τ
L , there are two types of irreducible modules – the untwisted 

type (those constructed from irreducible VL-modules) and the twisted type (those con-
structed from irreducible τ or τ2-twisted VL-modules).

First we recall the notion of τ -conjugate modules. Let W be an irreducible VL-module. 
The τ -conjugate module (W ◦ τ, YW◦τ ( , z)) is defined as follows: W ◦ τ = W as a vector 
space and the vertex operator YW◦τ (u, z) = YW (τu, z), for u ∈ VL. An irreducible module 
W is said to be τ -stable if W ◦ τ ∼= W . For any τ -stable VL-module U , we denote

U [ε] = {u ∈ U | τu = exp(2π
√
−1ε/3)u}, ε = 0, 1, 2.

Note also that the automorphism τ induces an action on the set of all inequivalent 
irreducible VL-modules by the τ -conjugation. By the definition of τ , it is easy to show 
that VL(i,j) ◦ τ ∼= VL(ω̄i,j) for any i ∈ F4 and j ∈ Z3 (cf. [22, Section 4]). Therefore, VL(i,j)

is τ -stable if and only if i = 0.
For irreducible twisted modules, a general construction has been given in [8]. More-

over, it was shown in [22] that there are exactly three irreducible τ -twisted VL-modules 
and three irreducible τ2-twisted VL-modules, up to isomorphism. They are denoted by 
V T,j
L (τ) or V T,j

L (τ2) for j = 0, 1, 2. We will follow the notation in [35, Section 3]. Let 
〈κn〉 be a cyclic group of order n with generator κn and ξn := exp(2π

√
−1/n).

Let 1 → 〈κ36〉 → L̂τ → L → 1 and 1 → 〈κ36〉 → L̂τ2 → L → 1 be central extensions 
of L associated with the bilinear forms c2 and c′2 given in [35, (2.8) and (2.9)]. Let 
K = {aτ−1(a) | a ∈ L̂τ} and K ′ = {aτ−2(a) | a ∈ L̂τ2}. Then

V T,j
L (τ) = S[τ ] ⊗ Tχj

and V T,j
L (τ2) = S[τ2] ⊗ T ′

χj
,

where Tχj
(resp. T ′

χj
) is the one-dimensional irreducible module of L̂τ/K (resp. L̂τ2/K ′) 

affording the character χj such that χj(κ3e
β1) = ξj3 (see also Remark 3.6). By definition, 

there is a natural action of τ on S[τ ] and S[τ2] (cf. [8,35]). As in [35, Section 3], we 
define the action of τ on Tχj

(resp. T ′
χj

) as a scalar ξ2 wt(j)
3 (resp. ξwt(j)

3 ). We also denote 

V T,j
L (τ i)[ε] = {u ∈ V T,j

L (τ i) | τu = ξεu} for ε = 0, 1, 2.
In [34], the irreducible modules for the orbifold VOA V τ

L are classified and the following 
result is proved.

Proposition 2.1 ([34]). The VOA V τ
L is a simple, rational, C2-cofinite, and of CFT type. 

There are exactly 30 inequivalent irreducible V τ
L -modules. They are given as follows.
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(i) VL(0,j) [ε] for j, ε = 0, 1, 2.
(ii) VL(ω,j) for j = 0, 1, 2.
(iii) V T,j

L (τ i)[ε] for i = 1, 2 and j, ε = 0, 1, 2.

The conformal weights of these modules are given by (see [34, (5,10)]):

wtVL(0,j) [ε] ∈ 2j2

3 + Z, wtV T,j
L (τ i)[ε] ∈ 10 − 3(j2 + ε)

9 + Z, for i = 1, 2, j, ε ∈ Z3.

Note that the conformal weights of these modules are positive except V τ
L itself.

Quantum dimension We now review the notion of quantum dimension introduced by 
Dong et al. [7]. Let V be a VOA of central charge c and let M = ⊕n∈Z+Mλ+n be a 
V -module, where λ is the lowest conformal weight of M . The character of M is defined 
as

chM(q) := qλ−c/24
∑
n∈Z+

dimMλ+nq
n,

where q = e2π
√
−1z and z is in the complex upper half-plane H. It is proved in [37] and 

[11] that chM(q) converges to a holomorphic function on the domain |q| < 1 if V is 
C2-cofinite.

The following notion of quantum dimension is introduced by Dong et al. [7].

Definition 2.2. Suppose chV (q) and chM(q) exist. The quantum dimension of M over 
V is defined as

qdimV M := lim
y→0+

chM(
√
−1y)

chV (
√
−1y)

, (2.2)

where y is a positive real number.

From now on, we will omit the variable q and write the character chM(q) as chM

instead. Fundamental properties of quantum dimension are also proved in their paper.

Proposition 2.3 ([7, Section 4]). Let V be a simple, rational, C2-cofinite VOA of 
CFT-type and V ∼= V ′, the contragredient dual of V . Moreover, the conformal weights of 
irreducible V -modules are positive, except V itself. Let W, W 1, W 2 be V -modules. Then

(i) qdimV W ≥ 1.
(ii) qdimV is multiplicative, that is qdimV (W 1 ×W 2) = qdimV W 1 · qdimV W 2, where 

W 1 ×W 2 denotes the fusion product.
(iii) A V -module W is a simple current if and only if qdimV W = 1.
(iv) qdimV W = qdimV W ′, where W ′ is the contragredient dual of W .
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Remark 2.4. Recall that an irreducible V -module M is a simple current module if and 
only if for every irreducible V -module W , M × W exists and is also an irreducible 
V -module.

Quantum dimensions of irreducible V τ
L -modules are computed in [5].

Proposition 2.5 ([5, Theorems 3.5 and 3.10]). We have

(i) qdimV τ
L
VL(0,j) [ε] = 1 for j, ε = 0, 1, 2.

(ii) qdimV τ
L
VL(ω,j) = 3 for j = 0, 1, 2.

(iii) qdimV τ
L
V T,j
L (τ i)[ε] = 2 for i = 1, 2 and j, ε = 0, 1, 2.

Trace functions, S-matrix and Verlinde formula We review Dong–Li–Mason’s theory 
on trace functions [11]. Let V be a rational VOA and g, h ∈ AutV be commuting 
automorphisms of finite orders. Let M be a g-twisted h-stable V -module. There exists 
a linear isomorphism ϕ(h) of M such that ϕ(h)YM (u, z) = YM (hu, z)ϕ(h).

For a homogeneous v ∈ V with L(1)v = 0, we define the trace function

RM (v, g, h; z) := tr
M
ϕ(h)o(v)qL(0)−c/24 = qλ−c/24

∑
n∈ 1

|g|Z+

tr
Mλ+n

o(v)ϕ(h)qn,

where o(v) is the degree zero operator of v, λ is the conformal weight of M , c is the 
central charge of V and q = e(2π

√
−1z).

Proposition 2.6 ([11, Theorems 5.4 and 8.7]). Let C1(g, h) be the C-vector space

C1(g, h) := SpanC{RM (v, g, h; z) | M is a g-twisted h-stable V -module}.

Then (i) C1(g, h) has a basis:

{RM (v, g, h; z) | M is an irreducible g-twisted h-stable V -module}.

(ii) Modular invariance: Let RM (v, g, h; z) ∈ C1(g, h) and Γ =
(
a b
c d

)
∈ SL2(Z). Then 

we have RM (v, g, h; Γ ◦ z) ∈ C1(g, h) ◦ Γ in the sense that

RM (v, g, h; az + b

cz + d
) ∈ C1(gahc, gbhd).

In fact, if M is a g-twisted h-stable V -module, then

RM (v, g, h; az + b

cz + d
) =

∑
S

(g,h)
N RN (v, g, h; z),

where N runs over all irreducible gahc-twisted gbhd-stable V -modules, and the coefficients 
S

(g,h)
N are independent of v.
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In particular, when g = h = id, Γ =
( 0 −1

1 0

)
and V = M0, · · · , Mm are all inequivalent 

irreducible V -modules, we have

RMi(v, id, id;−1
z
) =

m∑
j=0

Si,jRMj (v, id, id; z). (2.3)

For simplicity, we denote

M(g, h; z) = ZM (g, h; z) := RM (1, g, h; z), (2.4)

and

M(z) := ZM (id, id; z) = chM(z). (2.5)

Definition 2.7. The matrix S = (Si,j) defined in Equation (2.3) is called the S-matrix.

Theorem 2.8 ([19]). Let V be a rational and C2-cofinite simple VOA of CFT type and 
assume V ∼= V ′. Let S = (Si,j)mi,j=0 be the S-matrix as defined in (2.3). Then

(i) (S−1)i,j = Si,j′ = Si′,j, and Si′,j′ = Si,j, where i′, j′ denote indexes of the duals 
(M i)′ and (M j)′.

(ii) S is symmetric and S2 = (δi,j′).
(iii) Nk

i,j =
∑m

s=0
Sj,sSi,sS

−1
s,k

S0,s
, where Nk

i,j = dim IV
(

Mk

Mi, Mj

)
.

(iv) The S-matrix diagonalizes the fusion matrix N(i) = (Nk
i,j)mj,k=0 with diagonal 

entries Si,s

S0,s
, for i, s = 0, · · · , m. More explicitly, S−1N(i)S = diag( Si,s

S0,s
)ms=0. In 

particular, S0,s �= 0 for s = 0, · · · , m.

Proposition 2.9 ([7, Lemma 4.2]). Let V be a simple, rational and C2-cofinite VOA of 
CFT type. Let M0, M1, · · · , Md be as before with the corresponding conformal weights 
λi > 0 for 0 < i ≤ d. Then 0 < qdimV M i < ∞ for any 0 ≤ i ≤ d. Moreover, we have

qdimV M i = Si,0

S0,0
. (2.6)

3. The VOAs VLC×D and V τ
LC×D

In this section, we will review some properties about the lattice VOA VLC×D and the 
orbifold VOA V τ

LC×D
.

Z3 and F4-codes We first review the coding theory concerned in this paper. All codes 
mentioned in this paper are linear codes. From now on, we fix � ∈ N. We also use a 
boldface lowercase letter x to denote a vector or a sequence of length � and its i-th 
coordinate is denoted by xi. That is x = (x1, · · · , x�).
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Definition 3.1. Let λ = (λ1, · · · , λ�) be a codeword of length �, its support is defined to 
be Supp(λ) = {i | λi �= 0}. The cardinality of Supp(λ), denoted by wt(λ), is called the 
(Hamming) weight of λ. A code C is said to be even if wt(λ) is even for every λ ∈ C.

Let S be a subset of codewords of length �. The (Hamming) weight enumerator of S
is defined to be

WS(X,Y ) =
∑
λ∈S

X�−wt(λ)Y wt(λ), (3.1)

which is a homogeneous polynomial of degree �.

We consider the inner products for codes over F4 and Z3 as follows. For codes over F4, 
we use the Hermitian inner product, i.e.,

x · y :=
�∑

i=1
xiȳi, for x = (x1, · · · , x�), y = (y1, · · · , y�) ∈ F�

4,

where x̄ = x2 is the conjugate of x ∈ F4. For Z3-codes, we use the usual Euclidean inner 
product:

x · y :=
�∑

i=1
xiyi for x,y ∈ Z�

3.

Definition 3.2. Let K = F4 or Z3. For a K-code S of length � with the inner product 
given as above, we define its dual code by S⊥ = {λ ∈ K� | λ · μ = 0 for all μ ∈ S}.
A K-code S is said to be self-orthogonal if S ⊂ S⊥ and self-dual if S = S⊥.

Remark 3.3. By [18, Theorem 1.4.10], an F4-code C is even if and only if C is Hermitian 
self-orthogonal. Note that the underlying “additive” group structure of F4 is Z2 × Z2. 
Therefore, an even F4-code C is also an even “additive” Z2 × Z2 code. Moreover, C is 
τ -invariant since it is F4-linear. In [34], even τ -invariant Z2 ×Z2 codes are used. Instead 
of the Hermitian inner product, they used the trace Hermitian inner product defined by 
x · y :=

∑�
i=1 xiȳi + x̄iyi.

In the notation of [31], codes C in our setting belong to the family 4H , while codes in 
Tanabe and Yamada’s setting belong to the family 4H+. If the code C is also linear, then 
its dual C⊥ in 4H+ coincides with the dual of C in 4H . In other words, C is self-orthogonal 
in 4H if and only if C is self-orthogonal in 4H+. Therefore, these two notions are essentially 
the same and almost all theorems we proved in this paper have analogous statements in 
their setting.

