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Abstract

We obtain an alternative proof of an injectivity result by Beauville for a map from the moduli space
of quartic del Pezzo surfaces to the set of conjugacy classes of certain subgroups of the Cremona
group. This amounts to showing that a projective configuration of five distinct unordered points on
the line can be reconstructed from its five projective four-point subconfigurations. This is done by
reduction to a question in the classical invariant theory of the binary quintic, which is solved by
computer-assisted methods. More precisely, we show that six specific invariants of degree 24, the
construction of which was explained to us by Beauville, generate all invariants whose degree is
divisible by 48.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this article, our base field will be C. Let Cr denote the Cremona group
of birational transformations of P2. To any element S in the moduli space of quartic del
Pezzo surfaces, one can naturally associate an element GS in the set of conjugacy classes
of subgroups isomorphic to (Z/2)4 inside Cr. This construction was considered in the
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recent work of Beauville [5]; among the results he proves therein, one finds the following
statement [5, Proposition 4.2].

Proposition 1. The map S → GS is injective.

In the mentioned article, this result was obtained by an elegant geometric argument,
using an idea of Iskovskikh [17]. However, in an earlier version of the same work [4],
the weaker statement of generic injectivity was obtained by a radically different approach,
with a flavor of classical invariant theory. The purpose of the present article is to push this
second approach to completion, and show that it leads to a strengthening of Proposition 1,
which is Theorem 13 below. Our proof however is a computer-assisted one, since it relies
on rather heavy calculations using the MAPLE software.

In this classical invariant theoretic setting, the quite pretty ‘reconstruction problem’ that
needs to be solved is the following. Let Λ = {λ1, . . . , λ5} be a set of five distinct unordered
points on P1, and consider the quintic

R def=
∏

1�l�5

(z − jl), (1)

where jl is the well-known j -invariant of the four-point subset

{λ1, . . . , λ̂l, . . . , λ5}.

Question 2. Does the quintic R uniquely determine the SL2 orbit of Λ? In other words,
can one reconstruct the projective configuration of a five-point set on the line from the
projective configurations of its four-point subsets?

Remark 3. Most of the difficulty here stems from the lack of any ordering information,
as well as from the possibility of deforming each of the five four-point pictures by a priori
unrelated homographies.

Theorem 13 below gives an affirmative answer to this question, and also implies Propo-
sition 1. Indeed, by considering a homogenized version of the quintic R, one is naturally
led to the construction of six invariants B0, . . . ,B5 of the binary quintic corresponding to
the quintuple Λ, all of degree 24. Question 2 is then solved by reduction to the following
one.

Question 4. Is there a strictly positive integer d0, divisible by 24, such that for all multiples
d of d0, all invariants of the binary quintic which have degree d can be polynomially
expressed in terms of the invariants B0, . . . ,B5?

Note that there are 7 linearly independent invariants in degree 24, therefore if such a d0
exists it has to be no smaller than 48. Theorem 12 below shows that d0 = 48 indeed does
the job, providing a positive answer to Question 4. Trying to understand the intriguing
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rather high degree at which this phenomenon first occurs was our primary motivation for
the present work.

More precise statements of our results as well as the detailed explanation of the steps in
our calculations will be given in Section 3, after the necessary material from the classical
invariant theory of binary forms is recalled in Section 2. In Section 4, we will briefly relate
our results with Beauville’s. Finally, Section 5 will outline some suggestions for further
work.

2. Preliminaries on the classical invariant theory of binary forms

2.1. Covariants, invariants and symmetric functions of root differences

The following material is classical. However, it is recalled here firstly for the con-
venience of the reader, and secondly in order to fix the numerical normalization of the
invariants we will be considering.

A binary form of order p is a homogeneous polynomial

F(x) =
p∑

i=0

aix
p−i

1 xi
2 (2)

of degree p in the variables x def= (x1, x2). A matrix

g =
(

g11 g12
g21 g22

)

in GL2 acting on the variables by

x → gx = (g11x1 + g12x2, g21x1 + g22x2),

induces a transformation F → gF on the coefficients of the binary form F , by forcing the
equality

(gF )(x)
def= F

(
g−1x

)
.

