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1. Introduction

An EI category is one in which every endomorphism is an isomorphism. In this paper we are par-
ticularly motivated by the examples of El categories which are constructed from families of subgroups
of a given group. These include the orbit category of a group with respect to a family of subgroups,
the Frobenius category, the transporter category, and the Brauer category of a block. Groups them-
selves, as well as partially-ordered sets are also examples of EI categories.

A representation of a category over a commutative ring is simply a functor from the category to
the category of modules for that ring. When the category is a group this is a representation in the
usual sense, and if the category happens to be a poset we obtain a representation of the incidence
algebra of the poset. We develop a particular aspect of the representation theory of EI categories, and
this is a combination of the representation theories of groups and of posets.
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The main application we give in this paper of the theory of representations of EI categories is to
the local determination of properties of representations of finite groups, and in particular to Alperin’s
weight conjecture. We reformulate this conjecture in terms of the standard and proper costandard
modules for a standardly stratified algebra. A module category which is standardly stratified has simi-
lar properties to a highest weight category, but the notion is more general, and the aim in considering
such structure is to simulate aspects of weight theory, such as appears with the representations of a
complex semisimple Lie algebra. Before reaching the application to Alperin’s conjecture we first char-
acterize the EI categories whose representations are standardly stratified with respect to a natural
preorder on the simple modules. We do this in Section 2. It turns out that representations of the
orbit category of a finite group with respect to a family of subgroups are always standardly stratified,
and the stratification is related to the procedure used to compute the derived functors of the limit
functor in [15] and [22].

In order to present our reformulations of Alperin’s conjecture, we need to invoke the development
of the theory of standardly stratified algebras in a broader context than the one which appears in
many accounts of the subject. The definition of a standardly stratified algebra given by Cline, Parshall
and Scott [8] has as one of its ingredients a preordered set which parametrizes the simple modules.
The key results which we will invoke are a theorem of Dlab and the properties of the Ringel dual
algebra, and in [1,2,10,17,30] these were established under the hypothesis that the preordered set is
actually a partially-ordered set. In [29] the Ringel dual algebra was introduced using a preordered set,
and it was shown there that the dual algebra is again standardly-stratified, but it was not shown that
a standardly-stratified algebra may be identified with its double dual, and neither was Dlab’s theorem
considered. In fact all of these results hold in the generality that the simple modules are parametrized
by a preordered set provided we are careful to set things up in the right way. Our purpose in Section 3
of this paper is to show how to do this. We have been informed since writing this paper that such a
development has also been given in [13], which appeared in preprint form a few months earlier than
the present paper.

In the last section of this paper we provide our reformulations of Alperin’s weight conjecture in
the context of stratifications. We work with the representations of the orbit category of a finite group
G with respect to its p-subgroups for some prime p and we consider the standard representations
A;., the proper costandard representations V, and the canonical or partial tilting representations T
over an algebraically closed field of characteristic p. We show that Alperin’s weights correspond to
the A, which are simple, and also to the V; which are injective. These in turn correspond by duality
to the V, for the Ringel dual algebra which are Tj. At the same time the simple representations of
G are in correspondence with the A, which are T,, the A, which are injective, and also the Aj
for the Ringel dual algebra which are projective. Thus various reformulations of the conjecture that
the number of weights equals the number of simple modules for G become apparent, and certain
of these reformulations possess a symmetry which is lacking in some other forms of the conjecture.
Thus Alperin’s weight conjecture is equivalent to the statement that the number of V, for the orbit
category which are injective equals the number of A, for the Ringel dual algebra which are projective;
and it is also equivalent to the statement that the number of A, equal to T, for the orbit category
equals the number of V, equal to T, for the Ringel dual algebra.

2. Some EI category algebras are standardly stratified

We start by describing some basic properties of representations of categories, and of EI categories
in particular. Given a small category C and a field k (which could more generally be a commutative
ring R with a 1), we may form the category algebra kC which is the k-vector space with the morphisms
of C as a basis. A multiplication is defined on the basis elements by

_ {a op if @ and B can be composed,
af = )
0 otherwise.

We will compose morphisms on the left and deal with left modules, so that here o o 8 means do 8
first, then «. This is a construction which generalizes the notion of the group algebra of a group and
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incidence algebra of a poset, and the multiplication makes kC into an associative algebra, which has an
identity element if and only if C has finitely many objects. In that case the identity is 1=7)", qpc 1x
and the elements 15 form a set of pairwise mutually orthogonal idempotents in kC.

