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1. Introduction

It is well known that inverse semigroups are closely related to étale groupoids (see, 
e.g., [8,11,15]), and in [17] quantales, more specifically inverse quantal frames, were put 
forward as mediating objects between the semigroups and the groupoids. In part the 
aim was to bring the correspondence to bear on localic groupoids rather than just topo-
logical groupoids, in particular making it constructive in a topos-theoretic sense, but 
also, independently, to provide an alternative algebraic language with which to describe 
étale groupoids, with the quantales being regarded as ring-like objects. This developed 
naturally into a program where various constructions for étale groupoids, such as actions 
and sheaves, are translated to quantale modules [18,20]. One difficulty is that, while the 
correspondence between the ensuing categories of actions of groupoids and modules on 
quantales is functorially well behaved, the actual correspondence between étale groupoids 
and their quantales is not, at least not in the sense of a direct correspondence between 
groupoid functors and quantale homomorphisms [17], unless one severely restricts the 
class of functors [9]. This problem is circumvented by considering bicategories and func-
toriality in the form of a bi-equivalence where the morphisms (1-cells) are groupoid 
bi-actions and quantale bimodules [19], which furthermore enables one to ‘explain’ why 
other notions of morphism between groupoids relate well to quantale homomorphisms 
— just as they are known to relate well to ∗-homomorphisms of C*-algebras [1] and to 
homomorphisms of inverse semigroups [2].

Another direction of research pertains to more general groupoids (or categories [7], 
toposes [4], etc.) that allow such algebraic treatments. Here the direct correspondence 
to inverse semigroups breaks down, but the relation to quantales does not, and it is the 
quantales that can be regarded as the natural algebraic language for handling general 
open groupoids [12,14]. However, there are additional difficulties that did not exist in 
the étale case. In particular the direct correspondences between categories of groupoid 
actions and categories of quantale modules are less well behaved, with only a functor from 
groupoid actions to quantale modules being readily available (rather than a full-fledged 
equivalence of categories), as was already observed in [18].
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The aim of this paper is to recover the good behavior of actions, sheaves, and func-
toriality of étale groupoids by restricting to a smaller class of open groupoids that was 
introduced in [12], which nevertheless is sufficiently large, at least for applications in anal-
ysis and differential geometry, because it includes many locally compact groupoids and, 
in particular, Lie groupoids. Such groupoids G are equipped with good pseudogroups of 
local bisections, which in turn lead to a certain notion of cover J : Ĝ → G by an étale 
groupoid, so here we call them étale-covered groupoids. Roughly, it is the existence of étale 
covers that provides the good behavior of actions and sheaves for such groupoids, as we 
shall see. Dually to such groupoids there is the notion of inverse-embedded quantal frame, 
consisting of an inverse quantal frame Ô with a suitable (usually non-multiplicative) em-
bedding j : O → Ô of a non-unital quantale. These had already appeared in [12], but 
in the present paper we shall need to study them in more detail, in particular taking 
advantage of some notions and results from [14].

The main results of this paper are those of section 4. This addresses actions, namely 
relating the actions of an étale-covered groupoid G to the modules of the quantale O(Ĝ)
that in addition behave well with respect to the embedding j : O(G) → O(Ĝ). This 
leads to an equivalence between the category of G-actions and the category of such 
O(Ĝ)-modules, and extends the equivalence of categories that exists if G is étale. In 
addition, this section contains two applications of these results. One is a description 
of G-sheaves in terms of O(Ĝ)-modules that extends that of the étale case, whereby 
a G-sheaf X is shown to correspond to an O(Ĝ)-sheaf whose inner product 〈−, −〉 :
X ×X → O(Ĝ) is valued in the image j(O(G)). This is a remarkably simple axiom that 
resembles a continuity condition. As a consequence, we are provided with a representation 
of the classifying topos of any étale-covered groupoid in terms of sheaves on its inverse-
embedded quantal frame. The second application is an extension of the functoriality 
results of [19], ultimately yielding a biequivalence between the bicategory of étale-covered 
groupoids and the bicategory of inverse-embedded quantal frames. Extensions of later 
functoriality results, namely those of [13] regarding Hilsum–Skandalis maps and Morita 
equivalence, face additional difficulties and will not be addressed in this paper.

2. Preliminaries

The purpose of this section is to recall some concepts and to fix terminology and 
notation, mostly following [13,14,17,18]. For general references on sup-lattices, locales, 
quantales, or groupoids see [3,5,6,16,21].

2.1. Groupoid quantales

This section provides some background on groupoid quantales and their sheaves, based 
on [14,17,18], which will be needed in this paper.
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Open groupoids. The structure maps of a groupoid G will be denoted as follows:

G = G2
m

G1

i

r

d

G0.u

Here G2 is the pullback of the domain map d and the range map r in the category 
of locales Loc. The groupoid is open if d is an open map, in which case r and the 
multiplication map m are open, too. The inversion map i is always an isomorphism in 
Loc. We shall denote the quantale of G by O(G), as in [17]. But we shall not make 
any distinction between a locale X regarded as an object of Loc or as an object of 
Frm = Locop. We say G is étale if d is a local homeomorphism, in which case all the 
structure maps are local homeomorphisms.

Based quantales. Let B be a locale. A B-B-bimodule M is a sup-lattice equipped with 
two unital (resp. left and right) B-module structures B ×M → M and M ×B → M ,

(a,m) �→ a|m and (m, a) �→ m|a,

satisfying the following additional condition for all a, b ∈ B and m ∈ M :

(a|m)|b = a|(m|b). (2.1.1)

The notation a|m for the left action is meant to convey the idea that a restricts m on 
the left, and analogously for the right action.

By a quantale based on B, or a B-B-quantale, will be meant a B-B-bimodule Q
equipped with a quantale multiplication (x, y) �→ xy that satisfies the following additional 
conditions for all a ∈ B and x, y ∈ Q:

(a|x)y = a|(xy), (2.1.2)

(x|a)y = x(a|y), (2.1.3)

(xy)|a = x(y|a). (2.1.4)

Involutive based quantales. A B-B-quantale is involutive if it is an involutive semigroup; 
the involution is denoted by a �→ a∗ and it is required to satisfy, besides the standard 
conditions x∗∗ = x and (xy)∗ = y∗x∗, the following two conditions:

(
∨
i

xi)∗ =
∨
i

x∗
i , (2.1.5)

(a|x|b)∗ = b|x∗|a. (2.1.6)
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Equivariant supports. An involutive B-B-quantale Q is supported if it is equipped with a 
sup-lattice homomorphism ς : Q → B satisfying the following conditions for all x, y ∈ Q:

ς(1Q) = 1B , (2.1.7)

ς(x)|y ≤ xx∗y, (2.1.8)

ς(x)|x = x. (2.1.9)

A supported B-B-quantale (Q, ς), also referred to as a supported quantale with base locale 
B, is an involutive B-B-quantale equipped with a specified support ς. The support ς is 
said to be equivariant if for all a ∈ B and x ∈ Q

ς(a|x) = a ∧ ς(x). (2.1.10)

If a support is equivariant then it is the only possible support, and in this case the 
B-B-quantale (Q, ς) is said to be equivariantly supported.

Any equivariant support is necessarily stable, by which it is meant that the following 
equivalent conditions hold:

• ς(xy) ≤ ς(x) for all x, y ∈ Q;
• ς(x1Q) ≤ ς(x) for all x ∈ Q;
• ς(xy) = ς(x|ς(y)) for all x, y ∈ Q.

An involutive B-B-quantale is stably supported if it is equipped with a stable support.
If Q is equivariantly supported with base locale B then, writing R(Q) for the set of 

right-sided elements of Q, where an element a ∈ Q is right-sided if

a1Q ≤ a, (2.1.11)

the map B → R(Q) defined by x �→ x|1Q is an order isomorphism whose inverse is the 
map R(Q) → B defined by x �→ ς(x). So R(Q) ∼= B, and thus R(Q) is a locale.

Based quantal frames. By a B-B-quantal frame is meant a B-B-quantale Q such that 
for all q, m, mi ∈ Q and a ∈ B the following properties hold:

q ∧
∨
i

mi =
∨
i

q ∧mi, (2.1.12)

(a|q) ∧m = a|(q ∧m), (2.1.13)

m ∧ (q|a) = (q ∧m)|a. (2.1.14)

Reflexive quantal frames. By a reflexive quantal frame (Q, υ) is meant a B-B-quantal 
frame equipped with a frame homomorphism υ : Q → B such that for all a ∈ B

υ(a|1Q) = a = υ(1Q|a). (2.1.15)
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Multiplicative quantal frames. Let Q be a B-B-quantal frame. The quantale multipli-
cation has the following factorization in the category of sup-lattices:

Q⊗Q

π

Q⊗B Q
μ

Q.

