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Viewing a bivariate polynomial f ∈ R[x, t] as a family of uni-
variate polynomials in t parametrized by real numbers x, we 
call f real rooted if this family consists of monic polynomi-
als with only real roots. If f is the characteristic polynomial 
of a symmetric matrix with entries in R[x], it is obviously 
real rooted. In this article the converse is established, namely 
that every real rooted bivariate polynomial is the character-
istic polynomial of a symmetric matrix over the univariate 
real polynomial ring. As a byproduct we present a purely al-
gebraic proof of the Helton–Vinnikov Theorem which solved 
the 60 year old Lax conjecture on the existence of definite 
determinantal representation of ternary hyperbolic forms.
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Introduction

Given a monic polynomial f ∈ A[t] over a commutative ring A we call a square matrix 
M ∈ Matn A a spectral representation of f over A if f is the characteristic polynomial 
of M , i.e., f = det(tIn −M). The main result of this paper is the following
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Theorem 1. Let f ∈ R[x, t] be real rooted, i.e., monic in t and for all a ∈ R the uni-
variate polynomial f(a, t) ∈ R[t] has only real roots. Then f admits a symmetric spectral 
representation over R[x], i.e., there exists M ∈ Symn R[x] such that f = det(tIn −M).

Symmetric spectral representations as certificates of real rootedness

Given a commutative ring A, it is generally a difficult problem to characterize those 
monic polynomials f ∈ A[t] that admit a symmetric spectral representation over A. 
As noted above, in the case where A is the polynomial ring R[x] there is an obvious 
necessary condition, namely that f is real rooted. In other words, this condition means 
that for every homomorphism R[x] → R the image of f in R[t] (under coefficient-wise 
application) has only real roots. The following generalization of this property is shared 
by all characteristic polynomials of symmetric matrices over any commutative ring A: 
We call f ∈ A[t] real rooted over A if f is monic and for all ring homomorphisms from A
to any real closed field R the image of f in R[t] has only roots in R. In the case A = R[x]
it suffices to check homomorphisms to R and hence this is indeed a generalization, see 
Remark 3.2.

Now it is natural to ask about the converse: Which real rooted polynomials admit a 
symmetric spectral representation, or some related, possibly weaker, representation that 
manifests the real rootedness?

The following characterization of real rooted polynomials over fields is due to 
Krakowski [16]: If K is any field of characteristic different from 2 then f ∈ K[t] is 
real rooted over K if and only if a power of f admits a symmetric spectral representa-
tion over K. See also [15] for a generalization and some lower and upper bounds on the 
exponent needed.

A useful reformulation of the existence of symmetric spectral representations has been 
given by Bender [3], generalizing a result of Latimer and MacDuffee [22], who established 
a correspondence between equivalence classes of spectral representations of a polynomial 
f over the ring of integers Z and ideal classes in Z[t]/(f). Bender’s observation in [3]
serves as an inspiration for the present work as it did for Bass, Estes and Guralnick who 
proved in [2] that if A is a Dedekind domain and f ∈ A[t] real rooted, then f divides the 
characteristic polynomial of a symmetric matrix over A. In other words this means that 
all roots of f are eigenvalues of a symmetric matrix. Using this result the eigenvalues of 
adjacency matrices of regular graphs are characterized.

For a slightly smaller class of polynomials, their result can be further extended: 
A monic polynomial over A is strictly real rooted if for any homomorphism A → R

to a real closed field R all roots of the image of f in R[t] lie in R and are simple. Kum-
mer recently showed in [19] that for any integral domain A every strictly real rooted 
polynomial f ∈ A[t] divides the characteristic polynomial of a symmetric matrix.

The first result towards classification of polynomials that admit symmetric spectral 
representations without additional factor is also due to Bender [4]: If K is a number field 
and f ∈ K[t] is real rooted over K with an odd degree factor, then f admits a symmetric 
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spectral representation over K. It makes essential use of Hasse’s local global principle for 
quadratic forms. A geometric counterpart of this number theoretic theorem holds without 
restriction: If K is a univariate function field over R then any real rooted polynomial over 
K admits a symmetric spectral representation. This follows from Krüskemper’s work on 
scaled trace forms [17]. Ultimately it is a consequence of another local global principle 
for quadratic forms, due to Witt. See [9, Lemma 1.5] and also [13, Theorem 3.16] for a 
more direct proof using an argument by Leep.