A representation of a category C is a functor F : C — k-mod. Extending the familiar property of
the group algebra when C happens to be a group, we immediately see that representations of C
may be identified with kC-modules, in that given a functor F : C — k-mod we obtain a kC-module
DB cobe F(x), and given a kC-module M we obtain a functor whose value at x € C is 1x - M. Evidently
natural transformations of functors correspond to module homomorphisms under this identification.

We start with two general results, the first of which shows that in considering the representations
of a category C, we can replace C by any full subcategory which contains at least one object from
each isomorphism class.

Lemma 2.1. Let C and C’ be equivalent categories. Then the categories of representations of C and of C’ are
also equivalent.

Proof. The equivalence of categories means there are functors A:C — C’ and B:C’ — C so that AB
and BA are naturally isomorphic to the identity functors. Now if F : C — k-mod is a representation
of C we obtain a representation FB of C’ and if G is a representation of C’ we obtain a represen-
tation GA of C. On composing the natural isomorphism of BA and the identity with F we obtain a
natural isomorphism between the functor F — FBA and the identity functor F — F, and similarly
the functor G +— GAB is isomorphic to G +— G. This demonstrates the equivalence of categories of
representations. O

Our next result shows that the category algebras of categories with more than one isomorphism
class of objects of the kind we will consider in the remainder of this paper are always non-trivially
stratified in the sense of [8]. We need to know the definition of a stratifying ideal J in a finite-
dimensional algebra A over a field, and this may be given in more than one way. One definition is
that it is an ideal for which the inflation map induces an isomorphism Ext";\/](U, V) = Ext} (U, V) for
all A/J-modules U and V. In the proof of our result we find it easier to work with an equivalent
definition which appears in [8].

Proposition 2.2. Let D be a full subcategory of a finite category C, and let e = Y, . 1x € kC where k is a
field. Let £ be the full subcategory of C whose objects are the objects of C not in D, and suppose that for all
x€Dandy € £ we have Hom(x, y) = . Then

(1) J =kCekC is a stratifying ideal in kC, and
(2) for all k€-modules U and V we have Ext; (U, V) = Ext;-(U, V), where U and V are regarded as kC-
modules by inflation.

Proof. (1) We verify that the conditions of Definition 2.1.1 of [8] are satisfied. By construction | is
idempotent, and we must verify that multiplication induces an isomorphism kCe ®cice ekC — J and

Tor®*Ce (kCe, ekC) =0 for all n > 0.

Now kCe = ekCe since both sides are the span in kC of all morphisms in D. This immediately im-
plies that the Tor groups are zero because kCe is projective as an ekCe-module. We also have an
isomorphism

kCe Qekce ekC = ekCe ®exce €kC

= ekC

= kCekC
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induced by multiplication, the latter equality holding since both sides are the span in kC of the
morphisms in C which have target in D.

(2) We may regard U and V as kC-modules via the homomorphism kC — k€ which sends mor-
phisms not in £ to zero. Now the statement is equivalent to (1), as described in [8, 2.1.2]. O

If C is an EI category, that is, one in which all endomorphisms are isomorphisms, we see imme-
diately that the set of isomorphism classes [x] of objects x in C forms a poset under the relation
[x] < [y] if and only if there is a morphism x — y. Thus if D is any full subcategory with the prop-
erty that x € D and [x] < [y] imply y € D, then D satisfies the hypothesis of the proposition. We may
consider a chain of such subcategories ¥ = Dy C --- C Dy = C in which each subcategory has one
more isomorphism class of objects than the previous one, so that n is the number of isomorphism
classes in C, and from this we obtain a stratification of kC of length n. For each kC-module M there
is a corresponding filtration in which each factor is zero except on one isomorphism class of objects,
where it is the value of M. This is exactly the filtration which has been used in the calculation of
higher limits in [15] and [22].