We refer to μ as the reduced multiplication of Q, and to its right adjoint μ∗ as the reduced 
comultiplication. Then Q is said to be a multiplicative quantal frame if the reduced 
comultiplication preserves joins (and therefore is a homomorphism of locales).

Quantales of open groupoids. Let (Q, ς, υ) be a multiplicative equivariantly supported 
reflexive quantal frame. We say that Q satisfies unit laws if moreover the following 
condition holds for all a ∈ Q:

∨
xy≤a

(υ(x)|y) = a. (2.1.16)

By a groupoid quantale will be meant a multiplicative equivariantly supported reflexive 
quantal frame Q that satisfies unit laws and moreover satisfies the following condition, 
which is referred to as the inverse law, for all a ∈ Q:

υ(a)|1Q =
∨

xx∗≤a

x. (2.1.17)

The groupoid quantales are precisely the quantales Q ∼= O(G) for an open groupoid G.

Inverse quantal frames. Let Q be an equivariantly supported reflexive B-B-quantal 
frame. If moreover Q is a unital quantale and it satisfies the inverse law then Q is 
necessarily multiplicative and it satisfies the unit laws. In this case Q is an inverse 
quantal frame, in other words a quantale Q ∼= O(G) for an étale groupoid G. Among 
other things, we have

∨
I(Q) = 1Q, (2.1.18)

where I(Q) = {a ∈ Q | a∗a ∨ a∗a ≤ e} is the set of partial units of Q, and there is an 
order isomorphism ι : B → ↓(e) that transforms the B-actions into multiplication:

a|x = ι(a)x and x|a = xι(a).

For an arbitrary inverse quantal frame Q we shall usually refer to the locale ↓(e) as the 
base locale.
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2.2. Actions and sheaves

Actions of open groupoids. Let G be an open groupoid. A left G-action is a triple 
(X, p, a) where X is a locale, p : X → G0 (called projection or anchor map) is a map 
of locales, and a : G1 ×G0 X → X is a map of locales (called the action) that satisfies 
the usual axioms (see, e.g., [18]). One defines right G-actions in a similar way. We 
shall denote (X, p, a) by X when no confusion will arise. The category of G-locales and 
equivariant maps between them is denoted by G-Loc. The categories of left G-locales 
and right G-locales are isomorphic.

We shall denote by X the O(G)-module which is obtained from a G-locale X. Let us 
briefly recall the construction of this module. Taking into account that in Frm the locale 
G1 ×G0 X is a quotient O(G1) ⊗O(G0) X of the tensor product O(G1) ⊗X, the module 
action is the sup-lattice homomorphism which is obtained as the following composition:

O(G1) ⊗X O(G1) ⊗O(G0) X
a!

X.

The inverse image homomorphism a∗ is the right adjoint of a!, and thus it is given by

a∗(x) =
∨

{a⊗ y | ay ≤ x}. (2.2.1)

Moreover, when G is an étale groupoid, we have the following useful formula:

a∗(x) =
∨

s∈I(Q)

s⊗ s∗x. (2.2.2)

The latter shows that a∗ preserves arbitrary joins.

Sheaves. Let G be an étale groupoid. A G-sheaf is a G-locale whose projection is a 
local homeomorphism. The full subcategory of G-Loc whose objects are the G-sheaves 
(the classifying topos of G) is usually denoted by BG. The isomorphism between G-Loc
and O(G)-Loc (see [18, Th. 3.21]) yields, by restriction, a corresponding full subcategory 
of O(G)-sheaves. Concretely, letting Q be an arbitrary inverse quantal frame, a Q-sheaf
is a left Q-locale X whose action restricted to the locale B := ↓(e) defines a B-sheaf. 
The full subcategory of Q-Loc whose objects are the Q-sheaves is denoted by Q-LH.

Let X be a Q-sheaf. The local sections of X are the local sections of X regarded as a 
B-sheaf; that is, a local section is an element s ∈ X satisfying ςX(x)s = x for all x ≤ s. 
The set of local sections of X is denoted by ΓX .

Let Q be an inverse quantal frame, and let X and Y be Q-sheaves. A sheaf homo-
morphism f : X → Y is a left Q-module homomorphism satisfying the following two 
conditions:

1. ςY (f(x)) = ςX(x) for all x ∈ X;
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2. f(ΓX) ⊂ ΓY .

The sheaf homomorphisms coincide with the direct image homomorphisms of the mor-
phisms in Q-LH. Therefore the category of Q-sheaves and sheaf homomorphisms between 
them, which we shall denote by Q-Sh, is isomorphic to Q-LH.

Hilbert modules. Let Q be an involutive quantale. By a pre-Hilbert Q-module will be 
meant a left Q-module X equipped with a binary operation 〈−, −〉 : X ×X → Q, called 
the inner product, which for all x, xi, y ∈ X and a ∈ Q satisfies the following axioms:

〈ax, y〉 = a〈x, y〉, (2.2.3)
〈∨

i

xi, y
〉

=
∨
i

〈xi, y〉, (2.2.4)

〈x, y〉 = 〈y, x〉∗. (2.2.5)

By a Hilbert Q-module will be meant a pre-Hilbert Q-module whose inner product is 
non-degenerate:

〈x,−〉 = 〈y,−〉 ⇒ x = y. (2.2.6)

In particular, inner products are sesquilinear forms.
Any set Γ ⊂ X such that x =

∨
t∈Γ 〈x, t〉t for all x ∈ X is called a Hilbert basis. If 

X has a Hilbert basis we say that the Hilbert module is complete. By a Hilbert section
of X is meant an element s ∈ X such that 〈x, s〉s ≤ x for all x ∈ X. In particular, any 
element of a Hilbert basis is a Hilbert section.

We recall the Hilbert module characterization of quantale sheaves for inverse quantal 
frames (see [18, Th. 4.47, Th. 4.55]).

Theorem 2.1. For any inverse quantal frame Q, complete Hilbert Q-modules and Q-
sheaves amount to the same thing, and the local sections of a Q-sheaf coincide with the 
Hilbert sections.

The following theorem gives a useful formula for computing the inner products of 
quantale sheaves for inverse quantal frames (see [13, Th. 3.6]).

Theorem 2.2. Let Q be an inverse quantal frame and X be a Q-sheaf. Then

〈x, y〉 =
∨

u∈QI

u ςX(u∗x ∧ y), (2.2.7)

for all x, y ∈ X.
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Supported modules. Let (Q, ςQ) be a unital supported quantale, and denote by B the 
locale ↓(e). By a supported Q-module is meant a pre-Hilbert Q-module X equipped with 
a monotone map ςX : X → B, called the support of X, such that the following properties 
hold for all x ∈ X:

ςX(x) ≤ 〈x, x〉, (2.2.8)

x ≤ ςX(x)x. (2.2.9)

Note that any supported quantale Q defines a supported module over itself, with 〈a, b〉 =
ab∗. The support is called stable if in addition one of the following equivalent conditions 
holds for all b ∈ B and x ∈ X:

ςX(bx) = b ∧ ςX(x), (2.2.10)

ςX(bx) = ςQ(b ςX(x)), (2.2.11)

ςX(bx) ≤ ςQ(b). (2.2.12)

Moreover, if (Q, ςQ, e) is a stably supported quantale then any supported Q-module X
is necessarily stably supported and the following properties hold for all x, y ∈ X and 
a ∈ Q:

ςQ(〈x, y〉) ≤ ςX(x) = ςQ(〈x, x〉) = ςQ(〈x, 1X〉), (2.2.13)

ςX(x)a = 〈x, 1X〉 ∧ a, (2.2.14)

ςX(x) = 〈x, 1X〉 ∧ e = 〈x, x〉 ∧ e. (2.2.15)

Therefore, for any stably supported quantale (Q, ςQ, e), any complete Hilbert Q-module 
is a (necessarily stably) supported Q-module.

3. Étale covers

Here we introduce the main definitions of this paper, namely inverse-embedded quan-
tales and their étale-covered groupoids.

3.1. Local bisections

We begin by recalling (and adapting to the setting of B-B-quantales) the notion of 
local bisection of [12] for open quantal frames, which generalizes the corresponding notion 
for groupoids.

Let O be a groupoid quantale with base locale B. By a local bisection of O will be 
meant a pair σ = (U, s) where U ∈ B and

s : Ũ → O (with Ũ := ↓U ∩B) (3.1.1)
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is a map of locales such that

1. d ◦ s = kU , where kU : Ũ → B is the inclusion of the open sublocale Ũ into B (s is 
a local section of d),

2. and r ◦ s is an open regular monomorphism of locales.