The main result of the present paper, Theorem 1, can be read as a strengthening 
of two of the aforementioned ones: In contrast to the general case of Dedekind domains 
in [2], no additional factors are required. Moreover, it is a denominator free version of the 
case of the real rational function field: If the coefficients of the polynomial in question are 
denominator free, then it admits a denominator free symmetric spectral representation. 
From this it is easy to deduce the version with denominators, using transformations 
of the form f �→ a−df(at). However, our main argument relies less on the theory of 
quadratic forms but rather on classical theory of divisors on algebraic curves.

The previous results reveal the exceptionality of the case R[x] over which the class of 
real rooted polynomials consists exactly of the characteristic polynomials of symmetric 
matrices. In fact, this seems to be essentially the only known nontrivial example of a 
ring, that is not a field and for which these two classes of polynomials coincide.

Application to hyperbolic polynomials

Closely related to spectral representations are linear determinantal representations of 
forms in several variables F ∈ R[x1, . . . , x�]. These are linear pencils of the form

L = A1x1 + · · · + A�x� (Ai ∈ Matn(R), n = degF )

with determinant F . We apply our main result to obtain linear symmetric determi-
nantal representations of ternary hyperbolic forms. A homogeneous polynomial F ∈
R[x1, . . . , x�] is called hyperbolic with respect to some direction e ∈ R

� if F (e) > 0 and 
all real lines in this direction intersect the projective hypersurface defined by F in real 
points only, i.e., for all a ∈ R

� the univariate polynomial F (te − a) ∈ R[t] has only real 
roots.

We show that a consequence of Theorem 1 is the following famous result.

Theorem 2 (Helton–Vinnikov). Let F ∈ R[x, y, z] be a form of degree n that is hyperbolic 
with respect to e ∈ R

3. Then there exists a real symmetric matrix pencil L = Ax +By+Cz

(A, B, C ∈ Symn R) such that L(e) is positive definite and F = detL.

The original proof can be found in [14]. It relies on transcendental tools from algebraic 
geometry such as theta functions on the Jacobian of a Riemann surface. In sharp contrast, 
our treatment involves only purely algebraic ingredients. The statement of Theorem 2
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has been conjectured by Lax in 1958, see [21]. Its solution also settled a question of 
Parrilo and Sturmfels in [28] for the characterization of the plane convex semi-algebraic 
sets that are the feasible sets of semidefinite programming, so-called spectrahedra, and 
their minimal descriptions.

What has become known as the Generalized Lax Conjecture asserts a higher dimen-
sional variant of the Helton–Vinnikov Theorem, namely that every hyperbolicity cone
is spectrahedral. See [34] for a survey on related problems, including more precise for-
mulations of the Generalized Lax Conjecture. An algebraic reformulation is that every 
hyperbolic polynomial divides the determinant of a definite real symmetric matrix pencil 
in such a way, that its hyperbolicity cone is contained in the hyperbolicity cone of the 
other factor. A weaker variant, without the condition on the additional factor has been 
proved in [20]. Further investigation of the relation to previously formulated certificates 
for real rootedness seems worthwhile.

A slightly weaker version of Theorem 2 (see Section 7) has been used in the celebrated 
proof of the Kadison–Singer Conjecture by Marcus, Spielman and Srivastava2 in [24] and 
by Speyer in [32] to give another proof of the affirmative answer to Horn’s problem on 
eigenvalues of sums of Hermitian matrices.

The case of constant coefficients

Our proof is an adaptation of the following simple construction with constant coeffi-
cients. Suppose f ∈ R[t] is a monic polynomial with real simple roots λ1, . . . , λn ∈ R. We 
are going to find a real symmetric spectral representation M ∈ Symn R of f without com-
puting the roots of f . To this end we define the n-dimensional R-algebra B := R[t]/(f)
and the vector space endomorphism μ of B that is given by multiplication by t = t +(f). 
As is easily verified, f is the characteristic polynomial of μ. Moreover, μ is obviously 
self-adjoint with respect to the trace form

τ : B ×B → R

(g, h) �→ TrB|R(gh) =
∑
i

gh(λi)

which is positive definite and hence admits an orthonormal basis B. Now the representing 
matrix M of μ with respect to B is symmetric and its characteristic polynomial is f .

