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1. Introduction

Let V be a vertex operator algebra (VOA) and G a finite automorphism subgroup.
The fixed point subspace V¢ of G in V forms a vertex operator subalgebra (subVOA).
This subalgebra is called the orbifold subVOA and the study of the fixed point subVOA
V¢ and its representation theory is often referred to as orbifold theory. There are many
interesting and important examples. For instance, Frenkel-Lepowsky—Meurman Moon-
shine VOA V¥ [16] was constructed as an extension of the fixed point subVOA V! by
its simple module VAT ’9, where Vj is the lattice VOA associated to the Leech lattice, 0
is a lift of the —1 isometry of A and V{ is the unique irreducible #-twisted module of
Va and V/{ ? is fixed point of § in VI Tt was also conjectured [13] that one can obtain
a similar construction of the Moonshine VOA V! by using a fixed-point free isometry
of the Leech lattice with prime order. In fact, orbifold theory is an important tool for
constructing new VOAs from a known one [13,28,30,32]. Unfortunately, orbifold theory
is very difficult to study since the structure of the fixed point subVOA V¢ is often very
complicated.

When V' = Vp is a lattice VOA and 6 is an order 2 automorphism induced by the
—1 isometry of L, the orbifold subVOA V¢ has been studied extensively [1-3,10,15]. Tt
is known that VL‘9 is Cy-cofinite and rational [1,4,15,36] and any irreducible Vf—module
is contained in some irreducible V-module or irreducible é-twisted module of V' [2,10].
Moreover, the fusion rules for VL(’ were completely determined in [3]. Nevertheless, very
little is known about the VOA V¢ in general even when G is a cyclic group.

Motivated by the study of certain Ws-algebras and the 3A-elements of the Monster
simple group [9,12,21,22,27], an orbifold VOA V\;ﬁAz was studied, where v/245 denotes
the /2 times of the root lattice of type Ay and 7 is a lift of a fixed point free isometry
of order 3 in the automorphism group of v/2A4,. In [34], all irreducible modules of Visa,
are classified by using certain Wjs-algebras. It was also shown that V\;E A, is Ca-cofinite
and rational. Moreover, the fusion rules among some irreducible modules were partially
determined in [33,35]. On the other hand, certain extensions of the VOA (V75 A2)®€ were
studied in [22,35]. In particular, some integral lattice Lexp is constructed as an extension
of the lattice (\/iAQ)EBZ from an F4-code C and an Zg-code D. Moreover, the irreducible
modules for the orbifold VOA V7 were studied in [22,35]. Under certain assumptions
(that C and D are self-dual and the minimal weight of C is > 4), Tanabe—Yamada [35]
showed that all irreducible modules for V[ _ are simple current modules and the fusion
ring of V//, _ is isomorphic to the group ring of an elementary abelian group of order 32,

The purpose of this article is to determine the fusion rules for all irreducible
V[, p-modules for arbitrary C and D. The main tool is an explicit embedding of the
subVOA (V7 A?)‘@Z into V7 _ and the decomposition of V7 _ as a direct sum of irre-
ducible (V\;ﬁ " )®“-modules. The quantum dimensions and the fusion rules for irreducible
V&i A2—m0dules, which are determined in [5], also play fundamental roles in our calcu-
lations. Usually, there are two major steps for determining the fusion rules. First, one
has to obtain some lower bounds for the fusion rules, which is usually achieved by ex-
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plicit constructions of certain intertwining operators. The second step is to show that the
bounds obtained in Step 1 is tight by using Frenkel-Zhu A(V')-bimodule theory [17,25].
Nevertheless, it is extremely difficult to determine the structures of the A(V)-bimodule
A(M) for an irreducible module M. Therefore, determining the fusion rules is often very
difficult. Recently, a new theory on quantum dimensions has been developed in [7]. Along
with other results, it was shown that the quantum dimension is multiplicative with re-
spect to the fusion product if the underlining VOA is Cs-cofinite, rational, self-dual and
of CFT-type. Since the quantum dimension is defined as a certain limit associated to
the characters of modules (cf. Definition 2.2), it is often computable and it provides an
alternative method for obtaining certain bounds for the fusion rules. In fact, the fusion
rules for irreducible V\;i Az—modules are obtained by using quantum dimensions in [5]
(see [6] for more examples).

In this article, we will compute the quantum dimensions for all irreducible Vi o™
modules and determine the fusion rules for arbitrary C and D. In particular, we show that
all irreducible V7, -modules are simple current modules if the Fy-code C is self-dual.
Moreover, the fusion ring for V, _is isomorphic to a group ring of an elementary abelian
3-group and the set of all inequivalent irreducible V/ _ _-modules forms a quadratic space
over Zsg if C is self-dual. The main results are as follows:

Main Theorem 1 (See Theorem /.14 and Section 3 for the notations). Let C be a self-
orthogonal F4-code of length ¢ and let D be a self-orthogonal Zs3-code of the same length.
Let C;_ denote the set of all T-orbits in C+. The quantum dimensions of irreducible
V[, o-modules are as follows.

(i) qdimVEch Viecsim el = 1;
(ii) qd-iInVLTCX,D VL()\+C)><(6+D) =

. T, ; £
(i) adimy, VT (7)) = &,

w

)

where i =1,2, ¢ € Zs, 0 A +C e CL_modC, n € D" mod D and § + D € D /D.
In particular, when C is self-dual, we have C*/C = 0, |C| = 2¢ and the quantum
dimensions for all irreducible Vi _-modules are 1.

Main Theorem 2 (See Section 5). Let C be a self-orthogonal F4-code of length ¢ and let
D be a self-orthogonal Zs-code of the same length. Then the fusion rules for irreducible
Vi, .p-modules are as follows.

(1) VLCX(51+D) [51] X VLCX(52+D) [62] = VLCX<51+52+,D) [61 + 62];

(i) Vi, s1,mle]x VL(>\+2C)><(62+‘D) = Vi eroiistim ;

eee T,6 . T,5 _i o '
(i) Vi, sip)[e'] X Voo, (P[] = V0 ™ (7)[ie! + 2,

i 2
(iv) VLO‘HC)X(‘“*'D) x VL(’*2+C>X<52+’D) = Zh:o VL(A1+w}L)\2+C)><(61+62+D) ;
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.67 i 2 ,82 i
(v) VLasoyxarim X VLTch(T el =20 VLTCX,,(T )pl;
1 2
Vil (M % VT (7))

9 - Tae @ -
( ) VLCX(n27n1+‘D) [6 € } & VL('Y‘FC)X(Vlz*Vll‘FD)’
0#y€CL_ mod C

VI (79)ed] x VIS (79)[ee]

Lexp cxD
(vii) 20724 4 ()2l —€) 1 an?), o
_ Z ( 3) ( )VEC,X’(:] +n )(7_21)[6 —e 782].
€=0,1,2

In the above, 8' + D,6> + D € D-/D, 0 # A+ C,A' +C,A> +C € CZ, mod C,
n',n*> € DF mod D and ', € Zs. The function Z : Z — {—1,2} is defined by
E(n) =2 if 3 divides n and E(n) = —1 if n is not a multiple of 3.

This article is organized as follows. In Section 2, we review some basic properties
of the VOA V\;E " and the notion of quantum dimensions. In Section 3, we review
a construction of the integral lattice Lexp from some Fy and Zgz-codes. Some basic
facts about the lattice VOA Vi, ., and its Zs-orbifold V/_ _ will also be recalled. In
Section 4, we compute the quantum dimensions of the orbifold VOA V[ . In Section 5,
we compute the fusion rules among irreducible V7 _ -modules.

1.1. Table of notations

Notation Explanation
Zy non-negative integers.
C an [F4-code of length /.
D a Zs-code of length £.
We(X,Y) the Hamming weight enumerator of C.
WE(X,Y) WE(X,Y) = +(We(X,Y) — X°).
Se Se ::{:):::(zl,---,mg)EZ§|ZziEé:mod3}.
WE(X? Y) We(Xa Y) = Zmes XZ?Wt(m)YWt(m)v
the weight enumerator of the set S;.
N, 8, codewords of length £. We denote v = (v1,- -+ ,7¢), etc.
ct the dual code of C.
C;T the set of all T-orbits in C*.
x- -y inner product of codewords « and y.
Lexp the lattice associated to codes C and D.
Kt the dual lattice of the lattice K.
3 €2™%/3 the cubic root of unity.
L L =+2A,.
L9 cosets of L in L*.
w a root of 22 +x 4+ 1 = 0 over Fy. We denote Fy = {0,1, w, @}.
T a fixed point free isometry of the root lattice As of order 3.

We also use 7 to denote its extension to larger lattices or corresponding
VOAs.
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Notation Explanation
v () 7I-twisted Vi-modules.
1% Aer<(a1m) irreducible Vi, p-modules,
Ve (%) 77 -twisted V., ,-modules,
Uli] Uli] . ={z € U | 7& = €'z} for i = 0,1,2
! the contragredient dual of the module M.
IV( h M ) the space of intertwining operators of V-modules of type (M, M”)
] M3 : M3 '
NV(Ml M2) NV(Ml, ) = dlm]V(Ml M2
NCXD(_ ) NCXD(_T ) =dimly, _D(_f_)y
NCX'D(— 7) N(ﬂl—x‘D(f,7)—d1mIV*cX_D(,,,)7

Ne(_ ) Ne(_7_)=dimIyze (),
( ) N"( Tﬁ):dim[vv( _7).

]

]

Tle], Texplel, Tdy ple] Tle] = Texple] := Vi oo (DIel Ty plel == Vi 7 (1)l
Tle], Texplel, Tdx ple] Tle] = Texple] i= Vigo, (TD)Iel Taxplel == V£ (7°) el
Sle] Sle] := Vig,p el
Ry (v, g, h; z) the trace function of the module M,
M(g, h; z), Znm (g, h; 2) M(g,h;z) = Znm(g, hs z) := R (1, g, b 2),
M(z) M(z) := Zm(id, id; 2).
A.B, A:B, extension of normal subgroup A by quotient B, split extension, nonsplit
A-B extension, respectively.
Ng(A),Ca(A) the normalizer and centralizer of A in G,
Stab(X) the stabilize of X.