Whereas category algebras of finite EI categories are always stratified, with a stratification of length
equal to the number of isomorphism classes in the category, they are not always standardly stratified,
and in the remainder of this section we characterize the circumstances in which this happens. We
first recall the definition. Suppose that A is a finite-dimensional k-algebra whose simple modules are
parametrized as S;, A € A where A is a preordered set (namely a set with a reflexive, transitive
relation <). We write A < p (where A, € A) to mean A < p but p & A. Let P, be the projective
cover of S;. According to [8, 2.2.1], the algebra A is standardly-stratified with respect to (A, <) if there
exist modules Aj, A € A, with the following properties:

(1) if the composition factor multiplicity [A; : S,]# 0 then p < A, and
(2) for each A € A there is a surjection P, — A, so that the kernel K has a filtration with factors
Ay, where po> A.

We readily see that if A is standardly-stratified then the A, are determined as the modules P, /K,
where

K = E é(Pp)
¢:Py— Py
U>Xr

is the trace in P; of the projective modules P, with u > A.

We next recall the parametrization of the simple and projective representations of an EI category,
which may be found in [9] and [20], and we summarize this description. The simple representations of
an EI category C are in bijection with pairs (x, V) where x is an object of C taken up to isomorphism,
and V is a simple kAut(x)-module, again taken up to isomorphism. Indeed, given a pair (x, V) one
readily constructs a simple functor whose support is the isomorphism class [x] of x and whose value
on an object X’ isomorphic to x is V with the action of Aut(x’) on V obtained by transporting the
action of Autx via some fixed isomorphism x — x’. (Alternatively we may replace C by a skeletal
subcategory by virtue of Lemma 2.1, in which case the simple functor associated to (x, V) is zero
except on x, where it is V.) We will denote the simple functor so constructed by Sy y. An elementary
argument shows that these simple representations form a complete list of isomorphism types.

In the next result we describe the projective cover Py y of Sy v.

Proposition 2.3. (See [9].) Let C be a finite EI category and k a field. The projective cover Pxy of Sxv
is a direct summand of the functor k[Hom(x, —)], which is projective. It is supported on {y € ObC |
there is a morphism x — y}. On evaluation at x, Px v (x) is the projective cover of V as a k Aut(x)-module.

Proof. Since 1=7)", ¢ 1x is a sum of mutually orthogonal idempotents, kC - 14 is a projective mod-
ule for kC, and regarded as a functor this is k[Hom(x, —)] since on evaluation at an object y this is a
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vector space with the morphisms x — y as a basis, and the same is true of 1, -kC - 1y. Let 1y=e+ f
be a sum of orthogonal idempotents in k Aut(x) where k Aut(x) - e is the projective cover of V. Then
kCe is a summand of k[Hom(x, —)], hence is projective, and it is indecomposable since it is generated
by its value at x, where it is an indecomposable k Aut(x)-module, namely the projective cover of V.
Since eSx,v # 0 we have constructed Py y. Its support is contained in the support of k[Hom(x, —)],
which equals {y € Ob(C | there is a morphism x — y}. O

When A =kC is the category algebra of an EI category C, we take A to be the set of all pairs (x, V)
where x € ObC and V is a simple kAut(x)-module, taken up to isomorphism. There is a canonical
preorder on A given by (x, V) < (y, W) if and only if there exists a morphism x — y in C. In the
remainder of this section we characterize the EI categories C for which kC is standardly stratified
with respect to this preorder. For each A = (x, V) we now define A-modules K, as above. Explicitly:

Kev=" Y. ¢Pyw).

¢:Py w—Pxv
¥.W)>x,V)

We define Axy = Pxv/Kxv.
Lemma 2.4. Let C be a finite El category. Then

Py v (y) ifthereis anon-isomorphismx — y,
K =1 xv .
xv () = 0 otherwise,

and

Axy(Y) = {gv gi;i

where Py is the projective cover of V as a k Aut(x)-module.

Proof. The elements of A strictly greater than (x,V) are the (y, W) for which there is a non-
isomorphism x — y. The corresponding indecomposable projective kC-modules Py y are precisely
the indecomposable summands of the modules kC - 1y, by Proposition 2.3. Thus the sum of images
in Pyy of homomorphisms from the Py w with (x, V) < (y, W) equals the sum of the images of the
homomorphisms from the kC - 1, for which there is a non-isomorphism x — y, and evaluated at such
y this is Py v (y). Since kC - 1, only has support on objects z for which there is a non-isomorphism
y — z, it follows that Ky v (y) =0 if there is no non-isomorphism x — y. From Proposition 2.3 it now
follows that Ay y only has support on the isomorphism class of x, where it is Py. O

We come now to the main result of this section.

