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1. Introduction

The first Hochschild cohomology vector space HH1(B) of an algebra B over a field 
k is isomorphic to the quotient of the k-derivations of the algebra by the inner ones. It 
has a Lie algebra structure providing information on the algebra and it is an invariant 
of its derived equivalence class, see [24]. As noticed for instance by M. Gerstenhaber in 
[18, p. 66], derivations can be considered as infinitesimal automorphisms of B. They are 
related to the deformation theory of B. R.-O. Buchweitz and S. Liu obtained in [7] that if 
k is algebraically closed and B is a finite dimensional algebra of finite representation type 
with Λ its Auslander algebra, the following four statements are equivalent: HH1(B) = 0, 
HH1(Λ) = 0, B is simply connected, and Λ is strongly simply connected.

For a bound quiver algebra B = kQ/I, given some hypotheses on I, J.A. de la Peña 
and M. Saorín in [14] obtained formulas computing the dimension of HH1(B), see also [9,
10,12,20]. For several families of algebras, results concerning the first cohomology vector 
space are given for instance in [2–4,25–27,31,32]. In case the algebra B is split, a canonical 
decomposition of HH1(B) into four direct summands is obtained in [11].

In this paper we study the change in both the Hochschild cohomology and Hochschild 
homology of an algebra given by quiver and relations, when we add arrows to the quiver. 
More precisely, we consider a bound quiver algebra B = kQ/I and a finite set of new 
arrows F that we add to Q. The new quiver is denoted by QF and BF denotes the 
corresponding algebra, that is BF = kQF /〈I〉kQF

where the denominator is the two sided 
ideal generated by I in kQF . A relative path is a sequence (an, . . . , a1) of new arrows 
such that s(ai+1)Bt(ai) �= 0 for i = 1, . . . n − 1, where s, t : F → Q0 are the source and 
the target maps of the new arrows. We observe that BF is finite dimensional if and only 
if there are no relative cycles as defined in Section 2. In this case, namely if BF is a bound 
quiver algebra, we obtain a formula for computing Δ = dimkHH1(BF ) −dimkHH1(B), see 
Theorem 4.2. Next we specialize the formula to the case where adding only one arrow, 
see Corollary 4.3.

Note that in a first step, instead of adding new arrows, it is possible to simply add 
new vertices. New arrows can then also be attached to these new vertices. Indeed, adding 
new vertices does not change Hochschild cohomology except in degree zero, that is the 
dimension of the center increases by the number of the new vertices.

The procedure of adding arrows without changing the relations (or the reverse pro-
cedure, namely deleting arrows which are not involved in a minimal set of generators of 
the relations) has been also recently considered in [19] in relation to the finitistic dimen-
sion. This procedure is also used in [13] in order to compute the change of dimensions 
in Hochschild cohomology and homology in degrees greater or equal to two. The for-
mulas provided here for the first Hochschild cohomology vector space are however more 
intricate.
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A main tool for our work is relative cohomology as defined by G. Hochschild in [21]
and used for instance in [6,30] in the context of representation theory. We prove the 
existence of a short exact sequence which relates the relative and the usual cohomologies 
in degree one, see Proposition 3.3. Our proof uses the fact that BF is a tensor algebra of 
a projective B-bimodule over B. Indeed, in [13] it is proven that a tensor algebra has a 
relative projective resolution of length one, which enables us to compute in the present 
paper the dimensions of the extremities of the short exact sequence. We also note that 
the relative projective resolution of length one, together with the Jacobi-Zariski long 
exact sequence obtained by A. Kaygun in [22,23] provide another proof of the existence 
of the short exact sequence in Proposition 3.3.

As a by-product of our formula, we obtain a new computation of the dimension of 
HH1(kQ) for a quiver Q without cycles.

In the last section we dualize the short exact sequence, and we show that the first 
Hochschild homology vector space does not change when adding new arrows without 
relative cycles.

We use the symbol � when there exists an isomorphism, while = means either equality 
or canonical isomorphism.