A covariant of F , of degree d , order r and weight ω, is a polynomial C(F,x) =
C(a0, . . . , ap;x1, x2), homogeneous of total degree d in a0, . . . , ap , and homogeneous of
total degree r in x1, x2, such that for any g in GL2,

C(gF,gx) = (detg)−ωC(F,x). (3)

One has a simple relation between p, r , d , and ω:

dp = 2ω + r. (4)
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An invariant I = I (a0, . . . , ap) = I (F ) simply is a covariant of order zero. For two pairs
of variables b = (b1, b2) and c = (c1, c2) which can be thought of as the homogeneous
coordinates of two generic points in P1, following the elegant classical notation, we write

(bc)
def=

∣∣∣∣b1 c1
b2 c2

∣∣∣∣ .
In terms of its homogeneous roots ξ1, . . . , ξp , the form F can therefore be written as

F(x) = (xξ1) · · · (xξp).

Now one has the following classical result (see [8, p. 97] or [21]).

Proposition 5.

(1) Every symmetric polynomial in the pairs of variables ξ1, . . . , ξp which is a linear com-
bination of expressions of the form∏

1�i,j�p
i �=j

(ξiξj )
kij ×

∏
1�i�p

(xξi)
li ,

where the k’s and the l’s are nonnegative integers satisfying∑
1�i�p

li = r,
∑

1�i,j�p
i �=j

kij = ω,

and

∀i,
∑

1�j�p
j �=i

(kij + kji) + li = d,

is an (irrational) expression for a covariant of F , of degree d , order r and weight ω.
(2) Conversely any covariant C of F can be so written.

Note that the proposition has an obvious generalization to the case of simultaneous
covariants of more than one form. For example, if one considers two binary forms

F(x) =
p∑

i=0

aix
p−i

1 xi
2 = (xξ1) · · · (xξp)

and

G(x) =
q∑

bix
q−i

1 xi
2 = (xη1) · · · (xηq),
i=0
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the resultant, which is a joint invariant of F and G, is

Res(F,G)
def=

∏
1�i�p
1�j�q

(ξiηj ) (5)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 . . . . . . ap 0
. . .

. . .

0 a0 . . . . . . ap

b0 . . . . . . bq 0
. . .

. . .

0 b0 . . . . . . bq

∣∣∣∣∣∣∣∣∣∣∣∣∣
(6)

the usual Sylvester (p + q) × (p + q)-determinant formula. Likewise the discriminant of
a form F is by definition the invariant

Disc(F )
def=

∏
1�i<j�p

(ξiξj )
2 = (−1)

p(p−1)
2

pp−2
Res

(
∂F

∂x1
,

∂F

∂x2

)
. (7)

We now need to recall the classical notion of transvectant (or the “Übereinander-
schiebung” of [9, §1]), which allows the formation of new covariants from old ones, and
the formulation of quick yet precise definitions for those used in Section 3. If F is a binary
form of order p and G a binary form of order q , the kth transvectant of F and G is

(F,G)k
def= (p − k)!(q − k)!

p!q!
k∑

i=0

(−1)i
(

k

i

)
∂kF

∂xk−i
1 ∂xi

2

∂kG

∂xi
1∂xk−i

2

. (8)

2.2. Invariants of the binary quartic

The ring of invariants of a generic binary form F of order p as in (2) is denoted by
C[a0, . . . , ap]SL2 or simply C[F ]SL2 . It is given the grading by the degree in the coefficients

of F . The graded component of degree d is denoted by C[F ]SL2
d . For a binary quartic, more

conveniently written

Q(x) = q0x
4
1 + 4q1x

3
1x2 + 6q2x

2
1x2

2 + 4q3x1x
3
2 + q4x

4
2 , (9)

the ring of invariants has been know since the time of Boole and Cayley. Following
[24, p. 189] it can be described as

C[Q]SL2 = C[S,T ], (10)

where

S(Q)
def= 1

(Q,Q)4 = q0q4 − 4q1q3 + 3q2
2 (11)
2
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is of degree 2 and weight 4, and