Theorem 2.5. Let C be a finite El category and let k be a field. Let A be the preordered set of pairs (x, V') which
parametrizes the set of isomorphism classes of simple modules of the category algebra kC. Then kC is standardly
stratified with respect to A if and only if for every morphism o : x — y in C the group Stabaut(y) (@) = {6 €
Aut(y) | 0o = ¢} has order which is invertible in k.

Proof. We know that if kC is standardly stratified then the standard modules are the Ay y defined
earlier. Furthermore, the composition factors of Ay y are precisely the Sy, w where W is a composition
factor of Py, and these always satisfy (x, W) < (x, V). From this we see that kC is standardly stratified
if and only if each module Ky has a filtration with factors of the form A, w where y > x.

We claim that Ky v has a filtration with factors Ay, w where y > x if and only if each evaluation
Kx,v(y) is projective as a k Aut(y)-module. This is because Ay w is supported only on (the isomor-
phism class of) y, where it is the projective module Pw, and Ky v is supported only on objects y
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with y > x. The filtration of Ky y whose terms are the subfunctors generated by the values at objects
which are initial sequences in a list of objects y1, y2, ... where y; > y; implies i < j has the property
that each factor is supported on a single isomorphism class. It will be a direct sum of A, w (and
hence have a A-filtration) if and only if the evaluation on each object is projective. This is equivalent
to requiring that each Ky v (y) be projective, and so if this condition is satisfied Ky v has a A-filtration
as required. Conversely, if Ky v has a A-filtration we see that for each y, Ky v has a filtration with
factors Ay w (y) = Pw. Since these modules are projective, it is equivalent to require that Ky v (y) be
projective.

We conclude from this that kC is standardly stratified if and only if each evaluation Py y(y) is
a projective k Aut(y)-module. By Proposition 2.3 each functor k[Hom(x, —)] is a direct sum of func-
tors Py, each occurring with non-zero multiplicity in the sum, and so every evaluation Py y(y) is
projective if and only if every k[Hom(x, y)] is a projective k Aut(y)-module. Now k[Hom(x, y)] is a
permutation module and it is projective if and only if every stabilizer in the action of Aut(y) on
Hom(x, y) has order invertible in k (because in characteristic p, for example, it is projective if and
only if it is projective on restriction to a Sylow p-subgroup, where it is free; see [4]). This completes
the proof. O

Corollary 2.6. Let C be a finite EI category in which every morphism is an epimorphism and let k be a field.
Then kC is standardly stratified with respect to the canonical preorder on A.

Proof. The stabilizer condition which appears in the statement of Theorem 2.5 is satisfied whenever C
has the property that all morphisms are epimorphisms. In such a situation, if & : x — y is a morphism
in C and 6, 6, € Aut(y) then 61 = 6, implies 61 = 6, so that Stabaye(y) (@) = {1}, or in other words
Aut(y) acts freely on Hom(x, y). O

Various categories constructed from the subgroups of a group satisfy the condition that all mor-
phisms are epimorphism, and we mention some of these now. Let S be a set of subgroups of a
group G. We define the transporter category 7s to have as its objects the members of S, and mor-
phisms Hom(H, K) = Ng(H, K) ={g € G | §H C K}. This latter set is the transporter of H into K, and
when H = K it is simply the normalizer of H in G so that 7g is an El-category. The composition of
morphisms is group multiplication. It is clear that all morphisms in 7g are both epimorphisms and
monomorphisms, since if hyg =hyg or gh; = gh, then hy = hs.

A related category is the orbit category Og associated to S in which the objects are the coset
spaces G/H where H € S and the morphisms are the G-equivariant mappings. Because the image
of each equivariant map G/H — G/K is a union of orbits, and G/K consists of only one orbit, each
morphism is an epimorphism. In fact, it is well known that all equivariant mappings G/H — G/K
have the form oy : xH — xg~'K where g € Ng(H, K). The assignment g — ag specifies a surjective
mapping Ng(H, K) — Homp (G/H, G/K) in which

[xe Ng(H,K) |ax=ag} =Kg,

so that K\ Ng(H, K) is in bijection with Homp 4 (G/H, G/K). We see from this that the orbit category
is obtained from the transporter category by replacing N¢(H, K) with K\ Ng(H, K) as the morphism
set from H to K. Orbit categories appear widely in the study of group actions on spaces. They are
at the heart of Bredon’s notion of a coefficient system and in the construction of Bredon homology
(see [6,9,24]). They are also important in the construction of approximations to classifying spaces
of groups, and from the extensive literature on this topic we may select [7,12,15] to illustrate the
application.