The lattice LC×D and the VOAs VLC×D and V τ
LC×D

From now on, we let C be a 
self-orthogonal F4-code of length � and let D be a self-orthogonal Z3-code of the same 
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length. First we review a construction of an even lattice from the codes C and D (see 
[22,35]). For λ = (λ1, · · · , λ�) ∈ F�

4 and δ = (δ1, · · · , δ�) ∈ Z�
3, we define

Lλ×δ := {(x1, . . . , x�) ∈ (L⊥)⊕� | xi ∈ L(λi,δi), i = 1, . . . , �}.

For subsets P ⊂ F�
4 and Q ⊂ Z�

3, we define

LP×Q :=
⋃

λ∈P ,δ∈Q

Lλ×δ ⊂ (L⊥)⊕�.

Let τ act diagonally on (L⊥)⊕�. It induces an action on V(L⊥)⊕� .
We will determine the quantum dimensions and the fusion rules for the irreducible 

modules of the orbifold VOA V τ
LC×D

in this paper.

Proposition 3.4 ([35, Lemmas 2.5, 2.6]). Let C be a self-orthogonal F4-code of length �
and D be a self-orthogonal Z3-code of the same length. Then the subset LC×D is an even 
sublattice of (L⊥)⊕�. Moreover, the dual lattice (LC×D)⊥ = LC⊥×D⊥ .

Proposition 3.5 ([14,8,35]). Let C be a self-orthogonal F4-code of length � and D be a 
self-orthogonal Z3-code of the same length. Let VLC×D be the lattice VOA associated to 
LC×D. Then we have the following.

(i) The set of all inequivalent irreducible VLC×D -modules is given by

{VL(λ+C)×(δ+D) | λ + C ∈ C⊥/C, δ + D ∈ D⊥/D}.

(ii) We have VL(λ+C)×(δ+D) ◦ τ ∼= VL(τ−1(λ)+C)×(δ+D)
.

(iii) For i = 1, 2, there are exactly 
∣∣∣D⊥/D

∣∣∣ inequivalent irreducible τ i-twisted

VLC×D -modules. They are represented by (V T,η
LC×D

(τ i), Y τ i) for η ∈ D⊥ mod D.

Remark 3.6. We briefly review the construction of τ -twisted modules V T,η
LC×D

(τ). For gen-
eral references, the readers may refer to [23,8]. We follow the notations of [35, Section 3]. 
For any positive integer n, let 〈κn〉 be a cyclic group of order n with generator κn and 
ξn := exp(2π

√
−1/n). Let 1 → 〈κ36〉 → L̂C×D,τ → LC×D → 1 be the central extension 

of LC×D with associated bilinear forms given in [35, (2.8)]. Let η = (η1, · · · , η�) ∈ Z�
3

and define a homomorphism ψη : L̂C×0,τ → C× such that (i) ψη(κ36) = ξ36, (ii) ψη is 
1 on K0 := {aτ(a)−1 | a ∈ L̂C×0,τ}, and (iii) ψη(κ3e

β
(s)
i ) = ξηs

3 , where 1 ≤ s ≤ � and 

β
(s)
i = (0, · · · , 0, 

s-th
βi , 0, · · · , 0) ∈ L�.

Let Cψη be a one dimensional L̂C×0-module affording the character ψη and let

Tψη := C[L̂C×D,τ ] ⊗C[L̂C×0,τ ] Cψη

be the L̂C×D,τ -modules induced from Cψη .
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Set ĥ[τ ] be the τ -twisted affine Lie algebra and S[τ ] be the induced ĥ[τ ]-module

S[τ ] = U(ĥ[τ ]) ⊗
ĥ[τ ]+⊕ĥ[τ ]0 C.

The τ -twisted VLC×D -module is defined in [35, (3.24)] as

V T,η
LC×D

(τ) = S[τ ] ⊗ Tψη ,

for η ∈ D⊥ and τ acts on Tψη as a scalar ξ2 wt(η). As given in [35, (3.27)],

V T,η
LC×D

(τ) ∼=
⊕
γ∈D

V T,η−γ
L⊕� (τ) as a τ -twisted VL⊕�-module.

We have similar descriptions for τ2-twisted VLC×D -modules. We consider a central 
extension

1 → 〈κ36〉 → L̂C×D,τ2 → LC×D → 1

associated with the bilinear form c′2 given in [35, (2.9)]. One can then construct a class 
of irreducible L̂C×D,τ2 -modules T ′

ψη
for any η ∈ D⊥. Then

V T,η
LC×D

(τ2) = S[τ2] ⊗ T ′
ψη

and we assume that τ acts on T ′
ψη

as a scalar ξwt(η), i.e., τ2 acts on T ′
ψη

as a scalar 
ξ2 wt(η).

Since τ acts trivially on D, by Proposition 3.5, VL(λ+C)×(δ+D)
∼= VL(λ′+C)×(δ′+D)

as 
V τ
LC×D

-modules if and only if (1) λ + C and λ′ + C belong to the same τ -orbit of C⊥; 
and (2) δ + D = δ′ + D in D⊥/D. Let C⊥

≡τ denote the set of all τ -orbits in C⊥. Then

{VLC×(δ+D) [ε], VL(λ+C)×(δ+D) | ε ∈ Z3,0 �= λ + C ∈ C⊥
≡τ mod C, δ + D ∈ D⊥/D}

is a set of inequivalent irreducible V τ
LC×D

-modules, which are obtained from the irre-
ducible (untwisted) VLC×D -modules.

It is usually very difficult to classify all irreducible modules of an orbifold VOA. 
Recently, Miyamoto gave a classification in the Z3-orbifold case.

Proposition 3.7 ([29,30]). Let V be a rational VOA of CFT-type. Assume V ∼= V ′, its 
contragredient dual. Let σ be an automorphism of V of order three. If the fixed point 
subVOA V σ is C2-cofinite, then V σ is rational. Moreover, every irreducible V σ-module 
is a submodule of some σj-twisted V -module for some j.

Proposition 3.8. The VOAs VLC×D and V τ
LC×D

are simple, rational, C2-cofinite VOAs of 
CFT type and are isomorphic to their contragredient dual, respectively.
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Proof. Assertions about lattice VOA are well-known. By [24, Corollary 3.2], we know 
V τ
LC×D

is self-dual. It is proved in [35, Theorem 7.10] that V τ
LC×D

is a simple, C2-cofinite 
VOA of CFT type. Together with Proposition 3.7, we get the rationality of V τ

LC×D
. �

Remark 3.9. Since V τ
L is C2-cofinite and rational by [34] and V τ

LC×D
⊃ (V τ

L )⊗�, it also 
follows from [4] that V τ

LC×D
is C2-cofinite and from [20, Theorem 3.5] that V τ

LC×D
is 

rational.

By Proposition 3.7, we can classify irreducible V τ
LC×D

-modules.

Proposition 3.10. An irreducible V τ
LC×D

-module must belong to one of the following types.

(i) VLC×(δ+D) [ε], (ii) VL(λ+C)×(δ+D) , (iii) V T,η
LC×D

(τ i)[ε],

where i = 1, 2, ε ∈ Z3, 0 �= λ + C ∈ C⊥
≡τ mod C, η ∈ D⊥( modD) and δ + D ∈ D⊥/D. 

In particular, there is no modules of the second type (ii) if C is self-dual.

It is easy to check the following lemma.

Lemma 3.11. We have #{0 �= γ ∈ C⊥
≡τ

mod C} =
( ∣∣∣C⊥/C

∣∣∣− 1
)
/3.

In this paper, our calculations depend heavily on the decomposition of the irreducible 
V τ
LC×D

-modules as (V τ
L )⊗�-modules.

Proposition 3.12 ([22],[35, Theorem 3.13]). As modules of (V τ
L )⊗�, we have the following 

decomposition.

(i) VLC×(δ+D) [ε] ∼= VL0×(δ+D) [ε] ⊕
⊕

0�=γ∈C≡τ

VLγ×(δ+D) ; (3.2a)

(ii) V T,η
LC×D

(τ i)[ε] ∼=
⊕
δ∈D

( ⊕
e1+···+e�≡ε mod 3

V T,η1−iδ1
L (τ i)[e1] ⊗ · · · ⊗ V T,η�−iδ�

L (τ i)[e�]
)
,

(3.2b)

where δ, η ∈ D⊥ and C≡τ denotes the set of all τ -orbits in C.

Remark 3.13. By these decompositions and Proposition 2.1, we know the conformal 
weights of irreducible V τ

LC×D
-modules are positive except V τ

LC×D
itself.

4. Quantum dimensions of irreducible V τ
LC×D

-modules

In this section, we compute the quantum dimensions of irreducible V τ
LC×D

-modules. 
We will first consider the case when D = {0} is the trivial Z3-code. Results in this case 
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are summarized in Theorem 4.13. Results for the general case are given in Theorem 4.14. 
In addition, we verify one conjecture about global dimensions proposed by Dong et. al. 
for the VOA V τ

LC×D
in this section.

Weight enumerators We first define several (generalized) weight enumerators.

Definition 4.1. For ε = 0, 1, 2, let Sε := {x := (x1, · · · , x�) ∈ Z�
3 |

∑
xi ≡ ε mod 3}.

We denote the weight enumerator of Sε by Wε(X, Y ), i.e.,

Wε(X,Y ) :=
∑
x∈Sε

X�−wt(x)Y wt(x), (4.1)

where wt(x) denotes the Hamming weight of x (cf. Definition 3.1).

We also consider a weight enumerator induced from an F4-code C.

Definition 4.2. Let C be an F4-code and let WC(X, Y ) be its Hamming weight enumerator. 
We define

W ′
C(X,Y ) := 1

3(WC(X,Y ) −X�). (4.2)

Remark 4.3. Note that Wε(X, Y ), W ′
C(X, Y ) are homogeneous polynomials in X, Y of 

the same degree �.

Lemma 4.4. We have W ′
C(1, 1) = (|C| − 1)/3 and Wε(1, 1) = 3�−1. Moreover, the self-

orthogonal F4-code C is self-dual if and only if W ′
C(1, 1) = 2�−1

3 .

Proof. First we note that WC(1, 1) = |C| is equal to the number of elements in C; hence

W ′
C(1, 1) = WC(1, 1) − 1

3 = |C| − 1
3 .

It is clear that Sε = (ε, 0, . . . , 0) + S0 for any ε = 1, 2. Therefore, |S1| = |S2| = |S0|. 
Note also that Wε(1, 1) = |Sε| for any ε = 0, 1, or 2 and |S0| + |S1| + |S2| = 3�. Hence 
we have Wε(1, 1) = 3�−1 for any ε = 0, 1, 2.

Since C is self-orthogonal, we know C⊥ ⊃ C and dimC⊥ + dimC = �. Therefore, 
|C| ≤ 2� and the equality holds if and only if C is self-dual. The lemma now follows. �

The following lemmas explain why we introduce these weight enumerators. By Propo-
sition 3.12, the module VLC×δ

[ε] admits a decomposition of (V τ
L )⊗�-modules as

VLC×δ
[ε] ∼= VL0×δ

[ε] ⊕
⊕

VLγ×δ
, (4.3)
0 �=γ∈C≡τ
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where δ ∈ Z�
3 and C≡τ denotes the set of all orbits of τ in C. In particular, when C = {0}

and δ = 0, we have VL0×0
[0] ∼=

(
VL⊕�

)τ , which should not be confused with the subVOA 
(V τ

L )⊗� �
(
VL⊗�

)τ .
Lemma 4.5. Let Z0(q) := chVL[0] and Z1(q) := chVL[1] = chVL[2]. Then the character 
of VL0×0

[ε] is given by chVL⊕� [ε] = Wε(Z0(q), Z1(q)), for ε = 0, 1, 2.

Proof. For ε = 0, 1, 2, we have a decomposition of (V τ
L )⊗�-modules:

VL⊕� [ε] =
⊕

∑
ri≡ε mod 3

VL[r1] ⊗ · · · ⊗ VL[r�]. (4.4)

We also know ch (VL[r1] ⊗ · · · ⊗ VL[r�]) = chVL[r1] × · · · × chVL[r�] = Z�−r
0 Zr

1 , where r
is the weight of r := (r1, · · · , r�) ∈ Z�

3.
Recall that Wε(X, Y ) :=

∑
x∈Sε

X�−wt(x)Y wt(x) (cf. Definition 4.1). We have

chVL⊕� [ε] =
∑

∑
ri≡ε mod 3

chVL[r1] × · · · × chVL[r�] =
∑
r∈Sε

Z
�−wt(r)
0 Z

wt(r)
1 = Wε(Z0, Z1)

as desired. �
Lemma 4.6. Let Y0(q) := chVL(0,0) and Y1(q) := chVL(1,0) . We have the character

ch

⎛⎝ ⊕
0 �=γ∈C≡τ

VLγ×0

⎞⎠ = W ′
C(Y0, Y1),

Proof. We first note that Y1(q) = chVL(x,0) for x = 1, ω, ω̄ ∈ F4. Let 0 �= γ ∈ C≡τ . Then

chVLγ×0
=

∏
i

chVL(γi,0) = Y
�−wt(γ)
0 Y

wt(γ)
1 .