The notion of local bisection for an open quantal frame O, along with a correspond-
ing action of the local bisections on O, is used in [12] in order to define a weak form 
of multiplicativity which ensures that the set of local bisections has the structure of 
a pseudogroup Γ (O). Then sufficient (but not necessary) conditions that ensure multi-
plicativity are studied. These conditions concern the extent to which O can be embedded 
into the inverse quantal frame L∨(Γ (O)). Such conditions, applied to the quantale O(G)
of an open groupoid, imply the existence of a surjective functor of groupoids J : Ĝ → G

that provides a notion of canonical “étale cover” of G.
These results provided the inspiration for the work in the present section. In particular 

Definition 3.3 will be seen to include conditions that are not found in [12] but are 
necessary in order to obtain groupoids from such quantale embeddings.

3.2. Inverse-embedded quantal frames

Definition 3.1. Let Q be an inverse quantal frame. By an involutive Q-Q-quantale O is 
meant a Q-Q-bimodule, whose left and right actions are denoted by (a, x) �→ a · x and 
(x, a) �→ x · a, respectively, equipped with a quantale multiplication (x, y) �→ xy that 
satisfies the following additional conditions for all a ∈ Q and x, y ∈ O,

(a · x)y = a · (xy), (3.2.1)

(x · a)y = x(a · y), (3.2.2)

(xy) · a = x(y · a), (3.2.3)

and moreover is endowed with an involution x �→ x∗, by which is meant a map such that 
for all x ∈ O we have

x∗∗ = x and (xy)∗ = y∗x∗

plus the following two conditions:

(
∨
i

xi)∗ =
∨
i

x∗
i (xi ∈ O), (3.2.4)

(a · x · b)∗ = b∗ · x∗ · a∗ (a, b ∈ Q and x ∈ O). (3.2.5)

Remark 3.2. Let Q be an inverse quantal frame with base locale B. Of course, any 
involutive Q-Q-quantale is also an involutive B-B-quantale.
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Definition 3.3. By an inverse-embedded quantal frame is meant an involutive quantal 
frame O (with reduced multiplication μ) equipped with

1. an inverse quantal frame Ô (with base locale B and reduced multiplication μ̂),
2. a structure of involutive Ô-Ô-quantale, and
3. a frame monomorphism j : O → Ô which is a homomorphism of Ô-Ô-bimodules, 

such that
(a) j(a∗) = j(a)∗ for all a ∈ O, that is, j preserves the involution,

(b) O ⊗B O
j⊗id

Ô ⊗B O is also a monomorphism of frames,
(c) μ̂∗ ◦ j = (j ⊗ j) ◦ μ∗, that is, j preserves the reduced comultiplications,
(d) (j(a) ∧ e)1Ô ≤

∨
xx∗≤a

j(x) for all a ∈ O, and

(e) R(Ô) ⊂ j(O), that is, j is “right-sided surjective” [cf. (2.1.11)].

Example 3.4.

1. Let O be a weakly multiplicative quantale in the sense of [12]. Then O is an inverse-
embedded quantal frame with inverse quantal frame Ô = L∨(Γ (O)) and a frame 
monomorphism j given by

j(q) =
∨

{σ ∈ Γ (O(G)) | s∗(q) = U},

for all q ∈ O(G) (see [12, Lemma 5.9, Lemma 5.13]).
2. Let X be a locally compact topological space. Then the topology Ω(X̃) of the pair 

groupoid of X is an inverse-embedded quantal frame with inverse quantal frame 
Ω(Germs(X̃)) (see [10, Th. 2.8]) and a frame monomorphism j = k−1 where k is 
given by k((x, germx s)) = s(x) (see [12, Th. 5.31]).

Lemma 3.5. Let O be an inverse-embedded quantal frame. Then, for all x, y ∈ O, we 
have

μ̂(j(x) ⊗ j(y)) ≤ j(μ(x⊗ y)).

Proof. The following sequence of (in)equalities for all x, y ∈ O will give us the desired 
result:

μ̂(j(x) ⊗ j(y)) = μ̂((j ⊗ j)(x⊗ y))

≤ μ̂((j ⊗ j)(μ∗(μ(x⊗ y)))) (because μ∗ ◦ μ ≥ id)

= μ̂(μ̂∗(j(μ(x⊗ y)))) [due to Definition 3.3(3c)]

≤ j(μ(x⊗ y)) (because μ̂ ◦ μ̂∗ ≤ id). �
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For the sake of simplicity, we shall write j(x)j(y) ≤ j(xy) rather than μ̂(j(x) ⊗j(y)) ≤
j(μ(x ⊗ y)) whenever no confusion may arise.

Lemma 3.6. Let O be an inverse-embedded quantal frame. Then, for all x, y ∈ O, we 
have:

j(x1O)1Ô = j(x1O) [i.e., j(x1O) ∈ R(Ô)] (3.2.6)

j(x)1Ô ≤ j(x1O) (3.2.7)

j(x1O) · 1O = x1O (3.2.8)

j(x) · y ≤ xy (3.2.9)

μ̂∗(j(q)) =
∨

u,v∈I(Ô)
v≤j(q)

u⊗ u∗v. (3.2.10)

Proof. (3.2.6): we have j(x1O)1Ô = j(x1O)j(1O) ≤ j(x1O1O) ≤ j(x1O), so j(x1O)1Ô =
j(x1O) because the right-sided elements of R(Ô) are strict.

(3.2.7): j(x)1Ô = j(x)j(1O) ≤ j(x1O).
(3.2.8): we have j(j(x1O) ·1O) = j(x1O)j(1O) = j(x1O)1Ô = j(x1O), so j(x1O) ·1O =

x1O because j is monic.
(3.2.9): j(j(x) · y) = j(x)j(y) ≤ j(xy), so j(x) · y ≤ xy because j is monic.
(3.2.10): We have

μ̂∗(j(q)) = μ̂∗(
∨

v∈I(Ô)
v≤j(q)

v) =
∨

v∈I(Ô)
v≤j(q)

μ̂∗(v) =
∨

v∈I(Ô)
v≤j(q)

∨
u∈I(Ô)

u⊗ u∗v,

where the last equality follows from [18, Lemma 3.15]. �
Remark 3.7. We remark that in fact the conditions j(x)j(y) ≤ j(xy) and j(x) · y ≤ xy

are equivalent because j(x)j(y) = j(j(x) ·y) holds for all x, y ∈ O. Moreover, notice that 
j(O) can be made an involutive quantale isomorphic to O because j : O → j(O) is a 
frame isomorphism and thus we can define the following multiplication • in j(O):

j(a) • j(b) := j(ab).

However, • does not coincide with the multiplication in Ô, so (j(O), •) is in general not 
a subquantale of Ô.

By Lemma 3.6, for all x ∈ O we have j(x1O)1Ô = j(x1O), so j restricts to a frame 
monomorphism j′ : R(O) → R(Ô).

Lemma 3.8. Let O be an inverse-embedded quantal frame. Then O satisfies the following 
conditions:
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1. j′ is surjective;
2. j′ is an order isomorphism;
3. R(Ô) ⊂ j(R(O)).

Proof. It suffices to prove that (3.8) holds (clearly, conditions (3.8) and (3.8) are equiv-
alent to (3.8)). In order to see that j′ is surjective first notice that, by Definition 3.3(3e), 
for all y ∈ R(Ô) there is x ∈ O such that y = j(x). The conclusion follows from the fact 
that necessarily x = x1O (i.e., x is right-sided), since j is monic and we have

j(x) = j(x)1Ô ≤ j(x1O)1Ô = j(x1O). �
Lemma 3.9. Let O be an inverse-embedded quantal frame with base locale B. Then O is 
an equivariantly supported B-B-quantal frame.

Proof. Ô is an inverse quantal frame with base locale B = ↓(e) ∼= ς(Ô). Hence, by 
Remark 3.2, O is an involutive B-B-quantal frame. Let us denote by ς̂ the support of 
Ô, and let us verify that the sup-lattice homomorphism

ς := ς̂ ◦ j : O → B

defines a support on O.

(2.1.7): ς(1O) = ς̂(j(1O)) = ς̂(1Ô) = 1B because j is a frame homomorphism.
(2.1.8): This follows from the sequence of (in)equalities:

ς(x)|y = ς̂(j(x))|y
≤ j(x)j(x)∗ · y [due to (2.1.8)]

= j(x)j(x∗) · y [due to Definition 3.3(3a)]

≤ j(xx∗) · y (by Lemma 3.5)

≤ xx∗y [by (3.2.9)].

(2.1.9): We have

j(ς(x)|x) = j(ς(x)x) = ς(x)j(x) = ς̂(j(x))j(x) = j(x),

so ς(x)|x = x because j is monic.

Finally, taking into account that ς̂ and j are B-equivariant, we have

ς(b|x) = ς̂(j(b|x)) = ς̂(b|j(x)) = b ∧ ς̂(j(x)) = b ∧ ς(x)

for all x ∈ O and b ∈ B. This proves that ς : O → B is equivariant. �
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Theorem 3.10. Let O be an inverse-embedded quantal frame. Then O is a groupoid quan-
tale.