2. Preliminaries and basic properties

The VOAsV s, and V\;— In this paragraph, we review some facts about the orbifold
VOA Visa, [22,34]. For general background concerning lattice VOA, we refer to [16,26].

Let o, ap be the simple roots of type As and set g = —(a; + a2). Then (a;, ;) = 2
and (o, ;) = —1if i # 7, 4,5 € {0,1,2}. Set B; = v2q; and let L = Zj3; + Zj3> be the
lattice spanned by 5 and 5. Then L is isometric to v/2A4s.

Let Fy = {0,1,w,®} denote the Galois field of four elements, where w is a root of
22+ 12 +1 = 0 over F5. We adopt the similar notation as in [22,12] and denote the cosets
of L in the dual lattice L+ = {a € Q®z L | {a, L) C Z}, as follows:

0—p, =Pt o O g
3 T3
Lo=L, Ly—%+L L., @+L Ly = g+L, (2.1)

and
L) = L+ 17,

for i € Fy and j € Zs. Then, L) i € Fy,j € Zs = {0,1,2} are all the cosets of L in
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L+ and LY /L = Zy x Zy x Zs3. It is shown in [14] that there are exactly 12 isomorphism
classes of irreducible Vz-modules, which are given by V; .5, i € Fy and j € Zs.

Consider the isometry 7 : L — L defined by 1 — B2 — 5o — S1. Then 7 is fixed point
free of order three and can be lifted naturally to an automorphism of V; by mapping
at(=ny)---a*(—ng)eb — (ral)(=ny) - - - (7a*)(—nk)e™. By abuse of notation, we also
use 7 to denote the lift. Note that 7 also acts as an isometry on the dual lattice L+ and
induces an action on the Fock space V. = S(h,) ® C{L*} (see [22, Section 4]).

For the orbifold VOA V[, there are two types of irreducible modules — the untwisted
type (those constructed from irreducible Vi-modules) and the twisted type (those con-
structed from irreducible 7 or 72-twisted Vz-modules).

First we recall the notion of 7-conjugate modules. Let W be an irreducible Vz-module.
The 7-conjugate module (W o, Yivor( , 2)) is defined as follows: Wor =W as a vector
space and the vertex operator Yiyyor (u, 2) = Yw (Tu, 2), for u € Vi,. An irreducible module
W is said to be 7-stable if W o7 & W. For any 7-stable V;,-module U, we denote

Ule] = {u € U|Tu = exp(2nv/—1e/3)u}, e=0,1,2.

Note also that the automorphism 7 induces an action on the set of all inequivalent
irreducible Vz-modules by the 7-conjugation. By the definition of 7, it is easy to show
that V6.5 o7 = V@i for any i € Fy and j € Zs (cf. [22, Section 4]). Therefore, V; .5
is 7-stable if and only if ¢ = 0.

For irreducible twisted modules, a general construction has been given in [8]. More-
over, it was shown in [22] that there are exactly three irreducible 7-twisted Vi,-modules
and three irreducible 72-twisted V;-modules, up to isomorphism. They are denoted by
V() or VI (72) for j = 0,1,2. We will follow the notation in [35, Section 3]. Let
{kn) be a cyclic group of order n with generator x,, and &, := exp(2mv/—1/n).

Let 1 — (k3g) — L. L—>1and1— (k36) — L. — L — 1 be central extensions
of L associated with the bilinear forms ¢ and ¢ given in [35, (2.8) and (2.9)]. Let
K={ar"Ya)|a€ L,} and K' = {ar~2(a) | a € L,2}. Then

V() =SlrleT, and V() =S eT,

where T, (resp. T} ) is the one-dimensional irreducible module of L,/K (vesp. L,»/K")
affording the character y; such that x;(rkze®) = & (see also Remark 3.6). By definition,
there is a natural action of 7 on S[r] and S[72] (cf. [8,35]). As in [35, Section 3], we
define the action of 7 on Ty, (resp. T} ) as a scalar & wi) (resp. f?t(j)). We also denote
VLT’j(Ti)[E} ={ue VLT’j(Ti) | Tu = &°u} for e = 0,1, 2.

In [34], the irreducible modules for the orbifold VOA V7 are classified and the following
result is proved.

Proposition 2.1 (/3//). The VOA V] is a simple, rational, Ca-cofinite, and of CFT type.
There are ezactly 30 inequivalent irreducible V[ -modules. They are given as follows.
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(i) Viw.nle] for j,e =0,1,2.
(ii) Vi forj=0,1,2.
(i) V"7 (r)[e] fori=1,2 and j,e =0,1,2.

The conformal weights of these modules are given by (see [34, (5,10)]):

242 10 — 3(42
e%JFZ, fori=1,2,j¢ ¢ Zs.

wt Vi [e] € % +2Z, wtV/7(r)[e]
Note that the conformal weights of these modules are positive except Vi itself.

Quantum dimension We now review the notion of quantum dimension introduced by
Dong et al. [7]. Let V' be a VOA of central charge ¢ and let M = ®pcz, Myyn be a
V-module, where )\ is the lowest conformal weight of M. The character of M is defined
as

ch M(q) :=¢*~** Y dim My nq",
ne€Zy

where ¢ = e2™V=1z and z is in the complex upper half-plane H. It is proved in [37] and
[11] that ch M(q) converges to a holomorphic function on the domain |g| < 1 if V is
Co-cofinite.

The following notion of quantum dimension is introduced by Dong et al. [7].

Definition 2.2. Suppose ch V(q) and ch M (q) exist. The quantum dimension of M over
V' is defined as

qdimy, M := lim ch M(v—1y) (2.2)

y—0t ch V(\/ 71y) ’

where y is a positive real number.

From now on, we will omit the variable ¢ and write the character ch M(q) as ch M
instead. Fundamental properties of quantum dimension are also proved in their paper.

Proposition 2.3 (/7, Section 4]). Let V' be a simple, rational, Ca-cofinite VOA of
CFT-type and V = V' the contragredient dual of V.. Moreover, the conformal weights of
irreducible V -modules are positive, except V itself. Let W, W', W? be V-modules. Then

(i) qdimy W > 1.
(ii) qdimy s multiplicative, that is qdim, (W x W?) = qdim,, W - qdim,, W2, where
W1 x W?2 denotes the fusion product.
(iii) A V-module W is a simple current if and only if qdim,, W = 1.
(iv) qdimy W = qdim, W', where W’ is the contragredient dual of W.
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Remark 2.4. Recall that an irreducible V-module M is a simple current module if and
only if for every irreducible V-module W, M x W exists and is also an irreducible
V-module.

Quantum dimensions of irreducible V7 -modules are computed in [5].
Proposition 2.5 (/5, Theorems 3.5 and 3.10]). We have

(1) qdimy, Vie.p[e] =1 for j,e =0,1,2.
(ii) qdimvz Viwsn =3 for j=0,1,2.
(iii) qdimy, V" (r')[e] =2 fori=1,2 and j,e =0,1,2.

Trace functions, S-matrix and Verlinde formula We review Dong—Li-Mason’s theory
on trace functions [11]. Let V be a rational VOA and g,h € AutV be commuting
automorphisms of finite orders. Let M be a g-twisted h-stable V-module. There exists
a linear isomorphism ¢(h) of M such that o(h)Yar(u, z) = Yar(hu, 2)e(h).

For a homogeneous v € V with L(1)v = 0, we define the trace function

Ry (v, 9, h; 2) = tr,, p(R)o(v)g" @ =2 = =24 X", o(v)p(h)g",

1
TLEmZ+

where o(v) is the degree zero operator of v, A is the conformal weight of M, ¢ is the
central charge of V and g = e(@mV=1z)

Proposition 2.6 (/11, Theorems 5.4 and 8.7]). Let C1(g, h) be the C-vector space
Ci(g,h) := Spanc{Rar(v, g, h; z) | M is a g-twisted h-stable V-module}.
Then (i) C1(g,h) has a basis:

{Rn(v,g,h;z) | M is an irreducible g-twisted h-stable V-module}.
(i) Modular invariance: Let Rp(v,g,h;z) € C1(g,h) and T = (‘c’ 2) € SLy(Z). Then
we have Ry(v,g,h;T o 2) € Ci(g,h) oI in the sense that

.CLZ—l-b apc bpd
RM<U7gah7 CZ+d)€CI(g h » 9 h )

In fact, if M is a g-twisted h-stable V-module, then

az+b
cz+d

RM(’U,g7h; ) :ZS](\!/'],h)RN(Uagvh;z%

where N runs over all irreducible g* h®-twisted g®h®-stable V -modules, and the coefficients
Sg\?’h) are independent of v.
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In particular, when g =h =id, ' = ((1) _01) and V = MP°, ..., M™ are all inequivalent
irreducible V-modules, we have
Ryyi(v,id,id; 72) = jiOSi,jRMj (v,id, id; z). (2.3)
For simplicity, we denote
M(g,h;z) = Zn (g, h; 2) := Rur(1, g, s 2), (2.4)
and
M(z) := Zp(id,id; z) = ch M (z). (2.5)

Definition 2.7. The matrix S = (S, ;) defined in Equation (2.3) is called the S-matrix.

Theorem 2.8 (/19]). Let V' be a rational and Ca-cofinite simple VOA of CFT type and
assume V = V'. Let S = (S ;)";— be the S-matriz as defined in (2.3). Then

(i) (S™ij = Sijo = Sinj, and Sy j» = S; j, where i',j" denote indewes of the duals
(M%) and (M7)'.
(ii) S is symmetric and S? = (8; j:).
Sj,ssi,ss;;

e . k
(iii) Ni’fj =2 S0’ where Ni]fj = dim Iy (Mf\,/IMJ')'

(iv) The S-matriz diagonalizes the fusion matriz N(i) = (Nzifj)szo with diagonal
entries :208, for i,s = 0,---,m. More explicitly, ST'N(i)S = diag(ﬁgzz)’;;o. In

particular, So,s #£0 for s =0, ,m.

Proposition 2.9 (/7, Lemma 4.2]). Let V be a simple, rational and Ca-cofinite VOA of
CFT type. Let MO, M"',--- M? be as before with the corresponding conformal weights
i >0 for 0 <i<d. Then 0 < qdim,, M* < co for any 0 < i < d. Moreover, we have

Si0

dim,, M* = )
q \4 SO,O

(2.6)

3. The VOAs Vi, ., and V[

Lexp

In this section, we will review some properties about the lattice VOA Vi, . and the
orbifold VOA V[ .

