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1. Introduction

Throughout k is an algebraically closed, characteristic zero field and all algebras are
k-algebras. All unadorned tensor products should be regarded as over k. Given an al-
gebra R, we denote by R* the set of units in R. If 0 € Aut(R), then R’ denotes the
subalgebra of elements of R that are fixed under o. We denote the center of R by C(R).
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Automorphism groups of commutative and noncommutative algebras can be notori-
ously difficult to compute. For example, Aut(k[z, y, 2]) is not yet fully understood. In [2],
the authors give a method for determining the automorphism groups of noncommuta-
tive algebras using the discriminant. This was studied further in [3-6]. Discriminants of
deformations of polynomial rings were computed using Poisson geometry in [11,13].

We refer the reader to [2]| for the general definitions of trace and discriminant in the
context of noncommutative algebras. We review the definitions only in the case that B
is an algebra finitely generated free over a central subalgebra R C C(B) of rank n.

Left multiplication defines a natural embedding lm : B — End¢(B) = M, (R). The
usual matrix trace defines a map trin : My, (R) — R called the internal trace. The regular
trace is defined as the composition tryeg : B RN M, (R) Minty R, For our purposes, tr
will be tryeg.

Let w be a fixed integer and Z := {z;}*_; a subset of B. The discriminant of Z is
defined to be

dy(Z) = det(tr(2:i%5))wxw € R.
If Z is an R-basis of B, then the discriminant of B over R is defined to be
d(B/R) =px d.(Z),

where © =px y means x = cy for some ¢ € R*.

The discriminant is independent of R-linear bases of B [2, Proposition 1.4]. Moreover,
if € Aut(B) and ¢ preserves R, then ¢ preserves the ideal generated by d(B/R) |2,
Lemma 1.8].

Computing the discriminant is a computationally difficult task, even for algebras with
few generators. For example, the matrix obtained from tr(z; z;) for the skew group algebra
k_1[x1, @, x3]#S3 has size 288 x 288. Our first goal is to provide methods for obtaining
the discriminant in cases where the algebra may be realized as an extension of a smaller
algebra where computations may be easier.

If A is an algebra and o € Aut(A), then the Ore extension Alt; o] is generated by A
and ¢ with the rule ta = o(a)t for all a € A.

Theorem 1 (Theorem 6.1). Let A be an algebra and set S = Alt; o], where o € Aut(A)
has order m < oo and no o', 1 < i < m, is inner. Suppose R is a central subalgebra of
S and set B= RN A°. If A is finitely generated free over B of rank n and R = B[t™],
then S is finitely generated free over R and

d(S/R) =g~ (d(A/B))™ (t™~1)™".

We say an automorphism o of A is inner if there exists a € A such that za = ao(x) for
all z € A. This is not the standard definition of an inner automorphism but it agrees if a
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is a unit because then a='ba = o(b). Since a is normal and assuming A is a domain, one
can localize at the Ore set of powers of a so as to get an inner automorphism in Afa™].
When o* is an inner automorphism for some 1 < k < m = |o| then the center of A[t; o]
can be larger than (C(A) N A7)[t™]. We denote the set of all inner automorphisms of A
by Inn(A). It is a routine verification that Inn(A) forms a subgroup of Aut(A).

Let A be an algebra and G a finite group that acts on A as automorphisms. Denote by
kG the group algebra of G. The skew group algebra A#G has the underlying set A @ kG
and multiplication defined by

(a®g)(b®h) =a(g.b)@gh forall a,be A, g,h €G.

The natural embedding

A — A#G

a—a®e

where e is the identity of G, allows us to identify A with its image in A#G. If G contains
no non-identity inner automorphisms and acts faithfully on A, then by Lemma 2.2,
C(A#G) = C(A)% under the above identification.

Theorem 2 (Theorem 7.1). Let A be an algebra and G a finite group that acts on A
as automorphisms such that no non-identity element of G is inner. Set S = A#G and
identify A with its image under the embedding a — a®e. Suppose A is a finitely generated
free over the subalgebra R C C(A)S. Then S is finitely generated free over R and

d(S/R) =g« d(A/R)!CI.

The condition that A is a finitely generated free A%-module is satisfied in case A is a
commutative polynomial ring and G is a group generated by reflections by the classical
results of Chevalley [7] and Shephard-Todd [14]. Section 4 is devoted to showing that
such discriminants may be computed in a manner similar to the discriminant of an
algebraic number field; see Proposition 4.3.

Both Ore extensions (by an automorphism) and skew group algebras are examples
of twisted tensor products. We prove a more general formula regarding discriminants of
certain twisted tensor products from which the two previous theorems follow in Section 5.
The necessary background for these results is in Sections 2 and 3. We then apply this
result to the case of Ore extensions (Section 6) and skew group algebras (Section 7),
as well as provide examples of each. Finally, in Section 8 we use Theorems 1 and 2 to
compute the automorphism groups of some Ore extensions and skew group algebras.
Many computations herein were assisted by routines in Macaulay2 using the NCAlgebra
package.'

1 Available at http://users.wfu.edu/moorewf.
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2. Twisted tensor products and monoid algebras

Let A and B be algebras and let 7: B® A -+ A ® B be a k-linear homomorphism
subject to the conditions that 7(b® 14) =14 ®@band T(1pRa) =a®1p,a € A, b€ B.
A multiplication on A ® B is then given by p, := (ua @ up) o (ida ®7 ®@ idg) where pa
and pp are the multiplication maps on A and B, respectively. By [1, Proposition 2.3],
pr is associative if and only if 7o (up ® pa) = pr o (T ® 7) o (idp ®T ® id4) as maps
B®B® A® A— A® B. The triple (A® B, p,) is a twisted tensor product of A and B,
denoted by A ®, B.

We are concerned with twisted tensor products when B is the monoid algebra of a
monoid M that acts on A as automorphisms. Let M be a monoid and p : M — Aut(A)
a monoid homomorphism (so that p(mm’) = p(m)p(m’) and p(epr) = ida where ey
denotes the identity of M). For m € M and a € A, we write ma for p(m)(a). For a
monoid M, we let C'(M) denote the center of M.

In this case, one may check that since p is a homomorphism, the assignment

T kM®A— AQkM

me®a — ma@m

extends linearly to a k-linear map that makes the multiplication u, associative. We will
denote such a twisted tensor product by A @, kM when the homomorphism p: M —
Aut(A) is understood. We identify the elements of A, kM and M with their images in
A ®; kM under the canonical embeddings

A— AR, kM +— kM «+— M.
For such an action of a monoid M on an algebra A, we let AM denote the set
AM —{a € A|ma=aforall me M}.

It is easy to check that AM is a subalgebra of A. Furthermore, since the center of an
algebra is preserved under any automorphism, M acts on C(A) as well, so one may also
consider C(A)M.

Remark 2.1. The two main applications of interest are Ore extensions (by an automor-
phism) and skew group algebras, and each fit into this framework. In the case of an Ore
extension A[t; o] for an automorphism o of A, Aft; o] =2 A®, kN where p: N — Aut(A)
sends 1 to o. Similarly, a finite group G acting on A as automorphisms is the same as a
group homomorphism p : G — Aut(A), and one may check that A#G = A ®; kG.
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To better explain some of the hypotheses we will need in our theorem regarding
discriminants of twisted tensor products, we must discuss the center of A ®, kM.

