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1. Introduction

Throughout k is an algebraically closed, characteristic zero field and all algebras are 
k-algebras. All unadorned tensor products should be regarded as over k. Given an al-
gebra R, we denote by R× the set of units in R. If σ ∈ Aut(R), then Rσ denotes the 
subalgebra of elements of R that are fixed under σ. We denote the center of R by C(R).
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Automorphism groups of commutative and noncommutative algebras can be notori-
ously difficult to compute. For example, Aut(k[x, y, z]) is not yet fully understood. In [2], 
the authors give a method for determining the automorphism groups of noncommuta-
tive algebras using the discriminant. This was studied further in [3–6]. Discriminants of 
deformations of polynomial rings were computed using Poisson geometry in [11,13].

We refer the reader to [2] for the general definitions of trace and discriminant in the 
context of noncommutative algebras. We review the definitions only in the case that B
is an algebra finitely generated free over a central subalgebra R ⊆ C(B) of rank n.

Left multiplication defines a natural embedding lm : B → EndC(B) ∼= Mn(R). The 
usual matrix trace defines a map trint : Mn(R) → R called the internal trace. The regular 
trace is defined as the composition trreg : B lm−−→ Mn(R) trint−−−→ R. For our purposes, tr
will be trreg.

Let ω be a fixed integer and Z := {zi}ωi=1 a subset of B. The discriminant of Z is 
defined to be

dω(Z) = det(tr(zizj))ω×ω ∈ R.

If Z is an R-basis of B, then the discriminant of B over R is defined to be

d(B/R) =R× dω(Z),

where x =R× y means x = cy for some c ∈ R×.
The discriminant is independent of R-linear bases of B [2, Proposition 1.4]. Moreover, 

if φ ∈ Aut(B) and φ preserves R, then φ preserves the ideal generated by d(B/R) [2, 
Lemma 1.8].

Computing the discriminant is a computationally difficult task, even for algebras with 
few generators. For example, the matrix obtained from tr(zizj) for the skew group algebra 
k−1[x1, x2, x3]#S3 has size 288 × 288. Our first goal is to provide methods for obtaining 
the discriminant in cases where the algebra may be realized as an extension of a smaller 
algebra where computations may be easier.

If A is an algebra and σ ∈ Aut(A), then the Ore extension A[t; σ] is generated by A
and t with the rule ta = σ(a)t for all a ∈ A.

Theorem 1 (Theorem 6.1). Let A be an algebra and set S = A[t; σ], where σ ∈ Aut(A)
has order m < ∞ and no σi, 1 ≤ i < m, is inner. Suppose R is a central subalgebra of 
S and set B = R ∩ Aσ. If A is finitely generated free over B of rank n and R = B[tm], 
then S is finitely generated free over R and

d(S/R) =R× (d(A/B))m
(
tm−1)mn

.

We say an automorphism σ of A is inner if there exists a ∈ A such that xa = aσ(x) for 
all x ∈ A. This is not the standard definition of an inner automorphism but it agrees if a
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is a unit because then a−1ba = σ(b). Since a is normal and assuming A is a domain, one 
can localize at the Ore set of powers of a so as to get an inner automorphism in A[a−1]. 
When σk is an inner automorphism for some 1 ≤ k < m = |σ| then the center of A[t; σ]
can be larger than (C(A) ∩Aσ)[tm]. We denote the set of all inner automorphisms of A
by Inn(A). It is a routine verification that Inn(A) forms a subgroup of Aut(A).

Let A be an algebra and G a finite group that acts on A as automorphisms. Denote by 
kG the group algebra of G. The skew group algebra A#G has the underlying set A ⊗ kG

and multiplication defined by

(a⊗ g)(b⊗ h) = a(g.b) ⊗ gh for all a, b ∈ A, g, h ∈ G.

The natural embedding

A → A#G

a 
→ a⊗ e

where e is the identity of G, allows us to identify A with its image in A#G. If G contains 
no non-identity inner automorphisms and acts faithfully on A, then by Lemma 2.2, 
C(A#G) = C(A)G under the above identification.

Theorem 2 (Theorem 7.1). Let A be an algebra and G a finite group that acts on A
as automorphisms such that no non-identity element of G is inner. Set S = A#G and 
identify A with its image under the embedding a 
→ a ⊗e. Suppose A is a finitely generated 
free over the subalgebra R ⊆ C(A)G. Then S is finitely generated free over R and

d(S/R) =R× d(A/R)|G|.

The condition that A is a finitely generated free AG-module is satisfied in case A is a 
commutative polynomial ring and G is a group generated by reflections by the classical 
results of Chevalley [7] and Shephard–Todd [14]. Section 4 is devoted to showing that 
such discriminants may be computed in a manner similar to the discriminant of an 
algebraic number field; see Proposition 4.3.

Both Ore extensions (by an automorphism) and skew group algebras are examples 
of twisted tensor products. We prove a more general formula regarding discriminants of 
certain twisted tensor products from which the two previous theorems follow in Section 5. 
The necessary background for these results is in Sections 2 and 3. We then apply this 
result to the case of Ore extensions (Section 6) and skew group algebras (Section 7), 
as well as provide examples of each. Finally, in Section 8 we use Theorems 1 and 2 to 
compute the automorphism groups of some Ore extensions and skew group algebras. 
Many computations herein were assisted by routines in Macaulay2 using the NCAlgebra 
package.1

1 Available at http :/ /users .wfu .edu /moorewf.

http://users.wfu.edu/moorewf
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2. Twisted tensor products and monoid algebras

Let A and B be algebras and let τ : B ⊗ A → A ⊗ B be a k-linear homomorphism 
subject to the conditions that τ(b ⊗ 1A) = 1A ⊗ b and τ(1B ⊗ a) = a ⊗ 1B , a ∈ A, b ∈ B. 
A multiplication on A ⊗B is then given by μτ := (μA ⊗ μB) ◦ (idA ⊗τ ⊗ idB) where μA

and μB are the multiplication maps on A and B, respectively. By [1, Proposition 2.3], 
μτ is associative if and only if τ ◦ (μB ⊗ μA) = μτ ◦ (τ ⊗ τ) ◦ (idB ⊗τ ⊗ idA) as maps 
B ⊗B ⊗A ⊗A → A ⊗B. The triple (A ⊗B, μτ ) is a twisted tensor product of A and B, 
denoted by A ⊗τ B.

We are concerned with twisted tensor products when B is the monoid algebra of a 
monoid M that acts on A as automorphisms. Let M be a monoid and ρ : M −→ Aut(A)
a monoid homomorphism (so that ρ(mm′) = ρ(m)ρ(m′) and ρ(eM ) = idA where eM
denotes the identity of M). For m ∈ M and a ∈ A, we write ma for ρ(m)(a). For a 
monoid M , we let C(M) denote the center of M .

In this case, one may check that since ρ is a homomorphism, the assignment

τ : kM ⊗A −→ A⊗ kM

m⊗ a 
→ ma⊗m

extends linearly to a k-linear map that makes the multiplication μτ associative. We will 
denote such a twisted tensor product by A ⊗τ kM when the homomorphism ρ : M −→
Aut(A) is understood. We identify the elements of A, kM and M with their images in 
A ⊗τ kM under the canonical embeddings

A −→ A⊗τ kM ←− kM ←− M.

For such an action of a monoid M on an algebra A, we let AM denote the set

AM = {a ∈ A | ma = a for all m ∈ M}.

It is easy to check that AM is a subalgebra of A. Furthermore, since the center of an 
algebra is preserved under any automorphism, M acts on C(A) as well, so one may also 
consider C(A)M .

Remark 2.1. The two main applications of interest are Ore extensions (by an automor-
phism) and skew group algebras, and each fit into this framework. In the case of an Ore 
extension A[t; σ] for an automorphism σ of A, A[t; σ] ∼= A ⊗τ kN where ρ : N −→ Aut(A)
sends 1 to σ. Similarly, a finite group G acting on A as automorphisms is the same as a 
group homomorphism ρ : G −→ Aut(A), and one may check that A#G = A ⊗τ kG.
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To better explain some of the hypotheses we will need in our theorem regarding 
discriminants of twisted tensor products, we must discuss the center of A ⊗τ kM .