Zs and Fy-codes We first review the coding theory concerned in this paper. All codes
mentioned in this paper are linear codes. From now on, we fix £ € N. We also use a
boldface lowercase letter & to denote a vector or a sequence of length ¢ and its i-th
coordinate is denoted by x;. That is ® = (a1, -+, xp).
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Definition 3.1. Let A = (\q,--- , A7) be a codeword of length ¢, its support is defined to
be Supp(A) = {i|A; # 0}. The cardinality of Supp(A), denoted by wt(A), is called the
(Hamming) weight of A. A code C is said to be even if wt(A) is even for every A € C.

Let 8 be a subset of codewords of length ¢. The (Hamming) weight enumerator of S
is defined to be

Ws(X,Y) = Xy, (3.1)
AES

which is a homogeneous polynomial of degree /.

We consider the inner products for codes over F4 and Z3 as follows. For codes over Fy,
we use the Hermitian inner product, i.e.,

¢
woyi=Y mig, forx= (1, ,20), y=(y1, -~ ,ye) €FY,
i=1

where Z = 22 is the conjugate of x € F4. For Zs-codes, we use the usual Euclidean inner
product:

¢
Ty = leyl for &,y € Zg.
i=1

Definition 3.2. Let K = F4 or Z3. For a K-code & of length ¢ with the inner product
given as above, we define its dual code by ST ={A e K¢ | A-p =0 for all p € S}.
A K-code 8 is said to be self-orthogonal if 8 € 8 and self-dual if S = 8.

Remark 3.3. By [18, Theorem 1.4.10], an Fy-code C is even if and only if C is Hermitian
self-orthogonal. Note that the underlying “additive” group structure of Fy is Zo X Zo.
Therefore, an even Fy-code C is also an even “additive” Zs X Zy code. Moreover, C is
T-invariant since it is Fy-linear. In [34], even 7-invariant Zs x Zo codes are used. Instead
of the Hermitian inner product, they used the trace Hermitian inner product defined by
Ty = Zf:l TiYi + TiYi-

In the notation of [31], codes C in our setting belong to the family 47, while codes in
Tanabe and Yamada’s setting belong to the family 47+, If the code C is also linear, then
its dual C* in 47+ coincides with the dual of C in 4. In other words, C is self-orthogonal
in 4 if and only if C is self-orthogonal in 47+, Therefore, these two notions are essentially
the same and almost all theorems we proved in this paper have analogous statements in
their setting.

The lattice Lexp and the VOAs Vi, , and V[ = From now on, we let C be a
self-orthogonal F4-code of length £ and let D be a self-orthogonal Zsz-code of the same
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length. First we review a construction of an even lattice from the codes C and D (see
[22,35]). For A = (A\y,--- , \¢) € F{ and & = (d1,--- , ;) € Z§, we define

Laxs == {(z1,...,2¢) € (LY)® |z € LOW) =1, ¢},

For subsets P C F{ and Q C Z§, we define

Lpxg = |J LaxsC(LH)*.
AEPEQ

Let 7 act diagonally on (L1)®¢. It induces an action on ViLtyee.
We will determine the quantum dimensions and the fusion rules for the irreducible
modules of the orbifold VOA V7, in this paper.

Proposition 3.4 (/35, Lemmas 2.5, 2.6]). Let C be a self-orthogonal Fy-code of length £
and D be a self-orthogonal Zs-code of the same length. Then the subset Lexp is an even
sublattice of (L-)®¢. Moreover, the dual lattice (Lexp)™ = Lot ypo -

Proposition 3.5 (/1/,8,35]). Let C be a self-orthogonal Fy-code of length £ and D be a
self-orthogonal Zs-code of the same length. Let V. ., be the lattice VOA associated to
Lexp. Then we have the following.

(i) The set of all inequivalent irreducible Vi, -modules is given by
{(Vesserxosm | A+ CECH/C,6+D c DD}

. ~
(ii) We have VL, o) ssm) ©T = VL(T_l(A)+C)><(5+‘D)'

(iii) For i = 1,2, there are ezactly Dl/’D inequivalent irreducible T'-twisted
Viewn-modules. They are represented by (VLTC’ZD (r),Y™) for p € D* mod D.

Remark 3.6. We briefly review the construction of r-twisted modules VLTC’ZD (7). For gen-
eral references, the readers may refer to [23,8]. We follow the notations of [35, Section 3].
For any positive integer n, let (k,) be a cyclic group of order n with generator x,, and
&n = exp(2my/—1/n). Let 1 — (ka3g) — IA/CXDJ — Lexp — 1 be the central extension
of Leyxp with associated bilinear forms given in [35, (2.8)]. Let n = (n1,--- ,m¢) € Z§
and define a homomorphism s, : ZALCXOVT — C* such that (i) ¥y (k36) = Es6, (il) ¥y is
1on Ko := {ar(a)™" | a € Lexor}, and (iii) 1/17](I€3€B§S)) = &4°, where 1 < s < ¢ and

(s) s-th
52, 2(07""70,@',Q"',O)ELZ.
Let Cy, be a one dimensional ﬁcXg-module affording the character 1, and let

Td’n = C[zCX'D,T] ®C[LC><O,T] (Cw"

be the I:c xD,r-modules induced from Cy, .
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Set h[7] be the T-twisted affine Lie algebra and S[7] be the induced b[7]-module

S[T] = U(E[T]) ®H[T]+®E[T]O C.

The 7-twisted V., ,-module is defined in [35, (3.24)] as

VT (1) =S @ Ty,

Lexp

for n € D+ and 7 acts on Ty, as a scalar & wt(n)  As given in [35, (3.27)],

T, .
@ Vial ' ( as a T-twisted Vjec-module.
YED

LCXD

We have similar descriptions for 72-twisted Vi, ,-modules. We consider a central
extension

1— <Ii36> — IA/CX»D)TQ — Lexp — 1

associated with the bilinear form ¢} given in [35, (2.9)]. One can then construct a class
of irreducible ﬁcXD,Tz—modules T{P" for any n € D+. Then

Vi () =S eT),

Lexp

and we assume that 7 acts on Té}n as a scalar £¥ _je., 72 acts on Ta,lz;" as a scalar
52 wt(n)

~

VL(A+C)><(5+D> = VL(A’+C)><(5’+'D)
VI, p-modules if and only if (1) A +C and A’ + C belong to the same 7-orbit of ct;

and (2) 8 + D =& + D in D /D. Let CL. denote the set of all T-orbits in C*. Then

Since 7 acts trivially on D, by Proposition 3.5, as

{(Vierisim € Vinierxwim | € € Z3,0# A+ C €CL modC,6 +D € D /D}

is a set of inequivalent irreducible V7, _-modules, which are obtained from the irre-
ducible (untwisted) V., ,-modules.

It is usually very difficult to classify all irreducible modules of an orbifold VOA.
Recently, Miyamoto gave a classification in the Zs-orbifold case.

Proposition 3.7 (/29,30]). Let V be a rational VOA of CFT-type. Assume V = V', its
contragredient dual. Let o be an automorphism of V' of order three. If the fixed point
subVOA V7 is Cy-cofinite, then V7 is rational. Moreover, every irreducible V7 -module
is a submodule of some o’ -twisted V -module for some j.

Proposition 3.8. The VOAs Vi, and Vi .o are simple, rational, C2-cofinite VOAs of
CFT type and are isomorphic to their contragredient dual, respectively.
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Proof. Assertions about lattice VOA are well-known. By [24, Corollary 3.2], we know
Vi, o isself-dual. It is proved in [35, Theorem 7.10] that V7 is a simple, Ca-cofinite
VOA of CFT type. Together with Proposition 3.7, we get the rationality of V/, . O

Remark 3.9. Since V/ is Cy-cofinite and rational by [34] and V7, _ D (V7)®, it also
follows from [4] that V7 _ is Cy-cofinite and from [20, Theorem 3.5] that V7  _ is
rational.

By Proposition 3.7, we can classify irreducible Vi, _-modules.
Proposition 3.10. An irreducible Vi -module must belong to one of the following types.
(i) VLCX(8+D) [¢], (ii) VL(A+C)><(6+'D)7 (iif) VLCZD (m")[el,

where i = 1,2, e € Z3, 0 # A+ C € CZ, mod C, n € D (modD) and § + D € D+ /D.
In particular, there is no modules of the second type (i) if C is self-dual.

It is easy to check the following lemma.
Lemma 3.11. We have #{0 # v € C;T mod C} = ( ‘CJ‘/C‘ —-1)/3.

In this paper, our calculations depend heavily on the decomposition of the irreducible
V.. p-modules as (V/)®f-modules.

Proposition 3.12 (/22/,/35, Theorem 3.15]). As modules of (VI )¢, we have the following
decomposition.

(1) VLc><(5+'D) [5} = VLOX(5+‘D) [5] D @ VL-yX(5+’D); (323)
0#£vEC=+

ii @ ) m—id1 (i Me—ibe [ i

O Ve @ (@ vl e ).
deD \e1+-+ey=e mod 3

where 8,1 € Dt and C—. denotes the set of all T-orbits in C.

Remark 3.13. By these decompositions and Proposition 2.1, we know the conformal
weights of irreducible V7, _-modules are positive except V[ _itself.

4. Quantum dimensions of irreducible VE’CXD-mOdules

In this section, we compute the quantum dimensions of irreducible V7 _ -modules.
We will first consider the case when D = {0} is the trivial Zs-code. Results in this case
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are summarized in Theorem 4.13. Results for the general case are given in Theorem 4.14.
In addition, we verify one conjecture about global dimensions proposed by Dong et. al.
for the VOA V[ _ in this section.

Weight enumerators We first define several (generalized) weight enumerators.

Definition 4.1. For ¢ = 0,1,2, let S := {z := (21, ,2¢) € Z§ | > x; = € mod 3}.
We denote the weight enumerator of S. by W.(X,Y), i.e

Wo(X,Y) =) xtwi@ywil), (4.1)
xS,

where wt(x) denotes the Hamming weight of x (cf. Definition 3.1).
We also consider a weight enumerator induced from an [F4-code C.