Proof. By Lemma 3.9 we know that O is a supported B-B-quantal frame, where B is 
the base locale. Now we can endow O with a frame homomorphism υ : O → B defined 
by υ(q) := j(q) ∧ e for all q ∈ O. By [17, Lemma 3.3, Lemma 3.4], for all b ∈ B we have

υ(b|1O) = j(b|1O) ∧ e = b1Ô ∧ e = ς̂(b) = b = υ(1O|b).

This shows that (O, ς, υ) is an equivariantly supported reflexive B-B-quantal frame. Let 
us check that in fact O is a groupoid quantale by verifying the following axioms.

Multiplicativity: Ô satisfies the multiplicativity axiom because it is an inverse quantal 
frame [17, Cor. 4.14]. Since j ⊗ id is a monomorphism of frames due to Defini-
tion 3.3(3b), the mapping

j ⊗ j : O ⊗B O
j⊗id

Ô ⊗B O
id⊗j

Ô ⊗B Ô

is a monomorphism, since id ⊗ j is always a monomorphism because Ô is a flat 
B-module [20]. By Definition 3.3(3c), the diagram

Ô ⊗B Ô Ô
μ̂∗

O ⊗B O

j⊗j

O
μ∗

j

commutes, that is, μ̂∗(j(q)) = (j ⊗ j)μ∗(q) for all q ∈ O. So we have

(j ⊗ j)
(
μ∗(∨

i

xi

))
= μ̂∗(j(∨

i

xi

))
=

∨
i

μ∗(j(xi)) =
∨
i

(j ⊗ j)(μ∗(xi))

= (j ⊗ j)
(∨

i

μ∗(xi)
)
.

Finally, since j ⊗ j is monic, we conclude that μ∗(
∨

i xi) =
∨

i μ
∗(xi) and O is 

multiplicative.
Unit laws: We have to prove that

∨
xy≤q

(υ(x)|y) = q (3.2.11)

holds for all x, y, q ∈ O. Indeed,
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j(q) =
∨

u∈I(Ô)
u≤j(q)

u =
∨

u∈I(Ô)
u≤j(q)

(1Ô ∧ e)u =
∨

u,w∈I(Ô)
u≤j(q)

(w ∧ e)u

(because Ô is an inverse quantal frame)

=
∨

u,w∈I(Ô)
u≤j(q)

(w ∧ e)w∗u

(because w ∧ e is a subsection of w∗)

=
∨

u,w∈I(Ô)
u≤j(q)

(w ∧ e)1Ô ∧ w∗u =
∨

u,w∈I(Ô)
u≤j(q)

d̂∗(υ̂(w)) ∧ w∗u

=
∨

u,w∈I(Ô)
u≤j(q)

[d̂∗, id](υ̂ ⊗ id)(w ⊗ w∗u) = [d̂∗, id](υ̂ ⊗ id)
( ∨
u,w∈I(Ô)
u≤j(q)

w ⊗ w∗u
)

= [d̂∗, id](υ̂ ⊗ id)(μ̂∗(j(q))) = [d̂∗, id](υ̂ ⊗ id)((j ⊗ j)μ∗(q))

[due to Definition 3.3(3c)]

= [d̂∗, id](υ̂ ⊗ id)(j ⊗ j)
( ∨
xy≤q

x⊗ y
)

=
∨

xy≤q

[d̂∗, id](υ̂ ⊗ id)(j(x) ⊗ j(y))

=
∨

xy≤q

d̂∗(υ̂(j(x))) ∧ j(y)

=
∨

xy≤q

υ(x)1Ô ∧ j(y)

=
∨

xy≤q

υ(x)j(1O) ∧ j(y)

=
∨

xy≤q

j(υ(x)|1O) ∧ j(y)

=
∨

xy≤q

j(υ(x)|y) = j
( ∨
xy≤q

υ(x)|y
)
.

The last four steps hold because j is a frame homomorphism. Thus (3.2.11)
follows because j is monic.

Inverse laws: By [14, Rem. 5.5], we have to show

υO(q)|1Ô =
∨

xx∗≤q

x, (3.2.12)

for all q, x ∈ O. Indeed,
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j(υ(q)|1O) = υ(q)1Ô
= (j(q) ∧ e)1Ô
≥

∨
y∈Ô

yy∗≤j(q)

y (by [17, Lemma 4.17])

≥
∨
y∈O

j(y)j(y∗)≤j(q)

j(y)

≥
∨
y∈O

j(yy∗)≤j(q)

j(y) (by Lemma 3.5)

= j(
∨
y∈O
yy∗≤q

y).

Therefore υ(q)|1O ≥
∨

y∈O
yy∗≤q

y because j is monic. The other inequality follows 

from Definition 3.3(3d):

j(υ(q)|1O) = υ(q)1Ô = (j(q) ∧ e)1Ô ≤
∨
y∈O
yy∗≤q

j(y) = j
( ∨

y∈O
yy∗≤q

y
)
.

Hence, (3.2.12) holds because j is monic. Therefore, O is a groupoid quantale 
as we claimed. �

To close this subsection we shall give an interesting property of the right adjoint of j.

Lemma 3.11. Let O be an inverse-embedded quantal frame. Then the right adjoint of j
is I(Ô)-equivariant.

Proof. Since in particular j is a sup-lattice homomorphism, it has a right adjoint j∗
given by

j∗(x) =
∨

{a ∈ O | j(a) ≤ x}. (3.2.13)

Let us prove that, for all s ∈ I(Ô) and x ∈ Ô, we have

s · j∗(x) = j∗(sx). (3.2.14)

Indeed,

s · j∗(x) = s ·
∨

{a ∈ O | j(a) ≤ x}

=
∨

{s · a ∈ O | j(a) ≤ x}
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≤
∨

{s · a ∈ O | sj(a) ≤ sx}

=
∨

{s · a ∈ O | j(s · a) ≤ sx} (j is I(Ô)-equivariant)

≤
∨

{q ∈ O | j(q) ≤ sx}

= j∗(sx).

Moreover, due to stability of the support we have, if j(q) ≤ sx,

ς(q) = ς̂(j(q)) ≤ ς̂(sx) ≤ ς̂(s) = ss∗,

and thus

q = (ς(q)|q) ≤ (ς̂(s)|q) ≤ (ss∗) · q = (ss∗ |q) ≤ q,

from which it follows that

j∗(sx) =
∨

{(ss∗) · q ∈ O | j(q) ≤ sx}.

Therefore,

j∗(sx) =
∨

{(ss∗) · q ∈ O | j(q) ≤ sx}

= s ·
∨

{s∗ · q ∈ O | j(q) ≤ sx}

≤ s ·
∨

{s∗ · q ∈ O | s∗j(q) ≤ s∗sx}

= s ·
∨

{s∗ · q ∈ O | j(s∗ · q) ≤ s∗sx} (j is an Ô-Ô-bimodule)

≤ s ·
∨

{a ∈ O | j(a) ≤ x}

≤ s · j∗(x),

which proves (3.2.14). �
Remark 3.12. For all u ∈ I(Ô) we have

j∗(u) = j∗(uu∗u) = u · j∗(uu∗) (due to Lemma 3.11)

≤ u · j∗(e) (because uu∗ ≤ e)

= u · 0 (O is a non-unital quantale)

= 0.

Thus, j∗(u) = 0 for all u ∈ I(Ô).
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3.3. Étale-covered groupoids

The purpose of this subsection is to establish a bijective correspondence between the 
class of inverse-embedded quantal frames and a class of open groupoids called étale-
covered groupoids, that is, open groupoids which admit a suitable notion of covering by 
an étale groupoid.

Definition 3.13. Let G and H be groupoids. We shall say that H covers G if there is an 
epimorphic functor of groupoids J : H → G such that J0 : H0 → G0 is an isomorphism.

Lemma 3.14. Let G and H be open groupoids such that H covers G. Any G-action lifts 
to an H-action.

Proof. Let (X, p, a) be a G-action. Notice that the mapping q : X → H0 defined by 
q := J−1

0 ◦ p is a map of locales. Let us define b := a ◦ (J × idX). Diagramatically, we 
have

H1 ×G0 X

J1×idX

b

G1 ×G0 X a
X.

Let us show that b is an H-action by verifying all the axioms:

1. Pullback:

G1 ×G0 X

a

π1
G1

dG

H1 ×G0 X

J1×idX

b

π1
H1

J1

dH

X
q

H0
J0

X
p

G0.
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2. Associativity:

G1 × (G1 ×G0 X)
idG1×a

G1 ×G0 X

H1 × (H1 ×G0 X)

∼=

J1×(J1×idX)

idH1×b H1 ×G0 X

J1×idX

bH2 ×G0 X

mH×idX

G2 ×G0 X
mG×idX

G1 ×G0 X

a

H1 ×G0 X

J×idX

b
X.

3. Unitarity:

G1 ×G0 X

a

H1 ×G0 X

J1×idX

b

X

〈u◦p,idX〉

〈u◦q,idX〉

X.