Lemma 2.2. Let A be an algebra, M a monoid that acts on A through the monoid 
homomorphism ρ : M −→ Aut(A), and H = ker ρ. Suppose that H ⊆ C(M) and 
im ρ ∩ Inn(A) = {idA}. Then C(A ⊗τ kM) = C(A)M ⊗ kH.

Proof. Let T = A ⊗τ kM and choose 
∑

m∈M am ⊗ m ∈ C(T ). Then for all x ∈ A we 
have ( ∑

m∈M

am ⊗m

)
(x⊗ eM ) =

∑
m∈M

am(mx) ⊗m.

On the other hand,

(x⊗ eM )
( ∑

m∈M

am ⊗m

)
=

∑
m∈M

xam ⊗m.

Since M acts as automorphisms, each nonzero am is a normal element corresponding to 
the automorphism induced by m. This implies that if am 
= 0, then m induces an inner 
automorphism of A, and hence by hypothesis m ∈ ker ρ. Note that in this case it also 
follows that am ∈ C(A), so that each term in the sum 

∑
m∈M am ⊗m has am ∈ C(A)

and m ∈ H.
Now for all m′ ∈ M , one has

( ∑
m∈H

am ⊗m

)
(1 ⊗m′) =

∑
m∈M

am ⊗mm′.

On the other hand,

(1 ⊗m′)
( ∑

m∈H

am ⊗m

)
=

∑
m∈M

m′am ⊗m′m

=
∑
m∈M

m′am ⊗mm′

where the second equality follows since H ⊆ ker ρ. Therefore we have that m′am = am
for all m′ ∈ M , hence am ∈ C(A)M . The claim now follows. �

We note that the hypothesis H ⊆ ker ρ in Lemma 2.2 is trivially satisfied when 
M is a group and M acts faithfully on A (as is the case in most skew group algebra 
computations), as well as when N acts on A as an automorphism σ (as in the Ore 
extension case).
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The hypothesis im ρ ∩ Inn(A) = {idA} is a bit more restrictive however. Indeed, 
extending Lemma 2.2 to the case where a non-identity element of M acts as an inner 
automorphism is nontrivial in general, but can be done for an Ore extension of a domain. 
For an automorphism σ of A we define

N(σ) = {a ∈ Aσ : xa = aσ(x) for all x ∈ A}.

Note that N(σ) = {0} when σ is not an inner automorphism induced by an element 
of Aσ, N(1A) = Aσ ∩ C(A), and if |σ| = m then N(σ�) = N(σi), where � ≡ i mod m.

Lemma 2.3. Let A be a domain, σ an automorphism of A with |σ| = m, and set S =
A[t; σ]. Then C(S) = ⊕N(σi)[ti], where N(σi) is nonzero if σi an inner automorphism 
induced by an element of Aσ.

Proof. The containment ⊇ is clear, so suppose 
∑

ait
i ∈ C(S); then by the t-grading, 

ait
i ∈ C(S) for each i. Hence,

(
σ(ai)ti

)
t = t

(
ait

i
)

=
(
ait

i
)
t.

Thus σ(ai) = ai for each i, so that ai ∈ Aσ. For aiti ∈ C(S) and any b ∈ A, we 
have baiti = ait

ib = aiσ
i(b)ti. Because S is a domain, then bai = aiσ

i(b) for all i, and 
ai ∈ N(σi). Hence, for i 
≡ 0 mod m we have that σi is a non-identity inner automorphism 
induced by ai. �

Before closing this section, we will need a lemma that characterizes when an extension 
of a monoid algebras is a free extension. Before stating the lemma, we need a definition.

Definition 2.4. A monoid M is left cancellative provided for all a, b, c ∈ M , the equality 
ab = ac implies that b = c. One similarly defines right cancellative monoid, and M is 
called cancellative if M is both left and right cancellative.

Lemma 2.5. Let H be a submonoid of a cancellative monoid M , and let B = {m1, . . . , m�}
be a subset of M . Then B is a basis of kM as a left (respectively right) kH-module if 
and only if the right (respectively left) cosets of H represented by all the elements of B
are disjoint, and M is the union of the right (respectively left) cosets of H represented 
by all the elements of B.

Proof. Note that B is a basis of kM as a left kH-module if and only if for each m ∈ M

there exists a unique h ∈ H and 1 ≤ i ≤ � such that m = hmi. This is precisely the 
statement that the right cosets of H by all the elements of B are disjoint and cover M . �

A source of examples of cancellative monoids are submonoids of groups. We record 
here a lemma that we will use later regarding extensions of monoid algebras in this 
context.
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Lemma 2.6. Let M be a monoid which embeds in a group G, K a group, ρ : G −→ K

a group homomorphism, and H = ker ρ ∩ M . Suppose that, for all g ∈ ker ρ, one has 
g ∈ M or g−1 ∈ M . Then:

(a) For all m1, m2 ∈ M , ρ(m1) = ρ(m2) if and only if either Hm1 ⊆ Hm2 or Hm2 ⊆
Hm1, and similarly for left cosets.

(b) Suppose that kM is a free left or right kH-module with basis {m1, . . . , m�} with 
mi ∈ M and m1 = eM . Then for every j = 1, . . . , �, there exists a unique i such that 
mimj ∈ H.

Proof. We prove each of the claims in the case of right cosets and a left module structure 
as in Lemma 2.5.

It is easy to see that either containment of cosets above implies ρ(m1) = ρ(m2). 
Conversely, suppose that ρ(m1) = ρ(m2). Then m1m

−1
2 ∈ ker ρ so by hypothesis either 

m1m
−1
2 ∈ H or m2m

−1
1 ∈ H. In the first case, one has Hm1 ⊆ Hm2 and in the second 

case, one has Hm2 ⊆ Hm1, proving part (a).
For the second claim, Lemma 2.5 shows that given any element m ∈ M , there exists 

a unique i such that m ∈ Hmi. We will denote the assignment m 
→ mi by the notation 
rep(m). Fix 1 ≤ j ≤ n and consider the following function defined on the cosets:

Φj : {Hm1, . . . , Hm�} → {Hm1, . . . , Hm�}

Hmi 
→ H rep(mimj).

Suppose that Φj(mi) = Φj(mi′). Then one has that mimj and mi′mj are in the same 
coset Hmk for some k. It follows that ρ(mi) = ρ(mi′) and hence by part (a) one has 
that Hmi and Hmi′ intersect nontrivially. Therefore by Lemma 2.5 one has mi = mi′ . 
This shows that Φj is one-to-one and hence onto. Since we chose m1 = eM , one of the 
cosets is H hence given any j, there is a unique i such that mimj ∈ H as claimed. �

Note that N is a submonoid of the group Z that intersects every subgroup of Z
nontrivially, and hence fits into the framework of each of the two previous lemmas. 
Furthermore, if M is a group then each of the two lemmas’ hypotheses hold trivially. 
Therefore, these hypotheses are not restrictive from the point of view of our intended 
applications.

3. Background on discriminants

In this section, we assume that A/B is a free extension of algebras with B ⊆ C(A).

Notation 3.1. Suppose σ ∈ Aut(A) and that σ restricts to the identity on B. Then 
σ : A −→ A is a B-module homomorphism. Therefore, given a basis {x1, . . . , xg} of A as 
a B-module, we can represent σ using a matrix with entries in B which we denote Xσ. 
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That is, if x ∈ A and the coordinate vector of x with respect to the chosen basis is x, 
then σ(x) = Xσx. Note that the determinant of Xσ is independent of the chosen basis 
of A over B, and is an element of B×. We therefore denote detXσ by detA/B σ.

If ρ : M −→ Aut(A) is a monoid homomorphism and m ∈ M , we write Xm and 
detA/B m to denote Xρ(m) and detA/B ρ(m), respectively.

In the following definition we consider σ ∈ Aut(A) that restricts to the identity on 
B to twist the standard trace pairing. This will be necessary for our calculations that 
appear in Section 5. Recall that for an algebra A, we use μA to denote multiplication 
on A.