We know the τ -orbit of γ is the set {γ, ωγ, ω2γ}, where ωγ := (ωγ1, · · · , ωγ�). Note 
that ωγi = 0 if and only if γi = 0. This means wtγ = wt τγ and hence

chVLγ×0
= chVLωγ×0

= chVLω2γ×0
.

By Definition 4.2, we have

ch

⎛⎝ ⊕
0 �=γ∈C≡τ

VLγ×0

⎞⎠ = 1
3

∑
0�=γ∈C

chVLγ×0
= 1

3
∑

0�=γ∈C
Y

�−wt(γ)
0 Y

wt(γ)
1 = W ′

C(Y0, Y1)

(4.5)

as desired. �
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Proposition 4.7. For ε = 0, 1, 2, we have

chVLC×0
[ε] = Wε(Z0, Z1) + W ′

C(Y0, Y1),

Proof. This proposition follows directly from Equation (4.3) and Lemmas 4.5 and 4.6. �
Quantum dimensions of V τ

LC×0
-modules We first compute the quantum dimensions of 

irreducible V τ
LC×0

-modules in the case that the code D = {0} ⊂ Z�
3 is the trivial code. 

Note that in this case D⊥ = Z�
3.

The idea is easy; we observe that

qdimV τ
LC×0

M =
qdim(V τ

L )⊗� M

qdim(V τ
L )⊗� V τ

LC×0

, for any V τ
LC×0

-module M. (4.6)

Then using the decompositions given in Proposition 3.12, we can express both enumer-
ator and denominator in terms of the weight enumerators we introduced before.

Proposition 4.8. For ε ∈ Z3 and δ ∈ Z�
3, the irreducible VLC×0

[0]-module VLC×δ
[ε] has 

the quantum dimension one.

Proof. Fix 0 ≤ ε ≤ 2 and δ ∈ Z�
3. Let

Z(q) :=
chVLC×δ

[ε]
chVLC×0

[0] =
chVL0×δ

[ε] +
∑

0 �=γ∈C≡τ
chVLγ×δ

chVL0×0
[0] +

∑
0�=γ∈C≡τ

chVLγ×0

=
∑

r∈Sε
chVL(0,δ1) [r1] × · · · × chVL(0,δ1) [r�] + 1

3
∑

0 �=γ∈C chVL(r1,δ1) × · · · × chVL(r�,δ�)∑
r∈S0

chVL[r1] × · · · × chVL[r�] + 1
3
∑

0 �=γ∈C chVL(r1,0) × · · · × chVL(r�,0)
.

Dividing both denominator and numerator by (chVL[0])�, we get

Z(q) =
∑

r∈Sε

ch V
L(0,δ1) [r1]

ch VL[0] × · · · × ch V
L(0,δ1) [r�]

ch VL[0] + 1
3
∑

0�=γ∈C
ch V

L(r1,δ1)
ch VL[0] × · · · × ch V

L(r�,δ�)

ch VL[0]∑
r∈S0

ch VL[r1]
ch VL[0] × · · · × ch VL[r�]

ch VL[0] + 1
3
∑

0�=γ∈C
ch V

L(r1,0)
ch VL[0] × · · · × ch V

L(r�,0)

ch VL[0]

.

Recalling the quantum dimensions of VL[0]-modules given in Proposition 2.5, we have

qdimVLC×0
[0] VLC×δ

[ε] = lim
y→0+

Z(q) = Wε(1, 1) + W ′
C(1, 1)

W0(1, 1) + W ′
C(1, 1) = 3�−1 + W ′

C(1, 1)
3�−1 + W ′

C(1, 1) = 1

as desired. �
Proposition 4.9. Let ε = 0, 1, 2 and η ∈ Z�

3. The irreducible VLC×0
[0]-module V T,η

LC×0
(τ i)[ε]

has the quantum dimension 2�/ |C|.
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Proof. By Proposition 3.12, an irreducible VLC×0
[0]-module of twisted type admits a 

decomposition of (V τ
L )⊗�-modules:

V T,η
LC×0

(τ i)[ε] ∼=
⊕
e∈Sε

V T,η1
L (τ i)[e1] ⊗ · · · ⊗ V T,η�

L (τ i)[e�]. (4.7)

By Proposition 2.5, we have qdimVL[0] V
T,j
L (τ i)[k] = 2, for any j, k = 0, 1, 2. Therefore,

qdim(V τ
L )⊗� V

T,η
LC×0

(τ i)[ε] = lim
y→0+

∑
e∈Sε

chV T,η1
L (τ i)[e1] × · · · × chV T,η�

L (τ i)[e�]
(chVL[0])�

=
∑
e∈Sε

lim
y→0+

chV T,η1
L (τ i)[e1]
chVL[0] · · · chV T,η�

L (τ i)[e�]
chVL[0]

= Wε(2, 2).

Since Wε are homogeneous polynomials of degree �, we have

qdimV τ
LC×0

V T,η
LC×0

(τ i)[ε] = Wε(2, 2)
W0(1, 1) + W ′

C(3, 3) = 2�Wε(1, 1)
W0(1, 1) + 3�W ′

C(1, 1) .
(4.8)

Now by Proposition 4.7 and Lemma 4.4 we have

qdimV τ
LC×0

V T,η
LC×0

(τ i)[ε] = 2� · 3�−1

3�−1 + 3�−1(|C| − 1) = 2�

|C|

as desired. �
Remark 4.10. Note that 2�

|C| =
√∣∣∣C⊥/C

∣∣∣ since |C⊥| · |C| = F�
4 = (2�)2.

Corollary 4.11. Let C be a self-dual F4-code. Then all irreducible V τ
LC×0

-modules are 
simple current modules.

Proof. If C is self-dual, then V τ
LC×0

has only two types of irreducible modules. Moreover,

qdimV τ
LC×0

V T,η
LC×0

(τ i)[ε] = 2�

|C| = 1,

by the self-duality of C. That means all irreducible modules of the type V T,η
LC×0

(τ i)[ε] are 
simple current modules. By Proposition 4.8, the irreducible modules of the type VLC×δ

[ε]
are simple current modules, also. �

Now suppose C is self-orthogonal but not self-dual. Then the quantum dimension 
of the V τ

LC×D
-module V T,η

LC×0
(τ i)[ε] is strictly greater than 1. In addition, V τ

LC×D
has 

irreducible modules of the type VL(λ+C)×δ
.
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Proposition 4.12. Let λ + C ∈ C⊥/C and δ ∈ Z�
3, we have qdimV τ

LC×0

VL(λ+C)×δ
= 3.

Proof. By definition,

qdimV τ
LC×0

VL(λ+C)×δ
= lim

y→0+

chVL(λ+C)×δ

chV τ
LC×0

= lim
y→0+

∑
μ∈C chVL(λ+μ)×δ

chV τ
LC×0

.

Dividing both the denominator and the numerator by (chVL[0])� and using the fact that 
qdimVL[0] VL(i,j) = 3 for any i ∈ F4 \ {0}, j ∈ Z3, we have

qdimV τ
LC×0

VL(λ+C)×δ
= |C| · 3�

3�−1 + 3�−1(|C| − 1) = 3

as desired. �
To summarize, we have the theorem.

Theorem 4.13. The quantum dimensions for irreducible V τ
LC×0

-modules are as follows.

(i) qdimV τ
LC×0

VLC×δ
[ε] = 1;

(ii) qdimV τ
LC×0

VL(λ+C)×δ
= 3;

(iii) qdimV τ
LC×0

V T,η
LC×0

(τ i)[ε] = 2�

|C| ,

where i = 1, 2, ε ∈ Z3, 0 �= λ + C ∈ C⊥
≡τ mod C and η, δ ∈ Z�

3.

Quantum dimension of V τ
LC×D

-modules We now deal with the general case. Let D be 
a self-orthogonal Z3-code. The basic idea is to express the characters of V τ

LC×D
-modules 

in terms of the characters of V τ
LC×0

-modules.

Theorem 4.14. The quantum dimensions of irreducible V τ
LC×D

-modules are as follows.

(i) qdimV τ
LC×D

VLC×(δ+D) [ε] = 1;
(ii) qdimV τ

LC×D
VL(λ+C)×(δ+D) = 3;

(iii) qdimV τ
LC×D

V T,η
LC×D

(τ i)[ε] = 2�

|C| ,

where i = 1, 2, ε ∈ Z3, 0 �= λ + C ∈ C⊥
≡τ mod C, η ∈ D⊥ mod D and δ + D ∈ D⊥/D.

Proof. (i) For the module VLC×(δ+D) [ε], we have a decomposition of (V τ
L )⊗�-modules:

VLC×(δ+D) [ε] ∼= VL0×(δ+D) [ε] ⊕
⊕

VLγ×(δ+D) . (4.9)

0 �=γ∈C≡τ
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Although the characters chVLγ×Δ may vary as Δ varies in D, we still have

lim
y→0+

chVLγ×(δ+Δ)

ch (V τ
L )⊗�

=
�∏

i=1
lim

y→0+

chVL(γi,δi+Δi)

chV τ
L

=
�∏

i=1
qdimVL(γi,δi+Δi) = lim

y→0+

chVLγ×δ

ch (V τ
L )⊗�

,

for all Δ ∈ D. This implies

lim
y→0+

chVLγ×(δ+D)

ch (V τ
L )⊗�

= lim
y→0+

∑
Δ∈D chVLγ×(δ+Δ)

ch (V τ
L )⊗�

= |D| lim
y→0+

chVLγ×δ

ch (V τ
L )⊗�

. (4.10)

Similarly, we have

lim
y→0+

chVL0×(δ+Δ) [ε]
ch (V τ

L )⊗�
= lim

y→0+

chVL0×δ
[ε]

ch (V τ
L )⊗�

, for all Δ ∈ D.

Therefore,

lim
y→0+

chVL0×(δ+D) [ε]
ch (V τ

L )⊗�
= lim

y→0+

∑
Δ∈D chVL0×(δ+Δ) [ε]

ch (V τ
L )⊗�

= |D| lim
y→0+

chVL0×δ
[ε]

ch (V τ
L )⊗�

. (4.11)

Thus by (4.9), (4.10) and (4.11) we know

lim
y→0+

chVLC×(δ+D) [ε]
ch (V τ

L )⊗�
= lim

y→0+

chVL0×(δ+D) [ε] + ch
⊕

0 �=γ∈C≡τ
VLγ×(δ+D)

ch (V τ
L )⊗�

= lim
y→0+

|D| chVL0×δ
[ε] + |D| ch

⊕
0�=γ∈C≡τ

VLγ×δ

ch (V τ
L )⊗�

= lim
y→0+

|D| chVLC×δ
[ε]

ch (V τ
L )⊗�

.

Moreover,

qdimV τ
LC×D

VLC×(δ+D) [ε] = lim
y→0+

chVLC×(δ+D) [ε]
chV τ

LC×D

= lim
y→0+

1
ch (V τ

L )⊗� chVLC×(δ+D) [ε]
1

ch (V τ
L )⊗� chV τ

LC×D

= lim
y→0+

|D| chVLC×δ
[ε]

|D| chVLC×0
[0]

= qdimV τ
LC×0

VLC×δ
[ε] = 1.

(ii) By the similar arguments as (i), we have

lim
y→0+

chVL(λ+C)×(δ+D)

ch (V τ
L )⊗�

= lim
y→0+

ch
(⊕

Δ∈D VL(λ+C)×(δ+Δ)

)
ch (V τ

L )⊗�
= lim

y→0+

|D| chVL(λ+C)×δ

ch (V τ
L )⊗�

;

hence qdimV τ
LC×D

VL(λ+C)×(δ+D) = qdimV τ
LC×0

VL(λ+C)×δ
= 3.

(iii) By Proposition 3.12, we have the decomposition of V T,η
LC×D

(τ i)[ε] as (V τ
L )⊗�-

modules:



328 H.-Y. Chen, C.H. Lam / Journal of Algebra 459 (2016) 309–349
V T,η
LC×D

(τ i)[ε] ∼=
⊕
γ∈D

⊕
e∈Sε

V T,η1−iγ1
L (τ i)[e1] ⊗ · · · ⊗ V T,η�−iγ�

L (τ i)[e�].