T (Q)
def= 1

6

(
Q,(Q,Q)2

)
4 = q0q2q4 + 2q1q2q3 − q3

2 − q0q
2
3 − q2

1q4 (12)

is of degree 3 and weight 6; besides, S and T are algebraically independent. One also has
the weight 12 invariant

Disc(Q) = 28(S(Q)3 − 27T (Q)2) (13)

as is readily checked on the canonical form written with obvious notation

Q(x) = (x0)(x1)(x∞)(xλ). (14)

The classical j -invariant of the four-point set in P1 corresponding to the roots of Q is

j (Q)
def= S(Q)3

S(Q)3 − 27T (Q)2
= 4

27
× (λ2 − λ + 1)3

λ2(λ − 1)2
. (15)

2.3. Invariants of the binary quintic

For a binary quintic F , the description of the ring of invariants was completed by
Hermite [13] building on the previous work of Cayley and Sylvester. Again according
to [24, pp. 227–234], one can describe it as

C[F ]SL2 = C[J,K,L,H ]/Relation, (16)

where the invariants J , K , L, and H are respectively of degree 4, 8, 12, and 18; and there
is a unique relation between them in degree 36 expressing H 2 in terms of J , K , and L.
More precisely, one can make the following choices for the generators. First, define the
covariants

C1
def= (F,F )4, (17)

C2
def= (F,C1)2, (18)

C3
def= (C2,C2)2, (19)

C4
def= (C2,C1)2. (20)

Now the invariants are defined as

J
def= −1

2
(C1,C1)2, (21)

K
def= 1

(C1,C3)2, (22)

8
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L
def= 1

96
(C3,C3)2, (23)

H
def= − 1

384

(
(C4,C3)1, (C1,C4)1

)
1. (24)

Note that the full-fledged Cartesian expressions for these invariants as linear combi-
nations of monomials in the coefficients of F are quite complicated. Indeed, J , K , L, H

respectively have 12, 68, 228, and 848 terms. In order to calculate with invariants of the
quintic F , we will sometimes find it convenient to use the Sylvester canonical form

F(x) = ux5
1 + vx5

2 − w(x1 + x2)
5. (25)

Indeed, every form F in the affine open set {L �= 0} can be written as the sum of the fifth
powers of three nonproportional linear forms. By taking these points in the dual P1 to 0, 1,
and ∞, one sees that such an F is in the SL2 orbit of a form as in (25). The reason for this
is that

L = − 1

24.35
Disc

(
Can(F )

)
, (26)

where the canonizant of F is Can(F )
def= −C2, or in classical symbolic notation [2, §2],

Can(F ) = (ab)2(ac)2(bc)2axbxcx. (27)

The above linear forms correspond to the distinct linear factors of Can(F ) (see, e.g.,
[24, pp. 153–156] or [20]). The point of this discussion is that any identity in the ring
C[F ]SL2 can be checked by specialization to this canonical form. The fundamental invari-
ants will then be given by the remarkably simple expressions:

J = (uv + uw + vw)2 − 4uvw(u + v + w), (28)

K = u2v2w2(uv + uw + vw), (29)

L = u4v4w4, (30)

H = u5v5w5(u − v)(u − w)(v − w). (31)

Remark 6. The latter explain our choice of numerical normalization in (21)–(24). The ex-
planation of the construction scheme we used based on the covariants C1, . . . ,C4, is that it
is the most straightforward way to build, as a ‘Lego game,’ the ‘Feynman diagrammatic’
expression of the four invariants (see [1, §6] and [18, p. 120]). The sums over ‘Wick con-
tractions’ involved in each of the transvectant operations produce, up to symmetry, only
one graph. Also note that (28)–(31) exactly agree with Salmon’s conventions [24], except
for the Hermite invariant H which differs in sign and notation. The invariants given by
Gordan [9, §9] are different from the ones we used here.
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The unique relation, which can easily be checked using (28)–(31), is

16H 2 = −432L3 − 72L2KJ + 8LK3 − 2LK2J 2 + L2J 3 + K4J. (32)

The dimension of a graded component of degree d which is divisible by 4 can easily
be calculated by solving for the nonnegative solutions of an elementary diophantine equa-
tion. Indeed, because of the relation (32) one simply has to count the monomials in the
algebraically independent invariants J , K , L, with the given degree. In sum,

dim
(
C[F ]SL2

d

) = ν(0) + ν(1) + · · · + ν

(
d

4

)
, (33)

where

ν(k)
def=

{ � k
6�, if 6|(k − 1),

� k
6� + 1, otherwise.