Definition 3.2. Let σ ∈ Aut(A) such that σ restricts to the identity on B. Define the trace 
form of the extension A/B twisted by σ (denoted trA/B,σ) to be the B-bilinear pairing 
given by the composition

trA/B,σ : A×A
idA ×σ−−−−−→ A×A

μA−−→ A
tr−→ B.

That is, trA/B,σ(y, z) = tr(yσ(z)). In the case σ = idA, we use trA/B to denote trA/B,idA
.

Note that trA/B,σ(y, z) = trA/B,σ(σ(z), σ−1(y)), so that this bilinear pairing need not 
be symmetric for a general σ, but it is symmetric if σ = idA.

Notation 3.3. Given a basis {x1, . . . , xg} of A as a B-module, the matrix of trA/B,σ with 
respect to this basis is Wσ = (tr(xiσ(xj)))ij . In this way, if y and z have representatives 
in the above basis given by vectors y and z, then trA/B,σ(y, z) = yTWσz. We let W
denote the matrix WidA

.

Definition 3.4 ([2]). For a free extension A/B, we define the discriminant of A over B
to be determinant of the matrix W representing the trace pairing trA/B with respect to 
some chosen basis of A over B, as in Notation 3.3.

Lemma 3.5. Let A/B be a free extension of algebras, let σ ∈ Aut(A) restrict to the identity 
on B, and let {x1, . . . , xg} be a basis of B over A. Then using the same notation appearing 
in 3.1 and 3.3, one has Wσ = WXσ and therefore det(Wσ) = det(W ) detA/B σ.

Proof. Let y and z be elements of A, with representations y and z in the chosen ba-
sis, respectively. Then since trA/B,σ = trA/B ◦(idA ×σ) one has the following string of 
equalities from which the claim follows:

trA/B,σ(y, z) = trA/B(y, σ(z)) = yTWXσz. �
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4. Discriminants and reflections

In this section, we collect some results from classical commutative invariant theory 
that we will need for our examples. We prove that when G is a group generated by 
reflections acting on the polynomial ring A = k[x1, . . . , xn], the discriminant of the 
extension A/AG may be computed in a manner similar to the formula for the discriminant 
of an algebraic number field, cf. [12, Proposition 2.26]. Recall that our field k is of 
characteristic zero.

Let σ ∈ GLn(k). Recall that σ is a reflection if σ is of finite order and fixes a codi-
mension one subspace of the vector space of linear forms in A. Denote the quotient field 
of a domain S by Q(S).

Theorem 4.1. Let A = k[x1, . . . , xn] and G ⊆ GLn(k) a finite group generated by reflec-
tions that acts on A as automorphisms. Then:

(1) The invariant ring AG = k[f1, . . . , fn] is a graded subalgebra of A, with the fi alge-
braically independent.

(2) One has 
∏
i

deg(fi) = |G|.

(3) A is free as an AG-module of rank |G|.
(4) Q(AG) = Q(A)G, where the action of G on Q(A) is induced from the action of G

on A.

Proof. The first claim is the Shephard–Todd–Chevalley theorem. The second claim 
is well-known, see [15, Corollary 4.4]. The third claim follows from a Hilbert series 
computation, and the last statement follows from considering the Galois extension 
Q(A)/Q(A)G. �
Lemma 4.2. Let A = k[x1, . . . , xn] and G ⊆ GLn(k) a finite group generated by reflections 
that acts on A as automorphisms. Then for all f ∈ A, one has

trA/AG(f) = trQ(A)/Q(AG)(f) =
∑
σ∈G

σ(f).

Proof. The extension Q(A)/Q(A)G = Q(A)/Q(AG) is Galois, and hence we have that 
the usual trace map

trQ(A)/Q(AG) f =
∑
σ∈G

σ(f) ∈ Q(AG)

may be computed by the trace of the Q(AG)-linear map θQ(A)
f : Q(A) −→ Q(A) given 

by multiplication by f . Since for all f ∈ A, one has θQ(A)
f = θAf ⊗AG Q(AG), we have the 

desired result. �
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The following proposition is useful in computations involving discriminants of exten-
sions of commutative polynomial rings, since in practice the matrix W from Notation 3.3
can be time-consuming to obtain directly. This result is reminiscent of the formula for 
the discriminant of an algebraic number field K in terms of the square of the determinant 
of the matrix whose entries correspond to the evaluations of an integral basis of OK at 
the different embeddings of K into C.

Proposition 4.3. Let A = k[x1, . . . , xn] and G = {σ1, . . . , σg} ⊆ GLn(k) a finite group 
generated by reflections. Let {z1, . . . , zg} be a basis of A as an AG-module, W be the 
matrix of the trace form of the extension A/AG with respect to this basis, and let M be 
the matrix (σi(zj)). Then W = MTM . As a consequence, one has d(A/AG) = (detM)2.

Proof. One has that

(MTM)ij =
∑
k

σk(zi)σk(zj) =
∑
k

σk(zizj) = tr(zizj) = Wij .

The claim regarding the discriminant of the extension A/AG follows since detW =
d(A/AG). �

We record a corollary of this proposition when G is generated by a single reflection 
for later use.

Corollary 4.4. Let A = k[x1, . . . , xn] and let σ be a reflection of order m. Let Aσ be the 
set of elements of A left invariant by σ, and let f be a linear form such that σ(f) = ξf

for some primitive mth root of unity ξ. Then d(A/Aσ) =k× f (m−1)m.

Proof. After a change of variable, we have A = k[f, y2, . . . , yn] with σ(f) = ξf and 
σ(yi) = yi. Therefore, Aσ = k[fm, y2, . . . , yn] and hence a basis for A over Aσ is 
{1, . . . , fm−1}. The matrix M from the above proposition is therefore a Vandermonde 
matrix on the elements {f, ξf, ξ2f, . . . , ξm−1f}. Therefore by Proposition 4.3 we have 
that

detW =

⎛
⎝∏

i<j

(ξif − ξjf)

⎞
⎠

2

=k× f2
(m
2
)
= f (m−1)m. �

Corollary 4.5. Let S be an algebra, A = S[t], and R = S[tm], m ∈ Z>0. Then d(A/R) =k×

(tm−1)m.

Proof. This follows by applying Corollary 4.4 to the automorphism σ of A defined by 
σ(t) = ξt where ξ is a primitive mth root of unity. �
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Example 4.6. Let A = k[x1, x2, x3] and G = S3, the symmetric group acting as permu-
tations of xi. A basis for A over AG is {1, x1, x2, x2

1, x1x2, x2
1x2} (this is well-known, see 

e.g. [10, Proposition V.2.20]). Let M = (σi(zj)) so that

M =

⎛
⎜⎜⎜⎜⎜⎝

1 x1 x2 x2
1 x1x2 x2

1x2
1 x2 x1 x2

2 x1x2 x1x
2
2

1 x3 x2 x2
3 x2x3 x2x

2
3

1 x1 x3 x2
1 x1x3 x2

1x3
1 x2 x3 x2

2 x2x3 x2
2x3

1 x3 x1 x2
3 x1x3 x1x

2
3

⎞
⎟⎟⎟⎟⎟⎠ .

It can be checked that the determinant of M is the cube of the Vandermonde determinant 
on the set {x1, x2, x3} and so it follows from Proposition 4.3 that

d(A/AG) =

⎡
⎣∏
i<j

(xi − xj)

⎤
⎦

6

.

In light of the Example 4.6, we conjecture that the following question has an affirma-
tive answer.

Question 4.7. Suppose G = Sn acts on A = k[x1, . . . , xn] as permutations. Is the dis-
criminant of A over AG the Vandermonde determinant on {x1, . . . , xn} to the power n!?

5. Discriminants of twisted tensor products

In this section, we prove the main theorem that allows us to calculate discriminants 
for certain Ore extensions and skew group algebras.

Theorem 5.1. Let A be an algebra, M a submonoid of a group G, and suppose ρ :
G −→ Aut(A) is a group homomorphism such that im(ρ|M ) ∩ Inn(A) = {idA} and 
H := ker ρ ∩M ⊆ C(M). Set T = A ⊗τ kM , and suppose R is a central subalgebra of T
such that:

(a) A is free over A ∩R of rank n < ∞,
(b) R = (A ∩R) ⊗ kH, and
(c) there exists a basis {m1, . . . , m�} of kM over kH with m1 = eM and mi ∈ M (cf.