Definition 4.2. Let C be an Fy-code and let We (X, Y) be its Hamming weight enumerator.
We define

We(X,Y) := %(WC(X, Y)— X5). (4.2)

Remark 4.3. Note that W.(X,Y), W;(X,Y) are homogeneous polynomials in X,Y of
the same degree ¢.

Lemma 4.4. We have W} (1,1) = (|C| — 1)/3 and W.(1,1) = 3°~L. Moreover, the self-
orthogonal Fy-code C is self-dual if and only if Wg(1,1) = 2-1 _1

Proof. First we note that We(1,1) = |C| is equal to the number of elements in C; hence

WL 1) = Wc(1,31) 1 |C|3 L

It is clear that S. = (¢,0,...,0) + Sy for any e = 1,2. Therefore, |S1| = |S2| = |So]-
Note also that W.(1,1) = |S.| for any ¢ = 0,1, or 2 and |Sp| + |S1| + |S2| = 3¢. Hence
we have W.(1,1) = 3! for any ¢ = 0,1,2

Since C is self-orthogonal, we know C* > C and dimC* + dimC = /. Therefore,
|C| < 2¢ and the equality holds if and only if C is self-dual. The lemma now follows. O

The following lemmas explain why we introduce these weight enumerators. By Propo-
sition 3.12, the module V7, [¢] admits a decomposition of (V7 )®*-modules as

VLCxa[ ] VLoxa @ VL’yx:S’ (4.3)
0#~veC=~+
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where § € Z5 and C—, denotes the set of all orbits of 7 in C. In particular, when C = {0}
and 8 = 0, we have Vo,,[0] & (Vze:)", which should not be confused with the subVOA
(VD)® C (Vier)™

Lemma 4.5. Let Zy(q) := ch VL[0] and Z1(q) := ch Vi[1] = ch VL [2]. Then the character
0f Vioxol€l is given by chViee[e] = We(Zo(q), Z1(q)), fore=0,1,2.

Proof. For £ =0, 1,2, we have a decomposition of (V;)®‘-modules:

Viacle] = @ Vi[r] @ -+ @ Vi[re]. (4.4)
> r;=e mod 3

We also know ch (V[r1] @ --- @ Vi[re]) = ch Vi[r1] x - -+ x ch Vi [re] = Z57" 27, where r
is the weight of r := (r1,--- , 1) € Z&.
Recall that W (X,Y) =3 o Xt-wt@)ywt(@) (cf, Definition 4.1). We have

chVieelel = Y. chVilrm] x - xchVi[rd = Y 2 "W = Wi(Z, 21)
> ri=e mod 3 rES,

as desired. O

Lemma 4.6. Let Yo(q) := ch V0.0 and Y1(q) := ch Vy,0). We have the character

ch @ VL—yxo = W(/Z<YE)7Y1>7
0#£vyEC=+

Proof. We first note that Y1(¢) = ch Vw0 for = 1,w,w € Fy. Let 0 # v € C=,. Then

ch VL

o = Tt Vi = 7y
i

We know the 7-orbit of v is the set {v,w~,w?v}, where wy = (w71, ,wY). Note

that wy; = 0 if and only if 7; = 0. This means wt vy = wt 7 and hence

ch VL =ch VL =ch VL 2

X0 wyX0 w2yx0°

By Definition 4.2, we have

1 1 {—wt wt
ch @ VL‘yXO = g Z ch VL-ny = g Z YO (‘Y)Yl (v) — W(/: (Yo, Yl)
0#v€C=+ 0#~v€eC 0#~v€eC

(4.5)

as desired. O
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Proposition 4.7. For e =0,1,2, we have
ch Vie,ole] = We(Zo, Z1) + We (Yo, Y1),
Proof. This proposition follows directly from Equation (4.3) and Lemmas 4.5 and 4.6. O

Quantum dimensions of V] -modules We first compute the quantum dimensions of
irreducible V7 -modules in the case that the code D = {0} C Z4 is the trivial code.

Note that in this case D+ = Z§.
The idea is easy; we observe that

qdim(vg)g;z M

qdimy, M = —,

f V7. -module M. 46
Zexo adimyryer Vi, Y TEexo T HOCHE (46)

Then using the decompositions given in Proposition 3.12, we can express both enumer-
ator and denominator in terms of the weight enumerators we introduced before.

Proposition 4.8. For ¢ € Z3 and § € Z&, the irreducible Vi, ,[0]-module Vi, ,le] has
the quantum dimension one.

Proof. Fix 0<e<2and d € Zg. Let

ch Vi, s [5] ch Vig,s [5] + Zo;ﬁ-\,eczr ch VL.,XJ

Z(q) = =
(9) h Vie o] e Vig,ol0] + g sveer. 2 Vi 0

Z'I‘ESE ch VL(Q“I) [rl] X -+« xch VL(o,(sl) [Tg] =+ % ZO#‘yEC ch VL(Tl,(sl) X -+ X% ch VL(W,(SZ)
Z'I‘ESO ch VL[T‘l] X --- X ch VL[""Z] + % ZO#'rEC ch VL(Tl,O) X «--x ch VL(r[,o) '

Dividing both denominator and numerator by (ch Vz[0])¢, we get

chV, [r1] chV, [re] chV (. chV, (1,5
S ACII DR BN A CEL DAL R | L(r1,81) o, ., L(re:50)
2(9) 7Zresg vl XX vl T3 D 04vee —ay o] XX T v

ch Vi [r1] ch Vi[re] | 1 b Vo) bV 0
Yoreso @Vl X X @Al T3 2osvee i X X T Tao)

Recalling the quantum dimensions of V,[0]-modules given in Proposition 2.5, we have

We(1,1) + We(1,1) 371+ We(1,1)

1 — = =1
Y0+ Wo(L, 1) + W4(L,1) 301+ W4(1,1)

as desired. 0O

Proposition 4.9. Let e = 0,1,2 and n € Z§. The irreducible Vi, [0]-module V""" (7%)]e]

Lexo
has the quantum dimension 2¢/|C].
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Proof. By Proposition 3.12, an irreducible Vi, ,[0]-module of twisted type admits a
decomposition of (V] )®-modules:

VT () = @ VI e @ @ V() fed). (4.7)
ecS,

By Proposition 2.5, we have qdimy, o) VLT’j (t9)[k] = 2, for any j,k = 0, 1,2. Therefore,

Sees, ch VM ())[er] x -+ x ch V" (77)[ef]

qdimyr)ee Vcho( H[e] = lim

y—0t (Ch VL[ DZ
_ lim ch V' (77)[eq] N chVTW( e
ocs. y—0t ch VL[ ] ch VL[ ]
=W.(2,2).

Since W, are homogeneous polynomials of degree ¢, we have

W.(2,2) - 20W,.(1,1)
Wo(1,1) +W5(3,3)  Wo(1,1) + 3tWh(1,1)°

adimy; VE (7] =

Lexo

(4.8)

Now by Proposition 4.7 and Lemma 4.4 we have

- 4 9l . gt-1 2t
. ) ? = = 1A
qdlmVLTcxo Vcho(T )[E] g1 4 32—1(|C| — 1) o |C|

as desired. O
Remark 4.10. Note that I%ZI = ‘CL/C‘ since [CH] - |C| = F§ = (26)2.

Corollary 4.11. Let C be a self-dual Fy-code. Then all irreducible V[ -modules are
stmple current modules.

Proof. If C is self-dual, then V/_  has only two types of irreducible modules. Moreover,

; Tm (i £ _
qdlvafCXO Vil (T el = el 1,
by the self-duality of C. That means all irreducible modules of the type VLQ::’ZO (79)[e] are
simple current modules. By Proposition 4.8, the irreducible modules of the type Vi, ;€]
are simple current modules, also. O

Now suppose C is self-orthogonal but not self-dual. Then the quantum dimension
of the V7_ _-module VLTC’ZO (7")[e] is strictly greater than 1. In addition, V7, _ has
irreducible modules of the type Vi, ¢ s-
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Proposition 4.12. Let A+ C € C*/C and & € 75, we have qdimVLTCXO VL iaieyws = 3

Proof. By definition,

qdim 1 i oo _ o 2ewee D Vio
VE (A+C)xs S+ T - + T
cx0 y—0 ch VLCXO y—0 ch VLCXO

Dividing both the denominator and the numerator by (ch Vz[0])¢ and using the fact that
qdimy, (o Vi) = 3 for any i € Fy \ {0}, j € Z3, we have

| -3*

wo VPoters = 3T L gii(jg[ 1)

qdlmvgc
as desired. O

To summarize, we have the theorem.

Theorem 4.13. The quantum dimensions for irreducible V[ -modules are as follows.

(i) qdimy, - VLch[g] =1;
Lexo
(i) qdimV{cxo Viaieyws =35
. T, ; ¢
() adimy;_ VT (7] = 2,

where i = 1,2, e € Z3, 0 A A+ C € CZ_ mod C and 0,8 € 7.

Quantum dimension of V// _-modules We now deal with the general case. Let D be
a self-orthogonal Zs-code. The basic idea is to express the characters of V[ _-modules
in terms of the characters of V/_ -modules.

Theorem 4.14. The quantum dimensions of irreducible V[, _-modules are as follows.

(i) qdimVLTch VLCX(5+’D) [6] - 1"
(i) qdimVEch Veseyxeiny =35

. T, - ¢
(iii) qdlmVLTCXD VLCZD (T)[e] = %,

whereizLQ,sEZg,O;é/\—l—CeCéTmodC,neDlmod’D (mdé—&—’DE’DL/’D.