We also construct the Frobenius category or Quillen category Fs associated to the set of sub-
groups S (see [25, Section 47]). This is a category which plays a crucial role in the notion of a
p-local finite group [7], and in the case when S consists of the elementary abelian p-subgroups it
was used by Quillen in his stratification theorem for group cohomology. The category Fs has the
elements of S as its objects, and Hom g = Ng(H, K)/Cg(H). The morphisms may be identified with
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the set of group homomorphisms H — K which are of the form ‘conjugation by g’ for some g € G.
Such group homomorphisms are monomorphisms, and so all morphisms in s are monomorphisms.
Thus all morphisms in the opposite category Fg are epimorphisms.

In view of this we obtain the following corollary.

Corollary 2.7. Over any field, representations of the orbit category Og, the transporter category 7g, its oppo-
site ’Z:gp and the opposite fgp of the Frobenius category are all standardly stratified with respect to the natural
preorder on the simple modules specified by Sx v < Sy w if and only if there exists a morphism x — y.

3. Dlab’s theorem and the Ringel dual

We suppose that A is a finite-dimensional algebra over a field k, whose simple modules are
parametrized by a set A. The theory of standardly-stratified algebras described in (for example) [1,2,
10,16,17,30] was developed under the hypothesis that A is a poset. In fact the key assertions of this
development hold when A is a preordered set, and we wish to indicate in this section that this is
so. A development in this generality has also been given in [13] which appeared as a preprint a few
months earlier than the present account and was unknown to me until after this paper was written.
In [13] a different approach is taken to proving Dlab’s theorem.

We start by illustrating the kind of possibility that is allowed if A is a preordered set, but not a
poset. C(;nsider an algebra A with two simple modules labeled 1 and 2 whose regular representation

1
is 2 @ 1 (for example, the group algebra FF3S3). We see that A is not standardly stratified with

respect to any partial order on A ={1,2}. Forif 1 <2 then A; =1, A; = f and this does not give a
stratification. Neither does the possibility 2 < 1, which is similar. Equally, A is not standardly stratified
if A has the partial order in which 1 and 2 are not comparable. On the other hand we may use the

trivial preorder in which 1 <2 and 2 < 1. Now A; = % Ay = E and A is standardly stratified.

The trivial stratification just considered gives no extra information about an algebra, since every
algebra has such a stratification, and it might be thought merely a matter of terminology whether
one says an algebra is trivially stratified, or not stratified at all. However this trivial example underlies
non-trivial stratifications of other algebras which are useful to us. For example an algebra with regular

representation

1 2
A=, 381 4
1 2

is standardly stratified if 1 <2 <1 <3 <4 <3, but not standardly stratified with any partial order on
A={1,2,3,4}.

We now summarize the theory of the Ringel dual and Dlab’s theorem in the situation where A is a
preordered set. The main task is to make definitions of the standard and costandard objects correctly
as well as to impose a certain condition on A. After that, the arguments are just the same as the well-
known ones which already appear in the literature. In presenting them here we claim no originality,
except in so far as to observe that in some cases these arguments hold in greater generality than their
original context. It seems valuable to have a statement of these results in the generality that A is a
preordered set, since otherwise the question remains as to whether they do indeed hold.

Let A be a finite-dimensional algebra over a field k, whose simple modules are parametrized as
S, where A € A, a preordered set. As before, if A, u € A we will write A <y to mean A < u and
£ A We write A~ p if A < and pu < A. Let P, and I, be the projective cover and injective hull
of S;. We define modules A, A,, Vy and V, in this context as follows. We have already defined the
standard module A; to be the largest quotient of P, all of whose composition factors are isomorphic
to S, with u < A. We define the proper standard module A, to be the largest quotient of P, whose
composition factors S, all satisfy p < A, except for a single S,. Similarly the costandard module V),
is the largest submodule of I with composition factors S, where p <X and the proper costandard
module V), is the largest submodule of I, with composition factors S, where < A except for a
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single S;. We observe that if A is minimal in A then A, =V, =S, is simple, and that if X is
maximal in A then A, = P, is projective and V, = I, is injective.