Lemma 2.5).

Then:

d(T/R) =
(
d(A/A ∩R)

)� (
d(kM/kH)

)n

.
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Remark 5.2. By Lemma 2.2, C(A ⊗τ kM) = C(A)M ⊗kH. Since R ⊆ C(A ⊗τ kM), then 
assuming (b) in Theorem 5.1 one has A ∩R = C(A)M ∩R.

Before giving the proof of Theorem 5.1, we need one more lemma:

Lemma 5.3. Under the hypotheses of Theorem 5.1, T is free over R. Furthermore, for 
all a ∈ A and m ∈ M , one has

tr(a⊗m) =
{

tr(a) ⊗ tr(m) if m ∈ H

0 otherwise.

Proof. Let B = A ∩R = C(A)M ∩R, and let {x1, . . . , xn} be a basis of A over B. Then

{xi ⊗mj | 1 ≤ i ≤ n and 1 ≤ j ≤ �}

is a basis of T over R. Recall that for a fixed 1 ≤ α ≤ n and 1 ≤ β ≤ �, one has

(a⊗m)(xα ⊗mβ) = a(mxα) ⊗mmβ . (5.4)

Consider the coefficient cαβ ∈ R of xα ⊗ mβ when writing the product in (5.4) in the 
{xi⊗mj} basis. If cαβ 
= 0, then hypothesis (b) implies that cαβ would have a summand 
of the form a′ ⊗m′ for some m′ ∈ H such that mmβ = m′mβ . Since M is cancellative, 
one has m ∈ H.

For the case m ∈ H, write axα =
∑n

i=1 riαxi for some riα ∈ A ∩ R and mmβ =∑�
j=1 r

′
jβmj for some r′jβ ∈ kH. Then one has

(a⊗m)(xα ⊗mβ) = axα ⊗mmβ

=
n∑

i=1

�∑
j=1

(riα ⊗ r′jβ)(xi ⊗mj).

Therefore the trace of the map given by left multiplication of a ⊗m satisfies

tr(a⊗m) =
n∑

α=1

�∑
β=1

(rαα ⊗ r′ββ) =
( n∑

α=1
rαα

)
⊗

( �∑
β=1

r′ββ

)
= tr(a) ⊗ tr(m). �

Proof of Theorem 5.1. Using the same notation in the proof of Lemma 5.3, we have that

{xi ⊗mj | 1 ≤ i ≤ n and 1 ≤ j ≤ �}

is a basis of T over R. List this basis in the order

{x1 ⊗m1, . . . , xn ⊗m1, x1 ⊗m2, . . . , xn ⊗m2, . . . , x1 ⊗m�, . . . , xn ⊗m�}.
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One may then think of the trace matrix corresponding to this ordered basis of T over R
as an m ×m block matrix with blocks of size n × n, where the block is determined by 
index on the {mj} basis used.

Since (xi ⊗mj)(xi′ ⊗mj′) = xi(mjxi′) ⊗mjmj′ , Lemma 5.3 shows that the (j, j′)th
block entry is the zero matrix whenever mjmj′ /∈ H. By Lemma 2.6 there is exactly one 
mj′ such that mjmj′ ∈ H. In addition, one has that when mjmj′ ∈ R∩M , the (j, j′)th
block entry is Wmj

tr(mjmj′), where Wmj
is as in Notation 3.3. By Lemma 3.5 we have 

that the determinant of Wmj
is (up to a unit in B) the determinant of the matrix W of 

the trace form of A over B, which by definition is the discriminant d(A/B).
Therefore up to a unit in B, the determinant of the matrix of the trace form of T

over R is the determinant of the matrix that is the Kronecker product of the matrices of 
the trace forms of A over B and of kM over kH. The claim now follows from the usual 
formula for the determinant of a Kronecker product of two matrices. �
Example 5.5. Let A = k[x1, . . . , xn] and σ ∈ Aut(A) defined by σ(x1) = ξx1, ξ a primitive 
sixth root of unity, and σ(xi) = xi for i = 2, . . . , n. Then Aσ = k[x6

1, x2, . . . , xn] and 
d(A/Aσ) = x30

1 by Corollary 4.4.
Let ρ : N → Aut(A) be the monoid homomorphism sending 1 to σ as in Remark 2.1

and let M be the submonoid of N generated by {2, 3}. By restriction, ρ : M → Aut(A)
satisfies ker ρ = {6k | k ∈ N} ⊆ C(M) and im ρ ∩Inn(A) = {idA}. Clearly, kM ∼= k[t2, t3]
and kH ∼= k[t6]. A basis for k[t2, t3] as a module over k[t6] is {1, t2, t3, t4, t5, t7} and a 
direct computation shows that d(kM/kH) =k× t42.

Consider the twisted tensor product T = A ⊗τ k[t2, t3] and let R = Aσ ⊗ k[t6]. By 
Theorem 5.1, we have

d(T/R) = d(A/Aσ)6(d(kM/kH))6 =k× (x30
1 t42)6.

6. Discriminants of Ore extensions

In this section, we apply Theorem 5.1 to the case of an Ore extension. Recall that by 
Remark 2.1, Ore extensions are a special case of the twisted tensor products studied in 
Sections 2 and 5.

Theorem 6.1. Let A be an algebra and set S = A[t; σ], where σ ∈ Aut(A) has order 
m < ∞ and no σi, 1 ≤ i < m, is inner. Suppose R is a central subalgebra of S and set 
B = R ∩ Aσ. If A is finitely generated free over B of rank n and R = B[tm], then S is 
finitely generated free over R and

d(S/R) =R× (d(A/B))m
(
tm−1)mn

.

Proof. We claim that the hypotheses imply those of Theorem 5.1. We view N as a 
submonoid of the additive group of the integers and ρ : Z → Aut(A) as the group 
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homomorphism sending 1 to σ. Then S ∼= A ⊗τ kN. Since σi is not inner for any i 
= km, 
k ∈ Z, then im(ρ |N) ∩ Inn(A) = {idA} and ker ρ = {km | k ∈ Z}. Set H = ker ρ ∩ N =
{km | k ∈ N}, then {1, . . . , m − 1} is a basis for kN over kH implying Theorem 5.1 (c). 
The hypothesis that A is free over B of rank n is equivalent to Theorem 5.1 (a). By 
Lemma 2.2, R = B[tm] = (A ∩ R) ⊗ kH. Hence, Theorem 5.1 (b) is satisfied. The 
formula now follows from Theorem 5.1 and Corollary 4.5. �
Corollary 6.2. Let A = k[x1, . . . , xn] and σ be a reflection of order m. Let f be a lin-
ear form that satisfies σ(f) = ξf where ξ is a primitive mth root of unity. Then the 
discriminant of the Ore extension A[t; σ] is (up to scalar) f (m−1)m2

t(m−1)m2 .

Proof. This follows from applying Corollary 4.4 and using the Ore extension discriminant 
formula from Theorem 6.1. �

As test cases, we consider Ore extensions of the ordinary polynomial ring, the 
(−1)-skew polynomial ring

Vn = k−1[x1, . . . , xn],

and the (−1)-skew Weyl algebra

Wn = k〈x1, . . . , xn | xixj + xjxi = 1 for i 
= j〉.

Note that gr(Wn) = Vn.

Example 6.3 ([2, Example 1.7]). V2 is the Ore extension k[x][y; σ] where σ(x) = −x and 
C(V2) = k[x2, y2]. Clearly k[x] is free over k[x]σ = k[x2] and d(k[x]/k[x2]) =k× x2 by 
Corollary 4.5. By Theorem 6.1,

d(V2/C(V2)) =k× (x2)2(y)4 = x4y4.

Example 6.4. By [2, Lemma 4.1 (3)],

C(Vn) =
{
k[x2

1, . . . , x
2
n] if n is even

k[x2
1, . . . , x

2
n,
∏

i xi] if n is odd.