Proof. (i) For the module V., ., 5 [€], we have a decomposition of (V})®-modules:

VLCX(6+D) [5} = VL0><(5+'D) [‘E] D @ VL’yX(5+D). (4'9)
0#£vEC=~
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Although the characters ch V7, may vary as A varies in D, we still have

YXA

hVi s + hV, igisan 1 chV,
>0+ ch (V7)®! Eyi%ﬂ ch V7 [[q MY ranstean = ML h (V7))@

for all A € D. This implies

ch Vi, > ch Vg ch Vi
i S Laxsim) oy AeD XA pl ] —Wé 4.10
B (773 L i S 77 A 77 A
Similarly, we have
ch Vig, i [E] ch Vi, ,[e]
. LG LR T Loxs Tl g 11 AeD.
g0+ ch (Vp)et yo0+ ch (Vi)et” el ac
Therefore,
lim h Vi oam ] _ lim Loaep M Viooa ] _ = |D| h b Vigu el (4.11)
y—0+ ch(V])®! y—0+ ch (V)®* =0+ ch (V)®t

Thus by (4.9), (4.10) and (4.11) we know

im —Ch Viexsio ] = lim h Vi, sim €] + D Bosyec., Vigxein
y—0+  ch(V])®! y—0t ch (V7)®*
— lim |D| ch Vioxs [5} + |D|ch @07&76657 VL-yxs — lim |D| chVig,s [6]
y—0+ ch (V] )®¢ y—0+  ch(V7)®¢
Moreover,
1
chV; € avyer h Vi, [¢]
qdiInVLT VLCX(5+D) [e] = lim 4LCX7(-HD) | _] = lim ch (Vi )W exor®)
cxD y—0t+ ch VLc b y—0t h (VT)®Z ch Vch@
. [D[chVig,,le] .
y—l)rIOl+ |D| ch VchO [O] d 1HIVLCXO Lexs [8]
(ii) By the similar arguments as (i), we have
im Ch VL xio)x 1) — lim ch (eaAeD VL(A+C>X(6+A>) — lim D] ch VL seyxs )
y—0+ ch (V)®¢ y—0+ ch (V)®* y—0* ch(Vp)ee -
hence qdivaTCXD Viinierxoimy = qdirnvgCXO VL ixieyxs = 3

(iii) By Proposition 3.12, we have the decomposition of VLTC’TX’73 (9)[e] as (V])®*
modules:
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vin (e 2 @ @ VET T (e ® 0 VT (1) e,
~YeD ec S,

Fix e € Z&; the characters ch V"""~ (79)[e] @ - -- @ V"~ (79)[e,] are all the same
for any (71, - ,ve) € D. Thus,

VI (7)le] = [P @D ch (VI (rfer] @+ @ VI (7))
ecS.

=[D| ch V" (7")[e]-

Lexo

T\ T.n

As before, we have qdimy; Vit (m9)el = qdimy;; Vi (rhlel =2%/Icl. O

Global dimension Let V be a VOA with only finitely many irreducible modules, the
global dimension of V [7] is defined as

glob(V):= Y qdim(M)?, (4.12)

Melrr(V)
Assume G is a finite subgroup of Aut(V), it is conjectured in [7] that
|G| glob(V) = glob(VY).

We will verify this conjecture in our case, i.e., V. =V, , and G = (7).
Since all irreducible Vi, ,-modules are simple currents, we have

glob(Vi,.p) = ‘cl/c‘ ‘DL/D‘ 12,

The global dimension of V7 _ will be computed below. We count the number of
irreducibles that have the same quantum dimensions.

(1) qdimy,  Vig, 5,5, [e] = 1. There are "DJ— /D’ -3 irreducible modules of this type.
CxD

" . . 1 1

(ii) qdlmVLTEXD Viiexess = 30 # A+ C € C=, mod C. There are ”D /’D’ .

ct/el-1 . .
irreducible modules of this type.

(iif) qdimy, VED (79)[e] = ‘c| There are "DJ‘ /D‘ 3 - 2 irreducible modules of this
CxD

Lexp
type.
Note that (2¢/ \C\ ‘CL/C‘ Therefore,
‘CL/C‘ 1
glob V7, _ = ‘DL/D‘ (3+ - .32+6‘CL/CD :9‘cl/cHDL/D‘.

Hence we have glob(Vi., ) - 3% = glob(V7, ). This verified the conjecture of Dong,
Jiao and Xu in this special case.
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5. Fusion rules

In this section, we compute the fusion rules of V/ _-modules. The next three propo-
sitions are crucial to our calculations.

Proposition 5.1 (/35, Proposition 4.5]). Let €,e1,€2,j, 41,42,k € Zs and i = 1,2. Then

(i) Viaole1] X Vi [g2] = Vioa+in [1 + €2];
(i) Viounle]l X Vi = VL(LJ1+72))
(i) Viwon X Viwiz = Yoo Vi +in [0] + 2V i §
(iv) Viwaler] x Vi (r)lea] = VIH 9 (1) [ier + eal;
)

(V) Vi x VIR el = 2o ViEF 9 (7)o

Proposition 5.2. [5/ We have the following fusion rules among irreducible V[ -modules of
twisted type.

@) V(e x Ve = Vi e e+ e + VT (2 — (e 4 )
(ii) Vg’l(T)[E] X VLT’] (T2>[z’:‘/] = VL(o,i+2j) [8 + 25/] =+ VL(w,i+2j) ,

where | € {1,2}, 4,j,¢,& € {0,1,2}.

Let M, M? and M3 be V-modules. Denote Iy (Mfij) the space of intertwining
M3 M . M3
operators of V-modules of type (Ml MQ), and Ny (M1 MQ) = dim Iy, (M1 MZ).
Let M be the set of all irreducible V-modules up to isomorphism. We write

ZMGM Sy M > ZMTMM when Sy > Ty for all M € M.

Proposition 5.3 (/3, Proposition 2.9]). Let V be a vertex operator algebra and let M*,
M?, M3 be V-modules among which M' and M? are irreducible. Suppose that U is a
vertex operator subalgebra of V' (with the same Virasoro element) and that N' and N?
are irreducible U-submodules of M and M?, respectively. Then the restriction map from
Iy (vafjwz) to Iy (waj\ﬂ) is injective. In particular,

. M3 . M3
dim Iy (Ml, M2> < dlmIU<N1’ NQ)' (5.1)
In our case, we consider the following chain of subVOAs:
VLCXD :) VECXD D Vgcxo :) (Vg)@)e

For simplicity, we denote

Nesp (:_) =dimlIy,, _ <___>, Ngop <___> =dimly; (___),
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N®< - )dimI(VLr)W( - > Ng( - )dimIVLr( - )

The basic idea is to use Proposition 5.3 and the quantum dimensions of V;-modules
to show that many fusion coefficients are zero. This gives some inequalities on fusion
rules. Next by using quantum dimensions, we show that these inequalities are actually
equalities.

Let A\+CA'+C, N> +CeC/C,6+D,6' +D,6*°+D e DD, n,nt,n? e
D! mod D and ¢,¢!,e2 € Zs. We will compute fusion rules separately in the following
cases:

(I) Fusion rules of the form Vi, ;. 5, [€] x M for any irreducible module M (see Propo-
sition 5.4);

Fusion rules of the form Vg , . (see Proposition 5.6);

oy X VL<A2+C>X<62+D>

Fusion rules of the form Vf,, ., X VLTC’ZD (7%)[e] (see Proposition 5.7);

Fusion rules of the form VLTCZ; (1)[e!] x VLTCZZ (72)[€?] (see Proposition 5.8);

¥ . T ( iyl Tn? (iy[.2 stion 5.1
Fusion rules of the form V; " (7%)[e!] x V.7 (7")[e*] (See Proposition 5.13).

We start with Case (I).

Proposition 5.4. We have the following fusion rules.

) Vie,oiimE'] X Vig, g2 [E] = Vig, s11500m € + €705 (5.2a)
.. 1 _ .
(11) VLc><(51+D) [5 ] x VL(A+C)><(62+’D) - VL()\+C)><(61+§2+’D)’ (5'2b)
T,6% / 4 T,8%—i8% (_iNs
(iii) Vig, s14m [e1] x Vi (T )e?] = Vieow (T Vie! + €7, (5.2¢)

where 8' + D, 8> +D e D /D, 0#A+CeCE modC,i=1,2 and e',e? € Zs.

Proof. (i) By Proposition 2.3 and Theorem 4.14, Vie, sivm €] are simple currents for
i = 1,2; therefore the fusion product Vg, . ., [e1] x Vie, s2:m) [€2] is irreducible.

Recall the fusion rules of Vi, ,-modules:
1= NcXD( VLCX(&IMZ“’) )
VLCX(61+’D)’ VLc><(52+‘D)
By restricting to V/_ _-modules and using Proposition 5.3, we have

Vi
1< N‘r cx(814824D)
e (VL e, Vi e2]

C><(51+‘D)[ C><(52+D)[

2
Vi €
v, Vgl

Vch (81+D) [51]’ VLCX(52+’D) [52]
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1 2] _
Therefore, we know Vi, . o [€'] X Vi, o 0 [E°] = [e], for some € € Z3.

VLCX(61+52+‘D)

enisi [€] and M := V],
X (81 +D)
Recall the decompositions (cf. Proposition 3.12)

For simplicity, we let M® := V7, ex (811621 D) [].

Vicwsim €] =Vioxeim €] @ @ Vigcsim)
0#£vEC=+

VLOxa [5] = @ VL(0,51) [@1] X VL(O,SZ) [6@].
ecS.

For i = 1,2, we fix an irreducible (V})®*-submodule

N*:= £,0.6D) l®---® Vs [ef] C Viowisiim €] c M’
for some €' := (e, ,e}) € S.,. Since
M= Vch(51+a2+D> [e] = VLOX(61+62+‘D) e} @ @ Vva(61+62+D>’ (5.3)

0#£~vEC=~
we have the fusion coefficients
T M VL w(sl4s2 [5] VL slas2
e (yte) 2 (T ) - B (M)
(5.4)

Next we will show that

-
N®< L}\X]flﬁ;*”) —0 forall0#£~e€Ce,.

Note that
Ng (V w<51+62+1>>) Z H ( LWk ShHoR+AR) ) (5.5)
N A€D k=1 Ve sblexls VL<0,6§)[€Z]

Since v # 0, we have 7, # 0 for some 1 < h < ¢ and hence

NT< VL('Yh»‘;;lL*‘;%*’Ah) ) =0
° 1 21)
Viwsh (€], V02 [ex]

This proves our claim and Equation (5.4) becomes

v
1< N@( Loxiwj\;zm M)' (5.6)

Set (e}, ,eb) = (¢',0,---,0) for i = 1,2. Then we have
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1 < Ng (V OX];S;M%D) ) Z Ng ( 0x<61+s]2\;r2m M)

AeD

_ Z N@ (EBT‘GSE VL(O sl462+4a) [Tl] eV 1,053 +52+2,) [W])
Viosh[E']1®V,0.53)[0] ® ®V(051H N?