(34)

For d a multiple of 24, and letting l = d
24 , this simplifies to

dim
(
C[F ]SL2

d

) = 3l2 + 3l + 1. (35)

3. The invariant theory computations

3.1. The basic construction

We now proceed to the definition of the homogeneous version R̄ of the quintic R:
a construction due to Beauville. In terms of the homogeneous roots λ1, . . . , λ5 in P1, write

F(x) = (xλ1) · · · (xλ5) (36)

and define the five quartics Q1, . . . ,Q5 by

Qi(x) = (xλ1) · · · (̂xλi) · · · (xλ5). (37)

Now introduce a new variable z and let

R̄ def=
5∏

i=1

((
S(Qi)

3 − 27T (Qi)
2)z − S(Qi)

3) (38)

=
5∑

i=0

Bi (F )z5−i (39)

which defines the expressions B0, . . . ,B5.
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Lemma 7. B0, . . . ,B5 are homogeneous polynomial invariants of F , of degree 24.

Proof. This is a straightforward application of Proposition 5. To get the degree, one first
calculates the weight by counting the bracket factors (λiλj ): ω = 5 × 12 = 60, and then
uses (4) to obtain d = 2×60

5 = 24. �
3.2. The main results

The most crucial step in this article is the following exact determination of the invariants
B0, . . . ,B5 in terms of J , K , L.

Proposition 8.

B0(F ) = 515

240

{−221.K3 + 214.3.K2J 2 − 27.3.KJ 4 + J 6}, (40)

B1(F ) = 516

235.33

{
216.7.K3 − 210.23.K2J 2 + 22.71.KJ 4 − J 6}, (41)

B2(F ) = 516

230.36

{
211.53.LKJ − 24.53.LJ 3 − 215.3.K3 + 27.11.13.K2J 2

− 3.131.KJ 4 + 2.J 6}, (42)

B3(F ) = 516

225.39

{−211.54.L2 − 29.3.53.LKJ + 2.53.11.LJ 3 + 29.17.K3

− 22.23.37.K2J 2 + 35.KJ 4 − 2.J 6}, (43)

B4(F ) = 516

222.312

{−25.32.53.LKJ − 53.29.LJ 3 − 27.11.K3 − 72.83.K2J 2

− 22.59.KJ 4 + 22.J 6}, (44)

B5(F ) = 515

215.315

{
33.K3 − 33.K2J 2 + 32.KJ 4 − J 6}. (45)

Remark 9. It is clear, by construction, that

B0(F ) =
5∏

i=1

(
2−8 Disc(Qi)

) = 2−40.Disc(F )3 (46)

which can be compared, as a consistency check with (40) rewritten as

B0(F ) = 2−40[55(J 2 − 128K
)]3

. (47)

Indeed, one can verify, with the help of MAPLE, that

Disc(F ) = 55(J 2 − 128K
)
. (48)
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Computer-assisted proof of the proposition. The argument relies on noticing that the
construction of R̄ is a particular instance of a quartic Tschirnhaus transformation of a
quintic equation. Since one already knows that B0, . . . ,B5 are homogeneous polynomials
of degree 24 in the coefficients of the quintic

F(x) = a0x
5
1 + a1x

4
1x2 + a2x

3
1x2

2 + a3x
2
1x3

2 + a4x1x
4
2 + a5x

5
2 ; (49)

one can safely dehomogenize by letting a0 = 1. We also dehomogenize with respect to
the variables x1, x2 by letting x1 = x and x2 = 1. With a harmless abuse of notation, the
quintic F becomes the monic polynomial

F(x) = x5 + a1x
4 + a2x

3 + a3x
2 + a4x + a5 = (x − λ1) · · · (x − λ5). (50)