Set Cn = k[x2
1, . . . , x

2
n] regardless of whether n is even or odd. In either case, Vn is finitely 

generated free over Cn; this is proved in [2, Lemma 4.1 (4)] for n even but the proof 
applies equally well when n is odd. However, in the case n is odd we do not obtain useful 
information about the automorphism group of Vn because a given automorphism may 
not fix Cn. Regardless, we use Theorem 6.1 to inductively compute
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d(Vn/Cn) =k×

(
n∏

i=1
x2
i

)2n−1

. (6.5)

This gives an alternate method for obtaining the discriminant in [2, Theorem 4.9 (1)].
The case n = 2 follows from Example 6.3. Suppose (6.5) holds for some n and set 

S = Vn[xn+1; σ] where σ(xi) = −xi for i = 1, . . . , n. If n is odd, then σ does not fix ∏
i xi. Hence, C(Vn) ∩ V σ

n = Cn in both cases when n is even or odd, and Vn is finitely 
generated free over Cn of rank 2n. Thus, by Theorem 6.1,

d(S/Cn+1) = d(Vn/Cn)2(2xn+1)2·2
n

=k×

(
n+1∏
i=1

x2
i

)2n

.

Example 6.6. Let A = k[x, y] and σ ∈ Aut(A) defined by σ(x) = y and σ(y) = x. Let 
S = A[t; σ].

We have |σ| = 2 and σ is not an inner automorphism. Since A is commutative, 
C(A)σ = Aσ = k[x + y, xy]. Thus C(S) = Aσ[t2]. A basis for A over Aσ is {1, x}. An 
easy computation shows that

tr(1) = 2, tr(x) = x + y, tr(x2) = x2 + y2.

Thus, the trace matrix for A over Aσ is(
2 x + y

x + y x2 + y2

)

and so d(A/Aσ) = (x − y)2. By Theorem 6.1,

d(S/C(S)) =k×
(
(x− y)2

)2 (
t2
)2 = (x− y)4t4.

The discriminant of S/C(S) is not dominating in the sense of [2, Definition 2.1].
The discriminant computation above can also be seen by observing that S ∼=

k(pi,j)[x1, x2, x3] where p2,3 = p3,2 = −1 and all other pi,j = 1. The isomorphism is given 
by x1 ↔ x + y, x2 ↔ x − y, and x3 ↔ t. S is free over its center C(S) = k[x1, x2

2, x
2
3], 

and the discriminant (up to a constant) is D = x4
2x

4
3 [3, Proposition 2.8].

Question 6.7. If we instead take σ ∈ Aut(V2) given by σ(x) = −y, σ(y) = x and set 
S = A[t; σ] so that S satisfies

xy = −yx, tx = yt, ty = −xt,

what is the discriminant d(S/C(S))?
Changing to generators that include the eigenvectors of σ does not give a skew-

polynomial ring (as it did in the previous example). Because σ2 is inner, Theorem 6.1
does not apply. In particular, C(S) = k[x2 + y2, x2y2, xyt2, t4] is not a UFD.
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We are interested in the Ore extension W2[t; σ] with σ(x) = y and σ(y) = x. Because 
gr(W2) = V2, the discriminant d(V2/C(V2)σ) is a filtered version of the discriminant 
of d(W2/C(W2)σ). The Macaulay2 routines are not currently equipped to handle the 
computations for this discriminant. Instead, we pass to the homogenization of W2.

For each 1 ≤ i ≤ n, fix deg(xi) ∈ Z
+. This defines a N-grading on k〈x1, . . . , xn〉. If 

f =
∑d

i=0 fk where fk is the homogeneous component of f with deg(fk) = k and fd 
= 0, 
then the homogenization of f by the central indeterminate t is then H(f) =

∑d
i=0 fkt

d−k

where d = deg(f). It is clear that H(f) is homogeneous in the ring k〈x1, . . . , xn〉[t] where 
t has been assigned degree 1.

Suppose A is an algebra generated by {x1, . . . , xn} subject to the relations r1, . . . , rm
and such that deg(xi) > 0. The homogenization H(A) of A is the algebra on the generators 
{t, x1, . . . , xn} subject to the homogenized relations H(ri), i = 1, . . . , m, as well as the 
additional relations txj − xjt, 1 ≤ j ≤ n.

Theorem 6.8. Suppose A is an algebra generated by {x1, . . . , xn} subject to the relations 
r1, . . . , rm and such that deg(xi) > 0. If A is finitely generated free over a central subal-
gebra R, then H(A) is finitely generated free over H(R) and

d(H(A)/H(R)) =(H(R))× H(d(A/R)).

Proof. Suppose A (and hence H(A)) is generated in degree 1. This is easily generalized 
to other cases. There is an isomorphism H(A)[t−1] → A[t±1] fixing t and for i = 1, . . . , n, 
xi 
→ t−1xi. By [6, Lemma 1.3] and [2, Lemma 3.1]

d(H(A)[t±1]/R[t±1]) =(R[t±1])× d(A[t]/R[t]) =(R[t])× d(A/R).

Tracing back through the isomorphism and clearing fractions gives the result. �
Example 6.9. Let A = W2, the 2-dimensional (−1)-quantum Weyl algebra A = k〈x, y |
xy + yx = 1〉. Note that C(A) = k[x2, y2]. By [6, Theorem 0.1], d(A/C(A)) =k×(
4x2y2 − 1

)2.
It follows from [9, Proposition 2.8] that C(H(A)) = k[x2, y2, t]. Hence, by Theorem 6.8

d(H(A)/C(H(A))) =k×
(
4x2y2 − t4

)2
.

Example 6.10. Let A be as in the previous example and let σ be the automorphism 
x ↔ y. Then gr(A) = V2 and C(A) = C(V2) = k[x2, y2]. Moreover, C(A)σ = C(V2)σ =
k[x2 + y2, x2y2]. Extend σ to H = H(A) by σ(t) = t. Then C(H)σ = k[x2 + y2, x2y2, t]
so rank(A/C(A)σ) = rank(H/C(H)σ) = 8. Let X = x2 +y2, Y = x2y2, and T = t. Then

d(H/C(H)σ) =k× (4Y − T 4)4(X2 − 4Y )4.

By [3, Proposition 4.7],
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d(A/C(A)σ) =k× (4Y − 1)4(X2 − 4Y )4, and

d(V2/C(V2)σ) =k× Y 4(X2 − 4Y )4.

7. Skew group algebras

Theorem 7.1. Let A be an algebra and G a finite group that acts on A as automorphisms 
such that no non-identity element of G is inner. Set S = A#G and identify A with its 
image under the embedding a 
→ a ⊗ e. Suppose A is a finitely generated free over the 
subalgebra R ⊆ C(A)G. Then S is finitely generated free over R and

d(S/R) =R× d(A/R)|G|.

Proof. This follows almost immediately from Theorem 5.1. By hypothesis, there is a 
map ρ : G → Aut(A), im ρ ∩ Inn(A) = {idA}, and H = ker ρ = {eG}. Our hypotheses 
directly imply (a) and (b) in Theorem 5.1. Because the elements of G form a basis of 
k[G], we have � = |G|. �
Example 7.2. Let A = k[x1, x2, x3] and G = S3, the symmetric group acting as permu-
tations of xi. By Example 4.6,

d(A/AG) =

⎡
⎣∏
i<j

(xi − xj)

⎤
⎦

6

.

Set S = A#G and R = AG identified both in A and in C(S). It follows from Theorem 7.1
that

d(S/R) =R×

⎡
⎣∏
i<j

(xi − xj)

⎤
⎦

36

⊗ e.

We are interested in the skew group algebra Vn#Sn where Sn is the symmetric group 
on n letters acting as permutations on the xi. We have that C(Vn#Sn) may be identified 
with C(Vn)Sn . In the case when n is even we can describe this center explicitly.

Lemma 7.3. Let Sn act on Vn as permutations of the variables and let Inn(Vn) denote the 
set of inner automorphisms induced by normal elements of Vn. Then Sn∩Inn(Vn) = {e}.