2. Adding new arrows

A quiver Q consists of two sets, the set of vertices Q0, the set of arrows Q1, and two 
maps s, t : Q1 → Q0 called respectively the source and the target maps. In this paper we 
will only consider finite quivers, that is Q0 and Q1 are finite. A path of length n > 0 is a 
sequence of arrows γ = (an, . . . , a1) such that s(ai+1) = t(ai) for i = 1, . . . , n −1, and we 
put t(γ) = t(an) and s(γ) = s(a1). Let Qn be the set of paths of length n. The vertices 
are the paths of length 0, each one is its own source and target. Let Q∗ =

⋃
n≥0 Qn. The 

path algebra kQ is the vector space with basis Q∗, the product of two paths β and α is 
their concatenation βα if t(α) = s(β), and 0 otherwise. The vertices are a complete set 
of orthogonal idempotents.

If k is algebraically closed, by a result of P. Gabriel in [15,16], see also for instance 
[5, Theorem 3.7] or [29], any finite dimensional k-algebra B is Morita equivalent to an 
algebra kQ/I, where Q is determined by B and I is an admissible two-sided ideal of 
kQ, that is there exists n ≥ 2 such that 〈Qn〉 ⊂ I ⊂ 〈Q2〉. Such an algebra is finite 
dimensional and is called a bound quiver algebra.

Next we introduce some definitions and notations.
Let Q be a quiver. A set of new arrows is a finite set F with two map s, t : F → Q0. 

The quiver QF is given by (QF )0 = Q0 and (QF )1 = Q1 	F , where s and t are inferred 
from the corresponding maps of Q1 and F . Let now B = kQ/I be a bound quiver 
algebra and let 〈I〉kQF

be the two-sided ideal generated by I in kQF . We denote by BF

the algebra kQF /〈I〉kQF
.
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A relative path of length n > 0 is a sequence of new arrows γ = (an, . . . , a1) such 
that s(ai+1)Bt(ai) �= 0 for i = 1, . . . , n − 1. We set s(γ) = s(a1) and t(γ) = t(an). The 
dimension of γ is dimkγ =

∏n−1
i=1 dimks(ai+1)Bt(ai).

The set of relative paths of length n is denoted by Rn. We set R∗ =
⋃

n>0 Rn.
A relative path γ is called a relative cycle if s(γ)Bt(γ) �= 0. Its cyclic dimension is 

cdimkγ = dimk(s(γ)Bt(γ))dimkγ. Note that if a ∈ F is such that s(a)Bt(a) �= 0, then a
is a relative cycle. We also call a a relative loop.

For instance let

Q = f · → ·e

and let a be a new arrow in the reverse direction. We have

QF = f · � ·e

and a is a relative loop.
To F we associate the projective B-bimodule

N =
⊕

a∈F

Bt(a) ⊗ s(a)B.

The following has been proved in [13].

Proposition 2.1. Let B = kQ/I be a bound quiver algebra and let F be a set of new 
arrows. The algebras BF and

TB(N) = B ⊕ N ⊕ N ⊗B N ⊕ N ⊗B N ⊗B N ⊕ · · ·

are canonically isomorphic.

Through the isomorphism of Proposition 2.1, a new arrow a corresponds to t(a) ⊗
s(a) ∈ N . Moreover, for n > 0 we have that

N⊗Bn �
⊕

γ∈Rn

dimkγ (Bt(γ) ⊗ s(γ)B)

corresponds to
⊕

(an,...a1)∈Rn

BanB . . . a1B.

We infer the following

Corollary 2.2. The algebra BF is of finite dimension if and only if there are no relative 
cycles.
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3. Short exact sequence

In this section we establish a short exact sequence which relates the ordinary first 
Hochschild cohomology with the relative one, when adding new arrows to the quiver of 
a bound quiver algebra.