Fix e ∈ Z�
3; the characters chV T,η1−iγ1

L (τ i)[e1] ⊗ · · · ⊗ V T,η�−iγ�

L (τ i)[e�] are all the same 
for any (γ1, · · · , γ�) ∈ D. Thus,

chV T,η
LC×D

(τ i)[ε] = |D|
⊕
e∈Sε

ch
(
V T,η1−iγ1
L (τ i)[e1] ⊗ · · · ⊗ V T,η�−iγ�

L (τ i)[e�]
)

= |D| chV T,η
LC×0

(τ i)[ε].

As before, we have qdimV τ
LC×D

V T,η
LC×D

(τ i)[ε] = qdimV τ
LC×0

V T,η
LC×0

(τ i)[ε] = 2�/|C|. �
Global dimension Let V be a VOA with only finitely many irreducible modules, the 
global dimension of V [7] is defined as

glob(V ) :=
∑

M∈Irr(V )

qdim(M)2. (4.12)

Assume G is a finite subgroup of Aut(V ), it is conjectured in [7] that

|G|2 glob(V ) = glob(V G).

We will verify this conjecture in our case, i.e., V = VLC×D and G = 〈τ〉.
Since all irreducible VLC×D -modules are simple currents, we have

glob(VLC×D ) =
∣∣∣C⊥/C

∣∣∣ ∣∣∣D⊥/D
∣∣∣ · 12.

The global dimension of V τ
LC×D

will be computed below. We count the number of 
irreducibles that have the same quantum dimensions.

(i) qdimV τ
LC×D

VLC×(δ+D) [ε] = 1. There are 
∣∣∣D⊥/D

∣∣∣ ·3 irreducible modules of this type.

(ii) qdimV τ
LC×D

VL(λ+C)×(δ+D) = 3 if 0 �= λ + C ∈ C⊥
≡τ mod C. There are 

∣∣∣D⊥/D
∣∣∣ ·∣∣∣C⊥/C

∣∣∣−1
3 irreducible modules of this type.

(iii) qdimV τ
LC×D

V T,η
LC×D

(τ i)[ε] = 2�

|C| . There are 
∣∣∣D⊥/D

∣∣∣ · 3 · 2 irreducible modules of this 
type.

Note that 
(
2�/ |C|

)2 =
∣∣∣C⊥/C

∣∣∣. Therefore,

globV τ
LC×D =

∣∣∣D⊥/D
∣∣∣ (3 +

∣∣∣C⊥/C
∣∣∣− 1

3 · 32 + 6
∣∣∣C⊥/C

∣∣∣ ) = 9
∣∣∣C⊥/C

∣∣∣ ∣∣∣D⊥/D
∣∣∣ .

Hence we have glob(VLC×D ) · 32 = glob(V τ
LC×D

). This verified the conjecture of Dong, 
Jiao and Xu in this special case.
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5. Fusion rules

In this section, we compute the fusion rules of V τ
LC×D

-modules. The next three propo-
sitions are crucial to our calculations.

Proposition 5.1 ([35, Proposition 4.5]). Let ε, ε1, ε2, j, j1, j2, k ∈ Z3 and i = 1, 2. Then

(i) VL(0,j1) [ε1] × VL(0,j2) [ε2] = VL(0,j1+j2) [ε1 + ε2];
(ii) VL(0,j1) [ε] × VL(c,j2) = VL(c,j1+j2) ;
(iii) VL(ω,j1) × VL(ω,j2) =

∑2
ρ=0 VL(0,j1+j2) [ρ] + 2VL(ω,j1+j2) ;

(iv) VL(0,j) [ε1] × V T,k
L (τ i)[ε2] = V T,k−ij

L (τ i)[iε1 + ε2];
(v) VL(ω,j) × V T,k

L (τ i)[ε] =
∑2

ρ=0 V
T,k−ij
L (τ i)[ρ].

Proposition 5.2. [5] We have the following fusion rules among irreducible V τ
L -modules of 

twisted type.

(i) V T,i
L (τ l)[ε] × V T,j

L (τ l)[ε′] = V
T,−(i+j)
L (τ2l)[−(ε + ε′)] + V

T,−(i+j)
L (τ2l)[2 − (ε + ε′)];

(ii) V T,i
L (τ)[ε] × V T,j

L (τ2)[ε′] = VL(0,i+2j) [ε + 2ε′] + VL(ω,i+2j) ,

where l ∈ {1, 2}, i, j, ε, ε′ ∈ {0, 1, 2}.

Let M1, M2 and M3 be V -modules. Denote IV
(

M3

M1, M2

)
the space of intertwining 

operators of V -modules of type 
(

M3

M1, M2

)
, and NV

(
M3

M1, M2

)
:= dim IV

(
M3

M1, M2

)
.

Let M be the set of all irreducible V -modules up to isomorphism. We write ∑
M∈M SMM ≥

∑
M TMM when SM ≥ TM for all M ∈ M.

Proposition 5.3 ([3, Proposition 2.9]). Let V be a vertex operator algebra and let M1, 
M2, M3 be V -modules among which M1 and M2 are irreducible. Suppose that U is a 
vertex operator subalgebra of V (with the same Virasoro element) and that N1 and N2

are irreducible U -submodules of M1 and M2, respectively. Then the restriction map from 
IV

(
M3

M1, M2

)
to IU

(
M3

N1, N2

)
is injective. In particular,

dim IV

(
M3

M1, M2

)
≤ dim IU

(
M3

N1, N2

)
. (5.1)

In our case, we consider the following chain of subVOAs:

VLC×D ⊃ V τ
LC×D ⊃ V τ

LC×0
⊃ (V τ

L )⊗�.

For simplicity, we denote

NC×D

(
−

)
= dim IVLC×D

(
−

)
, Nτ

C×D

(
−

)
= dim IV τ

LC×D

(
−

)
,
−, − −, − −, − −, −
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N⊗

(
−

−, −

)
= dim I(V τ

L )⊗�

(
−

−, −

)
, N τ

◦

(
−

−, −

)
= dim IV τ

L

(
−

−, −

)
.

The basic idea is to use Proposition 5.3 and the quantum dimensions of V τ
L -modules 

to show that many fusion coefficients are zero. This gives some inequalities on fusion 
rules. Next by using quantum dimensions, we show that these inequalities are actually 
equalities.

Let λ + C, λ1 + C, λ2 + C ∈ C⊥/C, δ + D, δ1 + D, δ2 + D ∈ D⊥/D, η, η1, η2 ∈
D⊥ mod D and ε, ε1, ε2 ∈ Z3. We will compute fusion rules separately in the following 
cases:

(I) Fusion rules of the form VLC×(δ+D) [ε] ×M for any irreducible module M (see Propo-
sition 5.4);

(II) Fusion rules of the form VL(λ1+C)×(δ1+D)
× VL(λ2+C)×(δ2+D)

(see Proposition 5.6);
(III) Fusion rules of the form VL(λ+C) × V T,η

LC×D
(τ i)[ε] (see Proposition 5.7);

(IV) Fusion rules of the form V T,η1

LC×D
(τ)[ε1] × V T,η2

LC×D
(τ2)[ε2] (see Proposition 5.8);

(V) Fusion rules of the form V T,η1

LC×D
(τ i)[ε1] × V T,η2

LC×D
(τ i)[ε2] (See Proposition 5.13).

We start with Case (I).

Proposition 5.4. We have the following fusion rules.

(i) VLC×(δ1+D)
[ε1] × VLC×(δ2+D)

[ε2] = VLC×(δ1+δ2+D)
[ε1 + ε2]; (5.2a)

(ii) VLC×(δ1+D)
[ε1] × VL(λ+C)×(δ2+D)

= VL(λ+C)×(δ1+δ2+D)
; (5.2b)

(iii) VLC×(δ1+D)
[ε1] × V T,δ2

LC×D
(τ i)[ε2] = V T,δ2−iδ1

LC×D
(τ i)[iε1 + ε2], (5.2c)

where δ1 + D, δ2 + D ∈ D⊥/D, 0 �= λ + C ∈ C⊥
≡τ mod C, i = 1, 2 and ε1, ε2 ∈ Z3.

Proof. (i) By Proposition 2.3 and Theorem 4.14, VLC×(δi+D)
[εi] are simple currents for 

i = 1, 2; therefore the fusion product VLC×(δ1+D)
[ε1] × VLC×(δ2+D)

[ε2] is irreducible.
Recall the fusion rules of VLC×D -modules:

1 = NC×D

(
VLC×(δ1+δ2+D)

VLC×(δ1+D)
, VLC×(δ2+D)

)
.

By restricting to V τ
LC×D

-modules and using Proposition 5.3, we have

1 ≤ Nτ
C×D

(
VLC×(δ1+δ2+D)

VLC×(δ1+D)
[ε1], VLC×(δ2+D)

[ε2]

)

=
2∑

ε=0
Nτ

C×D

(
VLC×(δ1+δ2+D)

[ε]
VLC×(δ1+D)

[ε1], VLC×(δ2+D)
[ε2]

)
.
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Therefore, we know VLC×(δ1+D)
[ε1] × VLC×(δ2+D)

[ε2] = VLC×(δ1+δ2+D)
[ε], for some ε ∈ Z3. 

For simplicity, we let M i := VLC×(δi+D)
[εi] and M := VLC×(δ1+δ2+D)

[ε].
Recall the decompositions (cf. Proposition 3.12)

VLC×(δ+D) [ε] =VL0×(δ+D) [ε] ⊕
⊕

0 �=γ∈C≡τ

VLγ×(δ+D) ;

VL0×δ
[ε] =

⊕
e∈Sε

VL(0,δ1) [e1] ⊗ · · · ⊗ VL(0,δ�) [e�].

For i = 1, 2, we fix an irreducible (V τ
L )⊗�-submodule

N i := V
L(0,δi1) [ei1] ⊗ · · · ⊗ V

L(0,δi
�
) [ei�] ⊂ VL

0×(δi+D)
[εi] ⊂ M i

for some ei := (ei1, · · · , ei�) ∈ Sεi . Since

M := VLC×(δ1+δ2+D)
[ε] ∼= VL

0×(δ1+δ2+D)
[ε] ⊕

⊕
0�=γ∈C≡τ

VLγ×(δ1+δ2+D)
, (5.3)

we have the fusion coefficients

1 = Nτ
C×D

(
M

M1, M2

)
≤ N⊗

(
VL

0×(δ1+δ2+D)
[ε]

N1, N2

)
+

∑
0 �=γ∈C≡τ

N⊗

(
VLγ×(δ1+δ2+D)

N1, N2

)
.

(5.4)

Next we will show that

N⊗

(
VLγ×(δ1+δ2+D)

N1, N2

)
= 0 for all 0 �= γ ∈ C≡τ .

Note that

N⊗

(
VLγ×(δ1+δ2+D)

N1, N2

)
=

∑
Δ∈D

�∏
k=1

Nτ
◦

(
V
L(γk,δ1

k
+δ2

k
+Δk)

V
L(0,δ1

k
) [e1

k], VL(0,δ2
k
) [e2

k]

)
. (5.5)

Since γ �= 0, we have γh �= 0 for some 1 ≤ h ≤ � and hence

Nτ
◦

(
V
L(γh,δ1

h
+δ2

h
+Δh)

V
L(0,δ1

h
) [e1

h], V
L(0,δ2

h
) [e2

h]

)
= 0.

This proves our claim and Equation (5.4) becomes

1 ≤ N⊗

(
VL

0×(δ1+δ2+D)
[ε]

N1, N2

)
. (5.6)

Set (ei1, · · · , ei�) = (εi, 0, · · · , 0) for i = 1, 2. Then we have
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1 ≤ N⊗

(
VL

0×(δ1+δ2+D)
[ε]

N1, N2

)
=

∑
Δ∈D

N⊗

(
VL

0×(δ1+δ2+Δ)
[ε]

N1, N2

)

=
∑
Δ∈D

N⊗

(⊕r∈Sε
V
L(0,δ11+δ21+Δ1) [r1] ⊗ · · · ⊗ V

L(0,δ1
�
+δ2

�
+Δ�) [r�]

V
L(0,δ11) [ε1] ⊗ V

L(0,δ12) [0] ⊗ · · · ⊗ V
L(0,δ1

�
) [0], N2

)

=
∑
r∈Sε
Δ∈D

(
Nτ

◦

(
V
L(0,δ11+δ21+Δ1) [r1]

V
L(0,δ11) [ε1], V

L(0,δ21) [ε2]

) �∏
k=2

Nτ
◦

(
V
L(0,δ1

k
+δ2

k
+Δk) [rk]

V
L(0,δ1

k
) [0], V

L(0,δ2
k
) [0]

))
.