Since a is a G-action the above diagrams commute. Therefore it is straightforward to 
verify that (X, q, b) is an H-action. �
Lemma 3.15. Let G be an open groupoid and Ĝ an étale groupoid such that Ĝ covers G. 
Then there is an action of O(Ĝ) on O(G).

Proof. Since I(O(Ĝ)) is join-dense in O(Ĝ), it suffices to show that there is an action 
of I(O(Ĝ)) on O(G). We begin by identifying I(O(Ĝ)) with Γ (Ĝ) because they are 
isomorphic as involutive monoids (see [12, Th. 3.12]). Let us define Φ : Γ (Ĝ) → Γ (G)
as follows: for every local bisection s : U → Ĝ1 where U is an open sublocale of Ĝ0, the 
mapping Φ(s) : J0(U) → G1 (where J0(U) is the image of U under J0) is given by

Φ(s) = J1 ◦ s ◦ (J ′
0)−1,

where J ′
0 : U → J0(U) is the restriction of J0 to U . We notice that Φ(s) is in fact a local 

bisection of G:

• d ◦ Φ(s) = d ◦ J1 ◦ s ◦ (J ′
0)−1 = J0 ◦ d̂ ◦ s ◦ (J ′

0)−1 = id because s is a local bisection 
of Ĝ and J is a functor;
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• r ◦ Φ(s) = r ◦ J1 ◦ s ◦ (J ′
0)−1 = J0 ◦ r̂ ◦ s ◦ (J ′

0)−1 is an open regular monomorphism 
of locales because r̂ ◦ s is, too.

In addition, again because J is a functor, we clearly have Φ(û) = u and Φ(s ◦ t) =
Φ(s) ◦ Φ(t) for all s, t ∈ Γ (Ĝ), so Φ is a homomorphism of monoids. Since O(G) is a 
groupoid quantale, there is a mapping Ψ : Γ (G) → End(O(G)), that is, there is an action 
of Γ (G) on O(G) (see, [12, Def. 4.10]). The composition Ψ ◦Φ : Γ (Ô) → O(G) yields an 
action of I(O(Ĝ)) on O(G), which lifts to an action of O(Ĝ) on O(G). �
Definition 3.16. By an étale-covered groupoid is meant an open groupoid G together with 
an étale groupoid Ĝ such that the following conditions hold.

1. Ĝ covers G by an epimorphic functor J : Ĝ → G.
2. J∗(s · q) = sJ∗(q) for all s ∈ I(Ô) and q ∈ O(G) — that is, J∗ is I(Ô)-equivariant 

— where the action · is defined as in Lemma 3.15.
3. J1 × idG1 : Ĝ1 ×G0 G1 → G1 ×G0 G1 is an epimorphism of locales.

We shall denote the category of G-locales and G-equivariant maps between them by 
G-Loc.

Example 3.17. Every coverable groupoid G in the sense of [12] is an étale-covered 
groupoid: Ĝ is defined by L∨(Γ (O(G))), and the functor J : Ĝ → G is given by J∗ = j, 
where for all q ∈ O(G)

j(q) =
∨

{σ ∈ Γ (O(G)) | s∗(q) = U}.

[Recall that σ = (U, s) — cf. (3.1.1).] Moreover, in [12] it is proved that

• j and j ⊗ id are frame monomorphisms,
• j(s · q) = sj(q) for all s ∈ I(Ô).

Therefore the functor J satisfies all the conditions of Definition 3.16. In particular, every 
Lie groupoid is an étale-covered groupoid.

Theorem 3.18. If O is an inverse-embedded quantal frame then G(O) is an étale-covered 
groupoid. And, conversely, if G is an étale-covered groupoid then O(G) is an inverse-
embedded quantal frame.

Proof. Let us suppose that O is an inverse-embedded quantal frame with base locale 
B. By Theorem 3.10 O is a groupoid quantale. Let us denote by G = G(O) and Ĝ =
G(Ô) the open groupoid and the étale groupoid of O and Ô, respectively. There exists 
a frame monomorphism j : O → Ô satisfying the conditions of Definition 3.3. The 
latter implies that there exists an epimorphic functor of groupoids J : Ĝ → G such 
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that J0 is the canonical isomorphism with J∗ = j, by Lemma 3.8. Clearly, J1 is an 
epimorphism because j is injective and it is a functor because it satisfies the conditions 
of [19, Prop. 1.3], as follows:

• J1 ◦ î = i ◦ J1 because j satisfies Definition 3.3(3a),
• J1 ◦ û = u because υ = υ̂ ◦ j,
• d ◦ J1 = d̂ because j is a B-B-bimodule homomorphism,
• m̂ ◦ (J1 × J1) ≤ J1 ◦m because j satisfies Definition 3.3(3c).

Finally, J1 × idG1 is a surjective map of locales because j satisfies (3b), and J∗ is 
I(Ĝ)-equivariant because j is an Ô-Ô-bimodule homomorphism. Therefore, G is an 
étale-covered groupoid. Conversely, let us suppose that G is an étale-covered groupoid, 
and let us denote by O = O(G) and Q = O(Ĝ) the groupoid quantale and the inverse 
quantal frame of G and Ĝ, respectively. By Lemma 3.15, O is a (left) Q-module with 
action (s, q) �→ s · q. Notice that the involution of Q makes O be a (right) Q-module as 
well, by putting q · s := s∗ · q. Therefore O is a Q-Q-bimodule. It is straightforward to 
see that in fact O is an involutive Q-Q-quantale. Let us verify that O verifies the axioms 
of Definition 3.3. In order to do this, notice that J∗ : O → Q defines a frame monomor-
phism which is also a homomorphism of Q-Q-bimodules. The latter holds because, by 
assumption, J∗ is I(O(Ĝ))-equivariant. Furthermore, it satisfies the various conditions 
of Definition 3.3:

(3a) because J∗ ◦ i = î ◦ J∗, since J is a functor;
(3b) because J1 × idG1 : Ĝ1 ×G0 G1 → G1 ×G0 G1 is a surjective map of locales;
(3c) because (J∗ ⊗ J∗) ◦ m̂∗ = m∗ ◦ J∗, since J is a functor;
(3d) because O is a groupoid quantale, and therefore it satisfies the inverse laws; that 

is,

υ(a)|1O =
∨
x∈O

xx∗≤a

x,

which implies that for all a ∈ O we have

(J∗(a) ∧ e)1Q = (û∗ ◦ J∗)(a)1Q =
∨
x∈O

xx∗≤a

J∗(x),

the latter because J is a functor;
(3e) because J0 is an isomorphism.

This proves that O is an inverse-embedded quantal frame. �
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4. Actions

Let us now see that an appropriate notion of action for inverse-embedded quantal 
frames yields an equivalence of categories G-Loc ∼= O-Loc where O = O(G) is the 
quantale of an étale-covered groupoid G. Then we obtain the two main applications of 
this paper, namely (i) a definition of sheaf for inverse-embedded quantal frames that 
extends that of [18] for étale groupoids and completely characterizes the sheaves of 
étale-covered groupoids; and (ii) an extension of the functoriality results of [19].

4.1. Descent actions

Lemma 4.1. Let G be an étale-covered groupoid. Then any G-locale X is an O(Ĝ)-locale.

Proof. By Lemma 3.14 any G-action X can be extended to a Ĝ-action. Then, taking 
into account that Ĝ-Loc is isomorphic to O(Ĝ)-Loc (cf. [18, Lemma 3.8, Lemma 3.19]), 
we conclude that X is also an O(Ĝ)-locale. �

In the context of rings, the notion of descent theory of modules can be described briefly. 
When R and S are two commutative rings with unit connected by a homomorphism 
f : R → S, there is an obvious way of viewing an S-module as an R-module. Moreover, 
given an R-module N , there is a natural associated S-module, N⊗RS, which is called the 
S-module induced by N . This association of S-modules with R-modules is an expression 
of an adjointness relation which is a common topic to many algebraic constructions. The 
latter inspired us to define the following notion of descent for étale-covered groupoids:

Definition 4.2. Let G be an étale-covered groupoid. A Ĝ-action (X, p, ̂a) satisfies the 
descent condition if there exists a map of locales b : G1 ×G0 X → X such that the 
diagram

Ĝ1 ×G0 X
â

J1×idX

X

G1 ×G0 X

b

commutes in Loc.

Lemma 4.3. Let G be an étale-covered groupoid, and let (X, p, ̂a) be a Ĝ-action that 
satisfies the descent condition. Then (X, p, b) is a G-action.

Proof. Let (X, p, ̂a) be a Ĝ-action that satisfies the descent condition. Let us show that 
in fact (X, p, b) is a G-action by verifying all the axioms, similarly to what we did in 
Lemma 3.14:
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1. Pullback:

Ĝ1 ×G0 X

J1×idX

a

π̂1
Ĝ1

J

d̂

G1 ×G0 X

b

π1
G1

d

X
p

G0

X
p

G0.