Let B ⊂ A be an inclusion of k-algebras, and let X be an A-bimodule. The relative 
Hochschild cohomology vector spaces for n ≥ 0 – see [21] – are

Hn(A|B,X) = ExtnA⊗Aop|B⊗Bop(A,X),

where the latter are the relative Ext groups for the inclusion of algebras

B ⊗Bop ⊂ A⊗Aop.

Remark 3.1. We have that

ExtnA⊗Aop|B⊗Bop(A,X) = ExtnA⊗Aop|B⊗Aop(A,X).

Indeed the relative bar resolution of A by B ⊗Bop-relative projective modules

· · · → A⊗B A⊗B A⊗B A → A⊗B A⊗B A → A⊗B A → A

admits a contraction of homotopy of B ⊗ Aop-modules. Since B ⊗ Bop ⊂ B ⊗ Aop, 
the modules involved are also B ⊗ Aop-relative projective. Hence the above is a B ⊗
Aop-relative projective resolution which can be used for computing the corresponding 
relative Ext.

Lemma 3.2. Let ϕ : A → X be a derivation. The map ϕ is a B-bimodule morphism if 
and only if ϕ|B = 0.

Proof. If ϕ is a B-bimodule morphism, then for any b ∈ B we have ϕ(b) = bϕ(1). More-
over, since ϕ is a derivation we have ϕ(b) = bϕ(1) + ϕ(b)1, hence ϕ(b) = 0. Conversely 
for all a ∈ A we have ϕ(ba) = bϕ(a) + ϕ(b)a = bϕ(a). Similarly ϕ(ab) = ϕ(a)b. �

A. Kaygun in [22,23] has obtained a Jacobi-Zariski long exact sequence whenever 
A/B is projective as a B-bimodule, and X is finite dimensional (actually the hypotheses 
are slightly more general). The next result shows that the beginning of the sequence is 
always exact for any inclusion of algebras B ⊂ A and any A-bimodule X.

Proposition 3.3. The following sequence is exact

0 → H1(A|B,X) ι→ H1(A,X) κ→ H1(B,X)
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Proof. Let ϕ : A → X be a relative derivation. Namely ϕ is a derivation which is a 
B-bimodule map. Suppose that ι(ϕ) is 0. In other words there exists x ∈ X such that 
ι(ϕ)(a) = xa − ax. By Lemma 3.2, we have ϕ|B = ι(ϕ)|B = 0. Hence

x ∈ XB = {x ∈ X | bx = xb for all b ∈ B}.

That is ι(ϕ) is a relative inner derivation, and therefore is 0 in H1(A|B, X).
Note that by Lemma 3.2 we already have Imι ⊂ Kerκ. In order to prove the reverse 

inclusion, let ϕ : A → X be a derivation such that ϕ|B : B → X is inner. That is there 
exists x ∈ X such that for all b ∈ B we have ϕ(b) = xb − bx. Let ϕx : A → X be the 
inner derivation given by ϕx(a) = xa − ax. Hence ϕ and ϕ − ϕx are equal in H1(A, X). 
Moreover (ϕ− ϕx)|B = 0. By Lemma 3.2 the derivation ϕ − ϕx is a B-bimodule map, 
and therefore ϕ − ϕx ∈ Imι. �
Remark 3.4. The first Hochschild cohomology vector space of an algebra A is a Lie 
algebra: if ϕ, ψ : A → A are derivations, then [ϕ, ψ] = ϕψ − ψϕ. Moreover H1(A|B, A)
is also a Lie algebra by a straightforward verification, and ι : H1(A|B, A) → HH1(A) is 
a morphism of Lie algebras. The question naturally arises to know if the Lie subalgebra 
H1(A|B, A) of HH1(A) has an ideal complementing it. The following example shows that 
this is not the case.

Example 3.5. Let Q = e· ⇒ ·f be the Kronecker quiver with arrows u and v, and let 
B = kQ. Let a be a new arrow from e to f , and let BF = kQF . It is straightforward 
to show that HH1(BF ) � sl3(k). This Lie algebra is simple, hence there is no ideal 
complementing the proper non zero sub-Lie algebra H1(BF |B, BF ).