Proof. Let σ be a nontrivial permutation of {1, . . . , n}, and suppose that σ is an inner 
automorphism induced by the normal element a ∈ Vn. Choose i such that σ(i) 
= i. Then 
if one considers the equality axi = xσ(i)a, one sees this is impossible since the set of 
monomials that appear on the left hand side is disjoint from the set of monomials which 
appear on the right hand side. �
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Lemma 7.4. Let En = k[e1, . . . , en] where the ei are the elementary symmetric functions 
in the x2

1, . . . , x
2
n. If n is even, then C(Vn)Sn = En and Vn is free over En of order 2nn!. 

Consequently, Vn#Sn is finitely generated free over its center of order 2n(n!)2.

Proof. The elementary symmetric functions satisfy deg ei = 2i. Set En = k[e1, . . . , en]. 
We claim

rank(Vn/En) = 2nn!.

The Hilbert series of Vn is HVn
(t) = 1/(1 − t)n while that for En is

HEn
(t) = 1

(1 − t2)(1 − t4) · · · (1 − t2n) .

Let Hn(t) = HVn
(t)/HEn

(t) and assume inductively that Hn(1) = 2nn!. This clearly 
holds in the case n = 1. Thus,

Hn+1(t) = (1 − t2)(1 − t4) · · · (1 − t2(n+1))
(1 − t)n+1 = Hn(t) · (1 − t2(n+1))

1 − t

= Hn · (1 + tn+1)(1 + t + t2 + · · · + tn).

Hence, Hn+1(1) = Hn(1) · 2 · (n + 1) = 2n+1(n + 1)!. Since Vn#Sn has rank n! over Vn

it follows that it has rank 2n(n!)2 over En.
Freeness follows from the Auslander–Buchsbaum formula. Since En is a polynomial 

ring then pdEn
(Vn) = depthEn

(Vn) − depth(En) = 0.
That the center of Vn#Sn is generated by the elementary symmetric functions fol-

lows from [2, Lemma 4.1 (3)] and Lemma 2.2 as no element of Sn acts as an inner 
automorphism by Lemma 7.3. �

When n is odd the center of Vn is not a polynomial ring and it follows that C(Vn#Sn)
is also not a polynomial ring.

Example 7.5. Let S2 act on V2 as above and set S = V2#S2. Then E2 = C(S) = k[X, Y ]
where X = x2+y2 and Y = x2y2. Since d(V2/E2) = Y 2(X2−4Y )2, then by Theorem 7.1, 
d(S/C(S)) =k× [Y 2(X2 − 4Y )2]2 ⊗ e.

8. Automorphism groups

In this section we apply our results on the discriminant to compute explicitly the 
automorphism groups in several cases.
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8.1. An Ore extension of k[x, y]

Let A = k[x, y] and σ ∈ Aut(A) defined by σ(x) = y and σ(y) = x. Let S = A[t; σ], 
so that S satisfies the relations

xy = yx, tx = yt, ty = xt.

By Example 6.6, f := d(S/C(S)) = 16(x − y)4t4. Set X = x + y, Y = xy, and T = t2, 
so that f = 16(X2−4Y )2T 2. Any automorphism of S preserves the center and hence the 
discriminant up to scalar. Because the center is a UFD, we have that any automorphism 
either preserves the factors (X2 − 4Y ) and T , or else it interchanges them (up to a 
scalar).

Proposition 8.1. With notation above, Aut(S) consists of maps of the following form 
(a, b, c ∈ k

×, d ∈ k).
(
x
y
t

)

→

(
a b 0
b a 0
0 0 c

)(
x
y
t

)
+
(
d
d
0

)
,

(
x
y
t

)

→

(
a a −b
a a b
−c c 0

)(
x
y
t

)
+

(
d
d
0

)
.

Proof. Let g ∈ Aut(S) and suppose g preserves the factors (up to scalar multiple). 
Then deg(g(X2)) ≤ 2 so deg(g(X)) = 1. Similarly, deg(g(Y )) = 2 so deg(g(x)) =
deg(g(y)) = 1. Moreover, deg(g(T )) = 2 so deg(g(t)) = 1 and t is mapped to a scalar 
multiple of itself. Thus, we reduce to a linear algebra problem and conclude that all such 
g have the first form above.

A similar argument follows in the case that g interchanges the factors. These auto-
morphisms have the second form above. �

All automorphisms of A are triangular, in the sense of [2, Theorem 3(2)]. The auto-
morphisms of A are (−1)-affine [3, Definition 1.7], but not affine. A is a skew-polynomial 
ring that satisfies H2, but not H1 of [3, p. 12]. We conjecture that Aut(A) is not tame, 
note that [3, Proposition 4.5] does not apply because g(X) can contain a constant. (See 
the definitions of elementary and tame on p. 3 of [3].)

8.2. An Ore extension of V2

Let A = V2 with σ ∈ Aut(A) given by σ(x) = y, σ(y) = x. Set S = A[t; σ] so that S
satisfies

xy = −yx, tx = yt, ty = xt.
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This example cannot be reduced to the skew polynomial case by using eigenvectors. Here 
A is not free over Aσ = k〈x +y, x3+y3〉 and Aσ is not AS regular. However, A is free over 
the polynomial ring C(A)σ = k[x2+y2, x2y2], and C(S) = k[x2+y2, x2y2, t2] = k[X, Y, T ]
is again a polynomial ring. By Example 6.10 and Theorem 6.1,

d(S/C(S)) =k× T 8Y 8(X2 − 4Y )8.

Proposition 8.2. With notation above, Aut(S) ∼= k
2
� {τ} where τ is the automorphism 

x ↔ y.

Proof. We will apply the discriminant to show that all automorphisms are affine. The 
relations of S then imply that all automorphisms are in fact graded. Once shown, it 
follows easily that if g ∈ Aut(S), then there exists a, b ∈ k

× such that

g(x) = ax, g(y) = ay, g(t) = bt or g(x) = ay, g(y) = ax, g(t) = bt.

Let g ∈ Aut(S). The discriminant is not dominating, but the center is a UFD and 
hence there are six cases for how g permutes the factors of the discriminant.

Case 1. g(X2 − 4Y ) = α(X2 − 4Y ), g(Y ) = βY , g(T ) = γT .

Then g(X)2 = g(X2) = α(X2−4Y ) +4g(Y ) = α(X2−4Y ) +4βY = αX2+4(β−α)Y . 
For αX2 + 4(β − α)Y to be the square of some polynomial in k[X, Y, T ] we need α = β, 
and then g(X) =

√
αX, g(Y ) = αY . Then g(Y ) = g(x2y2) = −g((xy)2) = −α(xy)2

so that g(xy) has degree 2 and so g(x) and g(y) have degree 1. If g(T ) = γT , then 
g(t) = √

γt. Hence g is affine.
The other cases are easily reduced to Case 1 or eliminated.

Case 2. g(X2 − 4Y ) = α(X2 − 4Y ), g(Y ) = βT , g(T ) = γY .

g(X)2 = g(X2) = α(X2 − 4Y ) + 4βT cannot happen in k[X, Y, T ].

Case 3. g(X2 − 4Y ) = αT , g(Y ) = βY , g(T ) = γ(X2 − 4Y ).

g(X)2 = g(X2) = αT + 4βY cannot happen in k[X, Y, T ].

Case 4. g(X2 − 4Y ) = αY , g(Y ) = β(X2 − 4Y ), g(T ) = γT .

g(X)2 = g(X2) = αY + 4β(X2 − 4Y ) so α = 16β and g(X) = 2
√
βX and g(Y ) =

−g(xy)2 = β(X2 − 4Y ) so g(x) and g(y) have degree 1; further g(t) = √
γt g is affine.

Case 5. g(X2 − 4Y ) = αT , g(Y ) = β(X2 − 4Y ), g(T ) = γY .

g(X)2 = g(X2) = αT + 4β(X2 − 4Y ) cannot happen in k[X, Y, T ].
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Case 6. g(X2 − 4Y ) = αY , g(Y ) = βT , g(T ) = γ(X2 − 4Y ).

g(X)2 = g(X2) = αY + 4βT cannot happen in k[X, Y, T ]. �
8.3. An Ore extension of V3

Let R = k−1[x, y, z] and σ the automorphism that interchanges x and y. Then 
C(R[t; σ]) = k[x2 + y2, x2y2, z2, t2] (σ eliminates xyz from C(R)). Aut(R) contains a 
free subgroup on two generators.