Besides basic field operations this construction only involves taking square roots of 
positive real numbers in the orthonormalization step.

The obvious obstacle to generalizing this construction to the coefficient ring A := R[x]
instead of R is the non-existence of an orthonormal basis of the trace form. Although 
for every real rooted polynomial f ∈ A[t] the trace form τ of B := A[t]/(f) over A is 

2 Using general properties of hyperbolic polynomials, Brändén shows in [6] how to avoid the use of deter-
minantal representations as in [24].



344 C. Hanselka / Journal of Algebra 487 (2017) 340–356
positive semidefinite in all real points (viewing τ as a family of forms parametrized by x), 
it does in general not admit an orthonormal basis. This is due to the fact that it becomes 
singular at those (possibly non-real) points a ∈ C where f(a, t) ∈ C[t] has multiple roots. 
These correspond to the ramification points of the curve C = SpecB defined by f under 
the projection onto the x-axis, A1

R
= SpecA. These ramification points will play a central 

role in what follows.

Reader’s guide

After collecting some definitions, notations, conventions and general facts in Section 1, 
we have a look at a few properties of trace forms in Section 2. Among these is a variant of 
Bender’s result about modified trace forms that are unimodular, i.e., regular everywhere. 
These modifications can be expressed in terms of certain factorizations of the so-called 
codifferent ideal. See Lemma 2.1 for a precise statement. Also, we recall how ramification
is encoded in the codifferent ideal, see Lemma 2.3. Section 3 contains some general obser-
vations on real rooted polynomials and their interplay with trace forms. An important 
consequence is non-reality of the above mentioned ramification points, Corollary 3.5. 
The main result of Section 4 is Corollary 4.2, characterizing 2-divisibility of classes of 
ideals in the narrow class group in terms of their real prime factors. This is combined in 
Section 5 with the non-reality of ramification to conclude that we can modify the trace 
form as described in Section 2, leading to a proof of Theorem 1. Section 6 is concerned 
with the growth behavior of eigenvalues of symmetric matrices. Applied to polynomial 
matrices this gives a degree bound for their entries in terms of the coefficients of their 
characteristic polynomial. We use it to derive the Helton–Vinnikov Theorem 2 from our 
main result. Section 7 outlines how the proof of Theorem 1 can be simplified to obtain 
slightly weaker representations, namely complex Hermitian instead of real symmetric 
ones.

1. Preliminaries

In this section we list some definitions, notations and conventions as well as some of the 
basic facts that are used throughout the text. Since our methods are purely algebraic we 
will not make use of any topological properties of the fields of real and complex numbers. 
Accordingly, throughout the paper one can replace R and C by any real closed field and 
its algebraic closure, respectively.

Notions from commutative algebra

Let A be a commutative ring, which will always be assumed to have a unit.

(1) Matn A and Symn A are the sets of n × n matrices and symmetric matrices, respec-
tively.
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(2) An extension B|A is finite, if B is finitely generated as an A-module.
(3) SpecA and SperA are the spectrum and real spectrum of A, respectively. For the 

definition of the real spectrum and a general reference on real algebraic geometry 
see [23] (also [1] or [27]).

(4) For p ∈ SpecA we denote by k(p) := Quot(A/p) the residue field of p.
(5) A prime ideal p ∈ SpecA is real if k(p) is formally real, i.e., admits an ordering.
(6) A symmetric bilinear form β : M ×M → A on an A module M is unimodular if M

is isomorphic to its own dual via β, i.e., the induced map

M → HomA(M,A)

a �→ β(a, ·)

is an isomorphism.
(7) If B is an A-algebra, free of finite rank as an A-module, then the trace form of B|A

is the symmetric bilinear form

τB|A : B ×B → A

(a, b) �→ TrB|A(ab)

where for x ∈ B the trace TrB|A(x) is the trace of the A-endomorphism of B that is 
given by multiplication by x.

(8) Let f ∈ A[t] be a monic polynomial and B := A[t]/(f). The Hermite matrix of f is 
the representing matrix H of τB|A with respect to the standard basis 1, t, . . . , tn−1

of B.

For the present paper, the importance of the trace form lies in the following well-known 
classical result on real root counting which goes back to the work of Sturm, Hermite and 
Sylvester. A proof can be found in [5, Theorem 4.58].