By Proposition 5.1, if (r2, · · · , r�) �= (0, · · · , 0),

Nτ
◦

(
V
L(0,δ11+δ21+Δ1) [r1]

V
L(0,δ11) [ε1], V

L(0,δ21) [ε2]

) �∏
k=2

Nτ
◦

(
V
L(0,δ1

k
+δ2

k
+Δk) [rk]

V
L(0,δ1

k
) [0], V

L(0,δ2
k
) [0]

)
= 0

Thus only r = (r1, 0, · · · , 0) ∈ Sε contributes a nonzero summand. Therefore

1 ≤ N⊗

(
VL

0×(δ1+δ2+D)
[ε]

N1, N2

)

=
∑
Δ∈D

(
Nτ

◦

(
V
L(0,δ11+δ21+Δ1) [r1]

V
L(0,δ11) [ε1], V

L(0,δ21) [ε2]

) �∏
k=2

Nτ
◦

(
V
L(0,δ1

k
+δ2

k
+Δk) [0]

V
L(0,δ1

k
) [0], V

L(0,δ2
k
) [0]

))
.

Since r ∈ Sε, we must have r1 = ε = ε1 + ε2. This proves (i).
(ii) We know the fusion coefficient of VLC×D -modules:

1 = NC×D

(
VL(λ+C)×(δ1+δ2+D)

VLC×(δ1+D)
, VL(λ+C)×(δ2+D)

)
.

By restricting to V τ
LC×D

-modules, we have

1 ≤ Nτ
C×D

(
VL(λ+C)×(δ1+δ2+D)

VLC×(δ1+D)
[ε1], VL(λ+C)×(δ2+D)

)
.

Since VLC×(δ1+D)
[ε1] is a simple current module, we have

VL(λ+C)×(δ1+δ2+D)
= VLC×(δ1+D)

[ε1] × VL(λ+C)×(δ2+D)
.

This proves (ii).
(iii) Since VLC×(δ1+D)

[ε1] is a simple current module, VLC×(δ1+D)
[ε1] × V T,δ2

LC×D
(τ i)[ε2]

is also an irreducible V τ
LC×D

-module and

qdim
(
VLC×(δ1+D)

[ε1] × V T,δ2

LC×D
(τ i)[ε2]

)
= qdim

(
V T,δ2

LC×D
(τ i)[ε2]

)
= 2�
|C|
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Therefore, the fusion product VLC×(δ1+D)
[ε1] × V T,δ2

LC×D
(τ i)[ε2] is either V T,δ

LC×D
(τ j)[ε] for 

some δ + C ∈ C⊥/C, ε ∈ Z3 and j = 1, 2 or VLC×(δ+D) [ε] if |C| = 2�.
Assume that VLC×(δ1+D)

[ε1] × V T,δ2

LC×D
(τ i)[ε2] = VLC×(δ+D) [ε]. Then we have

VLC×(−δ1+D)
[−ε1] ×

(
VLC×(δ1+D)

[ε1] × V T,δ2

LC×D
(τ i)[ε2]

)
=VLC×(−δ1+D)

[−ε1] × VLC×(δ+D) [ε],

and hence by (5.2a)

V T,δ2

LC×D
(τ i)[ε2] = VLC×D [0] × V T,δ2

LC×D
(τ i)[ε2] = VLC×(δ−δ1+D)

[ε− ε1],

which is a contradiction. Therefore, VLC×(δ1+D)
[ε1] ×V T,δ2

LC×D
(τ i)[ε2] = V T,δ3

LC×D
(τ j)[ε3], for 

some j = 1, 2, δh + D ∈ D⊥/D, εh ∈ Z3, for h = 1, 2, 3.
Similar to (i), we pick the following irreducible (V τ

L )⊗�-modules

V
L(0,δ11) [e1

1] ⊗ · · · ⊗ V
L(0,δ1

�
) [e1

� ] ⊂ VL
0×(δ1+D)

[ε1];

V
T,δ2

1
L (τ i)[e2

1] ⊗ · · · ⊗ V
T,δ2

�

L (τ i)[e2
� ] ⊂ V T,δ2

LC×D
(τ i)[ε2];

of M i for some eh := (eh1 , · · · , eh� ) ∈ Sεh , h = 1, 2.
By Proposition 5.3,

1 = Nτ
C×D

(
V T,δ3

LC×D
(τ j)[ε3]

VLC×(δ1+D)
[ε1], V T,δ2

LC×D
(τ i)[ε2]

)

≤ N◦
( ⊕e3∈Sε3

V
T,δ3

1
L (τ j)[e3

1] ⊗ · · · ⊗ V
T,δ3

�

L (τ j)[e3
� ]

V
L(0,δ11) [e1

1] ⊗ · · · ⊗ V
L(0,δ1

�
) [e1

� ], V
T,δ2

1
L (τ i)[e2

1] ⊗ · · · ⊗ V
T,δ2

�

L (τ i)[e2
� ]

)

=
∑

e3∈Sε3

�∏
k=1

Nτ
◦

(
V

T,δ3
k

L (τ j)[e3
k]

V
L(0,δ11) [e1

k], V
T,δ2

k

L (τ i)[e2
k]

)
.

If j �= i, then Proposition 5.1 gives 1 ≤ 0, a contradiction. Therefore j = i. If there exists 
1 ≤ k ≤ � such that δ3

k �= δ2
k − iδ1

k or e3
k �= ie1

k + e2
k, again Proposition 5.1 gives 1 ≤ 0, 

a contradiction. Therefore, we must have δ3
k = δ2

k − iδ1
k and e3

k = ie1
k + e2

k for all k. This 
gives δ3 = δ2− iδ1 and ε3 ≡

∑�
k=1 e

3
k =

∑�
k=1 ie

1
k +e2

k ≡ iε1 +ε2 mod 3. This completes 
the proof. �

Using the above proposition, we can find the contragredient dual of irreducible mod-
ules. Recall there are natural isomorphisms between the following fusion rules: For 
V -modules A, B and C, we have
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NV

(
C

A, B

)
= NV

(
C

B, A

)
= NV

(
B′

A, C ′

)
.

Proposition 5.5. The contragredient duals of irreducible V τ
LC×D

-modules are listed below.

(i)
(
VLC×(δ+D) [ε]

)′ = VLC×(−δ+D) [−ε];
(ii)

(
VL(λ+C)×(δ+D)

)′ = VL(−λ+C)×(−δ+D) = VL(λ+C)×(−δ+D) ;
(iii)

(
V T,η
LC×D

(τ i)[ε]
)′ = V T,η

LC×D
(τ2i)[ε].

Proof. It is discussed in Proposition 3.8 that 
(
VLC×D [0]

)′ ∼= VLC×D [0] and VLC×D [0] is 
self-dual. We also have the fusion rule:

1 = Nτ
C×D

(
VLC×(δ+D) [ε]

VLC×D [0], VLC×(δ+D) [ε]

)
= Nτ

C×D

( (
VLC×D [0]

)′(
VLC×(δ+D) [ε]

)′
, VLC×(δ+D) [ε]

)
.

Since qdimM = qdimM ′ for any module M , we may assume 
(
VLC×(δ+D) [ε]

)′ ∼=
VLC×(δ′+D) [ε

′] for some δ′, ε′ by Proposition 5.4. Using Equation (5.2a), we must have

(
VLC×(δ+D) [ε]

)′ = VLC×(−δ+D) [−ε].

This proves (i). Similarly, using Equation (5.2b) we have (ii).
(iii) We take a different approach. We first consider the contragredient dual of an 

irreducible V τ
L -modules of twisted type. Note that V τ

L is self-dual. Let i, ε ∈ Z3, then

1 = Nτ
◦

(
V T,i
L (τ j)[ε]

V τ
L , V T,i

L (τ j)[ε]

)
= Nτ

◦

(
V τ
L

V T,i
L (τ j)[ε],

(
V T,i
L (τ j)[ε]

)′).
By fusion rules of V τ

L -modules, we must have 
(
V T,i
L (τ j)[ε]

)′ = V T,i
L (τ2j)[ε].

Now consider the decomposition of (V τ
L )⊗�-modules:

V T,η
LC×D

(τ i)[ε] ∼=
⊕
δ∈D

⊕
e1+···+e�≡ε mod 3

V T,η1−iδ1
L (τ i)[e1] ⊗ · · · ⊗ V T,η�−iδ�

L (τ i)[e�].

Taking its contragredient dual as (V τ
L )⊗�-modules, we have

(
V T,η
LC×D

(τ i)[ε]
)′ ∼= ⊕

δ∈D

⊕
e1+···+e�≡ε mod 3

V T,η1−iδ1
L (τ2i)[e1] ⊗ · · · ⊗ V T,η�−iδ�

L (τ2i)[e�].

Since V T,η
LC×D

(τ2i)[ε] is the only irreducible V τ
LC×D

-module admitting the above decom-
position of (V τ

L )⊗�-modules, we must have 
(
V T,η
L (τ i)[ε]

)′ ∼= V T,η
L (τ2i)[ε]. �
C×D C×D
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Case (II): VL(λ1+C)×(δ1+D)
× VL(λ2+C)×(δ2+D)

Proposition 5.6. We have the fusion rules

VL(λ1+C)×(δ1+D)
× VL(λ2+C)×(δ2+D)

=
2⊕

h=0

VL(λ1+ωhλ2+C)×(δ1+δ2+D)
,

where 0 �= λi + C ∈ C⊥/C and δi + D ∈ D⊥/D for i = 1, 2.

Proof. Fix 0 ≤ h ≤ 2, and we have the fusion rules of VLC×D -modules:

1 = NC×D

(
VL(λ1+ωhλ2+C)×(δ1+δ2+D)

VL(λ1+C)×(δ1+D)
, VL(ωhλ2+C)×(δ2+D)

)

≤ Nτ
C×D

(
VL(λ1+ωhλ2+C)×(δ1+δ2+D)

VL(λ1+C)×(δ1+D)
, VL(ωhλ2+C)×(δ2+D)

)
.

Since ωhλ2 + C, 0 ≤ h ≤ 2, are identical in C⊥
≡τ mod C, there is an isomorphism of 

V τ
LC×D

-modules

VL(λ2+C)×(δ2+D)
∼= VL(ωλ2+C)×(δ2+D)

∼= VL(ω2λ2+C)×(δ2+D)
.

Therefore,

1 ≤ Nτ
C×D

(
VL(λ1+ωhλ2+C)×(δ1+δ2+D)

VL(λ1+C)×(δ1+D)
, VL(λ2+C)×(δ2+D)

)
,

for all 0 ≤ h ≤ 2.
Since λ1 + ωhλ2 + C, 0 ≤ h ≤ 2, are distinct in C⊥

≡τ mod C, by counting quantum 
dimensions, we can prove

VL(λ1+C)×(δ1+D)
× VL(λ2+C)×(δ2+D)

=
2⊕

h=0

VL(λ1+ωhλ2+C)×(δ1+δ2+D)
.

This completes the proof.
Recall that qdimV τ

LC×D
VL(λ+C)×(δ+D) = 3 for any 0 �= λ+C and δ+D. Note also that 

if λ1 + ωhλ2 = 0 for some h, then the module VL(λ1+ωhλ2+C)×(δ1+δ2+D)
is not irreducible 

and admits a decomposition of irreducible modules of V τ
LC×D

-modules:

VL(λ1+ωhλ2+C)×(δ1+δ2+D)
=

2∑
ε=0

VL(λ1+ωhλ2+C)×(δ1+δ2+D)
[ε];

nevertheless, qdimV τ VLC×(δ+D) is still 3. �

LC×D
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Case (III): VL(γ+C)×(δ1+D)
× V T,δ2

LC×D
(τ i)[ε]

Proposition 5.7. We have

(i) VL(γ+C)×D × V T,0
LC×D

(τ i)[0] =
2⊕

ρ=0
V T,0
LC×D

(τ i)[ρ]; (5.7a)

(ii) VL(γ+C)×(δ1+D)
× V T,δ2

LC×D
(τ i)[ε] =

2⊕
ρ=0

V T,δ2

LC×D
(τ i)[ρ], (5.7b)

where δ1 + D, δ2 + D ∈ D⊥/D, 0 �= γ + C ∈ C⊥
≡τ mod C.