2. Associativity:

Ĝ1 × (Ĝ1 ×G0 X)
J1×(J1×idX)

id
Ĝ1

×a
Ĝ1 ×G0 X

J1×idX

G1 × (G1 ×G0 X)

∼=

idG1×b

G1 ×G0 X

bG2 ×G0 X

mG×idX

Ĝ2 ×G0 X
m

Ĝ
×idX

Ĝ1 ×G0 X

a

G1 ×G0 X

J×idX

b
X.

3. Unitarity:

Ĝ1 ×G0 X

J1×idX a

G1 ×G0 X

b

X

〈u◦p,idX〉

〈u◦q,idX〉

X.

Since â is a Ĝ-action such that â = b ◦ (J1 × idX) due to the descent condition, all the 
above diagrams commute. Therefore (X, q, b) is a G-action. �
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4.2. Categories of actions

Definition 4.4. Let O be an inverse-embedded quantal frame. By an O-locale is meant an 
Ô-locale X (with action α) such that α∗ factors (necessarily uniquely) through j ⊗ idX

in Frm. The category O-Loc consists of O-locales as objects, and the morphisms are the 
maps of locales whose inverse images are homomorphisms of left Ô-modules.

Clearly, the category O-Loc is a full subcategory of Ô-Loc.

Example 4.5. Any inverse-embedded quantal frame O is an O-locale. Indeed, let us write 
f : Ô ⊗ O → O for the action of Ô on O. By [18, Lemma 3.15] its right adjoint can be 
written as

f∗(x) =
∨

s∈I(Ô)

s⊗ s∗ · x,

and it is a frame homomorphism. Moreover, for all x ∈ O we have

(idÔ ⊗ j) ◦ f∗(x) = (idÔ ⊗ j)(
∨

s∈I(Ô)

s⊗ s∗ · x)

=
∨

s∈I(Ô)

s⊗ j(s∗ · x)

=
∨

s∈I(Ô)

s⊗ s∗j(x) (j is an Ô-Ô-bimodule
homomorphism)

= μ̂∗(j(x)),

where the last equality follows from (3.2.10). Finally, let us prove that f∗ factors 
(uniquely) through j ⊗ idO in Frm. In order to do this, let us notice that

(idÔ ⊗ j) ◦ (j ⊗ idO) ◦ μ∗ = (j ⊗ j) ◦ μ∗

= μ̂∗ ◦ j [by Definition 3.3(3c)]

= (idÔ ⊗ j) ◦ f∗.

Then (j ⊗ idO) ◦ μ∗ = f∗ because idÔ ⊗ j is monic. Therefore O is an O-locale.

Lemma 4.6. Let G be an étale-covered groupoid. The assignment X �→ O(X) from G-Loc
to O(G)-Loc is a bijection up to isomorphisms.

Proof. Let Ô = O(Ĝ) and O = O(G). Let (X, p, ̂a) be a Ĝ-action satisfying the descent 
condition. Then there exists a map of locales b : G1 ×G0 X → X such that the following 
diagram is commutative:
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Ĝ1 ×G0 X
â

J1×idX

X

G1 ×G0 X.

b

Moreover (X, p, b) is a G-action due to Lemma 4.3. Now, if we consider the inverse image 
of the above maps, we obtain the following commutative diagram in Frm, where B is 
the base locale:

Ô ⊗B X X
â
∗

b
∗

O ⊗B X.

j⊗idX

This, in terms of frames, means that the action α : Ô ⊗B X → X of Ô on X, which 
has a join preserving right adjoint α∗ : Ô ⊗B X → X (this is the inverse image â∗ of 
the action â : Ĝ1 ×G0 X → X), factors (necessarily uniquely) through j ⊗ idX in Frm. 
Hence, X is an O-locale. Conversely, let X be an O-locale. Then there exists a frame 
homomorphism β∗ : O ⊗B X → X such that the following diagram commutes:

Ô ⊗B X X
α∗

β∗

O ⊗B X.

j⊗idX

In terms of locales this means that there exists a map of locales b : G1 ×G0 X → X such 
that the diagram

Ĝ1 ×G0 X
â

J1×idX

X

G1 ×G0 X

b

is commutative in Loc. So (X, p, ̂a) satisfies the descent condition. �
Remark 4.7. Note that O-locales are also O-modules in the usual sense. This is because, 
following the proof of Lemma 4.6, the factorization of the inverse image α∗ of the action 
α : Ô ⊗B X → X is done via a frame homomorphism β : X → O ⊗B X which turns 
out to be the inverse image of a groupoid action b : G1 ×G0 X → X, and thus the left 
adjoint of β is b!. Hence, X is an O-module.
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Lemma 4.8. Let O be an inverse-embedded quantal frame with base locale B, and let X
be an O-locale. Then, for all a ∈ O and x ∈ X, we have

j(a)x ≤ ax.

Proof. By Remark 4.7, we know that X is an O-module with action β : O ⊗B X → X. 
Therefore,

j(a)x = α(j(a) ⊗ x) = α((j ⊗ idX)(a⊗ x)) (α is the action of Ô on X)

≤ α((j ⊗ idX)(β∗(β(a⊗ x))) (because β∗ ◦ β ≥ id)

= α ◦ α∗ ◦ β!(a⊗ x) (by the descent condition)

≤ β(a⊗ x) = ax (because α ◦ α∗ ≤ id). �
Theorem 4.9. Let G be an étale-covered groupoid. Then the categories G-Loc and O-Loc
are equivalent.

Proof. Let G be an étale-covered groupoid. The assignment X �→ O(X) from G-Loc to 
O-Loc is a bijection due to Lemma 4.6. Now let X and Y be arbitrary G-locales, and 
let f : X → Y be a G-equivariant map. Let us prove that f∗ : O(Y ) → O(X) is a 
homomorphism of Ô-locales. Recall that the categories Ĝ-Loc and Ô-Loc are equivalent 
[18, Lemma 3.19]. Then it suffices to show that f is a Ĝ-equivariant map. Indeed, let us 
consider the diagram

Ĝ1 ×G0 X
id

Ĝ1
×f

J1×idX

â

Ĝ1 ×G0 Y

J1×idY

b̂G1 ×G0 X

a

idG1×f
G1 ×G0 Y

b

X

p

f
Y

q

G0,

where â = a ◦ (J1 × idX) and b̂ = b ◦ (J1 × idX). Clearly, f commutes with the actions â
and b̂ because f commutes with a and b:

f ◦ â = f ◦ a ◦ (J1 × idX)

= b ◦ (idG1 × f) ◦ (J1 × idX)

= b ◦ (J1 × idY ) ◦ (id ̂ × f)
G1
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= b̂ ◦ (idĜ1
× f).

Moreover, p = q ◦ f . So, we conclude that f∗ is a morphism in Ô-Loc. Finally, let O(X)
and O(Y ) be arbitrary O-locales, and let f∗ : O(Y ) → O(X) be a map of Ô-locales. 
We want to show that f is a G-equivariant map. In fact, since Ĝ-Loc and Ô-Loc are 
equivalent, f : (X, ̂a, p) → (X, ̂b, p) is a Ĝ-equivariant map. Now, taking into account 
that both (X, ̂a, p) and (X, ̂b, q) satisfy the descent condition, we have

Ĝ1 ×G0 X

J1×idX

id
Ĝ1

×f

â

Ĝ1 ×G0 Y

J1×idY

b̂G1 ×G0 X

∃a

G1 ×G0 Y

∃b

X
f

p

Y

q

G0.

Clearly, p = q ◦ f . And, since f ◦ â = b̂ ◦ (idĜ1
× f), we have

(f ◦ a) ◦ (J1 × idX) = b ◦ ((J1 × idY ) ◦ (idĜ1
× f)).

Furthermore, the diagram

Ĝ1 ×G0 X

J1×f
J×idX

id
Ĝ1

×f

Ĝ1 ×G0 Y

J1×idY

G1 ×G0 X idG1×f
G1 ×G0 Y

is commutative, and thus

b ◦ ((J1 × idY ) ◦ (idĜ1
× f)) = b ◦ (J1 × f)

= b ◦ ((idG1 × f) ◦ (J1 × idX)).

Hence,

(f ◦ a) ◦ (J1 × idX) = (b ◦ (idG1 × f)) ◦ (J1 × idX).

Finally, since J1 × idX is an epimorphism due to Definition 3.16(3), we can conclude
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f ◦ a = b ◦ (idG1 × f). �
Remark 4.10. If G is an étale-covered groupoid then any map f : X → Y of G-locales 
is G-equivariant if and only if it is Ĝ-equivariant. This in turn is equivalent to f∗ being 
O(Ĝ)-equivariant, by the results for étale groupoids. But f being G-equivariant also 
implies that f∗ is O(G)-equivariant, that is, a homomorphism of O(G)-modules, by [18, 
Lemma 3.6].