Theorem 3.6. Let B = kQ/I be a bound quiver algebra, let F be a set of new arrows with 
no relative cycles, and let BF be the algebra defined in Section 2. Let X be a BF -bimodule. 
There is a short exact sequence

0 → H1(BF |B,X) ι→ H1(BF , X) κ→ H1(B,X) → 0.

Proof. To prove that κ is surjective, let ϕ : B → X be a derivation. Let γ = (an, . . . a1)
be a relative path and let

BanB . . . Ba1B = Bt(an) ⊗ s(an)B . . . Bt(a1) ⊗ s(a1)B

be the corresponding direct summand in BF = TB(N). Let ϕ′ : BF → X be given by

ϕ′(βn+1anβn . . . β2a1β1) =
n+1∑

i=1
βn+1anβn . . . ϕ(βi) . . . β2a1β1,

ϕ′|B = ϕ. Observe that ϕ′(a) = 0 for all a ∈ F . It is straightforward to verify that ϕ′ is 
a derivation. �
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As mentioned before, A. Kaygun has obtained a Jacobi-Zariski long cohomological 
exact sequence if A/B is a projective B-bimodule, and if X is finite dimensional. In 
our previous result, BF /B is a projective B-bimodule. Moreover H2(BF |B, X) = 0, as a 
consequence of Theorem [13, Theorem 3.3]. Hence if X is finite dimensional the above 
short exact sequence can be inferred from [22,23] and from [13].

4. First Hochschild cohomology

Let B = kQ/I be a bound quiver algebra, and let F be a set of new arrows with 
no relative cycles, that is BF is finite dimensional. In this section we provide a formula 
which computes the dimension of HH1(BF ).

Definition 4.1. A extended relative path ω of length n > 0 is a sequence (y, γ, x) where 
y, x ∈ Q0 and γ is a relative path of length n such that

yBt(γ) �= 0 and s(γ)Bx �= 0.

We set t(ω) = y and s(ω) = x. Moreover we put

dimkω = (dimkyBt(γ)) (dimkγ) (dimks(γ)Bx) .

The set of extended relative paths of length n is denoted by Wn.
An extended relative path of length 0 is ω = (y, x) such that yBx �= 0. In this case, we 

set dimkω = dimkyBx. The set of extended paths of length 0 is denoted by W0, while 
W∗ =

⋃
n≥0 Wn.

For the purpose of this section, let ZA denote the center of an algebra A. We are 
going to use Ix and Px respectively for the injective envelope and the projective cover 
of the simple B-module at x for x ∈ Q0. And finally, we use F/ /W∗ for the set of pairs 
(a, ω) ∈ F ×W∗ such that s(a) = s(ω) and t(a) = t(ω).

Theorem 4.2. Let B = kQ/I be a bound quiver algebra, and let F be a set of new arrows 
with no relative cycles. Let Δ = dimkHH1(BF ) − dimkHH1(B). Then

Δ = dimkZBF − dimkZB +
∑

(a,ω)∈F//W∗

dimkω +

∑

γ∈R∗

dimkγ
(
dimkExt1B(Is(γ), Pt(γ)) − dimkHomB(Is(γ), Pt(γ))

)
.

Before proving this formula, we state two corollaries and we consider two examples.

Corollary 4.3. Let a be a single new arrow from e to f which is not a relative loop. Let 
Δ = dimkHH1(B{a}) − dimkHH1(B). Then
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Δ = dimkZB{a} − dimkZB

+ dimkfBe + dimkfBf dimkeBe

+ dimkExt1B(Ie, Pf ) − dimkHomB(Ie, Pf ).

Proof. We have that {a}/ /W∗ = {(a, (f, e)), (a, (f, a, e))} because a is not a relative loop. 
Hence

∑

(a,ω)∈F//W∗

dimkω = dimk(f, e) + dimk(f, a, e) =

dimkfBe + dimkfBf dimkeBe.