Lemma 1.1. Let K be an ordered field with real closure R and f ∈ K[t] monic. Then the 
signature of the trace form of K[t]/(f) over K is the number of distinct roots of f that 
lie in R.

Now let A be a Dedekind domain. For basic theory of Dedekind domains we refer to 
[31, Chapter I].

(1) By IA we denote the group of nonzero fractional A-ideals. It is freely generated by 
the nonzero elements of SpecA.

(2) The class group of A, denoted by ClA, is the quotient of IA modulo the subgroup 
of principal ideals.
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(3) For conceptual reasons we also define the finer narrow class group Cl+ A to be the 
quotient of IA modulo the subgroup of those principal ideals that are generated by 
a sum of squares.

(4) If p is a nonzero prime ideal of A we denote the p-adic valuation of the field of 
fractions of A by vp and for a fractional A-ideal I we write

vp(I) := min{ vp(a) | a ∈ I }

for the multiplicity of p in the prime ideal factorization of I.

Unimodular forms over polynomial rings

We will make essential use of the following special feature of univariate polynomial 
rings over fields, generalizing the well-known fact that they have only constant units.

Theorem 1.2 (Harder). Let k be a field of characteristic different from 2 and M a free 
k[x]-module of rank n. Then any unimodular bilinear form β on M admits an orthogonal 
basis q1, . . . , qn. Moreover, for every such orthogonal basis we have

β(qi, qi) ∈ k×.

Proof. See for example [30, Theorem 6.3.3]. �
2. Scaled trace forms and the codifferent

The trace form of a finite ring extension is in general not unimodular. This is the 
main obstacle to finding an orthonormal basis in the proof of our Theorem 1. Lemma 2.1
shows how one can overcome this by scaling the trace form appropriately. The relation 
to ramification can be found in Lemma 2.3.

The complementary module

Let B|A be a finite extension of integral domains and assume the extension of their 
respective fields of fractions L|K is separable. For an A-submodule M of L we denote 
by

M ′ := {x ∈ L | TrL|K(xM) ⊆ A }

the complementary module of M and by Δ(B|A) := B′ the codifferent of B|A, which is 
a fractional B-ideal.

The following is a variant of Bender’s observation in [3].
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Lemma 2.1. Let B|A be a finite extension of integral domains with separable extension 
L|K of their respective fields of fractions. Further, let c ∈ L× and I be an A-submodule 
of L that generates L as a K-vector space. We define the scaled trace form

β : L× L → K

(a, b) �→ TrL|K(abc).

(a) The restriction of β to I takes its values in A and is unimodular, if and only if 
cI = I ′.

(b) If BI ⊆ I then I ′ coincides with the ideal quotient

(Δ(B|A) : I) = {x ∈ L | xI ⊆ Δ(B|A) }.

(c) If B is a Dedekind domain and I is a fractional B-ideal then β restricts to a uni-
modular form on I if and only if cI2 = Δ(B|A).

Proof. (a) Since τL|K is regular and I generates L as a K-vector space, the map

I ′ → HomA(I, A)

x �→ τL|K(x, ·)

is an isomorphism. This means via τL|K we can identify the complementary module I ′

with the dual module of I. So via the scaled trace form β the dual of I becomes the scaled 
complementary module c−1I ′. Further, β is unimodular on I if and only if I coincides 
with its own dual, i.e., if I = c−1I ′.

Part (b) follows immediately from the definition and (c) is just a combination of (a) 
and (b) using the fact that if B is a Dedekind domain then I is invertible and the ideal 
quotient (Δ(B|A) : I) can thus be written as Δ(B|A)I−1. �
Remark 2.2. The codifferent ideal and the role of the scaling factor in (a) of the previous 
lemma become more concrete in the case of primitive ring extensions. For this we use a 
lemma often attributed to Euler [31, Lemma III.6.2]: Let A be an integral domain and 
let f ∈ A[t] be monic with only simple roots, f ′ := ∂f/∂t its formal derivative and define 
B := A[t]/(f). Then the scaled trace form

β : B ×B → A

(a, b) �→ TrB|A

(
ab

f ′(t)

)
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is well defined and unimodular. In particular Δ(B|A) =
(

1
f ′(t)

)
. However, if f is non-

linear then this form will be totally indefinite,3 since by Rolle’s Theorem, the derivative 
changes sign between two consecutive simple real roots. Therefore, also β does (in gen-
eral) not admit an orthonormal basis.