Now the Qi become

Qi(x) =
5∏

j=1
j �=i

(x − λi) = F(x)

x − λi

. (51)

In terms of a root λ (or rather a new variable which will later be specialized to such root),
the corresponding quartic is given, after explicitly performing the Euclidean division, as in
(9) by

Qλ(x) = q0x
4 + 4q1x

3 + 6q2x
2 + 4q3x + q4, (52)

where

q0 = 1, (53)

q1 = 1

4
(λ + a1), (54)

q2 = 1

6

(
λ2 + a1λ + a2

)
, (55)

q3 = 1

4

(
λ3 + a1λ

2 + a2λ + a3
)
, (56)

q4 = λ4 + a1λ
3 + a2λ

2 + a3λ + a4. (57)

Using the expressions (11) and (12) for the quartic invariants S and T , one substitutes these
values in

φ(λ)
def= (

S(Qλ)
3 − 27T (Qλ)

2)z − S(Qλ)
3. (58)

This is, a priori, a polynomial in λ of degree 12 (i.e., the weight of the isobaric expression
(S3 − 27T 2)z − S3 in the q’s). We now perform the Euclidean division of φ(λ) by

F(λ) = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ + a5, (59)
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and call the remainder φ̄(λ). Since the initially generic λ is going to be specialized to a
root of F , one will have

R̄=
5∏

i=1

φ(λi) =
5∏

i=1

φ̄(λi). (60)

By the Poisson product formula this boils down to

R̄= Res(F, φ̄) (61)

the resultant of two polynomials in λ: F(λ) of degree 5, and φ̄(λ) of degree 4. This is
calculated using the Sylvester determinant formula as in (6). One obtains R̄ as a polyno-
mial in a1, . . . , a5, and z. The invariants B0, . . . ,B5 are extracted as the coefficients of the
powers of z. Now one rehomogenizes by performing the substitutions

(a1, . . . , a5) →
(

a1

a0
, . . . ,

a5

a0

)
,

and multiplying by a24
0 to get the Cartesian expressions of B0, . . . ,B5 as homogeneous

polynomials in the coefficients of the original binary quintic F . Finally one is reduced to
a question of linear algebra, that of decomposing these invariants in terms of the basis of
the degree 24 component of the ring C[F ]SL2 given by the following monomials in the
algebraically independent invariants J , K , L:

L2, LKJ, LJ 3, K3, K2J 2, KJ 4, J 6.

To make life easier for MAPLE we did so by first specializing to the canonical form (25),
and then solving the linear system in C[u,v,w]. The result of these computer calculations
is the statement of the proposition. �
Remark 10. The computationally costly step in this derivation is the resultant calculation
with specialized coefficients in terms of a1, . . . , a5 and z. It took 6 minutes and 37 seconds
on a 2 × 450 MHz SUN UltraSparc-II workstation running Version 9.5 of MAPLE.

Our next computational result is the following.

Proposition 11. The 21 polynomials B2
i , 0 � i � 5, and BiBj , 0 � i < j � 5, linearly

generate the component of degree 48 in the ring of invariants C[F ]SL2 .

Proof. A linear basis of this vector space is given by the 19 monomials in J , K , L of
that degree. We simply calculated the 19 × 21 matrix of coefficients, in this basis, for the
21 given polynomials; and we checked, with the help of MAPLE, that the matrix has full
rank. �

We can now state the main result of this article, which is the solution to Question 4.
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Theorem 12. For every integer d > 0 which is a multiple of d0 = 48, all invariants of the
quintic F , of degree d , can be written as polynomials in the invariants B0, . . . ,B5.

Proof. Now that Proposition 11 has been established, all one needs to do is show that
for any d = 48k, where k � 1 is an integer, every monomial Lα1Kα2Jα3 of degree d =
12α1 + 8α2 + 4α3 can be written as a product of monomials of degree 48. This is done
by induction on k. For k = 1, this is a tautology. Noting that 3α1 + 2α2 + α3 = 12k, let us
perform the Euclidean division of α1 by 4, α2 by 6, and α3 by 12:

α1 = 4β1 + γ1, 0 � γ1 � 3;
α2 = 6β2 + γ2, 0 � γ2 � 5;

α3 = 12β3 + γ3, 0 � γ3 � 11. (62)

Clearly, the degree of L4β1K6β2J 12β3 is a multiple of 48, and therefore so is that of
Lγ1Kγ2J γ3 . If both triplets (β1, β2, β3) and (γ1, γ2, γ3) are different from (0,0,0), we
are done by induction.