A€eD L
¢
_ Z (NT< VL(0,6%+5%+A1)[T1] >HNT< VL(O-ﬁ}ché%JrAk)[rk} ))
rese ° VL<0,6}>[51L VL<0,5§>[52] —9 ° VL(o,é}C)[OL VL<0,62>[O]
A€D

By Proposition 5.1, if (rg,- -+ ,7r¢) # (0,--+,0),
14
N‘r( VL(Ov‘S%‘*"S%‘FAl)[rl] > H NT( VL(01511€+5%+A7€)[T]€] > -0
° VL<0,6i>[51]» VL<0,5%)[52] k2 ° VL(o,S,b[O]a VL<0,6§> [0]

Thus only r = (r1,0,--- ,0) € S. contributes a nonzero summand. Therefore

v
1< N®( LOXJ{;;-{-(S;\;-Q'D) M)

¢
_ Z (NT< VL(0,5}+5’{’+A1)[7”1] ) H NT< VL(0,5,1€+6%+A;‘,)[0] ))
“\V, (o,ab[le v (0,5%) [52] “\V, (o,J;)[O], vV <o,6§>[0]

AeD L L k=2 L L

Since r € S, we must have 11 = & = ! + 2. This proves (i).
(ii) We know the fusion coefficient of V., ,-modules:

1= NCX,D< VL<A+C>X<61+62+D) )

Lex (s14+Dm)’ VL(AJrC) X (824D)

By restricting to V7, _-modules, we have

1< Nng( VL<A+cl>x<al+52+v) )
T [el], Vi

cx(sl+D) (AC)x (824D)

Since V7, 11 is a simple current module, we have

cx(§1+D) [5 ]

_ 1
VL(A+C)x(51+52+'D) - VLCX(61+D) [5 ] X VL(A+C)><(62+'D)‘

This proves (ii).
. 17 » . 1 T,8
(ili) Since VL, 51,5 [€7] is a simple current module, Vi, ., . [e'] x V,

is also an irreducible V7, _-module and

. 2o i 2¢
qdlm (Vch(51+D) [81] X Vlg:::iD(T )[ ]) - qdlm( 5;573(7. )[52]) - m
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Therefore, the fusion product Vi . ., [e1] x VL:’;‘Z) (7%)[€?] is either VLTC’iD(Tj)[E] for

some 6 + C € C/C,c € Zg and j = 1,2 or Vi, 4, [€] if [C| = 2°.

Assume that V, [e1] x v (7)[€?] = Ve, s4m [€]- Then we have

cx(814+D) Lexp

T,52 .
VLCX(—61+D)[_€1] X (VLCX(51+’D) [El] X VLCX‘D(Tz)[E2])
1
:VLCX(,51+D)[_E ] X VLCX((H»D) [E]’

and hence by (5.2a)

VIS (P = Viewn 0] x VES (€2 = Vig, 5 p11m)

Co . 1 T8 (ivie2] — 1/T78% (j\i-3
which is a contradiction. Therefore, Vi, ., . [e']x V" (7')[e*] =V, (17)[e], for
some j =1,2, 8" + D e DY /D, " € Zs, for h =1,2,3.

Similar to (i), we pick the following irreducible (V7 )®*-modules

V. 0,61 [e1] @ ® V. 0.sh [es] C Vi,

17.
L ox(81+D) [8 ]7

2 . 2 . .
Ve (el @ @ VO (r)led) € VT (7))

Lexo

of M? for some e" := (ef,--- ,ef) € S.,, h=1,2.
By Proposition 5.3,

1= NT < Vg;iD(Tj)[g?)] )
— +{YCxD 2 .
VLCX(51+‘D) [61]7 VLTC’iD(TZ)[Ez}
o 63
< No< Boses, Vi (e @ @ VL (79)[ef] )
- 7,62, ; 1,62,
Viesplel] ® @V wapleg], Vi (T)[ef] @ - @ V™ (17)[e7]
T,68,
s HN( AR )
- o T,52 . .
e3es., k=1 VL(O*‘S%)[ellc]’ V()]

If j # 4, then Proposition 5.1 gives 1 < 0, a contradiction. Therefore j = i. If there exists
1 < k < ¢ such that 63 # 62 — i} or e} # ie}. + e, again Proposition 5.1 gives 1 < 0,
a contradiction. Therefore, we must have §3 = 67 — 6} and e} = iei + €2 for all k. This
gives 6° = 6% —id6" and ez = Yt _, €3 = 3r _ el +e2 = ie! +£2 mod 3. This completes
the proof. O

Using the above proposition, we can find the contragredient dual of irreducible mod-
ules. Recall there are natural isomorphisms between the following fusion rules: For
V-modules A, B and C, we have
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C C B’
W) =% (o a) = (a'e)

Proposition 5.5. The contragredient duals of irreducible V[, _-modules are listed below.

. /
(i) (VLCX(6+D) [5]) = VLCX(76+D) [—el;
(if) (VL(A+c)x(5+D)) = VL aioxcsrm = Vigserx(—sem’

(iit) (V2" (r)[e]) = VET(72)[e].

Lexo Lexo

Proof. Tt is discussed in Proposition 3.8 that (VLCX,D[O])/ = Vie.pl0] and Vi, (0] is
self-dual. We also have the fusion rule:

’
VLCX‘D[O]7 VLCX(5+D) VLCX((H'D) [5]) s VLCX((HD) [5]

!

I

Since qdim M = qdim M’ for any module M, we may assume (Vch<5+D> [€])

Views i) [€] for some &', &’ by Proposition 5.4. Using Equation (5.2a), we must have

!/
(VLCX(6+D) [5]) = Vch(—5+’D) [_5]'
This proves (i). Similarly, using Equation (5.2b) we have (ii).

(iii) We take a different approach. We first consider the contragredient dual of an
irreducible V7 -modules of twisted type. Note that V; is self-dual. Let ¢,¢ € Z3, then

o VETEDE Y s Vi
b= A (Vg, v}i(m[e]) — (vLT (el (Vg ’i(m[e])’)'

By fusion rules of V7-modules, we must have (V,*(77)[e]) = V" (7%)[e].
Now consider the decomposition of (V] )®*-modules:

s 7 ~ n1—1id 7 Me—1i0 )
Vit (el = B b VT ) e] @ @ VT () [ed).
dcDei+-+ep=e mod 3

Taking its contragredient dual as (V] )®*-modules, we have

(VT,n (Ti)[é‘])/ ~ @ @ Vg’n17i61 (7,21')[61] Q- ® ngmf*iée (T2i)[6g].

Lexo
dcDei+--+ep=e mod 3

Since VLTC’ZD (72%)[¢] is the only irreducible V., p-module admitting the above decom-

position of (V7 )®*-modules, we must have (VEC’Z_D (Ti)[e]), = VLI::’ZD (r*)e]. O
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Case (II):

VEgiieywstim X Vipziewwrim
Proposition 5.6. We have the fusion rules

2

VL(A1+C)><(51+’D) x VL(A2+C)><(62+’D) = @VL(A1+whA2+C)X(51+52+D)7
h=0

where 0 # X +C € CH/C and 8' + D € DD fori=1,2.
Proof. Fix 0 < h <2, and we have the fusion rules of V. ,-modules:

v
]-:NCX'D< r

Al4+whaZie)x(s1+82+D) )
L(A1+C)><(51+‘D) ’ VL(w”A2+C)><(62+’D)
VLt punazieyxists21m) >

< N;Z
= C><‘D< VL

Lixtieyxs14m)? Y Lwhazie)x(52+m)

Since w"A2 +C, 0 < h < 2, are identical in CéT mod C, there is an isomorphism of
V[, p-modules

o~ ~
VL<A2+c>x<62+D> = VL(wA2+c>x<52+D> = VL<w2A2+c>x<a2+D>'
Therefore,

VLt umazowst+s24m) )
b

1 S NEX'D(
Lot rerx@+m)’ Vo2 ee)x(624m)
forall0 < h <2.
Since A + w"A? +C, 0 < h < 2, are distinct in C;T mod C, by counting quantum
dimensions, we can prove

2

VL()\1+C)><(51+’D) X VL(A2+C)><(52+’D) = @VL(A1+whA2+C)x(al+52+D)'
h=0

This completes the proof.
= 3 for any 0 # A+ C and d +D. Note also that

if A' 4+ w"A? = 0 for some h, then the module Vi, |, L is not irreducible
(Al4+wha24e)x(51+5624+D)

and admits a decomposition of irreducible modules of V _-modules:

Recall that qdimVLfc“j VLnierxssm)

2
|%5

(A +wha24c)x(81462+D) = z :VL()\1+wh'A2+C)><(51+62+‘D) [8]’
e=0

nevertheless, qdimy, Vi, ., p) isstill 3. O
CXD
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8 i
Case (IN): Vy, o x VD (7)[e]

Proposition 5.7. We have

2
() Vigrero X Vieos (M0] =D Vi, (m)lol: (5.7)
p=0
2
.. 8%, 6%
() Vigopsiom X Vies(™)E =@ Vi (7)), (5.7b)
p=0

where 8' +D,8> +D e DD, 0#~+C € CL. modC.
Proof. (i) Similar to Proposition 5.4(iii), it is straightforward to verify that

6 j

O _ NT ( VL?:’,‘XD(TJ) >

— 4'CxD T,0 i ’
VL(‘y+C)><D’ VLCXD(T )[0]

when (1) ¢ = j and 8 # 0 or (2) i # j. By Proposition 5.4, Proposition 5.5 and

Proposition 5.6, we also have

VLCX(5+D) [E] VLT70 (TZi)[O]
NEX'D T,0 i :NCTX’D % c”‘:/ =0,
VL(nyrC)xD’ VLCXD(T )[0] Lyteyxp> ch<7a+p)[_€]
) Viiors . VO (72)[0]
oy, VT ) e )-o
Liy+coyxp? Vieyp\T Ly+eyxp?» VL(—xte)x(—s+D)
Therefore
2
VL(‘HC)XD X VLCX'D z @ chD Z p]’ (5'8)
p=0

for some n, € N. Multiply Equation (5.8) by Vi, 5 [h], h = 1,2, we have
. 2 .
(VLCX‘D[h] X VL(-1+C)><D> X VI,QSD(Tl)[O] = VLCXD[h] X @nPVLj;’g'D(TZ)[p]

p=0

By Proposition 5.4, the left hand side is equal to
T,0 ' ;
VL('HC)X‘D X VLCX‘D l @n/’ LCXD l p]

while the right hand side is @ VO (79)[p + h]; thus, we have

Lc><D
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2
TO (i) T,0
@nPVLCx’D (") @nPVLc ol Yp + hl,

for all 0 < h < 2. This gives ng = n; = no. Finally, by comparing the quantum
dimensions of both sides of (5.8), we have 3(2¢/|C|) = (ng + n1 + n2)(2¢/|C|) and hence
ng =ny = ng = 1. This proves (i).