The codifferent encodes ramification

Roughly speaking, the next lemma states that the support of the codifferent contains 
only ramified primes. A more precise statement about the ramification index is know as 
Dedekind’s Different Theorem, see [26, Theorem III.2.6]. A proof of the following can also 
be found in [31, Theorem III.5.1], but since it is short we include it for self-containedness.

Lemma 2.3. Let B|A be a finite extension of Dedekind domains and let p be a nonzero 
prime ideal of A such that q|p is unramified and k(q)|k(p) is separable for all primes q
of B lying above p. Then none of the latter appears in the prime ideal factorization of 
Δ(B|A), i.e., vq(Δ(B|A)) = 0 for all q ∈ IB lying above p.

Proof. By considering the localization at p it suffices to assume that A is a discrete 
valuation ring with maximal ideal p and prove that Δ(B|A) = B.

By Lemma 2.1 this is equivalent to the trace form τB|A being unimodular. Since A
is a discrete valuation ring it suffices to show that τB|A becomes regular modulo the 
maximal ideal, i.e., that the trace form

τB|A ⊗ k(p) = τB⊗k(p)|k(p)

of the residue ring extension is regular. Let pB =
∏

i qi be the prime ideal decomposition 
of pB. By assumption the qi are pairwise distinct and therefore, coprime. This means 
B ⊗ k(p) = B/pB =

∏
i k(qi). Now we see that the trace form of B ⊗ k(p) over k(p)

is regular, since it is the orthogonal sum of the trace forms of the separable extensions 
k(qi)|k(p). �
3. Real rooted polynomials and the trace form

In this section we collect some basic properties of real rooted polynomials. In par-
ticular their interplay with trace forms is used to show absence of real ramification, see 
Corollary 3.5.

Let A be a commutative ring and f ∈ A[t] monic. Recall that f is real rooted over A, 
if for every ring homomorphism A → R to a real closed field R the image of f in R[t]
has only roots in R. For systematic reasons we want to replace homomorphisms into real 
closed fields by points in the real spectrum SperA of A. For P ∈ SperA with support 

3 I.e. indefinite at every point in the real spectrum.
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p ∈ SpecA denote by R(P ) the real closure of the (ordered) residue field k(p) of P and 
by fP := f ⊗ 1 ∈ A[t] ⊗R(P ) = R(P )[t] the coefficient-wise evaluation of f at P .

(1) We say f is real rooted in P if all roots of fP lie in R(P ) and accordingly f is real 
rooted in U ⊆ SperA if f is real rooted in every point of U .

(2) In this sense f is real rooted over A if it is real rooted in SperA.

From Lemma 1.1 on real root counting we immediately get the following

Corollary 3.1. Let A be a commutative ring, f ∈ A[t] monic, B = A[t]/(f) and τ := τB|A
the trace form of B|A. Then f is real rooted in P ∈ SperA if and only if τ ⊗A R(P ) is 
positive semidefinite.

Remark 3.2. (a) From the previous corollary it follows that the set U ⊆ SperA of points 
where f is real rooted consists exactly of those points where all the principal minors 
of the Hermite matrix of f are nonnegative. In particular, it is a basic closed subset of 
SperA with respect to the Harrison topology.

(b) For A = R[x1, . . . , x�] we view R� as a subset of SperA. Then for a ∈ R
� a 

polynomial f ∈ A[t] is real rooted in a if fa = f(a, t) ∈ R[t] has only real roots.
The set of points R� and the set of orderings SperR(x1, . . . , x�) of the rational function 

field are both dense in SperA. This follows essentially from Tarski’s Transfer Principle 
[23, Theorem 2.4.3] and from the Baer–Krull correspondence [23, Section 1.5], respec-
tively. In particular real rootedness of f in R�, SperR[x1, . . . , x�] and SperR(x1, . . . , x�)
are all equivalent.

We make use of the following special local case of this transfer argument, which can 
be treated completely elementarily.

Lemma 3.3. Let f ∈ R[x, t] be real rooted in a neighborhood of the origin of R ⊆ SperR[x]. 
Then f is real rooted over the field of Laurent series R((x)).