If (γ1, γ2, γ3) = (0,0,0), then

Lα1Kα2Jα3 = (
L4)β1

(
K6)β2

(
J 12)β3 (63)

is of the required form.
If (β1, β2, β3) = (0,0,0), then by the inequalities (62),

d = 12γ1 + 8γ2 + 4γ3 � 120. (64)

But 48|d and the case d = 48 has been dealt with; so we are left with the case where
d = 96. Since 0 � γ1 � 4, 0 � γ2 � 6 and 3γ1 + 2γ2 + γ3 = 24, one can write

Lα1Kα2Jα3 = Lγ1Kγ2J γ3 = (
Lγ1J 12−3γ1

)(
Kγ2J 12−2γ2

)
(65)

which is the required decomposition. �

4. The reconstruction problem and the relation to del Pezzo surfaces

The presentation here closely follows, notation included, that of Beauville [4,5].

4.1. The reconstruction problem

Let V
def= (P1)5\Δ where Δ is the big diagonal. One has two commuting actions on V

given by that of SL2 and that of the symmetric group S5. Let J :V → (P1)5 be the map
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which to a quintuple (λ1, . . . , λ5) associates the quintuple (j1, . . . , j5) where jl is the j -
invariant, as in (15), of the four-point set {λ1, . . . , ĵl , . . . , j5}. The map is S5-equivariant

and factors through the quotient P
def= V/SL2; i.e., one has a commutative diagram:

P
J (

P1
)5

P/S5
J̄

Sym5(P1
)
.

(66)

The solution to Question 2 is the following.

Theorem 13. The map J̄ is injective.

Proof. Consider two elements p1 and p2 of P/S5 which map by J̄ to the same element
of Sym5(P1). These correspond to two binary quintics F1 and F2, defined up to a multi-
plicative constant. By hypothesis, the corresponding quintics R̄ have the same roots, i.e.,

∀i, 0 � i � 5,
Bi (F1)

B0(F1)
= Bi (F2)

B0(F2)
; (67)

or what is the same

∀i, 0 � i � 5,
Bi (F1)

Disc(F1)3
= Bi (F2)

Disc(F2)3
. (68)

Now we claim that every expression JαKβLγ Hδ.Disc(F )−ε of degree 0 where α, β , γ ,
δ, and ε are nonnegative integers, takes the same value for F1 and F2. Indeed, one has

4α + 8β + 12γ + 18δ − 8ε = 0 (69)

therefore 4|18δ so δ is even. Using the relation (32) one can get rid of the invariant H .
Now

JαKβLγ .Disc(F )−ε = (
Disc(F )ρJ αKβLγ

)
Disc(F )−(ε+ρ), (70)

where ρ
def= 6� ε

6	 − ε � 0. Expressing Disc(F ) on the left in terms of J , and K , one is
reduced to the case of an expression JαKβLγ .Disc(F )−ε where the degree of JαKβLγ

is divisible by 48. The claim now is a consequence of Theorem 12 and (68).
Now following [23, Chapter 5], F1 and F2 can be seen as elements of the open affine

set

U1,5
def=

{
binary quintics without
repeated linear factors

}
(71)
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equipped with the natural GL2 action. It is well known (see, e.g., [23, Corollary 5.24])
that U1,5 → U1,5/GL2 is a good geometric quotient. The elements of the coordinate
ring C[F,Disc(F )−1]GL2 of the latter separate the GL2 orbits. Using the description of
C[F ]SL2 recalled in Section 2, these elements are finite linear combinations of expressions
JαKβLγ Hδ.Disc(F )−ε as above. Now the claim which we have just proved entails: F1
and F2 are in the same GL2 orbit. Therefore the corresponding points p1 and p2 in P/S5
are the same. �
4.2. The relation to del Pezzo surfaces and the Cremona group