Lemma 2.2. Let A be an algebra, M a monoid that acts on A through the monoid
homomorphism p : M — Aut(A), and H = kerp. Suppose that H C C(M) and
impNInn(A) = {ida}. Then C(A®, kM) = C(A)M 2 kH.

Proof. Let T = A ®, kM and choose )
have

mem @m @ m € C(T). Then for all z € A we

<Z am®m> (z®@ey) = Z am(mx) ® m.

meM meM

On the other hand,

(z®en) (Z am®m> =Y za, @m.

meM meM

Since M acts as automorphisms, each nonzero a,, is a normal element corresponding to
the automorphism induced by m. This implies that if a,, # 0, then m induces an inner
automorphism of A, and hence by hypothesis m € ker p. Note that in this case it also
follows that a,, € C(A), so that each term in the sum ) ., @, ® m has a,, € C(A)
and m € H.

Now for all m’ € M, one has

On the other hand,

(1®m') (Z am®m> = Z m'a, @ m'm
meM

= Z m anm, @ mm’
meM

where the second equality follows since H C ker p. Therefore we have that m’a,, = an,
for all m’ € M, hence a,, € C(A)M. The claim now follows. 0O

We note that the hypothesis H C kerp in Lemma 2.2 is trivially satisfied when
M is a group and M acts faithfully on A (as is the case in most skew group algebra
computations), as well as when N acts on A as an automorphism o (as in the Ore
extension case).
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The hypothesis im p N Inn(A4) = {id4} is a bit more restrictive however. Indeed,
extending Lemma 2.2 to the case where a non-identity element of M acts as an inner
automorphism is nontrivial in general, but can be done for an Ore extension of a domain.
For an automorphism o of A we define

N(o)={a€ A% : za = ao(x) for all z € A}.

Note that N(o) = {0} when o is not an inner automorphism induced by an element
of A% N(14) = A° N C(A), and if |o| = m then N(c*) = N(o*), where ¢ = i mod m.

Lemma 2.3. Let A be a domain, o an automorphism of A with |o| = m, and set S =
Alt;o]. Then C(S) = ®N(c%)[t!], where N(c*) is nonzero if a* an inner automorphism
induced by an element of A°.

Proof. The containment D is clear, so suppose Y a;t’* € C(S); then by the t-grading,
a;t* € C(S) for each i. Hence,

(o(a)t') t =t (ast") = (a;t") t.

Thus o(a;) = a; for each i, so that a; € A°. For a;t* € C(S) and any b € A, we
have ba;t’ = a;t'b = a;0’(b)t'. Because S is a domain, then ba; = a;0%(b) for all i, and
a; € N(o%). Hence, for i Z 0 mod m we have that ¢* is a non-identity inner automorphism
induced by a;. O

Before closing this section, we will need a lemma that characterizes when an extension
of a monoid algebras is a free extension. Before stating the lemma, we need a definition.

Definition 2.4. A monoid M is left cancellative provided for all a,b,c € M, the equality
ab = ac implies that b = ¢. One similarly defines right cancellative monoid, and M is
called cancellative if M is both left and right cancellative.

Lemma 2.5. Let H be a submonoid of a cancellative monoid M, and let B = {mq,...,m}
be a subset of M. Then B is a basis of kKM as a left (respectively right) kH-module if
and only if the right (respectively left) cosets of H represented by all the elements of B
are disjoint, and M is the union of the right (respectively left) cosets of H represented
by all the elements of B.

Proof. Note that B is a basis of kM as a left kH-module if and only if for each m € M
there exists a unique h € H and 1 < ¢ < ¢ such that m = hm,;. This is precisely the
statement that the right cosets of H by all the elements of B are disjoint and cover M. O

A source of examples of cancellative monoids are submonoids of groups. We record
here a lemma that we will use later regarding extensions of monoid algebras in this
context.
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Lemma 2.6. Let M be a monoid which embeds in a group G, K a group, p: G — K
a group homomorphism, and H = ker p N M. Suppose that, for all g € ker p, one has
gEM org=t € M. Then:

(a) For all my,mq € M, p(mq) = p(m2) if and only if either Hmy C Hmsg or Hmg C
Hmy, and similarly for left cosets.

(b) Suppose that kM is a free left or right kH-module with basis {m,...,mg} with
m; € M and my = epr. Then for every j = 1,...,L, there exists a unique ¢ such that
m;m; € H.

Proof. We prove each of the claims in the case of right cosets and a left module structure
as in Lemma 2.5.

It is easy to see that either containment of cosets above implies p(m1) = p(ma).
Conversely, suppose that p(mi1) = p(ma). Then mymsy 1 ¢ ker p so by hypothesis either
mlmgl € H or mgmfl € H. In the first case, one has Hm, C Hmsy and in the second
case, one has Hmy C Hmy, proving part (a).

For the second claim, Lemma 2.5 shows that given any element m € M, there exists
a unique ¢ such that m € Hm;. We will denote the assignment m — m; by the notation
rep(m). Fix 1 < j < n and consider the following function defined on the cosets:

®;:{Hm,...,Hmy} = {Hmq,...,Hmg}

Hm; — Hrep(m;m;).

Suppose that ®;(m;) = ®;(m,/). Then one has that m;m; and m;m; are in the same
coset Hmy, for some k. It follows that p(m;) = p(m;) and hence by part (a) one has
that Hm; and Hm, intersect nontrivially. Therefore by Lemma 2.5 one has m; = my.
This shows that ®; is one-to-one and hence onto. Since we chose m; = ejs, one of the
cosets is H hence given any j, there is a unique ¢ such that m;m; € H as claimed. O

Note that N is a submonoid of the group Z that intersects every subgroup of Z
nontrivially, and hence fits into the framework of each of the two previous lemmas.
Furthermore, if M is a group then each of the two lemmas’ hypotheses hold trivially.
Therefore, these hypotheses are not restrictive from the point of view of our intended
applications.

3. Background on discriminants
In this section, we assume that A/B is a free extension of algebras with B C C(A4).
Notation 3.1. Suppose 0 € Aut(A) and that o restricts to the identity on B. Then

0: A — Ais a B-module homomorphism. Therefore, given a basis {z1,...,z4} of A as
a B-module, we can represent ¢ using a matrix with entries in B which we denote X, .
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That is, if z € A and the coordinate vector of z with respect to the chosen basis is x,
then o(z) = X,x. Note that the determinant of X, is independent of the chosen basis
of A over B, and is an element of B*. We therefore denote det X, by det,,p 0.

If p: M — Aut(A) is a monoid homomorphism and m € M, we write X,,, and
det 4/ m to denote X,,,) and det 4,5 p(m), respectively.

In the following definition we consider o € Aut(A) that restricts to the identity on
B to twist the standard trace pairing. This will be necessary for our calculations that

appear in Section 5. Recall that for an algebra A, we use pu4 to denote multiplication
on A.