On the other hand R∗ = {(a)}. �
Example 4.4. Let Q be the quiver

f · −→ · −→ · · · −→ · −→ ·e

and let β5β4β3β2β1 be a decomposition of the path from f to e, where the lengths 
l(β4), l(β3) and l(β2) are strictly positive. Hence there are at least 4 vertices in Q. Let 
I = 〈β4β3, β3β2〉, and let B = kQ/I. There are no cycles of positive length and Q is 
connected, hence ZB = k. Let E = kQ0. Since E is semisimple, HH1(B) = H1(B|E, B), 
and an easy computation shows that the latter is 0.

Let F = {a} be a new arrow from e to f . Observe that a is not a relative loop, that 
is BF is finite dimensional. The non-zero cycles of BF are the cycles whose sources are 
at the vertices of β3 different from s(β3) and t(β3). If l(β3) = 1, this set is empty. The 
sum of the non zero cycles is an element of the center of BF . Hence

• if l(β3) > 1 then dimkZBF = 2,
• if l(β3) = 1 then dimkZBF = 1.

Let y be the target of the first arrow of β3, we have Ie = Py and Ext1B(Ie, Pf ) = 0. On 
the other hand dimkHomB(Ie, Pf ) = dimkHomB(Py, Pf ) = dimkyBf . Hence

• if l(β3) > 1 then dimkHomB(Ie, Pf ) = 1,
• if l(β3) = 1 then y = t(β3) and dimkHomB(Ie, Pf ) = 0.

Hence by the previous corollary the dimension of HH1(B{a}) is always equal to one.

Example 4.5. A toupie quiver Q has a single source vertex e, a single sink vertex f , and 
other vertices are the start of exactly one arrow, as well as the target of exactly one 
arrow. A path from e to f is called a branch. The bound quiver algebra B = kQ/I is 
called a toupie algebra. Note that canonical algebras introduced in [28] are instances of 
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toupie algebras. The dimension of the first Hochschild cohomology of toupie algebras 
has been computed as follows in [17], see also [1].

Let a be the number of branches which are arrows. Let m be the number of branches 
which are in I. Furthermore, two branches are related if they appear in the same minimal 
relation of I. This generates an equivalence relation among these branches. Denoting by 
r the number of equivalence classes we have dimkHH1(B) = r + m + a(dimkfBe) − 1.

We add a new branch of length n ≥ 2 from e to f . This is obtained by adding first n −1
new vertices providing the quiver Q′ and the algebra B′ = kQ′/I ′ where I ′ = 〈I〉kQ′ . We 
have that dimkZB′ = n, while HH1(B) = HH1(B′). Then consider the appropriate set 
F of n new arrows to get the new branch. The algebra B′

F is still a toupie algebra, and 
a simple computation shows that the formula above is in accordance with Theorem 4.2.

Adding a new arrow from e to f also provides a toupie algebra, and we also have an 
accordance between the formulas.

Using Theorem 4.2 we get a new proof of the following result.

Corollary 4.6. [9] Let Q be a quiver without cycles. Let c be the number of connected 
components of Q, and Q∗ the set of paths.

dimkHH1(kQ) = c− |Q0| + |Q1//Q∗|.

Proof. Let B = kQ0 and let F = Q1, hence BF = kQ. Since B is semisimple, HH1(B) =
0. Moreover B is commutative, hence dimkZB = |Q0|. On the other hand dimkZ(kQ) =
c, indeed each element of a basis of the center is the sum of the vertices of a connected 
component.

The relative paths are the paths of positive length, each one has dimension 1. Enlarged 
relative paths are all the paths, their dimension is also 1.

Since B is semisimple, Ext1B vanishes. Moreover, for any γ ∈ R∗ we have s(γ) �= t(γ). 
Note that for x ∈ Q0 we have Ix = Px = Sx where Sx is the simple module at x. Hence

HomB(Is(γ), Pt(γ)) = HomB(Ss(γ), St(γ)) = 0.