We denote by F(A) the full subcategory of A-modules whose objects have a finite filtration in
which each factor has the form A; for some A € A, and similarly we define F(A), F(V) and F(V).
We see that if A is standardly-stratified in the sense of the definition in the last section then A €
F(A), but it is not apparent that the converse need be true in this generality. The problem is that it
need not be the case that Ext groups between the As vanlish azppropriately. As an example consider

(again) the algebra whose regular representation is 4A = 2 & ] with two simple modules: 1 and 2.
Taking this time the preorder in which 1 and 2 are not comparable, we see that A; =1 and Ay =2
and that A € F(A), but that A is not standardly stratified with this preorder.

To remedy this, we use the fact that there is associated to A a poset [A] whose elements are the
equivalence classes [A] of elements of A under ~ and where [A] < [u] if and only if A < u. We may
place the elements of [A] in some order [A] = {p1, 02, ..., pn} so that p; < p; implies i < j and use
this to define a new preorder on A: A <" u if and only if A € p;, u € pj with i < j. If A is standardly
stratified with respect to (A, <) then it is also standardly-stratified with respect to (A, <) with the
same standard and proper standard modules (as we may easily see by an elementary argument), and
so for many purposes we may work with (A, <) instead of (A, <). A number of the results in this
section will only be true under the hypothesis that <=<', which is equivalent to saying that the
poset associated to (A, <) is a linear order, or that in every pair of elements of A the elements are
comparable. This idea is present in [8, 2.2.3].

The standard and proper standard modules may also be defined in terms of idempotents. Fre-
quently this is done elsewhere in the literature under the assumption that A is a poset, but it may
also be done under the weaker assumption that A is a preordered set. To make the definitions work
we suppose that the poset [A] ={p1, 02, ..., pn} associated to A is linearly ordered. For each A € A
let e, € A be a primitive idempotent corresponding to the simple module S;. For each equivalence
class p; of elements of A we define an idempotent E; = erpi ey, so that E; is the sum of as many
primitive idempotents as there are elements in the equivalence class p;. Let us put €; = Z,-g jEj. Thus
for A € p; we have

A; = (Aey)/(A€iy1(Rad A)ey)
and
Ay = (Aey)/(A€i(Rad A)e;).

The way to see this is to observe that Ae; = P,, the projective cover of S;, so that (RadA)e;, is
the unique maximal submodule of P, and Ae;,1(Rad A)e, is the trace in (Rad A)e, of the projective
modules P, where A < w. Similarly Ae¢;(Rad A)e;, is the trace in (Rad A)e, of the projective modules
P, where 1 < .

We list some basic properties of these modules.

Proposition 3.1. Let A be a finite-dimensional k-algebra whose simple modules are parametrized (up to iso-
morphism) by a preordered set A for which the associated poset [ A] is linearly ordered. The modules we have
defined satisfy the following properties.

(1) Homy (A, V) # 0 implies A ~ .
Homa (A, V implies A = 1, and also Homa (A, V;, implies A = 1.

(2) ( w) 7 0 impl d al w> Vi) # 0 impl
(3) Homa(4;, V,,) # 0 implies 1 = .
(4) If o < & then Extl (As, Sp) = 0 and Ext} (S, Vi) = 0.
(5 EXt%(AA, Ay) # 0 implies A < i, and also Ext}q(VM, V) # 0 implies A < .
(6) Extl(A;, Ay,) 0 implies A < p, and also ExtL (V,, Vy) # 0 implies A < ju.

A 2 AV
(7) Extl(A,, A,) # 0 implies A < W, and also Ext! (V,., V)) = 0 implies 1 < .

A Iz AV

—_ =
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(8) Exth (A, Ay) # 0 implies 1 < p, and also Exty (V,, V) # 0 implies A < p.
(9) Exth(4;, V) =0forallx, ue A

(10) Ext}(A;, V,) =0 and Ext) (A;, V,,) =0 forall 1, u € A.

(11) Extl (Ax, V) # 0 implies A ~ pu.