Proof. (i) Similar to Proposition 5.4(iii), it is straightforward to verify that

0 = Nτ
C×D

(
V T,δ
LC×D

(τ j)
VL(γ+C)×D , V T,0

LC×D
(τ i)[0]

)
,

when (1) i = j and δ �= 0 or (2) i �= j. By Proposition 5.4, Proposition 5.5 and 
Proposition 5.6, we also have

Nτ
C×D

(
VLC×(δ+D) [ε]

VL(γ+C)×D , V T,0
LC×D

(τ i)[0]

)
= Nτ

C×D

(
V T,0
LC×D

(τ2i)[0]
VL(γ+C)×D , VLC×(−δ+D) [−ε]

)
= 0,

Nτ
C×D

(
VL(λ+C)×(δ+D)

VL(γ+C)×D , V T,0
LC×D

(τ i)[0]

)
= Nτ

C×D

(
V T,0
LC×D

(τ2i)[0]
VL(γ+C)×D , VL(−λ+C)×(−δ+D)

)
= 0.

Therefore

VL(γ+C)×D × V T,0
LC×D

(τ i)[0] =
2⊕

ρ=0
nρV

T,0
LC×D

(τ i)[ρ], (5.8)

for some nρ ∈ N. Multiply Equation (5.8) by VLC×D [h], h = 1, 2, we have

(
VLC×D [h] × VL(γ+C)×D

)
× V T,0

LC×D
(τ i)[0] = VLC×D [h] ×

2⊕
ρ=0

nρV
T,0
LC×D

(τ i)[ρ].

By Proposition 5.4, the left hand side is equal to

VL(γ+C)×D × V T,0
LC×D

(τ i)[0] =
2⊕

ρ=0
nρV

T,0
LC×D

(τ i)[ρ],

while the right hand side is 
⊕2

ρ=0 nρV
T,0
L (τ i)[ρ + h]; thus, we have
C×D
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2⊕
ρ=0

nρV
T,0
LC×D

(τ i)[ρ] =
2⊕

ρ=0
nρV

T,0
LC×D

(τ i)[ρ + h],

for all 0 ≤ h ≤ 2. This gives n0 = n1 = n2. Finally, by comparing the quantum 
dimensions of both sides of (5.8), we have 3(2�/|C|) = (n0 + n1 + n2)(2�/|C|) and hence 
n0 = n1 = n2 = 1. This proves (i).

(ii) By Proposition 5.4, we have

V T,δ2

LC×D
(τ i)[ε] = VLC×((−1)iδ2+D)

[(−1)i+1ε] × V T,0
LC×D

(τ i)[0].

Therefore, by (i)

VL(γ+C)×(δ1+D)
× V T,δ2

LC×D
(τ i)[ε]

= VL(γ+C)×(δ1+D)
×
(
VLC×((−1)iδ2+D)

[(−1)i+1ε] × V T,0
LC×D

(τ i)[0]
)

= VLC×((−1)iδ2+D)
[(−1)i+1ε] ×

(
VL(γ+C)×(δ1+D)

× V T,0
LC×D

(τ i)[0]
)

= VLC×((−1)iδ2+D)
[(−1)i+1ε] ×

2⊕
ρ=0

V T,0
LC×D

(τ i)[ρ]

=
2⊕

ρ=0
V

T,−i(−1)iδ2

LC×D
(τ i)[i(−1)i+1ε + ρ] =

2⊕
ρ=0

V T,δ2

LC×D
(τ i)[ρ− ε] =

2⊕
ρ=0

V T,δ2

LC×D
(τ i)[ρ].

This completes the proof. �
Case (IV): V T,η1

LC×D
(τ)[ε1] × V T,η2

LC×D
(τ2)[ε2]

Proposition 5.8. We have the fusion rules:

(i) V T,0
LC×D

(τ)[0] × V T,0
LC×D

(τ2)[0] = VLC×D [0] ⊕
⊕

0 �=γ∈C⊥
≡τ

mod C

VL(γ+C)×D ; (5.9a)

(ii) V T,η1

LC×D
(τ)[ε1] × V T,η2

LC×D
(τ2)[ε2] = VLC×(η2−η1+D)

[ε1 − ε2]

⊕
⊕

0 �=γ∈C⊥
≡τ

mod C

VL(γ+C)×(η2−η1+D)
. (5.9b)

In particular, if C is self-dual, then we have

V T,η1

LC×D
(τ)[ε1] × V T,η2

LC×D
(τ2)[ε2] =VLC×(η2−η1+D)

[ε1 − ε2].

Proof. (i) By Proposition 5.5, we have

Nτ
C×D

(
VLC×D [ε]

V T,0
LC×D

(τ)[0], V T,0
LC×D

(τ2)[0]

)
= Nτ

C×D

(
V T,0
LC×D

(τ)[0]
V T,0
LC×D

(τ)[0], VLC×D [2ε]

)
.
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By Proposition 5.4,

Nτ
C×D

(
VLC×D [ε]

V T,0
LC×D

(τ)[0], V T,0
LC×D

(τ2)[0]

)
=

{
1 if ε = 0;
0 if ε = 1, 2.

Similarly, by Proposition 5.5 and Proposition 5.7, we have

Nτ
C×D

(
VL(γ+C)×D

V T,0
LC×D

(τ)[0], V T,0
LC×D

(τ2)[0]

)
= Nτ

C×D

(
V T,0
LC×D

(τ)[0]
V T,0
LC×D

(τ)[0], VL(−γ+C)×D

)
= 1.

Therefore,

V T,0
LC×D

(τ)[0] × V T,0
LC×D

(τ2)[0] ≥ VLC×D [0] ⊕
⊕

0 �=γ∈C⊥
≡τ

mod C

VL(γ+C)×D .

Recall that

qdim
(
V T,0
LC×D

(τ)[0] × V T,0
LC×D

(τ2)[0]
)

=
(

2�

|C|

)2

=
∣∣∣C⊥/C

∣∣∣ ; qdim VLC×D [0] = 1.

Moreover,

qdim
( ⊕

0�=γ∈C⊥
≡τ

mod C

VL(γ+C)×D

)
= #{0 �= γ ∈ C⊥

≡τ
mod C} · 3.

By Lemme 3.11,

#{0 �= γ ∈ C⊥
≡τ

mod C} = 1
3
( ∣∣∣C⊥/C

∣∣∣− 1
)
;

therefore we have

qdim
(
VLC×D [0] ⊕

⊕
0 �=γ∈C⊥

≡τ
mod C

VL(γ+C)×D

)
=

∣∣∣C⊥/C
∣∣∣

= qdim
(
V T,0
LC×D

(τ)[0] × V T,0
LC×D

(τ2)[0]
)
.

This proves (i).
(ii) By Proposition 5.4, we have

V T,ηi

LC×(γi+D)
(τ i)[εi] = VLC×((−1)iηi+D)

[(−1)i+1εi] × V T,0
LC×D

(τ i)[0].
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Therefore,

V T,η1

LC×(γ1+D)
(τ)[ε1] × V T,η2

LC×(γ2+D)
(τ2)[ε2]

= VLC×(−η1+D)
[ε1] × VLC×(η2+D)

[−ε2] × V T,0
LC×0

(τ)[0] × V T,0
LC×0

(τ2)[0]

= VLC×(η2−η1+D)
[ε1 − ε2] ×

(
VLC×0

[0] ⊕
⊕

0 �=γ∈C⊥
≡τ

mod C

VL(γ+C)×D

)

= VLC×(η2−η1+D)
[ε1 − ε2] ⊕

⊕
0 �=γ∈C⊥

≡τ
mod C

VL(η2−η1+γ+C)×D
.

This proves (ii). �
Case (V): V T,δ1

LC×D
(τ i)[ε1] × V T,δ2

LC×D
(τ i)[ε2]

We first consider the case δ1 = δ2 = 0 and ε1 = ε2 = 0.
By the similar analysis as in the previous few cases, we can show quickly that many 

fusion coefficients are zero. In fact, we have this proposition.

Proposition 5.9. We have fusion rules:

V T,0
LC×D

(τ i)[0] × V T,0
LC×D

(τ i)[0]

= xiV
T,0
LC×D

(τ2i)[0] + yiV
T,0
LC×D

(τ2i)[1] + ziV
T,0
LC×D

(τ2i)[2],
(5.10)

for some xi, yi, zi ∈ N. Moreover, we have

xi + yi + zi = 2�−2d (5.11)

where i = 1, 2 and d = dimC. Note that 2�−2d =
√∣∣∣C⊥/C

∣∣∣.
Proof. By Proposition 4.14, all irreducible V τ

LC×D
-modules of twisted type have quantum 

dimensions 2�−2d. By computing the quantum dimensions of terms in (5.10), we know 
xi + yi + zi = 2�−2d, for i = 1, 2. �
The case that D is self-dual Let ξ = e(2π

√
−1)/3 be a primitive cubic root of unity.

Notation 5.10. We define a function Ξ : Z → {−1, 2} by Ξ(n) := ξn + ξ2n, for n ∈ Z. 
Note that Ξ(n) = 2 if n ≡ 0 mod 3 and Ξ(n) = −1 otherwise.

For simplicity, we denote

T [j] :=V T,0
LC×D

(τ)[j]; Ť [j] :=V T,0
LC×D

(τ2)[j]; S[j] :=VLC×D [j].
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Proposition 5.11. Let D be a self-dual Z3-code of length �, then we have

T [0] × T [0] = 2�−2d + Ξ(�)
3 Ť [0] + 2�−2d + Ξ(� + 2)

3 Ť [1] + 2�−2d + Ξ(� + 1)
3 Ť [2]

=
∑

ε=0,1,2

2�−2d + Ξ(�− ε)
3 Ť [ε].

Proof. We mimic the proof of [30, Lemma 18].
Let V denote the lattice VOA VLC×D . Since D is self-dual, V is the only τ -stable 

irreducible module. Moreover, V has exactly one τ i-twisted module for each i = 1, 2. We 
denote them by T and Ť , respectively. Let

W i :=V [i], W 3+i := T [i], W 6+i := Ť [i],

for i = 0, 1, 2. Then W j , (j = 0, · · · , 8), are irreducible V τ -modules. Note that there 
are also irreducible V τ -modules which are not τ -stable, but we won’t need them in the 
proof.

Let C1(g, h) be the vector space generated by trace functions of g-twisted and h-stable 
V -modules. By Proposition 2.6, we know that the modular transformation Γ : z 
→ −1

z

maps C1(g, h) to C1(h, g−1). In particular, Γ sends C1(τ, τ j) to C1(τ j , τ2) for j = 0, 1, 2.
Recall that the trace function ZT (τ, 1; −1

z ) ∈ C1(1, τ2) which is spanned by ZV (1, 1; z). 
Therefore, we can write

ZT (τ, 1; −1
z

) = λ1ZV (1, 1; z), for some λ1 ∈ C.

Denote W i(g, h, z) = ZW i(g, h; z) for any i. Then we have

W 3(−1
z

) + W 4(−1
z

) + W 5(−1
z

) = λ1
(
W 0(z) + W 1(z) + W 2(z)

)
. (5.12)

Similarly, using ZT (τ, τ j ; −1
z ) ∈ C1(τ j , τ2) for j = 1, 2, we can write

W 3(1, τ, −1
z

) + W 4(1, τ, −1
z

) + W 5(1, τ, −1
z

)

= μ1

(
W 3(1, τ2; z) + W 4(1, τ2; z) + W 5(1, τ2; z)

)
;

W 3(1, τ2,
−1
z

) + W 4(1, τ2,
−1
z

) + W 5(1, τ2,
−1
z

)

= μ2

(
W 6(1, τ2; z) + W 7(1, τ2; z) + W 8(1, τ2; z)

)
,

(5.13)

for some μ1, μ2 ∈ C.
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We can define a linear isomorphism ϕ(τ j) as following: ϕ(τ j) = ξij on W 3+i and W 6+i.
Therefore we can rewrite the equation (5.13) as

W 3(τ, 1; −1
z

) + ξW 4(τ, 1; −1
z

) + ξ2W 5(τ, 1; −1
z

)

= μ1

(
W 3(τ, 1; z) + ξ2W 4(τ, 1; z) + ξW 5(τ, 1; z)

)
;

W 3(τ, 1; −1
z

) + ξ2W 4(τ, 1; −1
z

) + ξW 5(τ, 1; −1
z

)

= μ2

(
W 6(τ2, 1; z) + ξ2W 7(τ2, 1; z) + ξW 8(τ2, 1; z)

)
.