We now come full-circle by explaining how Theorem 13 provides an alternative proof
of Proposition 1. The discussion will be quite brief, since much more detail can be found
in [4,5] for the specifics of the situation, and [3] as well as [12, Lecture 22] for the standard
prerequisites on quartic del Pezzo surfaces. Such a surface S is usually seen as the blow up
of P2 at five points in general position. The linear system of cubics through these five points
embeds S as a complete intersection of two quadrics in P4. By choosing an appropriate
coordinate system in the latter one can take these quadrics to be given by equations Q∞ = 0
and Q0 = 0 where

Q∞
def=

5∑
i=1

X2
i and Q0

def=
5∑

i=1

λiX
2
i . (72)

There is a canonical subgroup of automorphisms of S, isomorphic to (Z/2)4, which is
the one generated by the involutions σl mapping (X1 : . . . : Xl : . . . : X5) to (X1 : . . . :
−Xl : . . . : X5). This descends, via the birational map from S to P2 corresponding to the
blow up, to a subgroup GS isomorphic to (Z/2)4 inside the Cremona group Cr, or rather
to a conjugacy class of such. This is the construction given by Beauville for the map in
Proposition 1.

Now note that the moduli space of (nonsingular) quartic del Pezzo surfaces S is the
same as that of binary quintics without repeated linear factors, or more precisely the space
we denoted earlier by P/S5. This correspondence is given by the consideration of the pen-
cil Q∞λ − Q0 which is singular exactly when λ belongs to the five point set {λ1, . . . , λ5}
(see [3] for a very thorough treatment). From the knowledge of the conjugacy class GS one
can recover the isomorphism class of the normalized fixed point locus, i.e., the normaliza-
tion of the union of the nonrational curves in P2 which are fixed by an element of GS . At
the level of the surface S, this means that one can recover the data of the j -invariants of the
five elliptic curves obtained as the intersection of S with each of the hyperplanes Xl = 0.
This is the same as the unordered collection of the jl’s as in (1). As a result Theorem 13
implies Proposition 1.

Remark 14. We did not try to see if the nice geometric method used by Beauville in [5]
could be refined in order to obtain Theorem 13, or Theorem 12 (at least with unspeci-
fied d0). This might be an interesting point to elaborate upon in view of the generalization
proposed in Section 5.1 below.
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5. A shopping list

One of the ‘raisons d’être’ of experiment in natural sciences is to spur new theoretical
investigations. Accordingly, we would be very happy to see the experimental mathematical
result obtained in this article initiate some search for theoretical understanding, whatever
modest. We can already see different questions arise from this work which might variously
interest the communities of algebraic geometers, combinatorial/computational algebraists,
and representation theorists. We will organize these questions accordingly.

5.1. Algebraic geometry

Very loosely speaking, our Theorem 13 can be recast with vast although probably not
maximal generality as the following. Consider a projective variety X equipped with the
action of a reductive group G. One can try to mimic the construction of Beauville’s map J̄

and analyze the injectivity of

“
(
Symp X

)
/G →

(∏
I

((
Sym|I | X

)
/G

))/
Sp, ” (73)

where I ranges through the
(
p
q

)
subsets of cardinality q in {1, . . . , p}. One would have to

do some work even in order to give a clean formulation of the question, in particular with
regard to the analogue of the big diagonal Δ one needs to remove and related stability
issues; this is why we put quotes. In particular, if only for esthetic reasons, one might
want to investigate the case of SLn+1 acting on Pn, or an invariant theoretic interrelation
of Chow varieties of zero-cycles in Pn of different degrees. A special situation with binary
forms, where the precise formulation of the problem is straightforward is the reconstruction
problem for a binary p-ic from the j -invariants of its four-root subsets. It is somewhat the
natural one-dimensional projective analogue of similar questions in distance geometry and
rigidity theory (see, e.g., [6]) where one tries to determine a Euclidean configuration of
points from mutual distances. Indeed, in the Euclidean situation one modulus corresponds
to two-point subsets, whereas here it corresponds to four-point subsets.