Definition 3.2. Let 0 € Aut(A) such that o restricts to the identity on B. Define the trace
form of the extension A/B twisted by o (denoted try,p ) to be the B-bilinear pairing
given by the composition

tra/po: Ax ADAXT Ao gty 4 U g
That is, tra/ g, (Y, 2) = tr(yo(2)). In the case o = id4, we use tr /5 to denote tra/p id,, -

Note that try /5 ,(y,2) = tra/p . (0(2), o~ 1(y)), so that this bilinear pairing need not
be symmetric for a general o, but it is symmetric if o = id 4.

Notation 3.3. Given a basis {z1,...,7,} of A as a B-module, the matrix of tr4,5 , with
respect to this basis is W, = (tr(z;0(x;)));;. In this way, if y and z have representatives
in the above basis given by vectors y and z, then try,p ,(y, 2) = y "W,z We let W
denote the matrix Wiq,,.

Definition 3.4 (/2/). For a free extension A/B, we define the discriminant of A over B
to be determinant of the matrix W representing the trace pairing tr4,p with respect to
some chosen basis of A over B, as in Notation 3.3.

Lemma 3.5. Let A/ B be a free extension of algebras, let o € Aut(A) restrict to the identity
on B, and let {z1,..., x4} be a basis of B over A. Then using the same notation appearing
in 3.1 and 3.3, one has W, = WX, and therefore det(W,) = det(W)det,,p 0.

Proof. Let y and z be elements of A, with representations y and z in the chosen ba-

sis, respectively. Then since try,/p , = tra/po(ida xo) one has the following string of
equalities from which the claim follows:

tra/po(y,2) =tra/p(y,o(2)) = yTWX,z. O
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4. Discriminants and reflections

In this section, we collect some results from classical commutative invariant theory
that we will need for our examples. We prove that when G is a group generated by
reflections acting on the polynomial ring A = k[zy,...,z,], the discriminant of the
extension A/A% may be computed in a manner similar to the formula for the discriminant
of an algebraic number field, cf. [12, Proposition 2.26]. Recall that our field k is of
characteristic zero.

Let 0 € GL, (k). Recall that o is a reflection if o is of finite order and fixes a codi-
mension one subspace of the vector space of linear forms in A. Denote the quotient field

of a domain S by Q(S5).

Theorem 4.1. Let A = k[z1,...,2,] and G C GL, (k) a finite group generated by reflec-
tions that acts on A as automorphisms. Then:

(1) The invariant ring AS =K[f1,..., f.] is a graded subalgebra of A, with the f; alge-
braically independent.

(2) One has Hdeg(fi) =|G|.

(3) A is free as an A%-module of rank |G|.
(4) Q(A%) = Q(A)Y, where the action of G on Q(A) is induced from the action of G
on A.

Proof. The first claim is the Shephard-Todd-Chevalley theorem. The second claim
is well-known, see [15, Corollary 4.4]. The third claim follows from a Hilbert series
computation, and the last statement follows from considering the Galois extension

QA)/QU°. b

Lemma 4.2. Let A =K[z1,...,2,] and G C GL, (k) a finite group generated by reflections
that acts on A as automorphisms. Then for all f € A, one has

trajac(f) = trgeay qac)(f) = Y _ o(f).

ceG

Proof. The extension Q(A4)/Q(A)¢ = Q(A)/Q(A) is Galois, and hence we have that
the usual trace map

troeay/uac) f = Y of) € Q(A%)

ceCG

may be computed by the trace of the Q(A%)-linear map 9?(’4) : Q(A) — Q(A) given

by multiplication by f. Since for all f € A, one has 9?(’4) = 0;1 ®4c Q(AY), we have the
desired result. O
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The following proposition is useful in computations involving discriminants of exten-
sions of commutative polynomial rings, since in practice the matrix W from Notation 3.3
can be time-consuming to obtain directly. This result is reminiscent of the formula for
the discriminant of an algebraic number field K in terms of the square of the determinant
of the matrix whose entries correspond to the evaluations of an integral basis of Ok at
the different embeddings of K into C.

Proposition 4.3. Let A = k[z1,...,z,) and G = {o1,...,04} C GLy,(k) a finite group
generated by reflections. Let {z1,...,24} be a basis of A as an A -module, W be the

matriz of the trace form of the ewtension A/AS with respect to this basis, and let M be
the matriz (0;(2;)). Then W = MTM. As a consequence, one has d(A/A) = (det M)2.

Proof. One has that

(MTM)i; = on(zi)on(z) = Y on(ziz;) = tr(ziz)) = Wi
k k

The claim regarding the discriminant of the extension A/A¢ follows since det W =

d(A/AS). O

We record a corollary of this proposition when G is generated by a single reflection
for later use.

Corollary 4.4. Let A =K[x1,...,2,] and let o be a reflection of order m. Let A° be the
set of elements of A left invariant by o, and let f be a linear form such that o(f) = &f
for some primitive mth root of unity &. Then d(A/A%) == fm=1m,

Proof. After a change of variable, we have A = K[f,y2,...,yn] with o(f) = &f and
o(y;) = y;. Therefore, A = K[f™,y2,...,ys] and hence a basis for A over A7 is
{1,..., f™"'}. The matrix M from the above proposition is therefore a Vandermonde
matrix on the elements {f,&f,€2f,..., £ f}. Therefore by Proposition 4.3 we have
that

2

detW = [ [J(€'f=&f) | = f22) =fm=0m 0

i<j

Corollary 4.5. Let S be an algebra, A = S[t], and R = S[t™], m € Z~o. Then d(A/R) =yx
(tm—l)m.

Proof. This follows by applying Corollary 4.4 to the automorphism o of A defined by
o(t) = &t where € is a primitive mth root of unity. O
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Example 4.6. Let A = k[z1,z9, 23] and G = Ss, the symmetric group acting as permu-
tations of ;. A basis for A over A® is {1, 21, 20,22, 2122, 2325} (this is well-known, see
e.g. [10, Proposition V.2.20]). Let M = (0;(%;)) so that

xr1T X2 JZ% 11X CC%Q:Q
T2 X1 .T% 1T .%‘133%
T3 T2 IB% o3 ’IQZL%
Tr1 X3 x% r1T3 x%xg
T2 I3 LL’% X3 1‘%563

2 2

xr3 I1 X3 T1xT3 T1T3

= e

It can be checked that the determinant of M is the cube of the Vandermonde determinant
on the set {x1,z2,23} and so it follows from Proposition 4.3 that

6

d(4/A%) = |T](@i —2))

i<j
In light of the Example 4.6, we conjecture that the following question has an affirma-

tive answer.

Question 4.7. Suppose G = S,, acts on A = k[z1,...,z,] as permutations. Is the dis-
criminant of A over A9 the Vandermonde determinant on {z1,...,z,} to the power n!?

5. Discriminants of twisted tensor products

In this section, we prove the main theorem that allows us to calculate discriminants
for certain Ore extensions and skew group algebras.

Theorem 5.1. Let A be an algebra, M a submonoid of a group G, and suppose p :
G — Aut(A) is a group homomorphism such that im(p|ps) N Inn(A) = {ida} and
H:=kerpNM C C(M). Set T = AR, kM, and suppose R is a central subalgebra of T
such that:

(a) A is free over AN R of rank n < oo,
(b) R=(ANR)®kH, and
(c) there exists a basis {ma,...,my} of kM over kH with mi1 = ep; and m; € M (cf.