Question 8.3. Does Aut(R[t; σ]) also contain a free subgroup on two generators?

8.4. An Ore extension of W2

Let σ ∈ Aut(W2) be given by σ(x) = y and σ(y) = x. Set S = W2[t; σ] so that S
satisfies

xy + yx = 1, tx = yt, ty = xt.

The center of S is C(S) = k[x2 + y2, x2y2, t2]. Set X = x2 + y2, Y = x2y2, and T = t2. 
By Example 6.10 and Theorem 6.1, d(S/C(S)) = T 8(4Y − 1)8(X2 − 4Y )8.

Proposition 8.4. With notation above, Aut(S) ∼= (k× × {−1, 1}) � {τ} where τ is the 
automorphism x ↔ y.

Proof. The proof here is nearly identical to that in Proposition 8.2. We will apply the 
discriminant to show that all automorphisms are affine. The relations of S then imply 
that all automorphisms are in fact graded. Once shown, it follows easily that if g ∈
Aut(S), then there exists a ∈ {−1, 1} and b ∈ k

× such that

g(x) = ay, g(y) = a−1x, g(t) = bt or g(x) = ax, g(y) = a−1y, g(t) = bt.

Let g ∈ Aut(S). The discriminant is not dominating, but the center is a UFD and 
hence there are six cases for how g permutes the factors of the discriminant.

Case 1. g(X2 − 4Y ) = α(X2 − 4Y ), g(4Y − 1) = β(4Y − 1), g(T ) = γT .

Then g(X)2 = g(X2) = α(X2 − 4Y ) + g(4Y ) = α(X2 − 4Y ) + β(4Y − 1) + 1 =
αX2 +4(β−α)Y +(1 −β). For αX2 +4(β−α)Y to be the square of some polynomial in 
k[X, Y, T ] we need α = β = 1, and then g(X) = X, g(Y ) = Y . Then g(Y ) = g(x2y2) =
−g((xy)2) = −(xy)2 so that g(xy) has degree 2 and so g(x) and g(y) have degree 1. If 
g(T ) = γT , then g(t) = √

γt.
The other cases are easily reduced to Case 1 or eliminated.
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Case 2. g(X2 − 4Y ) = α(X2 − 4Y ), g(4Y − 1) = βT , g(T ) = γ(4Y − 1).

4Y − 1 has degree 4 and it follows that g(4Y − 1) has degree 4. Since T is of degree 2, 
we cannot have g(4Y − 1) = βT .

Case 3. g(X2 − 4Y ) = αT , g(4Y − 1) = β(4Y − 1), g(T ) = γ(X2 − 4Y ).

g(X)2 = g(X2) = αT + 4β(4Y − 1) is not a square in k[X, Y, T ].

Case 4. g(X2 − 4Y ) = α(4Y − 1), g(4Y − 1) = β(X2 − 4Y ), g(T ) = γT .

g(X)2 = g(X2) = α(4Y − 1) + 4β(X2 − 4Y ) = 2βX2 + 4(α− 4β)Y −α. This is not a 
square in k[X, Y, T ].

Case 5. g(X2 − 4Y ) = αT , g(4Y − 1) = β(X2 − 4Y ), g(T ) = γ(4Y − 1).

g(X)2 = g(X2) = 4αT + 4β(X2 − 4Y ) is not a square in k[X, Y, T ].

Case 6. g(X2 − 4Y ) = α(4Y − 1), g(4Y − 1) = βT , g(T ) = γ(X2 − 4Y ).

See Case 2. �
8.5. The homogenization of W2

Let H = H(W2) and C = C(H). In Example 6.9 it was shown that d(H/C) =k×(
4x2y2 − t4

)2.
H is N-graded, so for h ∈ H, denote by hd the degree d component.

Proposition 8.5. With notation above, Aut(H) ∼= (k×)2 � {τ} where τ is the automor-
phism x ↔ y.

Proof. Let I be a height one prime ideal of H. By [8, Theorem 6.6], either I = (t), 
I = (xy−yx), or I = (g) with deg(g) > 1. Given φ ∈ Aut(H), it follows that φ(deg(r)) ≥
deg(r) and so (t) is the only height one prime ideal generated by a degree one element. 
Hence φ(t) = αt for some α ∈ k

×. Thus, deg(φ(t2)) = 2 and so deg(φ(x2y2)) = 4. We 
conclude that φ is affine.

Let φ ∈ Aut(H) and write

φ(x) = a0 + a1x + a2y + a3t, φ(y) = b0 + b1x + b2y + b3t, φ(t) = c0 + c1x + c2y + c3t,

with ai, bi, ci ∈ k for i = 0, . . . , 3. Because t is central, then c1 = c2 = 0. Hence,

0 = φ(xy + yx− t2)0 = 2a0b0 − c20
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and

0 = φ(xy + yx− t2)1

= 2 [a0(b1x + b2y + b3t) + b0(a1x + a2y + a3t) − c0c3t]

= 2 [(a0b1 + b0a1)x + (a0b2 + b0a2)y + (a0b3 + b0a3 − c0c3)t] .

If b0 = 0, then c0 = 0 and a0b1 = a0b2 = a0b3 = 0. Since φ1(y) 
= 0, then a0 = 0. 
Suppose b0 
= 0, then −a0

b0
= a1

b1
= a2

b2
so a1b2 − a2b1 = 0 and φ is not an isomorphism. 

Hence, we conclude that a0 = b0 = c0 = 0. Thus,

0 = φ(xy + yx− t2)

= 2(a1b1x
2 + a2b2y

2) + (a1b2 + a2b1)xy + (a2b1 + a1b2)yx− c23t
2

= 2(a1b1x
2 + a2b2y

2) + (a1b2 + a2b1 − c23)t2.

We have two cases. Either a1 = b2 = 0 or a2 = b1 = 0 and c3 is determined by the 
ai, bj . �
8.6. The automorphism group of V2#S2

Set A = V2#S2 and write S2 = {e, g} as before. Example 7.5 shows that d(A/

C(A)) =k× [Y 2(X2 − 4Y )2]2 ⊗ e where X = x2 + y2 and Y = x2y2.
Because C(A) ∼= E2 is a PID, then any automorphism of A either preserves the factors 

Y and X2 − 4Y or else it interchanges them (up to a scalar). Suppose φ ∈ Aut(V2). It 
follows easily that deg(φ(Y )) ≤ 4. If φ preserves the factors Y and X2 − 4Y , then 
φ(Y ) = k1Y and φ(X2 − 4Y ) = k2(X2 − 4Y ) for k1, k2 ∈ k

×. We have

k2(X2 − 4Y ) = φ(X2 − 4Y ) = φ(X)2 − 4k1Y.

Thus, φ(X)2 = k2(X2−4Y ) −4k1Y . As V2 is a domain and the degree of the right-hand 
side is at most 4, then the degree of φ(X) is at most 2. A similar argument shows the 
same result when φ interchanges the factors.

Lemma 8.6. Let φ ∈ Aut(A), then φ(1 ⊗ g) = ±(1 ⊗ g).

Proof. Write φ(1 ⊗ g) = a ⊗ e + b ⊗ g. We have (1 ⊗ g)2 = 1 ⊗ e, so

1 ⊗ e = (a⊗ e + b⊗ g)2 = (a2 + b(g.b)) ⊗ e + (ab + b(g.a)) ⊗ g.

Hence, a2+b(g.b) = 1 and ab +b(g.a) = 0. Write a = a0+a1+ · · ·+ad where deg(ak) = k

and similarly for b. We have 0 = (ab + b(g.a))0 = 2a0b0 and 1 = (a2 + b(g.b))0 = a2
0 + b20. 

Thus, either a0 = ±1 and b0 = 0, or b0 = ±1 and a0 = 0.
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Suppose a0 = 1 and b0 = 0. The remaining cases are similar. Then 0 = (a2+b(g.b))1 =
2a1, so a1 = 0, and 0 = (ab + b(g.a))1 = 2a0b1, so b1 = 0.