Proof. Let H ∈ Symn R[x] be any representing matrix of the trace form of R[x, t]/(f)
over R[x], e.g. the Hermite matrix of f . Using Corollary 3.1 we get that H(a) is positive 
semidefinite for all a in some neighborhood of 0 and we want to conclude that H is 
positive semidefinite with respect to both orderings of R((x)). To see this in an elementary 
way we diagonalize H as a quadratic form over R(x). Then the resulting diagonal entries 
are nonnegative rational functions on (−ε, ε) for some ε ∈ R>0 and thus lie in the 
preordering generated by ε + x and ε − x, which is the set of elements of the form 
σ0 +σ1(ε +x) +σ2(ε −x), where the σi are sums of squares of elements in R(x). So they 
are also nonnegative with respect to the two orderings of R((x)) since both make ε ± x

positive. �
Lemma 3.4. Over R((x)) every real rooted polynomial splits into linear factors.
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Proof. Any finite field extension of R((x)) either contains C or is of the form R((x 1
e )). 

Both have nonreal embeddings into the algebraic closure of R((x)) unless e = 1. That 
means if f ∈ R((x))[t] is real rooted and irreducible over R((x)) then it must be of degree 
one. �

As a consequence we get the absence of real ramification that we need for the factor-
ization of the codifferent in the proof of our main result. Similar results can be found in 
[8, Corollary to Lemma 4.1], [2, Theorem 6.2] and a higher dimensional generalization 
in [18, Theorem 2.19].

Corollary 3.5. Let f ∈ R[x, t] be irreducible and define K := R(x) and L := K[t]/(f). 
If f is real rooted in a neighborhood of a ∈ R then the (x − a)-adic valuation of K is 
unramified in L|K.

Proof. Let f be real rooted in a neighborhood of a which we can assume to be the origin. 
By Lemma 3.3 it is also real rooted over R((x)). Let v be the x-adic valuation of R(x) and 
w an extension of v to L. Then the completion Lw is a factor in L ⊗R((x)) which must 
be of degree one by Lemma 3.4, i.e., Lw = R((x)). In particular, w|v is unramified. �
4. Squares in the narrow class group

Recall that the narrow class group of a Dedekind domain A is the ideal group IA
modulo the subgroup of principal ideals generated by a sum of squares. In Corollary 4.2
we characterize the squares in the narrow class group of a smooth affine curve over R, 
which is the essential step in finding positive definite unimodular scaled trace forms in 
the proof of Theorem 1. This characterization is a consequence of the 2-divisibility of 
the class group of a smooth affine curve over C.

Theorem 4.1. If A is a Dedekind domain that is a finitely generated C-algebra, then its 
class group is divisible.

Proof. The class group ClA is a quotient of the degree zero part Cl0 K of the divisor 
class group of the univariate function field K = QuotA over C.

A direct, algebraic proof of the divisibility of Cl0 K is due to Frey [10] and holds even 
in positive characteristic. More geometric arguments rely on the Jacobian of the smooth 
curve corresponding to the function field K. See, e.g. [11, Section 2.2] for a classical 
analytic treatment or [25, p. 42] for an approach using Weil’s algebraic generalization. �
Corollary 4.2. Let A be a Dedekind domain that is a finitely generated R-algebra and 
J ∈ IA a fractional A-ideal. Then the class of J is a square in the narrow class group 
Cl+ A if and only if all real prime ideals appear in J with even order. In other words 
there exists I ∈ IA and a sum of squares c ∈ QuotA such that J = cI2 if and only if 
2|vp(J) for every nonzero real p ∈ SpecA.
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Proof. The last condition is clearly necessary, since in general the value of a sum of 
squares under any real valuation is divisible by 2, see [27, Exercise 1.4.10]. For the 
converse let vp(J) be even for every real prime p. Multiplying J by an appropriate 
product of even powers of real prime ideals we can even assume that J is a product of 
nonreal prime ideals and their inverses. It thus suffices to show that the class of every 
nonreal prime ideal is a square in Cl+ A.