Lemma 2.5).

Then:

d(T/R) = (d(A/A N R))e (d(kM/kH))".
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Remark 5.2. By Lemma 2.2, C(A®, kM) = C(A)M @ kH. Since R C C(A®, kM), then
assuming (b) in Theorem 5.1 one has AN R = C(A)M N R.

Before giving the proof of Theorem 5.1, we need one more lemma:

Lemma 5.3. Under the hypotheses of Theorem 5.1, T is free over R. Furthermore, for
alla € A and m € M, one has

tr(a@m) = {(t)r(a) @tr(m) ifmeH

otherwise.

Proof. Let B=ANR=C(AMNR, and let {z1,...,7,} be a basis of A over B. Then
{z;@m; |1<i<nand1<j</}

is a basis of T over R. Recall that for a fixed 1 < a<mnand 1 < </, one has
(a @ m)(zo @ mpg) = a(Mmzq) @ mmg. (5.4)

Consider the coefficient c,3 € R of £, ® mg when writing the product in (5.4) in the
{z; ®@m;} basis. If cop # 0, then hypothesis (b) implies that c,3 would have a summand
of the form o’ @ m’ for some m’ € H such that mmg = m’mg. Since M is cancellative,
one has m € H.

For the case m € H, write ax, = Z?Zl Tia%; for some rj, € AN R and mmg =

Z§:1 7i5m; for some 1’5 € kH. Then one has

(a @ m)(zo @ M) = arq ® mmg

n £
=D (ria ® 1) (s @ my).

i=1 j=1
Therefore the trace of the map given by left multiplication of a ® m satisfies
n £ n

tr(a ®@ m) = Zz:: Taa ®Thg) = (Zraa> (zi: g) a) ® tr(m). O

Proof of Theorem 5.1. Using the same notation in the proof of Lemma 5.3, we have that
{z;@m; |1 <i<nand1<j</{}
is a basis of T over R. List this basis in the order

{xl®m1,...,xn®m1,x1®m2,...,mn®m2,...,x1®mg,...,mn®mg}.
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One may then think of the trace matrix corresponding to this ordered basis of T over R
as an m X m block matrix with blocks of size n x n, where the block is determined by
index on the {m;} basis used.

Since (z; ® m;)(zy @ mj) = x;(mjzy) @ mjmj, Lemma 5.3 shows that the (j,j")th
block entry is the zero matrix whenever m;jm; ¢ H. By Lemma 2.6 there is exactly one
mjs such that m;m; € H. In addition, one has that when m;m; € RN M, the (j,j')th
block entry is Wi, tr(m;my:), where Wy, is as in Notation 3.3. By Lemma 3.5 we have
that the determinant of W, is (up to a unit in B) the determinant of the matrix W of
the trace form of A over B, which by definition is the discriminant d(A/B).

Therefore up to a unit in B, the determinant of the matrix of the trace form of T
over R is the determinant of the matrix that is the Kronecker product of the matrices of
the trace forms of A over B and of kM over kH. The claim now follows from the usual
formula for the determinant of a Kronecker product of two matrices. O

Example 5.5. Let A = Kk[z1,...,2,] and o € Aut(A) defined by o(x1) = x4, £ a primitive
sixth root of unity, and o(z;) = ; for i = 2,...,n. Then A% = k[2§,29,...,2,] and
d(A/A%) = 230 by Corollary 4.4.

Let p: N — Aut(A) be the monoid homomorphism sending 1 to ¢ as in Remark 2.1
and let M be the submonoid of N generated by {2,3}. By restriction, p : M — Aut(A)
satisfies ker p = {6k | k € N} C C(M) and im pNInn(A) = {id4}. Clearly, kM = k[t?, 3]
and kH = k[t5]. A basis for k[t?,#%] as a module over k[t%] is {1,#2,#3 ¢4 ¢5,t"} and a
direct computation shows that d(kM/kH) =« t*2.

Consider the twisted tensor product T = A ®, k[t?,t3] and let R = A° @ k[t°]. By
Theorem 5.1, we have

d(T/R) = d(AJA%)°(d(kM/kH))® =« (239¢*%)°.
6. Discriminants of Ore extensions

In this section, we apply Theorem 5.1 to the case of an Ore extension. Recall that by
Remark 2.1, Ore extensions are a special case of the twisted tensor products studied in
Sections 2 and 5.

Theorem 6.1. Let A be an algebra and set S = Alt; o], where o € Aut(A) has order
m < oo and no o', 1 < i < m, is inner. Suppose R is a central subalgebra of S and set
B =RnNA?. If A is finitely generated free over B of rank n and R = B[t™], then S is
finitely generated free over R and

d(S/R) =gx (d(A/B))™ (™ 1)"™".

Proof. We claim that the hypotheses imply those of Theorem 5.1. We view N as a
submonoid of the additive group of the integers and p : Z — Aut(A) as the group
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homomorphism sending 1 to o. Then S & A®, kN. Since ¢ is not inner for any i # km,
k € Z, then im(p |y) NInn(A) = {ida} and kerp = {km | k € Z}. Set H =kerpNN =
{km | k € N}, then {1,...,m — 1} is a basis for kN over kH implying Theorem 5.1 (c).
The hypothesis that A is free over B of rank n is equivalent to Theorem 5.1 (a). By
Lemma 2.2, R = B[t"] = (AN R) ® kH. Hence, Theorem 5.1 (b) is satisfied. The
formula now follows from Theorem 5.1 and Corollary 4.5. O

Corollary 6.2. Let A = Kk[x1,...,x,] and o be a reflection of order m. Let f be a lin-
ear form that satisfies o(f) = £f where € is a primitive mth root of unity. Then the
discriminant of the Ore extension A[t; o] is (up to scalar) fim=1Dm*¢(m=1)m*

Proof. This follows from applying Corollary 4.4 and using the Ore extension discriminant
formula from Theorem 6.1. O

As test cases, we consider Ore extensions of the ordinary polynomial ring, the
(—1)-skew polynomial ring

Vi =k q[z1, ..., 2],
and the (—1)-skew Weyl algebra
W, =k(zq,...,2, | ziz; + xjz; =1 for i # j).
Note that gr(W,,) = V,,.

Example 6.3 (/2, Example 1.7]). V3 is the Ore extension k[z][y; o] where o(x) = —z and
C(Vz) = k[z2,y?]. Clearly k[z] is free over k[z]” = k[z?] and d(k[z]/k[z?]) =;x 2? by
Corollary 4.5. By Theorem 6.1,

d(Va/C(V2)) =px (22)*(y)* = a*y*.
Example 6.4. By [2, Lemma 4.1 (3)],

k[z%, ..., 23] if n is even

rrn

klz?, ..., 22, T, z;] ifnis odd.

sy

Set C,, = k[z2, ..., 22] regardless of whether n is even or odd. In either case, V;, is finitely
generated free over C,; this is proved in [2, Lemma 4.1 (4)] for n even but the proof
applies equally well when n is odd. However, in the case n is odd we do not obtain useful
information about the automorphism group of V,, because a given automorphism may

not fix C,,. Regardless, we use Theorem 6.1 to inductively compute
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—1

A(Vin/C) = (_H ﬁ) : (6.5)

This gives an alternate method for obtaining the discriminant in [2, Theorem 4.9 (1)].