4.3. Orbits

Recall that if G is an open groupoid and X is a G-locale, the orbit locale X/G can be 
constructed as the following coequalizer in Loc:

G1 ×G0 X
a

π2
X

π
X/G. (4.3.1)

Definition 4.11. Let G be an étale-covered groupoid with inverse-embedded quantal frame 
O = O(G), and let X be a (left) G-locale. An element x ∈ X is invariant if the following 
equivalent conditions hold (regarding X as an O-module):

1. For all q ∈ O we have qx ≤ x;
2. 1Ox ≤ x;
3. 1Ox = x.

The set of invariant opens of X will be denoted by IO(X).

Lemma 4.12. Let G be an étale-covered groupoid, and let X be a left G-locale. Then 
IO(X) ⊂ IÔ(X).

Proof. Notice that for all x ∈ IO(X) we have

1Ô · x = j(1O) · x ≤ 1Ox ≤ x (by Lemma 4.8).

This implies that x ∈ IÔ(X). �
For étale-covered groupoids we have a simple description of these quotients in terms 

of quantale modules.

Theorem 4.13. Let G be an étale-covered groupoid, and let X be a left G-locale. The 
quotient X/G coincides with the set of invariant elements of the action. Moreover, 
I ̂(X) = IO(X).
O
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Proof. Since (X, b) is a G-locale, due to Theorem 4.9 there exists a Ĝ-action a such that 
(j ⊗ idX) ◦ b∗ = a∗ in Frm. Let us prove that the following diagram is an equalizer in 
Sets, where ι is the frame inclusion:

IO(X) ι
X

b
∗

π∗
2

O ⊗B X.

In other words, we need to show that x ∈ IO(X) is invariant if and only if

π∗
2(x) = b∗(x). (4.3.2)

If (4.3.2) holds, we have

1Ox = b!(1O ⊗ x) = b!(π∗
2(x)) = b!(b∗(x)) ≤ x (b! ◦ b∗ ≤ id),

so x ∈ IO(X). Conversely, the condition 1Ox ≤ x implies

1O ⊗ x ≤ b∗(x) =
∨

qy≤x

q ⊗ y.

And, because (j ⊗ idX) ◦ b∗ = a∗, we have

(j ⊗ idX) ◦ b∗(x) = a∗(x) =
∨

u∈I(Ô)

u⊗ u∗x

≤
∨

u∈I(Ô)

u⊗ x
(x ∈ IÔ(X) due
to Lemma 4.12)

= 1Ô ⊗ x = j(1O) ⊗ x = (j ⊗ idX)(π∗
2(x)).

Hence, b∗ = π∗
2 because j ⊗ idX is monic, and thus (4.3.2) holds. Finally, if x ∈ IÔ(X)

we have

(j ⊗ idX) ◦ b∗(x) = a∗(x) = π̂∗
2(x) (x ∈ IÔ(X))

= (j ⊗ idX) ◦ π∗
2(x).

Hence, b∗(x) = π∗
2(x) because j ⊗ idX is monic, so we conclude that IÔ(X) ⊂ IO(X). 

And IO(X) ⊂ IÔ(X) holds by Lemma 4.12. �
From now on, given an étale-covered groupoid G, we shall denote the set of invariant 

elements of a left G-locale X by I(X).
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4.4. Sheaves

Recall that a G-action whose anchor map is a local homeomorphism is called a sheaf
over G or simply a G-sheaf. Furthermore, if G is an étale groupoid then BG (the topos 
of equivariant sheaves on G) is equivalent to the category of sheaves on the involutive 
quantale O(G) of the groupoid [18]. The purpose of this section is to generalize the latter. 
Indeed we shall prove that the topos BG of an étale-covered groupoid G is isomorphic 
to the category of O(G)-sheaves.

Definition 4.14. Let O be an inverse-embedded quantal frame. By an O-sheaf X will 
be meant an Ô-sheaf X (equivalently, a complete Hilbert Ô-module) such that for all 
x, y ∈ X we have

〈x, y〉 ∈ j(O).

The category of O-sheaves is denoted by O-Sh. It has the O-sheaves as objects, and its 
morphisms are the sheaf homomorphisms. Note that O-Sh is a full subcategory of Ô-Sh.

Theorem 4.15. Let G be an étale-covered groupoid, and let X be a Ĝ-sheaf. Then X
satisfies the descent condition if and only if the inner product induced by X is valued in 
j(O(G)).

Proof. Let us write O = O(G) and Ô = O(Ĝ) for the quantales of the étale-covered 
groupoid G and its étale cover Ĝ, respectively, and B for the base locale. Let (X, a, p)
be a Ĝ-sheaf that satisfies the descent condition. This is equivalent to saying that there 
exists a G-action b such that (j ⊗ idX) ◦ b∗ = a∗ in Frm, due to Lemma 4.6. Let us 
consider the following coequalizer in Loc:

Ĝ1 ×G0 X
a

π̂2

X
π

X/Ĝ.

Now consider the pullback X×X/ĜX of the quotient map π and the pairing map 〈a, ̂π2〉
from Ĝ1×G0X to X×X/ĜX, whose inverse image homomorphism is valued in j(O) ⊗BX, 
as the following derivation with x, y ∈ X shows:

[a∗, π̂∗
2 ](x⊗ y) = a∗(x) ∧ π̂∗

2(y) = (j ⊗ idX)(b∗(x)) ∧ (j ⊗ idX)(π∗
2(y))

= (j ⊗ idX) ◦ [b∗, π∗
2 ](x⊗ y).

Therefore we can define the composition

X ⊗I(X) X
[a∗,π̂∗

2 ]
j(O) ⊗B X

(π̂1)!
j(O),
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where (π̂1)!, given by j(q) ⊗ x �→ j(q) ςX(x), is the direct image of the map of locales 
π̂1 : Ĝ1 ×G0 X → Ĝ1, due to [13, Lemma 3.1] (with the only difference that, contrary 
to the situation in that lemma, the action of B on j(O) is on the right). Hence, for all 
x, y ∈ X, we have

〈x, y〉 =
∨

u∈I(Ô)

uςX(u∗x ∧ y) (by Theorem 2.2)

= (π̂1)!(
∨

u∈I(Ô)

u⊗ (u∗x ∧ y))

= (π̂1)!((
∨

u∈I(Ô)

u⊗ u∗x) ∧ (1Ô ⊗ y))

= (π̂1)!(a∗(x) ∧ π̂∗
2(y)) [by (2.2.2)]

= (π̂1)!([a∗, π̂∗
2 ](x⊗ y))

∈ j(O).

Conversely, let us suppose that the inner product of X is valued in j(O). Then, for all 
s, t ∈ ΓX ,

[a∗, π̂∗
2 ](s⊗ t) =

∨
u∈I(Ô)

u⊗ (u∗s ∧ t)

=
∨

u∈I(Ô)

u⊗ ςX(u∗s ∧ t)t (u∗s ∧ t is a subsection of t)

=
∨

u∈I(Ô)

uςX(u∗s ∧ t) ⊗ t (⊗ is over B)

= 〈s, t〉 ⊗ t (by Theorem 2.2)

∈ j(O) ⊗B X (by assumption).

Then, since L∨(ΓX) is join-dense in X, we conclude that

[a∗, π̂∗
2 ](x⊗ y) ∈ j(O) ⊗B X for all x, y ∈ X.

This implies that [a∗, ̂π∗
2 ] factors (uniquely) through a frame homomorphism φ such that 

the following diagram commutes in Frm:

X ⊗I(X) X
[a∗,π̂∗

2 ]

φ

Ô ⊗B X

O ⊗B X.

j⊗idX
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Then the frame homomorphism given by the composition

X
π∗
1

X ⊗I(X) X
[a∗,π̂∗

2 ]
j(O) ⊗B X

is such that

(j ⊗ idX) ◦ (φ ◦ π∗
1)(x) = ((j ⊗ idX) ◦ φ) ◦ π∗

1(x)

= [a∗, π̂∗
2 ] ◦ π∗

1(x) = [a∗, π̂∗
2 ](x⊗ 1X)

= a∗(x) ∧ π̂∗
2(1X) = a∗(x) ∧ (1Ô ⊗ 1X) = a∗(x),

which implies that X satisfies the descent condition with b∗ = φ ◦ π∗
1 . �

Remark 4.16. Let G be an étale-covered groupoid. Any principally covered Ĝ-sheaf X
is such that 〈X, X〉 ∈ I(O(Ĝ)) [13, Lemma 5.3]. Therefore the principally covered Ĝ-
sheaves provide an example of a class of Ĝ-actions which does not satisfy the descent 
condition.

Corollary 4.17. Let G be an étale-covered groupoid. Then BG is equivalent to O(G)-Sh.