(ii) By Proposition 5.4, we have
(=1 el x V22 (r)[0].

Lexp

7,52 . B
VLCXD (TZ)[E] - VLc><((-1)i52+'D)

Therefore, by (i)

v Vil (7)[e]
Liqtrerx@iedy X VLexp\T )€

_ +1 T,0 i
- VL(’Y+C)X(61+D) x (VLc:x((71)1'52“3)[(_1)Z e] x VLCXD<T1)[O])

_ it+1 T.0 [ i
- VLCX«—l)iaQH:)[(_l) e] x (VL('Y+C)><(61+’D) X Vi (T )[O])

_ z+1 T,0 i
- VLCX((—l)i52+‘D) @VLCX’D T

2
T,—i(—1)*86%, i\r. i T,8 i T,8 i
= @VLCX’D( ) (T )[l( +16+p @VLCX’D T @VLCX’D T
p=0

This completes the proof. O

Case (IV): V2 (1)[e)] x VI (£2)[¢?]

Lexp

Proposition 5.8. We have the fusion rules:

i) VL @0 x VLS (7)[0] = Vie, 0] & . Vigiexo:  (5.9a)
0#y€CL_ mod C

() VT (M) x VT (72)[e) =

1 2
Lexp Lexp € € ]

VLcwnLnHD)[

o2 EB VL iorxm—mtim)- (5.9b)
0#v€CL mod C

In particular, if C is self-dual, then we have

1
VITC’ZD <T)[ ] X VIZZD (7—2)[82] :Vch(n27n1+D) [81 - 82]'

Proof. (i) By Proposition 5.5, we have

T Viexs [E] AT VLZZD (T) [0]
N“*”(VLT(;SMOL VLT.;‘:D<72>[01> - N“*”<v§;2,,<f>m, VLCX,,[za)'
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By Proposition 5.4,

- Viewn €] J1 ife=0;
Nexp (VT’O (r)[0], V;I:O (72)[0]> B {o ife=1,2.

Lexp Lexo

Similarly, by Proposition 5.5 and Proposition 5.7, we have

T,0
NE ’D( VL(‘7+C)><D ) . Nér D( VLCXQ(T)[O] ) -1
X = x =1
Vit oM Vi, (72)[0] Vit o (MOl Vi ieem
Therefore,

VS @O0] x V2 L ()[0) = Vie, (0] & b VLieywn:
0#v€CL_ mod C

Recall that

0\ 2
qdim (V5°_(1)[0] x V20 _(73)[0]) = (%) = ‘cL/c

; qdim Vz., ,[0] = 1.

Moreover,
qdim ( P VLW)XD) —#{0#~€Ct modC}-3.
0#£v€ECL_ mod C

By Lemme 3.11,
#{0 £~ €Ct modC} = %( ’cl/c‘ —1);

therefore we have
qdlm (VLCX”D[O] D @ VL('*/+C)><‘D> = ‘CL/C‘
0#vy€CL_ mod C

= qdim (V.20 _()[0] x V.20 _(%)[0]).

Lexp Lexp

This proves (i).
(ii) By Proposition 5.4, we have

Tn iN[ 8 i i T,0 i
VI o CNET = Vg, iy [(CD T X VRS ()[0].
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Therefore,
T.n' 1 T 2\1.2
Vch(~71+D) (T)[g ] x VLCX(—Y2+‘D) (r )[6 ]

= VLCX(—T]1+D) [61] X VLCX(TI2+D) [_52] X VLQSO(T)[O} X Vggo(Tg)[O}

= Vie, s mism € — €] X (VLCXO[O] @ b Vmew)

O#'yECéT mod C

_ 1.2
- VLCX(n277I1+D) [8 € ] @ @ VL(WZ*W1+‘Y+C)><'D.

This proves (ii). O

7,8 . 7,82 .
Case (V): V20 _(7)[e'] x V.20 L (77)[€?]

We first consider the case 8" =82 =0 and e! =2 = 0.

By the similar analysis as in the previous few cases, we can show quickly that many

fusion coefficients are zero. In fact, we have this proposition.
Proposition 5.9. We have fusion rules:

VES (0] % VIS, (r)[0

Lexp

_ _ . (5.10)
= 2 V0 (P0] + wi Vi o (P 1] + V0 ()2,
for some x;,y;, z; € N. Moreover, we have
xi oy oz =202 (5.11)

where i = 1,2 and d = dim C. Note that 2/=2¢ = ‘CL/C‘.

Proof. By Proposition 4.14, all irreducible V7, -modules of twisted type have quantum
dimensions 2¢72¢, By computing the quantum dimensions of terms in (5.10), we know
xiFyi+2 =272 fori=1,2. O

The case that D is self-dual Let £ = ¢2™V=1/3 be a primitive cubic root of unity.

Notation 5.10. We define a function = : Z — {—1,2} by Z(n) := " + &2, forn € Z.
Note that E(n) =2 if n =0 mod 3 and Z(n) = —1 otherwise.

For simplicity, we denote

T =V, MU T =VEo (il Sk =Vie,w il
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Proposition 5.11. Let D be a self-dual Zs-code of length ¢, then we have

20724 + 2(0) -

2t=2d L =(p 49
0] + +E(C+2)

3

26724 L 2(0 4 1)

S

T[0] x T[0] = T[] +

0—2d = —¢) -
— Z 2+—“(€)T[5].

£=0,1,2 3

Proof. We mimic the proof of [30, Lemma 18].

Let V' denote the lattice VOA Vi, .. Since D is self-dual, V is the only 7-stable
irreducible module. Moreover, V has exactly one 7*-twisted module for each i = 1,2. We
denote them by 7" and T, respectively. Let

W=V, W .=T[], W= T[],

for i = 0,1,2. Then W7, (j = 0,---,8), are irreducible V"-modules. Note that there
are also irreducible V7"-modules which are not 7-stable, but we won’t need them in the
proof.

Let C4 (g, h) be the vector space generated by trace functions of g-twisted and h-stable
V-modules. By Proposition 2.6, we know that the modular transformation I' : z +— _71
maps C1(g, h) to C1(h,g™1). In particular, I" sends C, (1, 77) to C1(77,72) for j =0, 1,2.

Recall that the trace function Zp (7, 1; _71) € C4(1,72) which is spanned by Zy (1, 1; 2).
Therefore, we can write

-1
Zr(t,1; —)=XM2Zv(1,1;z), for some A; € C.
z

Denote W(g, h,2) = Zyi(g, h; z) for any i. Then we have

W)+ W 4 W) = M (70) + W) + W2). (5.12)

Similarly, using Zr(,77; _71) € Cy(17,72) for j = 1,2, we can write

-1 —1 -1
W3(1, T, 7) + W, T, 7) + Wi (1,7, 7)

= (W1, + WL )+ (1) ),
: (5.13)
)+ WAL, T2,

— 1 -1
W3(17T2a7 )+W5(17T277)

~
m(w%L#mvaum%@+WﬂL#wQ,

for some p1, us € C.
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We can define a linear isomorphism o(77) as following: ¢(77) = £% on W3+ and W6+,
Therefore we can rewrite the equation (5.13) as

-1 -1 -1
WS(Ta 11 7) + §W4(T7 11 7) + §2W5(Ta 17 7)

= i1 <W3(T, 1;2) + EWHr, 1;2) + EWO (7, 1; Z));
. . » (5.14)
WB(Ta 15 7) + §2W4(Ta 17 7) =+ EWS(Tv 17 7)

= (WO 102) 4 €W 132) £ WS 1) ).

Solving equations (5.12) and (5.14), we know

M

3
W(z 3

(WO(2) + W' () + EW2(2)) + B (W3 () + €W (2) + €W (2))

FE 02 4 W) + W),

W4(_—1) = ﬁ

—) = S (W) + €W (=) + EW2(2)) + B (EW () + W (2) + WP(2)

TR EWOE) +EWT(2) + W),

T = B WO + W)+ 6W(2) + B w0 (2) 4 W (e) + £0(2)

5
W(z 3

TR (EWO=) + WT(2) + W5 (2).

In other words, the rows S; ; for ¢ = 3,4, 5 are given by

AN ENM o S e ope Epp Epa 0 - 0
3 MM e & o Epe Epa ope 0 - 0
MM N o & Epe ope Epe 0 - 0

Since 5§ oglob(V™) = 1, we know 57 - 9 ‘CL/C‘ ”DJ‘/’D’ =1, So,i/S0,0 = qdim W,
and

g L =012
qaim = ]
%, if3<i<s8.

This gives So.0 = So.1 = So.0 = 25— and A, = 35, = +1 for 3 < h < 8.
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By Verlinde formula [19], the fusion rules are given by

3-(A1/3)% | 3((1/3)° + (p2/3)%)  =(2°72 + pd + 413)

NS, = + = )
3,3 So’() ()\1/3) 3

O A X W R L)
3,3 — 3 ’

vs, _ R+ )
3,3 — 3 .