The case n = 2 follows from Example 6.3. Suppose (6.5) holds for some n and set
S = Vu|zpy1; 0] where o(x;) = —x; for ¢ = 1,...,n. If n is odd, then o does not fix
1, zi. Hence, C(V,) NV, = C,, in both cases when n is even or odd, and V,, is finitely
generated free over C,, of rank 2™. Thus, by Theorem 6.1,

n+1 2
d(5/Cns1) = d(Vn/Cn)2(2$n+1)2'2n =K (H xf) :

Example 6.6. Let A = k[z,y] and 0 € Aut(A) defined by o(z) = y and o(y) = . Let
S = Alt; ol.

We have |o] = 2 and o is not an inner automorphism. Since A is commutative,
C(A)° = A° = Kk[z + y,zy]. Thus C(S) = A[t?]. A basis for A over A° is {1,z}. An
easy computation shows that

tr(1) =2, tr(z) =z +vy, tr(z?)=az>+4>%

Thus, the trace matrix for A over A is

2 T+y
r+y 2+y?
and so d(A/A%) = (x — y). By Theorem 6.1,

d(S/C(S)) =px ((x — 1)) (1) = (& — y)"t*.

The discriminant of S/C(S) is not dominating in the sense of [2, Definition 2.1].

The discriminant computation above can also be seen by observing that S =
K(p, ;)[71, T2, v3] where pp 3 = p3 2 = —1 and all other p; ; = 1. The isomorphism is given
by x1 <> x +y, 13 <> x —y, and z3 > t. S is free over its center C(S) = k[zy, 23, 23],
and the discriminant (up to a constant) is D = x323 [3, Proposition 2.8].

Question 6.7. If we instead take o € Aut(V2) given by o(z) = —y, o(y) = z and set
S = Alt; o] so that S satisfies

Yy = —yx, tr =yt, ty= —xat,

what is the discriminant d(S/C(S5))?

Changing to generators that include the eigenvectors of o does not give a skew-

2

polynomial ring (as it did in the previous example). Because o is inner, Theorem 6.1

does not apply. In particular, C(S) = k[z? + y?, 2%y?, xyt?, t*] is not a UFD.
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We are interested in the Ore extension Wat; o] with o(x) = y and o(y) = . Because
gr(Wy) = Va, the discriminant d(Va/C(V2)?) is a filtered version of the discriminant
of d(Wy/C(W2)?). The Macaulay2 routines are not currently equipped to handle the
computations for this discriminant. Instead, we pass to the homogenization of Wj.

For each 1 < i < n, fix deg(z;) € Z*. This defines a N-grading on k(z1,...,x,). If
f= Z?:o fr where fj is the homogeneous component of f with deg(fx) = k and fy # 0,
then the homogenization of f by the central indeterminate ¢ is then H(f) = Z?:o frtdk
where d = deg(f). It is clear that H(f) is homogeneous in the ring k(z1, ..., 2, )[t] where
t has been assigned degree 1.

Suppose A is an algebra generated by {z1,...,2,} subject to the relations ry, ..., r,
and such that deg(z;) > 0. The homogenization H(A) of A is the algebra on the generators
{t,z1,...,2,} subject to the homogenized relations H(r;), i = 1,...,m, as well as the
additional relations tz; —x;t, 1 < j < n.

Theorem 6.8. Suppose A is an algebra generated by {x1,...,x,} subject to the relations
T1,...,"m and such that deg(z;) > 0. If A is finitely generated free over a central subal-
gebra R, then H(A) is finitely generated free over H(R) and

d(H(A)/H(R)) =(m(r)) < H(d(A/R)).

Proof. Suppose A (and hence H(A)) is generated in degree 1. This is easily generalized
to other cases. There is an isomorphism H(A)[t~!] — A[t*!] fixing t and for i = 1,...,n,
x; — t~tz;. By [6, Lemma 1.3] and [2, Lemma 3.1]

d(H(A)[t*]/RIEH)) =gy« d(A[E)/R[t]) =(ap < d(A/R).
Tracing back through the isomorphism and clearing fractions gives the result. O
Example 6.9. Let A = W5, the 2-dimensional (—1)-quantum Weyl algebra A = k{x,y |
zy + yr = 1). Note that C(A) = k[z?,y?]. By [6, Theorem 0.1], d(A/C(A)) =jx

(4302;1/2 — 1)2.
It follows from [9, Proposition 2.8] that C(H(A)) = k[z?,y?, t]. Hence, by Theorem 6.8

d(H(A)/C(H(A))) = (422> —t4)?.
Example 6.10. Let A be as in the previous example and let o be the automorphism
x <+ y. Then gr(A) = V5 and C(A) = C(Va) = k[2?,4?]. Moreover, C(A)° = C(V,)° =
k[z? + y2, 2%y?]. Extend o to H = H(A) by o(t) = t. Then C(H)° = k[2? + 32, 22>,
so rank(A/C(A)%) = rank(H/C(H)°) = 8. Let X = 22 +4?, Y = 2%y? and T = t. Then
d(H/C(H)%) =« (4Y — TH*(X? —4Y)*.

By [3, Proposition 4.7],
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d(AJC(A)7) =px (4Y — 1)*(X? — 4Y)*, and
d(Va/C(Va)7) =px YH(X? —4Y)".

7. Skew group algebras

Theorem 7.1. Let A be an algebra and G a finite group that acts on A as automorphisms
such that no non-identity element of G is inner. Set S = A#G and identify A with its
image under the embedding a — a ® e. Suppose A is a finitely generated free over the
subalgebra R C C(A)C. Then S is finitely generated free over R and

d(S/R) =g~ d(A/R)IE.

Proof. This follows almost immediately from Theorem 5.1. By hypothesis, there is a
map p: G = Aut(A), impNInn(A) = {ida}, and H = ker p = {eg}. Our hypotheses
directly imply (a) and (b) in Theorem 5.1. Because the elements of G form a basis of
k[G], we have ¢ = |G|. O

Example 7.2. Let A = k[z1, 29, 23] and G = S3, the symmetric group acting as permu-
tations of x;. By Example 4.6,

6

d(A/A%) = |](xi — =)

1<j

Set S = A#G and R = A® identified both in A and in C(S). It follows from Theorem 7.1
that

36

d(S/R) =RX H(l‘ifitj) ® e.

1<j

We are interested in the skew group algebra V,,#S,, where S,, is the symmetric group
on n letters acting as permutations on the x;. We have that C'(V,#S,,) may be identified
with C(V,,)S». In the case when n is even we can describe this center explicitly.

Lemma 7.3. Let S,, act on V,, as permutations of the variables and let Inn(V,,) denote the
set of inner automorphisms induced by normal elements of V,,. Then S,,NInn(V,,) = {e}.