Finally F/ /W∗ = Q1/ /Q∗. �
The proof of Theorem 4.2 relies on the short exact sequence of Theorem 3.6 and on 

the following results.

Lemma 4.7. In the set up of Theorem 4.2 there is a decomposition

H1(B,BF ) � HH1(B) ⊕
⊕

γ∈R∗

dimkγ Ext1B(Is(γ), Pt(γ)).
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Proof. We have that

BF = TB(N) = B ⊕ N ⊕ N ⊗B N ⊕ · · ·

is a B-bimodule decomposition. For n > 0 there is an isomorphism of B-bimodules

N⊗Bn �
⊕

γ∈Rn

dimkγ Bt(γ) ⊗ s(γ)B.

Let U and V be respectively a left and a right B-module of finite dimension over k, 
and let V ′ = Homk(V, k) be the k-linear dual of V . There is a canonical isomorphism of 
B-bimodules between U ⊗ V and Homk(V ′, U). Hence

Bt(γ) ⊗ s(γ)B = Homk((s(γ)B)′, Bt(γ)).

Moreover Bt(γ) = Pt(γ) and (s(γ)B)′ = Is(γ). Finally it is well known (see [8, p. 170, 
4.4]) that for left B-modules Y and Z there is a canonical isomorphism of vector spaces 
between Hn(B, Homk(Y, Z)) and ExtnB(Y, Z). �

Next we will compute the dimension of the right term of the short exact sequence in 
Theorem 3.6. For this purpose we recall the following result and we infer a consequence.

Theorem 4.8. [13] Let B be a k-algebra, let M be any B-bimodule and let T = TB(M)
be the tensor algebra. There is a T ⊗ T op|B ⊗ T op projective resolution of T

0 −→ T ⊗B M ⊗B T
d−→ T ⊗B T −→ T −→ 0.

Remark 4.9. The T -bimodules of the resolution above are B ⊗ Bop-relative projective, 
hence they are also B ⊗ T op-relative projective. In [13] it is proven that there exists a 
B ⊗ T op contraction of homotopy.

Corollary 4.10. Let X be a B-bimodule and let δ : XB → HomB−B(M, T ) be the linear 
map obtained from d by applying the functor HomT−T ( , X) followed by the canonical 
identification. Then

H1(T |B,X) � Cokerδ.

In case T and X are finite dimensional, we have

dimkH1(T |B,X) = dimkHomB−B(M,T ) − dimkX
B + dimkX

T .

Proof. The resolution of the previous theorem provides the isomorphism. Hence, in the 
finite dimensional case we have
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dimkH1(T |B,X) = dimkHomB−B(M,T ) − dimkImδ,

while

dimkImδ = dimkX
B − dimkKerδ.

Moreover Kerδ = H0(T |B, X). It is well known and easy to prove that for an inclusion 
of algebras B ⊂ A and an A-bimodule X we have

H0(A|B,X) = H0(A,X) = XA. �
Proposition 4.11. Let kQ/I be a bound quiver algebra, let F be a set of new arrows with 
no relative cycles, let N be the B-bimodule associated to F and let BF = kQF /〈I〉kQF

=
TB(N). Then

dimkHomB−B(N,BF ) =
∑

(a,ω)∈F//W∗

dimkω.

Proof. Let e, f ∈ Q0, let Y be a B-bimodule and let Bf ⊗ eB be the B-bimodule 
corresponding to the idempotent f ⊗ e ∈ B ⊗Bop. Recall that

HomB−B(Bf ⊗ eB, Y ) = fY e.

Hence for n > 0

HomB−B(N,N⊗Bn) =
⊕

a∈F

t(a)N⊗Bns(a)

�
⊕

a∈F

⊕

γ∈Rn

dimkγ t(a)Bt(γ) ⊗ s(γ)Bs(a).