Using (5.11), we get N§ 3+ N3+ N§s = 2¢=2d_ Therefore, we know Sp o = 22?7 and

2720 4 g+ 1

_ 27 @i+ el _ 276 + €23
3 ’ '

NI, = N§, =
3,3 3 ’ 3,3 3

6 _
N33 =

Since S36 = 1, we have 9 = 3\ + 611 12, and hence 1 = 1.
By Proposition 2.1 and the decomposition given in Proposition 3.12, we have

wt V0 (] € 0/9—1/3() " e) +Z=—¢/3+(/9+Z, fori=1,2.
EESE

By considering the characters and the above S-matrix, we have

Zy (1,75 2) = ch(W9) 4+ £ ch(WH) + €2 ch(W?),
Zy(1,7;—=1/2) = M {ch(W3) + ch(W*) + ch(W?)},
Zy (1,7 =1/(z 4+ 1)) = 2™V7IN/24 2nV=TE/9 ) Loy (W) + €2 ch(W?)
+Ech(WP)},
Zy (1,7 =1/((—1/2) + 1)) = e27V/ZIN/20 2nV=T9\ Lo (W79 + € ch(W4)
+&%ch(W?)},
where N = 2/ is the rank of the lattice Lexp. On the other hand, since
Zv(1,m=1/((-1/2) + 1))
1
z— 1)

= TVIINRAZ (1 7 —1/(2 — 1))

=Zv(l,7;-1—

_ 6_47T\/?1N/24 . 6_27“/?1[/9)\1{(111(”/3) + fCh(W4) + 52 Ch(WS)},

we have g - OTVEIN/24 | pdn/=18/9 — | Qince N = 2¢ and £ is a multiple of 4, we know
8N and py = e—4mV=1L/9, Using pyp = 1, we have p3 = £° and p = ¢2. This gives
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T[0] x T[0]
ol=2d | ¢l | ¢20 9f=2d | ¢l+2 | 2041 9f=2d | ¢l+1 | 2042
S Wk S ) WP o e . SR 1 B . S Sl %
3 3 3
26=2d L =(¢) . 20724 L =2(0 4 2) 20724 L 2(0 4 1)
=B Oy 2 B Dy 2T B Dy

and we have completed the proof. O

General case Recall the decomposition given in Proposition 3.12:

Vil (el = @ vin Y () el (5.15)
~eD

In the following, we will denote

Teuplel = Vil (D), Teeplel = Vi, (7)e;

Lexp Lexp

in addition, we let
Tewpld = Vi (ML Tewnle] = Vi, (7)1l
We also let 0 be the trivial Zs-code of various length depending on context.
Proposition 5.12. Let B be a self-dual F4-code of length 2. Then
Txo[0]  Txol0] = Txol2].

Proof. In this case, all irreducible modules are simple currents. It suffices to find the
non-zero fusion rules. Let B? := B @& B be a self-dual code of length 4 and let 8 be
a self-dual Zs-code of length 4. By Proposition 5.11, we know Tz, 5[0] X T2y s[0] =

T2 xsl].
A - - o -
Considering the subVOA Vi, e Vi, 2y WO have the decomposition of VLBZXO_
modules

Tg2xsle] @ B82x0l€ Tg2 v sle] @ 82 0lE

nes nes

By Proposition 5.3,

B T2 xs(l] nesTpeyoll] _ T2 0[1]
t=N <T132xs[0]a T32x8[0]> =N (ngxom Tszxom) =N (Tszxo[m, Tszxo[m)’

where the last equality follows from Proposition 5.9. Since B2 is self-dual, we have

TB2><0[0] X TBQXO[O] = TBQXO[l]'
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Now consider the subVOA V[, @ Vi, ~CVy  —and the decomposition

T2xole] = ED Txoleo] ® Tsxole — o]
0=0,1,2

of Vi ,®V[, ,-modules, where ® denotes the tensor product of vector spaces. Then

1— N< ngxo[” ) < N( @50:0,1,2 Tﬁxﬁ[go] ®T3x0[1 — o) )
Tr2%0[0], T2x0[0]/ = \TBx0[0] ® TBx0[0], TBx0[0] ® TBx0[0]

_ Tsxoleo] Tsxo[l — o)
-2 N (TM[O], Tsxo[m)N (TM[O}, Tsxom])'

(5.16)

Since B is self-dual, only one of the fusion rules N (TgxfﬁJTo:Efglo[o])’ (e0 = 0,1,2)

is non-zero. The inequality (5.16) then implies that N(Tsxfﬁ)]xoéf;]xo[o]) = 0¢y,2- This
completes the proof. O

Proposition 5.13. Let C and D be self-orthogonal codes of length ¢ and let = be defined
as in Notation 5.10.

—2d =iy
(ii) If the length € is odd, then T[0] x T[0] =3>___;, 5 = =2 Pe]
As a summary, we have
2E72d -1 ZE _ .
(0] x T[0] = DB =) g

It also implies

Vi (7)er] x Vig™ (79)[e)

_ Z 20724 1 (—1)'E(L —¢)

= 3 VLTC’*;"“L"?)(T%)[a — &1 —&3).

X
€=0,1,2

Proof. (i) First we assume ¢ is a multiple of 4. Then there exists a self-dual Zs code S
of length ¢. Restricting to V7, -modules, we know

Tst[d 697765TCTI><0[€] _ TCXO[‘C:]
N<TCX5[O]» Tch[O]) : N(TCXO[O]v Tcxo[O]) _N(TCX0[0]7 TCXO[0]>’ (5.17)

for every e = 0,1,2. On the other hand, we know from (5.11) that
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2 N (TCXSTES]X,ST[?XS[OD =2 N (Tch%fOT[i]xo[O])’

£=0,1,2 £=0,1,2

Therefore, the inequality in (5.17) must attain equality and we prove (i) when D is the
trivial code of length divisible by 4.
Now let D be a self-orthogonal code of length ¢. Similarly, we have

Texple] Texole]
N(TCXD[OL TcXD[O]) = N(TCXO[OL Tch[O])

The same argument as in the case for D = 0 shows

N (Tc xDjE(c)]Xa Di’[z]xv [0]) - (Tc x o?g]f O}i 0 [0]> .

This implies

N( Tc><7>[5} ) :N( Tch[g] )
TCXD[O]7 TCXD[O] TCXS[O]7 TCXS[O] ’
and proves (i) by Proposition 5.11 when ¢ is a multiple of 4.
Now assume ¢ =2 mod 4. Let B be a self-dual F4-code of length 2. Then C ® B is a
self-orthogonal code of length divisible by 4 and (D & 0) is a self-orthogonal code of the

same length. Restricting to V/_ __ ® V[ we know

.
= VL<cees>x<veao> ’

TcaB)x(Dao)le] = @ Texpleo] ® Trxole — €ol-

€0=0,1,2

Moreover,

N( Ticem)x(peo) ] )
TceB)xD20)[0], Tican)xDs0)[0]

TCX'D[Z? — o) Ton[go}

= @ N<TC><’D[O]7 T0xD[0])N<TBX0[O]7 TBXO[O])

€0 :0,1,2

By Proposition 5.12, we know Tgxo[0] X Texo0[0] = TBX()[Q]; therefore the above inequal-
ity becomes

v

N( Ticon) x(Da0)le] > <N< Texple — 2] )
Tcon)x(D20) 0], Ticon)x@a0)[0]) ~—  \Texpl0], Texpl0]

(coB)+
On the other hand, \/ B

= \/‘%‘ and hence by (5.11)
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5 N( Ticos)x(Dz0)le] )Z 3 N(TCXDngiDIEj]XD[O]>.

Sis \Teasyx@a0)0]; Tcon)x@e0)0l) 51,

Therefore, we must have
N( Ticon) x(Ds0) ] ) _ N( Texple — 2] )
Tican)x(020)[0]; Ticon)x(@o0)l0] Texpl0], Texpl0]
Note that C @ B has length ¢ + 2, thus we have

N( Texple] ) _ N( Ticos)x (Do) +2] )
Texp(0], Texn|0] TicaB)x(D20)[0], T(cen)x(Da0)[0]

2 H R +2-c-2) 2024 E(0-¢)
N 3 N 3 '

This proves (i) when £ =2 mod 4.

Now assume ¢ is odd, let C. := C @ 0 and D, := D @ 0 be self-orthogonal codes of
even length ¢ + 1. Restricting to the subVOA Vie.n ® V[, we have decomposition of
Vi, o ® V[ -modules

Te.xp.[0] = @ Texpleo] ® Toxo[—¢o)-
£0=0,1,2

By Proposition 5.2, we have the following fusion rules of V;:

Toxo[0] x Toxo0[0] = Tox0[0] + Toxo[2].

Therefore,
N( Te. . [0] ) < N( Texp|0] )—|—N< Tcm:v )7
TCgX'De[O]a TCE><'D,1 [0] TCX'D[O]a TCX’D[O] TC><’D TC><’D
Te.xp.[1] ) ( Texol(l] ) ( TC><’D )
N e <N + N
(chxvc[o], Te,xp, 0] Texp(0], Texp[0] Texpl0 TCXD
Te.x. 2] ) ( Tex|0] ) < TC><‘D )
N e <N + N
(chx'D,_, [0], T, xp. [0] Texpl0], Texp(0)] Texpl0 Tcmp
(5.18)
This gives
T T,
3 N< c.xp.[¢] > <9 N< cxDle] )
i, \eoxn (0] Te.xp.[0] L1, \expl0]; Texp|0]

From (5.11) we know
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N< Te.xD.[e] ) — ot+l-2d _ o ot—2d
1,2

e=0 Te xp. [0]7 Te.xD, [0]
TCX'D[E] )
= 2 N )
E:OZI 2 <TCXD[0]7 TCX'D[O]

Therefore the inequalities in (5.18) must attain equalities. This gives

N(TCXDJVEgiDT[S]xD[OD =2 <N (Tcw%ip}i]w[oo - N(ﬂ@%ﬁ%{iﬂq))
£—2d TCExDe [1]
B 2 - N<TceXDe [O]’ TceXDe [O}>

otz 201724 L =(0 41 -1)
B 3

20724 —2(0)
—

Similarly, we have

N( Texpl(l] ) _ ot-2d _ N( Te.xp.[2] ) _ 272 _Z(f4+1-2)
Texp(0], Texn|0] Te.xp.[0], Te.xp.[0] 3 ’

N< TCX'D[2] ) _ 2g_2d _ N< TCCX'DE [0] ) _ 2£—2d — E(f + 1)
TCX'D[O]a TCX'D[O] TcexDe [OL Tcex’De [0] 3 '

This proves (ii). By Proposition 5.4, it follows immediately that

V™ ()] x V™ (7)[ea]

Lexp Lexp

20720 4 (“1)'E(l — ) .-
= Z ( 3) ( )V£X;n1+n2)(T2)[€—61—62].

£=0,1,2

The corresponding statements for VLTC’Z;(TQ)[&] x V"2 (72)[2y] can be proved by the

CxD
similar arguments. O
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