Proof. Let o be a nontrivial permutation of {1,...,n}, and suppose that o is an inner
automorphism induced by the normal element a € V,,. Choose i such that o(i) # i. Then
if one considers the equality az; = x,(;)a, one sees this is impossible since the set of
monomials that appear on the left hand side is disjoint from the set of monomials which
appear on the right hand side. O
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Lemma 7.4. Let E,, =Kley, ..., e,] where the e; are the elementary symmetric functions
in the x3,...,x2. If n is even, then C(Vn)S” = FE, and V,, is free over E, of order 2"n!.

rn

Consequently, V,#S,, is finitely generated free over its center of order 2™(n!)2.

Proof. The elementary symmetric functions satisfy dege; = 2i. Set E,, = Kkley, ..., ey].
We claim

rank(V,,/E,) = 2"nl.

The Hilbert series of V,, is Hy, (t) = 1/(1 — t)™ while that for F, is

1

Let H,(t) = Hy, (t)/Hg, (t) and assume inductively that H,(1) = 2"n!. This clearly
holds in the case n = 1. Thus,

_ 42 oAy _ 42(n+1) _ 42(n+1)
Hyr (1) = 2200 (f)t)nﬂ ) g Y8 1’54 )

=H, - (14+t"™ 1+t +12 4+ t7).

Hence, H,+1(1) = H,(1) -2 (n+ 1) = 2" (n + 1)!. Since V,,#S,, has rank n! over V,,
it follows that it has rank 2" (n!)? over E,,.

Freeness follows from the Auslander-Buchsbaum formula. Since F,, is a polynomial
ring then pdg (V,) = depthg (V,,) — depth(E,,) = 0.

That the center of V,#S,, is generated by the elementary symmetric functions fol-
lows from [2, Lemma 4.1 (3)] and Lemma 2.2 as no element of S, acts as an inner
automorphism by Lemma 7.3. O

When n is odd the center of V,, is not a polynomial ring and it follows that C'(V,,#S,,)
is also not a polynomial ring.

Example 7.5. Let Sz act on V3 as above and set S = Vo#Ss. Then Ey = C(S) = k[X,Y]
where X = 22+y? and Y = 2%y, Since d(Va/Es) = Y?(X?—4Y)?2, then by Theorem 7.1,
d(S/C(9)) == [Y?(X?% - 4Y)?]? @ .

8. Automorphism groups

In this section we apply our results on the discriminant to compute explicitly the
automorphism groups in several cases.
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8.1. An Ore extension of k[x,y]

Let A = k[z,y] and 0 € Aut(A) defined by o(z) = y and o(y) = z. Let S = A[t; o],
so that S satisfies the relations

Yy =yx, txr=yt, ty=xt.

By Example 6.6, f :=d(S/C(S)) = 16(x —y)*t*. Set X =z +y, Y =2y, and T = t2,
so that f = 16(X?2—4Y)?T?. Any automorphism of S preserves the center and hence the
discriminant up to scalar. Because the center is a UFD, we have that any automorphism
either preserves the factors (X2 — 4Y) and T, or else it interchanges them (up to a
scalar).

Proposition 8.1. With notation above, Aut(S) consists of maps of the following form

(a,b,c e k*, d k).
T a b 0 T d
(¢) (s ) ()
t 0 0 ¢ t 0
T a a -—b T d
(¢)- (58 2) () 2)
t —c ¢ 0 t 0

Proof. Let g € Aut(S) and suppose g preserves the factors (up to scalar multiple).
Then deg(g(X?)) < 2 so deg(g(X)) = 1. Similarly, deg(g(Y)) = 2 so deg(g(x)) =
deg(g(y)) = 1. Moreover, deg(g(T)) = 2 so deg(g(t)) = 1 and ¢ is mapped to a scalar
multiple of itself. Thus, we reduce to a linear algebra problem and conclude that all such
g have the first form above.

A similar argument follows in the case that g interchanges the factors. These auto-
morphisms have the second form above. 0O

All automorphisms of A are triangular, in the sense of [2, Theorem 3(2)]. The auto-
morphisms of A are (—1)-affine [3, Definition 1.7], but not affine. A is a skew-polynomial
ring that satisfies H2, but not H1 of [3, p. 12]. We conjecture that Aut(A) is not tame,
note that [3, Proposition 4.5] does not apply because g(X) can contain a constant. (See
the definitions of elementary and tame on p. 3 of [3].)

8.2. An Ore extension of Vs

Let A =V, with 0 € Aut(A) given by o(z) =y, o(y) = x. Set S = A[t; o] so that S
satisfies

Ty = —yx, tr =yt, ty=xt.



48 J. Gaddis et al. / Journal of Algebra 477 (2017) 29-55

This example cannot be reduced to the skew polynomial case by using eigenvectors. Here
Ais not free over A% = k(z+y,2>+1°) and A7 is not AS regular. However, A is free over
the polynomial ring C'(A)° = k[z?+y?, 2%y?], and C(S) = k[z2+y?, 2%¢y%, 1] = k[ X, Y, T
is again a polynomial ring. By Example 6.10 and Theorem 6.1,

d(S/C(8)) == TPY®¥(X? — 4Y)8.

Proposition 8.2. With notation above, Aut(S) = k2 x {7} where T is the automorphism
T4y,

Proof. We will apply the discriminant to show that all automorphisms are affine. The
relations of S then imply that all automorphisms are in fact graded. Once shown, it
follows easily that if g € Aut(S), then there exists a,b € k™ such that

g9(x) = ar,g(y) = ay,g(t) =bt or g(x)=ay,g(y) = ax,g(t) = bt.

Let g € Aut(S). The discriminant is not dominating, but the center is a UFD and
hence there are six cases for how g permutes the factors of the discriminant.

Case 1. g(X2 —4Y) = a(X? —4Y), g(Y) = BY, g(T) = 1T.

Then g(X)? = g(X?) = a(X?—4Y ) +4g9(Y) = a(X? —4Y) +48Y = aX?+4(f—a)Y.
For aX? 4+ 4(8 — a)Y to be the square of some polynomial in k[X,Y,T] we need o = 3,
and then g(X) = v/aX, g(Y) = aY. Then g(Y) = g(z*y*) = —g((zy)*) = —a(zy)?
so that g(xy) has degree 2 and so g(x) and g¢(y) have degree 1. If g(T') = ~T, then

g(t) = \/7t. Hence g is affine.
The other cases are easily reduced to Case 1 or eliminated.

Case 2. g(X2 —4Y) = a(X? —4Y), g(Y) = BT, g(T) = vY.

9(X)? = g(X?) = a(X? — 4Y) + 4BT cannot happen in k[X, Y, T].
Case 3. g(X2 —4Y) =T, g(Y) = BY, g(T) = y(X? — 4Y).

9(X)? = g(X?) = aT + 4BY cannot happen in k[X, Y, T].
Case 4. g(X? — 4Y) = aY, g(V) = B(X2 — 4Y), ¢(T) = ~T.

g(X)? = g(X?) = aY +4B(X? —4Y) so a = 168 and g(X) = 2¢/BX and g(Y) =
—g(zy)? = B(X? —4Y) so g(z) and g(y) have degree 1; further g(t) = \/7t g is affine.