If C ⊆ A then Cl+ A = ClA and the claim follows directly from Theorem 4.1. Assume 
now that −1 is not a square in A and hence the finitely generated C-algebra B := A ⊗RC

is again a Dedekind domain the class group of which is divisible, again by Theorem 4.1.
Now let p ∈ IA be a nonreal prime ideal. We want to show that its class in Cl+ A

is a square. The norm of an element of B is a sum of two squares in A. Therefore, the 
ideal norm map NB|A induces a homomorphism ClB → Cl+ A. Using the 2-divisibility 
of ClB it thus suffices to show that p is the norm of an ideal in B. Since p is nonreal we 
have k(p) = C. Hence for q ∈ IB lying above p the extension k(q) of k(p) is trivial, so 
the residue degree fq|p = [k(q) : k(p)] is 1 and we get NB|A(q) = pfq|p = p, as desired.

More concretely this means that p corresponds to a pair of conjugate points on the 
affine curve SpecB ⊗ C. Hence p factors over C into a product of two conjugate prime 
ideals. The norm of each of these two factors equals p. �
5. Proof of the Main Theorem

Now we have collected all the necessary ingredients to prove Theorem 1. Let f ∈ R[x, t]
be real rooted, i.e., f is monic in t and f(a, t) has only real roots for all a ∈ R. To prove 
that f is the characteristic polynomial of a symmetric matrix over R[x] we may assume 
that f is irreducible. Otherwise we find a symmetric spectral representation of each of 
its irreducible factors and compose them to a block diagonal matrix which then gives a 
symmetric spectral representation of f .

We fix the following notation:

• n = degt f ,
• A = R[x] the coordinate ring of the real affine line A1

R
,

• K = R(x) its function field,
• L = K[t]/(f) the function field of the plane affine curve C defined by f ,
• B the integral closure of A in L, i.e., the coordinate ring of the normalization C̃ of C,

C̃ B L

A
1
R

A K

⊆

n

⊆

• τ = τL|K the trace form of L|K.
• Δ = Δ(B|A) the codifferent of B|A.
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Since f is real rooted in every point a ∈ R, the extension B|A is unramified in all 
real primes of A by Corollary 3.5. Therefore, vq(Δ) = 0 for all real primes q ∈ IB by 
Lemma 2.3. Using Corollary 4.2 it now follows that the class of Δ in the narrow class 
group Cl+ B is a square, i.e., there exists a sum of squares c ∈ L× and a fractional ideal 
I ∈ IB such that cI2 = Δ. By Lemma 2.1(c) the scaled trace form

β : I × I → A

(a, b) �→ TrL|K(abc)

is well-defined and unimodular. Since A is a principal ideal domain and I is finitely 
generated and torsion free as an A-module, it is already free. Now by Harder’s Theo-
rem 1.2 we can orthogonalize it with nonzero real numbers on the diagonal. These must 
be positive as follows easily from Lemma 1.1 since c is a sum of squares. This means 
(I, β) admits an orthonormal basis B.

Let μ denote multiplication by t, viewed as an endomorphism of the K-vector space L. 
Its characteristic polynomial is f . Since any A-basis of I is also a K-basis of L, the 
restriction of μ to I has characteristic polynomial f as well.

Since μ is obviously self-adjoint with respect to β, its representing matrix M ∈ Matn A
with respect to the orthonormal basis B of I is symmetric, hence M is a symmetric 
spectral representation of f over A, as desired. �
Remark 5.1. If the curve C defined by f is smooth, the coordinate ring R[x, t]/(f) is 
integrally closed and therefore, coincides with B in the above proof. It is not hard to see 
that in this case every symmetric spectral representation of f arises in the way pointed 
out above. We can even describe their equivalence classes in terms of pairs (I, c) with 
cI2 = Δ and c a sum of squares, where equivalence of representations is induced by the 
action of the orthogonal group. For a more precise statement see [13, Theorem 3.22]. If 
the curve is not smooth, then R[x, t]/(f) is not integrally closed. The symmetric spectral 
representations that are produced in the proof of Theorem 1 are those that extend to 
homomorphisms from the integral closure B of R[x, t]/(f) to Symn R[x]. However, it is 
not clear which representations of f extend to B in this case.

6. Symmetric matrices and real valuations

The size of the entries of a symmetric matrix over R can be bounded in terms of its 
eigenvalues and hence in terms of the coefficients of its characteristic polynomial. We 
give a valuation theoretic analogue of this observation. Applied to the degree valuation 
this shows that the Helton–Vinnikov Theorem 2 follows from Theorem 1.