(5.14)

Solving equations (5.12) and (5.14), we know

W 3(−1
z

) = λ1

3
(
W 0(z) + ξ2W 1(z) + ξW 2(z)

)
+ μ1

3
(
W 3(z) + ξ2W 4(z) + ξW 5(z)

)
+ μ2

3
(
W 6(z) + ξW 7(z) + ξ2W 8(z)

)
,

W 4(−1
z

) = λ1

3
(
W 0(z) + ξ2W 1(z) + ξW 2(z)

)
+ μ1

3
(
ξ2W 3(z) + ξW 4(z) + W 5(z)

)
+ μ2

3
(
ξW 6(z) + ξ2W 7(z) + W 8(z)

)
,

W 5(−1
z

) = λ1

3
(
W 0(z) + ξ2W 1(z) + ξW 2(z)

)
+ μ1

3
(
ξW 3(z) + W 4(z) + ξ2W 5(z)

)
+ μ2

3
(
ξ2W 6(z) + W 7(z) + ξW 8(z)

)
.

In other words, the rows Si,j for i = 3, 4, 5 are given by

1
3

⎛⎜⎝ λ1 ξ2λ1 ξλ1 μ1 ξ2μ1 ξμ1 μ2 ξμ2 ξ2μ2 0 · · · 0
λ1 ξ2λ1 ξλ1 ξ2μ1 ξμ1 μ1 ξμ2 ξ2μ2 μ2 0 · · · 0
λ1 ξ2λ1 ξλ1 ξμ1 μ1 ξ2μ1 ξ2μ2 μ2 ξμ2 0 · · · 0

⎞⎟⎠ .

Since S2
0,0glob(V τ ) = 1, we know S2

0,0 · 9 
∣∣∣C⊥/C

∣∣∣ ∣∣∣D⊥/D
∣∣∣ = 1, S0,i/S0,0 = qdimW i, 

and

qdimM i =
{

1, if i = 0, 1, 2
2�

|C| , if 3 ≤ i ≤ 8.

This gives S0,0 = S0,1 = S0,2 = ±22d−�

and λ1 = 3S0,h = ±1 for 3 ≤ h ≤ 8.
3
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By Verlinde formula [19], the fusion rules are given by

N6
3,3 = 3 · (λ1/3)3

S0,0
+

3
(
(μ1/3)3 + (μ2/3)3

)
(λ1/3)

=
±
(
2�−2d + μ3

1 + μ3
2
)

3
,

N7
3,3 =

±
(
2�−2d + ξ2μ3

1 + ξμ3
2
)

3 ,

N8
3,3 =

±
(
2�−2d + ξμ3

1 + ξ2μ3
2
)

3 .

Using (5.11), we get N6
3,3 + N7

3,3 + N8
3,3 = 2�−2d. Therefore, we know S0,0 = 22d−� and

N6
3,3 = 2�−2d + μ3

1 + μ3
2

3 , N7
3,3 = 2�−2d + ξ2μ3

1 + ξμ3
2

3 , N8
3,3 = 2�−2d + ξμ3

1 + ξ2μ3
2

3 .

Since S3,6 = 1, we have 9 = 3λ2
1 + 6μ1μ2, and hence μ1μ2 = 1.

By Proposition 2.1 and the decomposition given in Proposition 3.12, we have

wtV T,0
LC×D

(τ i)[ε] ∈ �/9 − 1/3(
∑
e∈Sε

ei) + Z = −ε/3 + �/9 + Z, for i = 1, 2.

By considering the characters and the above S-matrix, we have

ZV (1, τ ; z) = ch(W 0) + ξ ch(W 1) + ξ2 ch(W 2),

ZV (1, τ ;−1/z) = λ1{ch(W 3) + ch(W 4) + ch(W 5)},

ZV (1, τ ;−1/(z + 1)) = e2π
√
−1N/24 · e2π

√
−1�/9λ1{ch(W 3) + ξ2 ch(W 4)

+ ξ ch(W 5)},

ZV (1, τ ;−1/((−1/z) + 1)) = e2π
√
−1N/24 · e2π

√
−1�/9λ1μ1{ch(W 3) + ξ ch(W 4)

+ ξ2 ch(W 5)},

where N = 2� is the rank of the lattice LC×D. On the other hand, since

ZV (1, τ ;−1/((−1/z) + 1))

= ZV (1, τ ;−1 − 1
z − 1)

= e−2π
√
−1N/24ZV (1, τ,−1/(z − 1))

= e−4π
√
−1N/24 · e−2π

√
−1�/9λ1{ch(W 3) + ξ ch(W 4) + ξ2 ch(W 5)},

we have μ1 · e6π
√
−1N/24 · e4π

√
−1�/9 = 1. Since N = 2� and � is a multiple of 4, we know 

8|N and μ1 = e−4π
√
−1�/9. Using μ1μ2 = 1, we have μ3

1 = ξ� and μ3
2 = ξ2�. This gives
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T [0] × T [0]

= 2�−2d + ξ� + ξ2�

3 Ť [0] + 2�−2d + ξ�+2 + ξ2�+1

3 Ť [1] + 2�−2d + ξ�+1 + ξ2�+2

3 Ť [2]

= 2�−2d + Ξ(�)
3 Ť [0] + 2�−2d + Ξ(� + 2)

3 Ť [1] + 2�−2d + Ξ(� + 1)
3 Ť [2],

and we have completed the proof. �
General case Recall the decomposition given in Proposition 3.12:

V T,η
LC×D

(τ i)[ε] ∼=
⊕
γ∈D

V T,η−iγ
LC×0

(τ i)[ε]. (5.15)

In the following, we will denote

Tη
C×D[ε] := V T,η

LC×D
(τ)[ε], Ťη

C×D[ε] := V T,η
LC×D

(τ2)[ε];

in addition, we let

TC×D[ε] := V T,0
LC×D

(τ)[ε], ŤC×D[ε] := V T,0
LC×D

(τ2)[ε].

We also let 0 be the trivial Z3-code of various length depending on context.

Proposition 5.12. Let B be a self-dual F4-code of length 2. Then

TB×0[0] × TB×0[0] = ŤB×0[2].

Proof. In this case, all irreducible modules are simple currents. It suffices to find the 
non-zero fusion rules. Let B2 := B ⊕ B be a self-dual code of length 4 and let S be 
a self-dual Z3-code of length 4. By Proposition 5.11, we know TB2×S [0] × TB2×S [0] =
ŤB2×S [1].

Considering the subVOA V τ
LB2×0

⊂ V τ
LB2×S

, we have the decomposition of V τ
LB2×0

-
modules

TB2×S [ε] =
⊕
η∈S

Tη
B2×0[ε], ŤB2×S [ε] =

⊕
η∈S

Ťη
B2×0[ε].

By Proposition 5.3,

1 = N

(
ŤB2×S [1]

TB2×S [0], TB2×S [0]

)
≤ N

( ⊕η∈S Ť
η
B2×0[1]

TB2×0[0], TB2×0[0]

)
= N

(
ŤB2×0[1]

TB2×0[0], TB2×0[0]

)
,

where the last equality follows from Proposition 5.9. Since B2 is self-dual, we have

TB2×0[0] × TB2×0[0] = ŤB2×0[1].
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Now consider the subVOA V τ
LB×0

⊗ V τ
LB×0

⊂ V τ
LB2×0

and the decomposition

TB2×0[ε] =
⊕

ε0=0,1,2
TB×0[ε0] ⊗ TB×0[ε− ε0]

of V τ
LB×0

⊗ V τ
LB×0

-modules, where ⊗ denotes the tensor product of vector spaces. Then

1 = N

(
Ťη
B2×0[1]

TB2×0[0], TB2×0[0]

)
≤ N

( ⊕
ε0=0,1,2 ŤB×0[ε0] ⊗ ŤB×0[1 − ε0]

TB×0[0] ⊗ TB×0[0], TB×0[0] ⊗ TB×0[0]

)

=
∑

ε0=0,1,2
N

(
ŤB×0[ε0]

TB×0[0], TB×0[0]

)
N

(
ŤB×0[1 − ε0]

TB×0[0], TB×0[0]

)
.

(5.16)

Since B is self-dual, only one of the fusion rules N
( ŤB×0[ε0]
TB×0[0], TB×0[0]

)
, (ε0 = 0, 1, 2)

is non-zero. The inequality (5.16) then implies that N
( ŤB×0[ε0]
TB×0[0], TB×0[0]

)
= δε0,2. This 

completes the proof. �
Proposition 5.13. Let C and D be self-orthogonal codes of length � and let Ξ be defined 
as in Notation 5.10.

(i) If the length � is even, then T [0] × T [0] =
∑

ε=0,1,2
2�−2d+Ξ(�−ε)

3 Ť [ε].
(ii) If the length � is odd, then T [0] × T [0] =

∑
ε=0,1,2

2�−2d−Ξ(�−ε)
3 Ť [ε].

As a summary, we have

T [0] × T [0] =
∑

ε=0,1,2

2�−2d + (−1)�Ξ(�− ε)
3 Ť [ε].

It also implies

V
T,η1
LC×D

(τ i)[ε1] × V
T,η2
LC×D

(τ i)[ε2]

=
∑

ε=0,1,2

2�−2d + (−1)�Ξ(�− ε)
3 V

T,−(η1+η2)
LC×D

(τ2i)[ε− ε1 − ε2].

Proof. (i) First we assume � is a multiple of 4. Then there exists a self-dual Z3 code S
of length �. Restricting to V τ

LC×0
-modules, we know

N

(
ŤC×S [ε]

TC×S [0], TC×S [0]

)
≤ N

( ⊕η∈S Ť
η
C×0[ε]

TC×0[0], TC×0[0]

)
= N

(
ŤC×0[ε]

TC×0[0], TC×0[0]

)
, (5.17)

for every ε = 0, 1, 2. On the other hand, we know from (5.11) that
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∑
ε=0,1,2

N

(
ŤC×S [ε]

TC×S [0], TC×S [0]

)
=

∑
ε=0,1,2

N

(
ŤC×0[ε]

TC×0[0], TC×0[0]

)
,

Therefore, the inequality in (5.17) must attain equality and we prove (i) when D is the 
trivial code of length divisible by 4.

Now let D be a self-orthogonal code of length �. Similarly, we have

N

(
ŤC×D[ε]

TC×D[0], TC×D[0]

)
≤ N

(
TC×0[ε]

TC×0[0], TC×0[0]

)
.

The same argument as in the case for D = 0 shows

N

(
ŤC×D[ε]

TC×D[0], TC×D[0]

)
= N

(
TC×0[ε]

TC×0[0], TC×0[0]

)
.

This implies

N

(
ŤC×D[ε]

TC×D[0], TC×D[0]

)
= N

(
ŤC×S [ε]

TC×S [0], TC×S [0]

)
,

and proves (i) by Proposition 5.11 when � is a multiple of 4.
Now assume � ≡ 2 mod 4. Let B be a self-dual F4-code of length 2. Then C ⊕B is a 

self-orthogonal code of length divisible by 4 and (D⊕ 0) is a self-orthogonal code of the 
same length. Restricting to V τ

LC×D
⊗ V τ

LB×0
⊂ V τ

L(C⊕B)×(D⊕0)
, we know

T(C⊕B)×(D⊕0)[ε] =
⊕

ε0=0,1,2
TC×D[ε0] ⊗ TB×0[ε− ε0].

Moreover,

N

(
Ť(C⊕B)×(D⊕0)[ε]

T(C⊕B)×(D⊕0)[0], T(C⊕B)×(D⊕0)[0]

)

≤
⊕

ε0=0,1,2
N

(
ŤC×D[ε− ε0]

TC×D[0], TC×D[0]

)
N

(
ŤB×0[ε0]

TB×0[0], TB×0[0]

)
.

By Proposition 5.12, we know TB×0[0] ×TB×0[0] = ŤB×0[2]; therefore the above inequal-
ity becomes

N

(
Ť(C⊕B)×(D⊕0)[ε]

T(C⊕B)×(D⊕0)[0], T(C⊕B)×(D⊕0)[0]

)
≤ N

(
ŤC×D[ε− 2]

TC×D[0], TC×D[0]

)
.

On the other hand, 
√∣∣∣ (C⊕B)⊥

C⊕B

∣∣∣ =
√∣∣∣C⊥

C

∣∣∣ and hence by (5.11)
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∑
ε=0,1,2

N

(
Ť(C⊕B)×(D⊕0)[ε]

T(C⊕B)×(D⊕0)[0], T(C⊕B)×(D⊕0)[0]

)
=

∑
ε=0,1,2

N

(
ŤC×D[ε]

TC×D[0], TC×D[0]

)
.

Therefore, we must have

N

(
Ť(C⊕B)×(D⊕0)[ε]

T(C⊕B)×(D⊕0)[0], T(C⊕B)×(D⊕0)[0]

)
= N

(
ŤC×D[ε− 2]

TC×D[0], TC×D[0]

)
.