5.2. Combinatorial/computational algebra

A natural problem, under this heading, is to reduce the computations which we have
done (especially the ones in Proposition 8) to human proportions. This might well be
needed in order to tackle the next open case of reconstructing the binary sextic from the
quartics it contains. Indeed, one would have to identify 16 invariants of degree 60 one of
which is the 6th power of the discriminant. When doing explicit calculations with invari-
ants of binary forms, one essentially has the following tools and combinations thereof to
choose from:

(1) Cartesian expressions,
(2) canonical forms,
(3) symmetric functions of root differences,
(4) the symbolic method.
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In our opinion, the most interesting is the one we did not use in this article, i.e., the last
one. One would need to invariantively rephrase the proof of Proposition 8, i.e., keeping
the SL2-equivariance explicit throughout. We believe the methods to do that are already
available in the classical literature (see, e.g., [7,10,11,14]) waiting to be carefully studied
anew by computational and combinatorial algebraists. Maybe a word of caution for those
who would be willing to do so is in order. They will find, in addition to the common
vicissitudes of research life, three practical obstacles specific to this task, and pertaining to

(1) physical accessibility of the literature,
(2) mathematical accessibility of its contents,
(3) language barrier.

Fortunately, removing the first obstacle is well under way thanks to the highly com-
mendable efforts of the retrodigitalization projects throughout the world. The second one
is no obstacle at all, if only psychological. Indeed, we explained in [1,2] a minimally acro-
batic way of making rigorous mathematical sense out of the symbolic method as used by
classical masters such as P. Gordan. The third problem is serious and requires a generous,
volunteer-based translation effort following the example for instance set by Ackerman and
Hermann [16], or Cox and Rojas [22]. Since one should follow one’s own advice, let us
announce a forthcoming translation into English by K. Hoechsmann, with commentary by
the present author, of the classical masterpiece [9].

5.3. Representation theory

Modern practice in algebraic geometry does not encourage the writing of equations in
coordinates. The successes obtained in conformity with this ideological choice can hardly
be argued against; the resulting achievements are among the greatest of 20th century math-
ematics. However, it is sometimes necessary to calculate with coordinates, especially in
view of the currently growing importance of computational/combinatorial algebra. It is
therefore essential, when it is required, to try to do so wisely; and in this respect, there is
much to be learned from the 19th century mathematicians. To continue on what we said
in the previous subsection, one has to realize that from the mere use of Cartesian expres-
sions one is automatically breaking SL-invariance and, perhaps unwittingly, doing toric
geometry. More appropriate to calculations in the realm of projective geometry is the sym-
bolic method which explicitly preserves the SL-equivariance. Concerning the latter, there
are a few questions arising as to what is the representation theoretic interpretation of our
Theorem 12.

Let Sd(·) denote the d th symmetric power of an SL2 representation; if no argument is
indicated it means that of the defining vector space C2 which is also identified with its dual.
It is not hard to rephrase our Theorem 12 as the surjectivity of an SL2-equivariant map

S2k

(
S5

([
S6(S4)

]SL2
)) → (

S48k(S5)
)SL2 .

One can then ask if one could remove the restriction to SL2-invariant subspaces. Indeed
the construction of the invariants B0, . . . ,B5 is susceptible of many variations and twists.
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For instance, one can do it not only for invariants but also for covariants since Propo-
sition 5 works equally well for them. This ties in with one of the main themes of the
article [1], as well as a rather mysterious ‘devissage’ property of classical invariants al-
luded to in [25, pp. 114–118]. As an exercise we leave to the reader, and as an illustration
of the point we are making, one can do the following construction. Take the covariant
C(Q;x) = (Q, (Q,Q)2)1 of the quartic Q; and similarly to the description of R̄, consider
the expression

5∏
i=1

C(Qi; ξi)

which reintroduces the missing root by specializing x. Now one can check that this is a
nonzero numerical multiple of the invariant H . This gives a somewhat less ‘out-of-the-
blue’ derivation for the root-difference expression found by Hermite for his own invari-
ant H (see [15] and, e.g., [19] for related recent work).
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