In the following let v be a real valuation on K, i.e., the residue field K is formally real. 
Let M ∈ Matn K. Let v(M) denote the minimal value of the entries of M . We obtain 
an obvious lower bound on the values of the coefficients of its characteristic polynomial 
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f = det(tIn −M) =
∑

i ait
i ∈ K[t] since each ai is homogeneous of degree n − i in the 

entries of M . In particular we have

v(ai) ≥ (n− i)v(M).

If the matrix is symmetric then this bound is sharp, i.e., we have equality for at least 
one i:

Proposition 6.1. Let M ∈ Symn K be nonzero and f = det(tIn −M) =
∑

i ait
i ∈ K[t]

(ai ∈ K). Then

v(M) = min
0≤i<n

v(ai)
n− i

.

In particular the right hand side lies in the value group of v.

Proof. Let a ∈ K× be an entry of M with minimal value, i.e., v(a) = v(M). We rescale 
M and f so that both lie in the valuation ring of v. So we define

M0 := a−1M

and

f0 := det(tIn −M0) = a−n det(atIn −M) = a−nf(at) =
∑
i

ai
an−i

ti.

Since the residue field K is formally real and M0 ∈ Matn K is symmetric and nonzero 
it cannot be nilpotent. By the Cayley–Hamilton Theorem at least one coefficient of its 
characteristic polynomial other than the leading one must be nonzero. So there exists 
i < n such that ai

an−i is nonzero and hence

v(ai) = v(an−i) = (n− i)v(M)

as claimed. �
Applying this to the case where v is the degree valuation on K = R(x), i.e., v = − deg, 

we immediately obtain the following

Corollary 6.2. Let M ∈ Symn R[x] and f = det(tIn − M) ∈ R[x, t] its characteristic 
polynomial. If the total degree of f is n, then M is linear, i.e., its entries have at most 
degree one.

Using this it becomes easy to derive the Helton–Vinnikov Theorem from our main 
result.
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Proof of Theorem 2. After rescaling F and e and applying a linear change of variables we 
can assume that F (e) = 1 and e = (0, 0, 1). Then the dehomogenization f := F (x, 1, t) ∈
R[x, t] is real rooted and thus admits a symmetric spectral representation M ∈ Symn R[x]
by Theorem 1. The condition that f is of total degree n forces the entries of M to be 
linear, by Corollary 6.2. This means M is of the form M1x + M0 for some M0, M1 ∈
Symn R. Homogenizing again we see that F is the determinant of the real symmetric 
pencil L := Inz −M0y −M1x. Moreover, L(e) = In is positive definite. �
7. Hermitian spectral representations

Finally, we want to sketch how the above procedure can be simplified to produce 
complex Hermitian instead of real symmetric spectral representations of real rooted 
polynomials. As usual a matrix M ∈ Matn C[x] is Hermitian if it equals its conjugate 
transpose, where conjugation refers to coefficient-wise complex conjugation of the en-
tries. The process of producing Hermitian representations becomes considerably more 
elementary, since it does not depend on Theorem 4.1, the divisibility of the class group.

By the same argument provided in the previous section as well as the appropriate 
reformulation of Proposition 6.1 this weaker result can be used to prove existence of 
definite linear Hermitian determinantal representations of hyperbolic polynomials. This 
result has been obtained previously by Dubrovin [8] and Vinnikov [33]. Further elemen-
tary proofs can be found in [29] and [12].

To produce Hermitian representations we replace the symmetric bilinear trace form 
of L over K in the proof of Theorem 1 by the Hermitian trace form of L̃ := L ⊗R C over 
K̃ := C(x) which is given by

τ̃ : L̃× L̃ → K̃

(a, b) �→ Tr
L̃|K̃(a∗b)

where ∗ denotes the induced complex conjugation on L̃. The crucial difference now is 
the required factorization of the codifferent Δ̃ of B̃ := B ⊗ C over Ã := C[x]. Namely 
Δ̃ is already a Hermitian square, i.e., there exists a fractional B̃-ideal I such that I∗I =
Δ̃. After a slight modification of Lemma 2.1 we see that τ̃ restricts to a unimodular 
positive definite Hermitian form on I. Using a generalization of Theorem 1.2 found in 
[7, Proposition 6] it, therefore, admits an orthonormal basis. Now we can proceed as 
before to get a Hermitian spectral representation of f . A more detailed explanation can 
be found in [13].
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