Note that C ⊕B has length � + 2, thus we have

N

(
ŤC×D[ε]

TC×D[0], TC×D[0]

)
= N

(
Ť(C⊕B)×(D⊕0)[ε + 2]

T(C⊕B)×(D⊕0)[0], T(C⊕B)×(D⊕0)[0]

)
= 2�−2d + Ξ(� + 2 − ε− 2)

3 = 2�−2d + Ξ(�− ε)
3 .

This proves (i) when � ≡ 2 mod 4.
Now assume � is odd, let Ce := C ⊕ 0 and De := D ⊕ 0 be self-orthogonal codes of 

even length � + 1. Restricting to the subVOA V τ
LC×D

⊗ V τ
L , we have decomposition of 

V τ
LC×D

⊗ V τ
L -modules

TCe×De
[0] =

⊕
ε0=0,1,2

TC×D[ε0] ⊗ T0×0[−ε0].

By Proposition 5.2, we have the following fusion rules of V τ
L :

T0×0[0] × T0×0[0] = T0×0[0] + T0×0[2].

Therefore,

N

(
ŤCe×De

[0]
TCe×De

[0], TCe×De
[0]

)
≤ N

(
ŤC×D[0]

TC×D[0], TC×D[0]

)
+ N

(
ŤC×D[1]

TC×D[0], TC×D[0]

)
,

N

(
ŤCe×De

[1]
TCe×De

[0], TCe×De
[0]

)
≤ N

(
ŤC×D[1]

TC×D[0], TC×D[0]

)
+ N

(
ŤC×D[2]

TC×D[0], TC×D[0]

)
,

N

(
ŤCe×De

[2]
TCe×De

[0], TCe×De
[0]

)
≤ N

(
ŤC×D[0]

TC×D[0], TC×D[0]

)
+ N

(
ŤC×D[2]

TC×D[0], TC×D[0]

)
.

(5.18)

This gives

∑
ε=0,1,2

N

(
ŤCe×De

[ε]
TCe×De

[0], TCe×De
[0]

)
≤ 2

∑
ε=0,1,2

N

(
ŤC×D[ε]

TC×D[0], TC×D[0]

)
.

From (5.11) we know



H.-Y. Chen, C.H. Lam / Journal of Algebra 459 (2016) 309–349 347
∑
ε=0,1,2

N

(
ŤCe×De

[ε]
TCe×De

[0], TCe×De
[0]

)
= 2�+1−2d = 2 · 2�−2d

= 2
∑

ε=0,1,2
N

(
ŤC×D[ε]

TC×D[0], TC×D[0]

)
.

Therefore the inequalities in (5.18) must attain equalities. This gives

N

(
ŤC×D[0]

TC×D[0], TC×D[0]

)
= 2�−2d −

(
N

(
ŤC×D[1]

TC×D[0], TC×D[0]

)
+ N

(
ŤC×D[2]

TC×D[0], TC×D[0]

))
= 2�−2d −N

(
ŤCe×De

[1]
TCe×De

[0], TCe×De
[0]

)
= 2�−2d − 2�+1−2d + Ξ(� + 1 − 1)

3

= 2�−2d − Ξ(�)
3 .

Similarly, we have

N

(
ŤC×D[1]

TC×D[0], TC×D[0]

)
= 2�−2d −N

(
ŤCe×De

[2]
TCe×De

[0], TCe×De
[0]

)
= 2�−2d − Ξ(� + 1 − 2)

3 ,

N

(
ŤC×D[2]

TC×D[0], TC×D[0]

)
= 2�−2d −N

(
ŤCe×De

[0]
TCe×De

[0], TCe×De
[0]

)
= 2�−2d − Ξ(� + 1)

3 .

This proves (ii). By Proposition 5.4, it follows immediately that

V
T,η1
LC×D

(τ)[ε1] × V
T,η2
LC×D

(τ)[ε2]

=
∑

ε=0,1,2

2�−2d + (−1)�Ξ(�− ε)
3 V

T,−(η1+η2)
LC×D

(τ2)[ε− ε1 − ε2].

The corresponding statements for V T,η1
LC×D

(τ2)[ε1] × V
T,η2
LC×D

(τ2)[ε2] can be proved by the 
similar arguments. �
References

[1] T. Abe, Rationality of the vertex operator algebra V +
L for a positive definite even lattice L, Math. Z. 

249 (2) (2005) 455–484.
[2] T. Abe, C. Dong, Classification of irreducible modules for the vertex operator algebra V +

L : general 
case, J. Algebra 273 (2) (2004) 657–685.

[3] T. Abe, C. Dong, H. Li, Fusion rules for the vertex operator algebras M(1)+ and V +
L , Comm. Math. 

Phys. 253 (1) (2005) 171–219.
[4] T. Abe, G. Buhl, C. Dong, Rationality, and C2 co-finiteness, Trans. Amer. Math. Soc. 356 (2004) 

3391–3402.
[5] H. Chen, Fusion rules among irreducible V τ√

2A2
-modules of twisted type, Proc. Amer. Math. Soc. 

143 (9) (2015) 3717–3726.

http://refhub.elsevier.com/S0021-8693(16)30055-2/bib413035s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib413035s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib41443034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib41443034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib41444C3035s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib41444C3035s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4142443034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4142443034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib43313361s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib43313361s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib413035s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib413035s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib41443034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib41443034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib41444C3035s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib41444C3035s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib43313361s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib43313361s1


348 H.-Y. Chen, C.H. Lam / Journal of Algebra 459 (2016) 309–349
[6] C. Dong, C. Jiang, Q. Jiang, X. Jiao, N. Yu, Fusion rules for the vertex operator algebra V A4
L2

, 
J. Algebra 423 (2015) 476–505.

[7] C. Dong, X. Jiao, F. Xu, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. 
Soc. 365 (12) (2013) 6441–6469.

[8] C. Dong, J. Lepowsky, The algebraic structure of relative twisted vertex operators, J. Pure Appl. 
Algebra 110 (1996) 259–295.

[9] C. Dong, H. Li, G. Mason, S. Norton, Associative subalgebras of the Griess algebra and related 
topics, in: The Monster and Lie Algebras, Columbus, OH, 1996, in: Ohio State Univ. Math. Res. 
Inst. Publ., vol. 7, de Gruyter, Berlin, 1998, pp. 27–42.

[10] C. Dong, K. Nagatomo, Representations of vertex operator algebra V +
L for a rank one lattice L, 

Comm. Math. Phys. 202 (1999) 169–195.
[11] C. Dong, H. Li, G. Mason, Modular-invariance of trace functions in orbifold theory and generalized 

moonshine, Comm. Math. Phys. 214 (1) (2000) 1–56.
[12] C. Dong, C.H. Lam, K. Tanabe, H. Yamada, K. Yokoyama, Z3 symmetry and W3 algebra in lattice 

vertex operator algebras, Pacific J. Math. 215 (2) (2004) 245–296.
[13] C. Dong, G. Mason, The construction of the moonshine module as a Zp-orbifold, in: Mathematical 

Aspects of Conformal and Topological Field Theories and Quantum Groups, South Hadley, MA, 
1992, in: Contemp. Math., vol. 175, Amer. Math. Soc., Providence, RI, 1994, pp. 37–52.

[14] C. Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1) (1993) 245–265.
[15] C. Dong, C. Jiang, X. Lin, Rationality of vertex operator algebra V +

L : higher rank, Proc. Lond. 
Math. Soc. (3) 104 (4) (2012) 799–826.

[16] I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure and Appl. 
Math., vol. 134, Academic Press, Boston, 1988.

[17] I. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro 
algebras, Duke Math. J. 66 (1) (1992) 123–168.

[18] W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 
Cambridge, 2003.

[19] Y.-Z. Huang, Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math. 10 
(2008) 103–154.

[20] Y.Z. Huang, A. Kirillov Jr., J. Lepowsky, Braided tensor categories and extensions of vertex operator 
algebras, Comm. Math. Phys. 337 (2015) 1143–1159;
arXiv:1406.3420.

[21] M. Kitazume, M. Miyamoto, H. Yamada, Ternary codes and vertex operator algebras, J. Algebra 
223 (2) (2000) 379–395.

[22] M. Kitazume, C.H. Lam, H. Yamada, 3-state Potts model, moonshine vertex operator algebra, and 
3A-elements of the Monster group, Int. Math. Res. Not. (23) (2003) 1269–1303.

[23] J. Lepowsky, Calculus of twisted vertex operators, Proc. Natl. Acad. Sci. USA 82 (1985) 8295–8299.
[24] H. Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra 96 (3) 

(1994) 279–297.
[25] H. Li, Determining fusion rules by A(V )-modules and bimodules, J. Algebra 212 (2) (1999) 515–556.
[26] J. Lepowsky, H. Li, Introduction to Vertex Operator Algebras and Their Representations, Progr. 

Math., vol. 227, Birkhäuser, Boston, 2003.
[27] M. Miyamoto, 3-state Potts model and automorphisms of vertex operator algebras of order 3, 

J. Algebra 239 (1) (2001) 56–76.
[28] M. Miyamoto, A new construction of the moonshine vertex operator algebra over the real number 

field, Ann. of Math. (2) 159 (2) (2004) 535–596.
[29] M. Miyamoto, Flatness of tensor products and semi-rigidity for c2-cofinite vertex operator alge-

bras II, arXiv:0909.3665, 2009.
[30] M. Miyamoto, A Z3-orbifold theory of lattice vertex operator algebra and Z3-orbifold constructions, 

in: Symmetries, Integrable Systems and Representations, in: Springer Proceedings in Mathematics 
& Statistics, vol. 40, Springer, Heidelberg, 2013, pp. 319–344.

[31] E.M. Rains, N.J.A. Sloane, Self-Dual Codes, Handbook of Coding Theory, vols. I, II, North-Holland, 
Amsterdam, 1998, pp. 177–294.

[32] D. Sagaki, H. Shimakura, Application of a Z3-orbifold construction to the lattice vertex operator 
algebras associated to Niemeier lattices, Trans. Amer. Math. Soc. 368 (2016) 1621–1646;
arXiv:1302.4826.

[33] K. Tanabe, On intertwining operators and finite automorphism groups of vertex operator algebras, 
J. Algebra 287 (2005) 174–198.

http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444A4A4A59s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444A4A4A59s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444A583133s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444A583133s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib446C3936s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib446C3936s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444C4D4Es1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444C4D4Es1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444C4D4Es1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444E3939s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444E3939s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444C4D3030s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444C4D3030s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444C5459593034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444C5459593034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444D393470s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444D393470s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444D393470s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib446F6E673933s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444A4Cs1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444A4Cs1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib464C4Ds1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib464C4Ds1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib465As1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib465As1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib48503A464543s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib48503A464543s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib483038s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib483038s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib484B4Cs1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib484B4Cs1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib484B4Cs2
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4B4D593030s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4B4D593030s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4B4C593033s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4B4C593033s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4C65703835s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4C3934s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4C3934s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4C69s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4C4Cs1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4C4Cs1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4D693031s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4D693031s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4D693034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4D693034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4D693039s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4D693039s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4D69313361s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4D69313361s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib4D69313361s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib52533938s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib52533938s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib5353s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib5353s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib5353s2
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib543035s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib543035s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444A4A4A59s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444A4A4A59s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444E3939s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444E3939s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444A4Cs1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib444A4Cs1


H.-Y. Chen, C.H. Lam / Journal of Algebra 459 (2016) 309–349 349
[34] K. Tanabe, H. Yamada, The fixed point subalgebra of a lattice vertex operator algebra by an 
automorphism of order three, Pacific J. Math. 230 (2) (2007) 469–510.

[35] K. Tanabe, H. Yamada, Fixed point subalgebras of lattice vertex operator algebras by an automor-
phism of order three, J. Math. Soc. Japan 65 (4) (2013) 1169–1242.

[36] G. Yamskulna, C2-cofiniteness of the vertex operator algebra V +
L when L is a rank one lattice, 

Comm. Algebra 32 (3) (2004) 927–954.
[37] J. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 6 (1996) 

237–307.

http://refhub.elsevier.com/S0021-8693(16)30055-2/bib54593037s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib54593037s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib54593133s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib54593133s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib593034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib593034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib5A3936s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib5A3936s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib593034s1
http://refhub.elsevier.com/S0021-8693(16)30055-2/bib593034s1

	Quantum dimensions and fusion rules of the VOA  VτLC xD
	1 Introduction
	1.1 Table of notations

	2 Preliminaries and basic properties
	3 The VOAs VLC xD and  VτLC xD
	4 Quantum dimensions of irreducible  VτLC xD-modules
	5 Fusion rules
	References