Case 5. g(X2 —4Y) = aT, g(Y) = B(X? —4Y), g(T) = vY.

9(X)? = g(X?) = oT + 48(X? — 4Y) cannot happen in k[X, Y, T].
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Case 6. g(X2 —4Y) =aY, g(Y) = BT, g(T) = v(X? — 4Y).
g(X)? = g(X?) = aY +4BT cannot happen in k[X,Y,T]. O
8.8. An Ore extension of V3

Let R = k_q[x,y,2] and o the automorphism that interchanges x and y. Then
C(R[t;0]) = k[z? + y?,2%y?, 2%,t?] (0 eliminates xyz from C(R)). Aut(R) contains a
free subgroup on two generators.

Question 8.3. Does Aut(R][t;0]) also contain a free subgroup on two generators?
8.4. An Ore extension of Wy

Let 0 € Aut(W3) be given by o(z) = y and o(y) = x. Set S = Wilt; o] so that S
satisfies

oy +yxr =1, te =yt, ty=xt.

The center of S is C(S) = k[z? + 3%, 2%y%,t%]. Set X = 22 + 92, Y = 2%y?, and T = t2.
By Example 6.10 and Theorem 6.1, d(S/C(S)) = T8(4Y — 1)¥(X? — 4Y)8.

Proposition 8.4. With notation above, Aut(S) = (k* x {—1,1}) x {7} where 7 is the
automorphism x <> y.

Proof. The proof here is nearly identical to that in Proposition 8.2. We will apply the
discriminant to show that all automorphisms are affine. The relations of S then imply
that all automorphisms are in fact graded. Once shown, it follows easily that if g €
Aut(S), then there exists a € {—1,1} and b € k* such that

g(x) =ay,gly) =a 'z, g(t) =bt or g(x)=ax,g(y)=a "y, g(t) = bt

Let g € Aut(S). The discriminant is not dominating, but the center is a UFD and
hence there are six cases for how g permutes the factors of the discriminant.

Case 1. g(X? —4Y) = a(X? —4Y), g(4Y — 1) = B4Y — 1), g(T) =T

Then g(X)? = g(X?) = a(X?2 —4Y) + g4Y) = a(X? - 4Y) + BAY - 1) +1 =
aX?+4(—a)Y +(1—pB). For aX?+4(38—a)Y to be the square of some polynomial in
k[X,Y,T] we need o = 8 = 1, and then g(X) = X, g(Y) =Y. Then g(Y) = g(z%y?) =
—g((zy)?) = —(zy)? so that g(xy) has degree 2 and so g(z) and g(y) have degree 1. If
g(T) =T, then g(t) = /7t

The other cases are easily reduced to Case 1 or eliminated.
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Case 2. g(X2 —4Y) = a(X? —4Y), g(4Y — 1) = BT, g(T) = v(4Y —1).

4Y — 1 has degree 4 and it follows that g(4Y — 1) has degree 4. Since T is of degree 2,
we cannot have g(4Y — 1) = gT.

Case 3. g(X2 — 4Y) = aT, g(4Y — 1) = B(4Y — 1), g(T) = v(X2 — 4Y).
9(X)? = g(X?) = aT + 4B(4Y — 1) is not a square in k[X, Y, T].
Case 4. g(X2 —4Y) = a(4Y — 1), g(4Y — 1) = B(X2 — 4Y), g(T) = +T.

9(X)? = g(X?) = adY —1)+4B8(X? —4Y) = 28X? +4(a — 4B)Y — a. This is not a
square in k[ X, Y, T7.

Case 5. g(X2 — 4Y) = aT, g(4Y — 1) = B(X? — 4Y), g(T) = y(4Y —1).
9(X)? = g(X?) = 4aT + 4B(X? — 4Y) is not a square in k[X,Y, T].
Case 6. g(X2 —4Y) = a(4Y — 1), g(4Y — 1) = BT, g(T) = v(X? — 4Y).

See Case 2. O
8.5. The homogenization of Wy

Let H = H(W3) and C' = C(H). In Example 6.9 it was shown that d(H/C) =y«
(4z?y? — t4)2.
H is N-graded, so for h € H, denote by hg the degree d component.

Proposition 8.5. With notation above, Aut(H) = (k*)? x {7} where T is the automor-
phism x < y.

Proof. Let I be a height one prime ideal of H. By [8, Theorem 6.6], either I = (¢),
I = (zy—yx), or I = (g) with deg(g) > 1. Given ¢ € Aut(H), it follows that ¢(deg(r)) >
deg(r) and so (t) is the only height one prime ideal generated by a degree one element.
Hence ¢(t) = at for some o € k*. Thus, deg(4(t?)) = 2 and so deg(¢(z%y?)) = 4. We
conclude that ¢ is affine.

Let ¢ € Aut(H) and write

P(z) = ag + a1 + a2y + ast, ¢(y) = bo + b1x + by + bst, ¢(t) = co + c17 + cay + cat,
with a;,b;,¢; € k for i =0,...,3. Because t is central, then ¢; = ¢ = 0. Hence,

0= ¢(zy + yx — t*)o = 2aoby — ¢§
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and

0= ¢(xy + ya — t7)
=2 [ao(bl.’E + b2y + bgt) + bo(all' + agy + agt) — 0003t]
=2 [(a0b1 + boal)l' + (a0b2 + boag)y + (aobg + b0a3 — C()Cg)t] .

If bo = O, then Co = 0 and a0b1 = Clobz = a0b3 = 0. Since ¢1(y) ?é 0, then ag = 0.

Suppose by # 0, then —‘g—g = ‘g—ll = ‘g—; S0 a1by — asby = 0 and ¢ is not an isomorphism.

Hence, we conclude that ag = bg = ¢g = 0. Thus,

0= ¢(xy +yz — %)
= 2(a1b1:102 + (Igbgyz) + (a1be + a2by)zy + (azby + a1be)yx — cth

2(a1b1x2 + a2b2y2) + (albg + ashy — Cg)tQ.

We have two cases. Either a; = by = 0 or az = by = 0 and c3 is determined by the
a;, bj. O

8.6. The automorphism group of Vo#Ss

Set A = Vo#Sy and write So = {e, g} as before. Example 7.5 shows that d(A/
C(A)) =px [Y3(X? —4Y)?)?2 ® e where X = 22 + ¢? and Y = 2%y

Because C(A) = E» is a PID, then any automorphism of A either preserves the factors
Y and X? —4Y or else it interchanges them (up to a scalar). Suppose ¢ € Aut(Vs). It
follows easily that deg(¢(Y)) < 4. If ¢ preserves the factors Y and X2 — 4Y, then
S(Y) = k1Y and (X2 — 4Y) = ky(X? — 4Y) for ki, ks € k*. We have

ko(X2 —4Y) = ¢(X? —4Y) = $(X)? — 4k, Y.