We proceed by induction. Suppose ak = bk = 0 for all k = 1, . . . , n − 1. Then

0 = (a2 + b(g.b))n =
(
(a0 + an)2

)
n

= 2a0an,

so an = 0. Furthermore, 0 = (ab + b(g.a))n = 2a0bn, so bn = 0. �
Throughout, let φ ∈ Aut(A) and write φ(x ⊗ e) = r ⊗ e + s ⊗ g.
As a consequence of the Lemma 8.6 we have

φ(y ⊗ e) = φ((1 ⊗ g)(x⊗ e)(1 ⊗ g)) = (1 ⊗ g)φ(x⊗ e)(1 ⊗ g).

Hence,

φ(y ⊗ e) = (1 ⊗ g)(r ⊗ e + s⊗ g)(1 ⊗ g) = g.r ⊗ e + g.s⊗ g.

Moreover, x ⊗ g = (x ⊗ e)(1 ⊗ g) and y ⊗ g = (y ⊗ e)(1 ⊗ g). Thus, the automorphism φ
is completely determined by the choice of r and s.

Hence, we have the equations,

φ
((
x2 + y2)⊗ e

)
=

(
r2 + s(g.s) + g.r2 + (g.s)s

)
⊗ e +

(
rs + s(g.r) + g.(rs)

+ (g.s)r
)
⊗ g, (8.7)

φ
(
(xy + yx) ⊗ e

)
=

(
r(g.r) + s2 + (g.r)r + (g.s)2

)
⊗ e +

(
r(g.s) + sr + (g.r)s

+ (g.s)(g.r)
)
⊗ g. (8.8)

Lemma 8.9. The degree zero components of r and s are zero.

Proof. Since xy+yx = 0, one has 0 = φ((xy+yx) ⊗e). By restricting (8.8) to the degree 
zero component we find r2

0 + s2
0 = 0 and r0s0 = 0. The result now follows. �

Lemma 8.10. Suppose deg(r) > deg(s) ≥ 1, then s = 0. Similarly, if deg(s) > deg(r) ≥ 1, 
then r = 0.

Proof. Suppose deg(r) > deg(s) ≥ 1 and write r = r1 + · · · + rd where deg(rk) = k and 
by hypothesis d > 1. Because φ is an automorphism, then deg(φ((x2 + y2) ⊗ e)) ≤ 2, as 
was noted before Lemma 8.6. By (8.7), 

(
r2 + s(g.s) + g.r2 + (g.s)s

)
2d = 0, then we have 

r2
d + (g.rd)2 = 0.

Because the action of g is diagonalizable, we can decompose rd uniquely into a sum of 
elements from the two weight spaces, so rd = r+ + r− where g.r+ = r+ and g.r− = −r−. 
We then have

0 = r2
d + (g.rd)2 = 2(r2

+ + r2
−).

Because the weight spaces are disjoint, we conclude that rd = 0.
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A similar argument holds in the case deg(s) > deg(r) ≥ 1 but we use (8.8) instead 
of (8.7). �

Write r̂k = rk + g.rk and ŝk = sk + g.sk so that both r̂k and ŝk are fixed by the 
action of g and r̂k = 0 if and only if rk belongs to the negative weight space. Since 
(x + y)2 = x2 + y2 in V2, then

φ((x2 + y2) ⊗ e) = φ ((x + y) ⊗ e)2 =
[

d∑
k=1

r̂k ⊗ e + ŝk ⊗ g

]2

.

Let � ∈ {2, . . . , d} be the largest degree such that the above expression is nonzero. Then 
we have

0 = (r̂� ⊗ e + ŝ� ⊗ g)2

=
(
r̂2
� + ŝ�(g.ŝ�)

)
⊗ e + (r̂�ŝ� + ŝ�(g.r̂�)) ⊗ g

=
(
r̂2
� + ŝ2

�

)
⊗ e + (r̂�ŝ� + ŝ�r̂�) ⊗ g.

Each component must be zero and so (r̂� + ŝ�)2 = 0. Thus, r̂� = −ŝ� but because 
r̂2
� + ŝ2

� = 0 then r̂� = ŝ� = 0. Hence, all higher degree components of r and s are 
contained in the negative weight space.

Write φ((x + y) ⊗ e) = u ⊗ e + v ⊗ g with u, v ∈ V2. It follows from Lemma 8.10 that 
d = deg(u) = deg(v). Moreover, uk, vk are contained in the negative weight space for 
k > 1. Then we have

φ((x2 + y2) ⊗ e) = φ
(
[(x + y) ⊗ e]2

)
= [u⊗ e + v ⊗ g]2 = (u2 − v2) ⊗ e + (uv − vu) ⊗ g.

Assume d > 1. In the top degree we have (u2
d − v2

d) = 0 and (udvd − vdud) = 0 so 
(ud − vd)(ud + vd) = 0. Hence, ud = ±vd.

Case 1 (ud = vd). We claim uk = vk for all k ≤ d. Suppose this holds for some � ≤ d.

0 =
[
u2 − v2]

d+�−1 =
[
(u1 + · · · + ud)2 − (v1 + · · · + vd)2

]
d+�−1

=
[
(u1 + · · · + ud)2 − (v1 + · · · + v�−1 + u� + · · · + ud)2

]
d+�−1

= u�−1ud + udu�−1 − v�−1ud − udv�−1.

0 = [uv − vu]d−�+1 =
[
(u1 + · · ·ud)(v1 + · · · + vd) − (v1 + · · · + vd)(u1 + · · ·ud)

]
d−�+1

=
[
(u1 + · · ·ud)(v1 + · · · + v�−1 + u� + · · · + ud) − (v1 + · · · + v�−1 + u� + · · · + ud)(u1

+ · · ·ud)
]
d−�+1

= u�−1ud + udv�−1 − v�−1ud − udu�−1.

Combining these gives
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0 = udu�−1 − udv�−1 = ud(u�−1 − v�−1).

Hence, u�−1 = v�−1.

Case 2 (ud = −vd). This case follows similarly to the above.
We conclude that u1 = ±v1. An identical argument holds for (x − y) ⊗ e. Thus, there 

exists α, β, γ, δ ∈ k such that,

φ((x + y) ⊗ e)1 = α(x + y) ⊗ e + γ(x + y) ⊗ g

φ((x + y) ⊗ g)1 = γ(x + y) ⊗ e + α(x + y) ⊗ g

φ((x− y) ⊗ e)1 = β(x− y) ⊗ e + δ(x− y) ⊗ g

φ((x− y) ⊗ g)1 = δ(x− y) ⊗ e + β(x− y) ⊗ g.

These elements generate the degree 1 component of V2 and so the following matrix must 
be nonsingular,

M =

⎡
⎢⎣
α 0 γ 0
γ 0 α 0
0 β 0 δ
0 δ 0 β

⎤
⎥⎦ .

But det(M) = −(β2 − δ2)(α2 − γ2), a contradiction since the above argument gave us 
α = ±γ. Note that we assumed above that we are in the case that φ(1 ⊗ g) = 1 ⊗ g but 
the same argument works in the case φ(1 ⊗ g) = −1 ⊗ g.

Write

φ(x⊗ e) = (a(x + y) + b(x− y)) ⊗ e + (c(x + y) + d(x− y)) ⊗ g.

Because φ is an isomorphism and the image of x ⊗ e determines the isomorphism, then 
a 
= ±c and b 
= ±d.

Theorem 8.11. Let φ ∈ Aut(V2#S2) and write φ(x ⊗ e) = (ax + by) ⊗ e + (cx + dy) ⊗ g

for a, b, c, d ∈ k. The parameters satisfy one of the three following conditions:

• a ∈ k
×, b = c = d = 0;

• b, d ∈ k, b 
= 0, b 
= −d, a = −d2

b , c = −d;
• c, d ∈ k, c 
= −d, a = ±

√
c2+d2

2 , b = ∓
√

c2+d2

2 .

Proof. This is easily obtained by checking in Maple which parameters satisfy the defining 
relation and give a bijective map. �
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