Then

dimkHomB−B(N,N⊗Bn) =
∑

(a,ω)∈F//Wn

dimkω.

For n = 0, we have

HomB−B(N,B) =
⊕

a∈F

t(a)Bs(a).

Note that (t(a), s(a)) is an extended relative path of length 0 if t(a)Bs(a) �= 0. We also 
have

dimkHomB−B(N,B) =
∑

(a,ω)∈F//W0

dimkω. �
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We now give the proof of Theorem 4.2.

Proof. Consider the short exact sequence of Theorem 3.6 for the BF -bimodule BF

0 → H1(BF |B,BF ) ι→ HH1(BF ) κ→ H1(B,BF ) → 0.

The dimension of the right term is given by Lemma 4.7. The dimension of the left term 
is obtained through Corollary 4.10 and Proposition 4.11. �
5. First Hochschild homology

In this section we will prove that adding new arrows without creating relative cycles 
does not change the first Hochschild homology.

Theorem 5.1. Let B = kQ/I be a bound quiver algebra and let F be a set of new arrows 
without relative cycles. Let Y be a finite dimensional BF -bimodule. There is an exact 
sequence

0 → H1(B, Y ) → H1(BF , Y ) → H1(BF |B, Y ) → 0.

Proof. By taking the dual of the short exact sequence of Theorem 3.6 for X a finite 
dimensional module, we obtain the short exact sequence

0 → H1(B,X)′→H1(BF , X)′→H1(BF |B,X)′ → 0.

It is well known and easy to prove that for a finite dimensional algebra A and a finite 
dimensional A-bimodule Z we have for n ≥ 0

Hn(A,Z)′ = Hn(A,Z ′).

Moreover, this also holds for relative Hochschild (co)homology, the proof is along the 
same lines using the relative bar resolution and the resulting complexes of (co)chains 
inferred in [21]. Hence there is a short exact sequence

0 → H1(B,X ′) → H1(BF , X
′) → H1(BF |B,X ′) → 0

and we set Y = X ′. �
Remark 5.2. The short exact sequence above cannot be inferred from the long exact 
sequence of A. Kaygun for homology obtained in [22,23], since the relative resolution of 
TB(N) = BF of Theorem 4.8 only provides H2(BF |B, Y ) = 0.
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Recall that for an algebra A and an A-bimodule Y , the coinvariants are

YA = A⊗A−A Y = Y/〈ay − ya | a ∈ A, y ∈ Y 〉 = H0(A, Y ).

Lemma 5.3. Let B = kQ/I be a bound quiver algebra and let F be a set of new arrows 
without relative cycles. Then

H1(BF |B,BF ) = 0.

Proof. The relative resolution of Theorem 4.8 gives

H1(BF |B,BF ) � Ker (BF ⊗B−B N −→ (BF )B) .

Let RCn be the set of relative cycles of length n. We have

dimk

(
N⊗Bn ⊗B−B N

)
=

∑

γ∈RCn+1

cdimkγ

dimk (B ⊗B−B N) =
∑

γ∈RC1

cdimkγ.

Since for all n the set of relative cycles RCn is empty, we deduce that these vector spaces 
vanish. Hence BF ⊗B−B N = 0 and the result follows. �
Lemma 5.4. Let B = kQ/I be a bound quiver algebra and let F be a set of new arrows 
without relative cycles. Then

H1(B,BF ) = HH1(B).

Proof. For n > 0 we have

H1(B,N⊗Bn) �
⊕

γ∈Rn

dimkγ H1(B,Bt(γ) ⊗ s(γ)B).

The B-bimodule Bt(γ) ⊗ s(γ)B is projective, hence its homology in positive degrees is 
zero. �

The following is a direct consequence of the short exact sequence of Theorem 5.1 and 
of the previous lemmas.

Theorem 5.5. Let B = kQ/I be a bound quiver algebra, and let F be a set of new arrows 
with no relative cycles. Then

HH1(BF ) = HH1(B).
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