Proof. This follows from Theorem 4.15 and [18, Th. 4.62]. �
4.5. Bi-actions and functoriality

Groupoid bilocales. Now we address the second aim of this paper, which is to show 
that the bilocales of étale-covered groupoids can be identified with a natural notion of 
bilocale for inverse-embedded quantal frames, and from this to establish a (bicategorical) 
equivalence that generalizes that of [19] between étale groupoids and inverse quantal 
frames.

Definition 4.18. Let G and H be open localic groupoids. A G-H-bilocale is a locale GXH

(often denoted only by X), equipped with a left G-locale structure (p, a) and a right 
H-locale structure (q, b) such that the following diagrams commute in Loc.

1. q is invariant under the action of G:

G1 ×G0 X
a

π2

X

q

X
q

H0.
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2. p is invariant under the action of H:

X ×H0 H1
b

π1

X

p

X
p

G0.

3. Associativity:

G1 ×G0 X ×H0 H1
a×idH1

idG1×b

X ×H0 H1

b

G1 ×G0 X a
X.

A map of bilocales f : GXH → GYH is a map of locales which is both a map of left 
G-locales and a map of right H-locales. We will denote the category of G-H-bilocales by 
G-H-Loc.

Based on the previous definition we can define the bicategory on which the rest of 
this paper will be based:

Definition 4.19. The bicategory of étale-covered groupoids GRPD is defined as follows.

• The 0-cells are the étale-covered groupoids.
• The 1-cells X : G → H are the G-H-locales.
• The composition of 1-cells is defined by tensor product — given 1-cells X : G → H

and Y : H → K we define Y ◦X := X ⊗H Y to be the coequalizer in Loc

X ×G0 H1 ×G0 Y
〈a◦π12,π3〉

〈π1,b◦π23〉
X ×G0 Y X ⊗H Y. (4.5.1)

• Given 1-cells X, Y : G → H, the 2-cells f : X → Y are the maps of G-H-bilocales, 
with the usual composition.

• The coherence isomorphisms are, in terms of their inverse image homomorphisms, 
entirely analogous to those of the bicategory of commutative unital rings.

Lemma 4.20. Let G be an étale-covered groupoid, and let (X, p, a) and (Y, q, b) be a left 
and a right G-locale, respectively. Then

X ⊗G Y = X ⊗ ̂ Y.
G
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Proof. Let O = O(G) and Ô = O(Ĝ) be the quantales of G and Ĝ, respectively, and let 
B be the base locale. Recall from [19, Lemma 3.8, Th. 3.10] that the coequalizer X⊗ĜY

coincides with the frame X⊗Ô Y and that the latter can be identified with the subframe 
of elements ξ ∈ X ⊗B Y such that

[π̂∗
12 ◦ a∗, π̂∗

3 ](ξ) = [π̂∗
1 , π̂

∗
23 ◦ b∗](ξ).

Since X and Y are right and left O-locales, respectively, we have

a∗ = (idX ⊗ j) ◦ φ∗ and b∗ = (j ⊗ idY ) ◦ ψ∗,

where φ∗ : X → X ⊗B O and ψ∗ : Y → O ⊗B Y are frame homomorphisms. Similarly, 
the coequalizer X ⊗G Y can be identified with the subframe of elements ξ ∈ X ⊗B Y

such that

[π∗
12 ◦ φ∗, π∗

3 ](ξ) = [π∗
1 , π

∗
23 ◦ ψ∗](ξ).

Then X ⊗Ĝ Y ⊂ X ⊗G Y . Indeed, for all ξ ∈ X ⊗Ô Y , we have

(idX ⊗ j ⊗ idY ) ◦ [π∗
1 , π

∗
23 ◦ ψ∗](ξ)

= [(idX ⊗ j ⊗ idY ) ◦ π∗
1 , (idX ⊗ j ⊗ idY ) ◦ π∗

23 ◦ ψ∗](ξ)

= [π̂∗
1 , π̂

∗
23 ◦ b∗](ξ)

= [π̂∗
12 ◦ a∗, π̂∗

3 ](ξ) (because ξ ∈ X ⊗Ô Y )

= [π̂∗
12 ◦ (idX ⊗ j) ◦ φ∗, π̂∗

3 ](ξ)

= [(idX ⊗ j ⊗ idY ) ◦ π∗
12 ◦ φ∗, (idX ⊗ j ⊗ idY ) ◦ π∗

3 ](ξ)

= (idX ⊗ j ⊗ idY ) ◦ [π∗
12 ◦ φ∗, π∗

3 ](ξ).

Therefore, [π∗
1 , π

∗
23 ◦ψ∗](ξ) = [π∗

12 ◦φ∗, π∗
3 ](ξ) because idX ⊗ j⊗ idY is monic. Conversely, 

assume that ξ ∈ X ⊗G Y , that is

[π∗
12 ◦ φ∗, π∗

3 ](ξ) = [π∗
1 , π

∗
23 ◦ ψ∗](ξ).

Hence,

(idX ⊗ j ⊗ idY ) ◦ [π∗
1 , π

∗
23 ◦ ψ∗](ξ) = (idX ⊗ j ⊗ idY ) ◦ [π∗

12 ◦ φ∗, π∗
3 ](ξ).

This implies that

[π̂∗
12 ◦ a∗, π̂∗

3 ](ξ) = [π̂∗
1 , π̂

∗
23 ◦ b∗](ξ),

which is equivalent to saying that ξ ∈ X⊗ ̂ Y . This proves that X⊗ ̂ Y = X⊗G Y . �
G G
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Definition 4.21. Let O1 and O2 be inverse-embedded quantal frames. By an O1-O2-
bilocale X is meant an Ô1-Ô2-bilocale such that (α1)∗ and (α2)∗ factor in Frm (neces-
sarily uniquely) through j ⊗ idX and idX ⊗ j, respectively, where (αi)∗, for i = 1, 2, is 
the right adjoint of the module action αi. The category O1-O2-Loc of O1-O2-bilocales
consists of O1-O2-bilocales as objects and Ô1-Ô2-bilocale maps as morphisms — see [19, 
Def. 4.1]. Therefore, the bicategory QOL has the inverse-embedded quantal frames as 
0-cells, bilocales as 1-cells, and the maps of bilocales as 2-cells. The composition of 1-cells 
Ô1

XÔ2
and Ô2

YÔ3
is defined by

Y ◦X := X ⊗Ô2
Y,

and the coherence morphisms are analogous to those of the bicategory of unital rings.

Lemma 4.22. The composition of 1-cells Ô1
XÔ2

and Ô2
YÔ3

, given by

Y ◦X = X ⊗Ô2
Y,

is well defined.

Proof. Let O1 = O(G), O2 = O(H), and O3 = O(K), and also B1 = O(G0), 
B2 = O(H0), and B3 = O(K0) (the quantales and the base locales of the étale-covered 
groupoids G, H and K, respectively). Then

X ⊗Ô2
Y = X ⊗

Ĥ
Y (due to [19, Th. 3.10])

= X ⊗H Y (by Lemma 4.20),

and X ⊗Ô2
Y is an Ô1-Ô3-bilocale due to [19, Lemma 4.4]. Let us denote the actions by 

â1 : Ĝ1 ×G0 X → X and b̂2 : Y ×K0 K̂1 → Y . Then, by assumption, â∗1 and b̂∗2 factor 
(uniquely) in Frm through jG⊗ idX and idY ⊗ jK . Therefore, the frame homomorphisms

â∗1 ⊗ idY : X ⊗Ô2
Y −→ O1 ⊗B1 (X ⊗Ô2

Y ),

idX ⊗ b̂∗2 : X ⊗Ô2
Y −→ (X ⊗Ô2

Y ) ⊗B O3

factor (uniquely) through jG ⊗ idX ⊗ idY and idX ⊗ idY ⊗ jK in Frm. This proves that 
Y ◦X defines an O1-O3-bilocale. �
Theorem 4.23. Let G and H be étale-covered groupoids. The categories G-H-Loc and 
O(G)-O(H)-Loc are isomorphic.

Proof. Straightforward from Theorem 4.9 and [19, Th. 4.8]. �
Corollary 4.24. The bicategories GRPD and QOL are bi-equivalent.
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We conclude by showing that for a suitable O1-O2-bilocale the involute of an element 
j(q) ∈ j(O1) can be regarded as an adjoint operator.

Theorem 4.25. Let O1 and O2 be inverse-embedded quantal frames, and let X be an 
O1-O2-bilocale which is both an open O1-locale and an O2-sheaf. Then, denoting the 
sheaf inner product by 〈−, −〉, we have

〈j(a)x, y〉 = 〈x, j(a∗)y〉

for all a ∈ O1 and x, y ∈ X.

Proof. This follows directly from [13, Th. 3.8]:

〈j(q)s, t〉 =
∨

u∈I(Ô1)
u≤j(q)

〈us, t〉 =
∨

u∈I(Ô1)
u≤j(q)

〈s, u∗t〉 = 〈s, j(q∗)t〉. �
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