Thus, ¢(X)? = ko(X2—4Y) — 4k, Y. As Vs is a domain and the degree of the right-hand
side is at most 4, then the degree of ¢(X) is at most 2. A similar argument shows the
same result when ¢ interchanges the factors.
Lemma 8.6. Let ¢ € Aut(A), then p(1®g) =+(1®yg).
Proof. Write ¢(1®¢g) =a®e+b®g. We have (1®g)? =1®e, so

l®e=(a®e+b®g)* = (a®+b(g.b) ® e+ (ab+b(g.a)) @ g.
Hence, a®+b(g.b) = 1 and ab+b(g.a) = 0. Write a = ag+ay +- - - +ag where deg(ay) = k

and similarly for b. We have 0 = (ab+ b(g.a))o = 2apbo and 1 = (a? +b(g.b))o = a3 + b3.
Thus, either ag = £1 and by = 0, or by = +1 and ag = 0.
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Suppose ag = 1 and by = 0. The remaining cases are similar. Then 0 = (a®+b(g.b)); =
2a1, s0 a3 =0, and 0 = (ab + b(g.a)); = 2agby, so by = 0.
We proceed by induction. Suppose ay = b, =0 forall k =1,...,n — 1. Then

0= (a2 +b(g.b)n = ((ao + an)g)n = 2a¢Gy,,
so a,, = 0. Furthermore, 0 = (ab + b(g.a)), = 2agb,, so b, =0. O

Throughout, let ¢ € Aut(A4) and write p(z R e) =r e+ s® g.
As a consequence of the Lemma 8.6 we have

plyee)=9(1xg)r@e)(l®g) = (1 g)p(z®e)(1®g).
Hence,
plye)=(1g)(reet+s®g)(l®g)=gre+gs®g.

Moreover, z®¢g = (z®e€)(1®g) and y ® g = (y ® e)(1 ® g). Thus, the automorphism ¢
is completely determined by the choice of r and s.
Hence, we have the equations,

o((2® +y?) @e) = (r* + s(g.5) + g.r° + (9.5)s) ® e + (rs + s(g.r) + g.(rs)

+(g-5)r) @9, (8.7)
P((zy +yz)@e) = (r(gr) + s>+ (g.r)r + (g.5)°) @ e + (r(g.s) + sr + (g.r)s
+(9-5)(g-1)) ® g- (8.8)

Lemma 8.9. The degree zero components of v and s are zero.

Proof. Since zy+yxz = 0, one has 0 = ¢((zy +yz) ®e). By restricting (8.8) to the degree
zero component we find 72 + s = 0 and r9sp = 0. The result now follows. O

Lemma 8.10. Suppose deg(r) > deg(s) > 1, then s = 0. Similarly, if deg(s) > deg(r) > 1,
then r = 0.

Proof. Suppose deg(r) > deg(s) > 1 and write r = r; + - - - + rq where deg(ry) = k and
by hypothesis d > 1. Because ¢ is an automorphism, then deg(¢((z? + y?) ® €)) < 2, as
was noted before Lemma 8.6. By (8.7), (r? 4 s(g.5) + g.7% + (¢-5)s),,, = 0, then we have
72+ (g.rq)? = 0.

Because the action of g is diagonalizable, we can decompose 4 uniquely into a sum of
elements from the two weight spaces, so rq = r4 +r_ where g.rp =r; and g.r_ = —r_.
We then have

0= 7’3 + (g.rd)2 = 2(1"3_ + 7'3)

Because the weight spaces are disjoint, we conclude that rqy = 0.
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A similar argument holds in the case deg(s) > deg(r) > 1 but we use (8.8) instead
of (8.7). O

Write 7, = rp + g.rr and §; = s + g.Si so that both 7, and §; are fixed by the
action of g and 7 = 0 if and only if r;, belongs to the negative weight space. Since
(x +y)? = 22 + 9% in V5, then

2

d
¢((x2+y2)®e)=¢(($+y)®6)2: lZﬁk@@—i—&c@Q
k=1

Let ¢ € {2,...,d} be the largest degree such that the above expression is nonzero. Then

we have
0=(F®e+5®g)?
= (77 + 80(g-50)) @ e + (Fe8¢ + 50(g.70)) ® g
= (7] + 87) ® e+ (Pede + 80f0) ® g.
Each component must be zero and so (fy + §()2 = 0. Thus, 7y = —5§; but because

f% + §? = 0 then 7, = § = 0. Hence, all higher degree components of r and s are
contained in the negative weight space.

Write ¢p((z+y)®e) =u®e+v® g with u,v € V5. It follows from Lemma 8.10 that
d = deg(u) = deg(v). Moreover, uy, vy are contained in the negative weight space for
k > 1. Then we have

(2 +y)@e)=¢((x+y @e’) =[uvetvag’=(u-v)®ec+ (w—vu) 9.

Assume d > 1. In the top degree we have (uZ — v2) = 0 and (uqvg — vquq) = 0 so

(ug — vq)(ug +vq) = 0. Hence, ug = vy.

Case 1 (ug = vg). We claim uy = vy, for all k£ < d. Suppose this holds for some ¢ < d.

0=[u? =],y = [+ +ua) = (o4 00 gy

= [(ur+ - Fua)® = (v + - Fver Fug o)),
= Up—1Uq + UdUg—1 — Vg—1Ud — UdVe—1-

0 = [uv — vulg—r41 = [(ul+~~~ud)(v1+~~~+vd)f(v1+~~+vd)(u1+~~ud)}d_é+1
= [(ul‘i‘"'ud)(vl"’""f'vl—l+UZ+"'+Ud)_(U1+"'+W—1+U€+"'+Ud)(ul

+oua) ]y

= Up—1Ud + UJVp—1 — Vp—1Ud — UdUg—1-

Combining these gives
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0 = uque—1 — uque—1 = ug(te—1 — ve—1).
Hence, up_1 = vp_q.
Case 2 (uq = —vg). This case follows similarly to the above.

We conclude that u; = fv;. An identical argument holds for (z —y) ® e. Thus, there
exists a, 3,7, € k such that,

p(z+y)@e =alz+y)@e+y(z+y) @9
p((z+y)@gh=7@+y)@etalz+y) ®yg
P(z—y)@e)r=pa—y)®et+d(z—y)®
P(z—y)@gh=0z-y)®e+pz—-y ®

These elements generate the degree 1 component of V5 and so the following matrix must

be nonsingular,

a 0 v 0
7Y 0 a O
M=14g 3 0 &
0 6 0 8
But det(M) = —(8? — §?)(a? — 4?), a contradiction since the above argument gave us

a = +7. Note that we assumed above that we are in the case that ¢(1® g) =1 ® g but
the same argument works in the case ¢(1® g) = -1 ®g.
Write

p(x®e) = (a(z+y) +bx—y)®e+ (c(z+y) +dz—-y))@g.

Because ¢ is an isomorphism and the image of x ® e determines the isomorphism, then
a # +c and b # +d.

Theorem 8.11. Let ¢ € Aut(Va#S2) and write p(z @ e) = (ax +by) @ e+ (cx +dy) Q¢
for a,b,c,d € k. The parameters satisfy one of the three following conditions:

'aekx7b:C:d:0;
__d . _
e bdek, b#0,b# —d, a=—%,c=—d;
e c,dek, c#—d,a=+ 6242rd2 b=F cz+d2'

Proof. This is easily obtained by checking in Maple which parameters satisfy the defining
relation and give a bijective map. O
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