Proof. In each case where there are two statements they are equivalent to each other by the duality
between modules for A and its opposite algebra. We only prove the first statement. All of the argu-
ments are routine, being similar to the ones which prove 1.2 and 1.3 of [11] or 2.2.2 and 2.2.8 of [8],
for example.

(1) If there is a non-zero homomorphism ¢ : Ay — V,, we deduce that S; is a composition factor
of V,, and S, is a composition factor of A;. Thus A < and @ <A so A~ .

(2) If there is a non-zero homomorphism ¢ : A; — ?,L then ;< A as in (1), but now if A # i then
A < u since S, is a composition factor of §M. This would imply A < @ < A, which is not possible.

(3) If there is a non-zero homomorphism ¢ : A; — §u then either A = orelse A < and u < 2,
which is not possible.

(4) These follow from the fact that A, is the largest quotient of P, with composition factors < A,
and that V, is the largest submodule of I with composition factors < A. It may also be proved by
the argument of (5).

(5) We use the short exact sequence 0 — K, — P; — A; — 0 to compute Ext. The semisimple
top of K; only has composition factors S, with A < v so Homa(Kj, A,) # 0 implies A, has such a
composition factor, and A < v < .

(6) This is similar to (5).

(7) We use the short exact sequence 0 — K, — P, — A; — 0 to compute Ext, where the com-
position factors of the semisimple top of K, are S, with A <v. Thus Homa (K}, Ay,) #0 implies Ay,
has such a composition factor, and A < v < .

(8) This is similar to (7).

(9) The argument for this is given in 2.2.8 of [8].

(10) This and (9) are perhaps the most interesting arguments. We use the short exact sequence
0— K, — P, — A, — 0 as before to compute Ext, and because Homgx(K;, ?M) # 0 implies A <
we deduce that if Ext} (4;,V,) #0 then 1 < p.

We may also use the injective presentation 0 — V,, — I, — C,, — 0, where the socle of C, has
composition factors S, with u < v, so that Homa(A;, E,l) # 0 implies u < v <A so u < A. Because
we cannot simultaneously have A < ¢ and u < A we deduce that Ext}‘(A,\, ﬁu) =0.

(11) Here Homa (K, V,,) # 0 implies A < pt and Homgu(A;, Cp,) #0 implies £ <A. O

Corollary 3.2. Let A be a finite-dimensional k-algebra whose simple modules are parametrized (up to isomor-
phism) by a preordered set A for which the associated poset [A] = {p1, p2, - .., pn} is linearly ordered, and let
the idempotents €; be defined as above.

(1) Let M be a finite-dimensional A-module. Then M lies in F(A) if and only if for every i the module
(A€iM)/(A€i+1M) is a direct sum of modules A, with A € p;.

(2) F(A) is closed under taking direct summands.

(3) A is standardly-stratified if and only if A € F(A), or equivalently, every finite-dimensional projective A
module lies in F(A).

Proof. (1) The argument is implicit in [8, Section 2.2]. Assuming M € F(A), by (5) of Proposition 3.1
M has a filtration in which the factors occur in an order compatible with the linear order on [A].
Such a filtration is a refinement of the trace filtration with terms A¢;M and each factor is a direct
sum of modules A, again by (5) of Proposition 3.1. The converse implication is easy.

(2) This is the usual argument, as in [23, Section 3] or [11, 14].

(3) From the definition we have that if A is standardly stratified then A € F(A). Conversely if
A € F(A) then each indecomposable projective P lies in F(A) and by part (1) the filtration with
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terms Ae€; P has A factors. Since P is indecomposable projective the top factor must be A, for some 2,
and the rest of the factors must be A, with u > A by the property of this filtration. O

We also have the following:

Corollary 3.3. Let A be a finite-dimensional k-algebra whose simple modules are parametrized by a preordered
set A for which the associated poset [ A] is linearly ordered.

(1) F(A) and ]-'@) are closed under kernels of epimorphisms.
(2) F(V) and F (V) are closed under cokernels of monomorphisms.

Proof. Parts (1) and (2) are dual to each other and only one of them needs to be proved. The state-
ment about F(A) follows as in 1.5 of [11] and the statement about F(A) follows as in 3.2 of [1]. O

Dlab showed [10] under the hypothesis that A itself is linearly-ordered that the left regular repre-
sentation 4A lies in F(A) if and only if the right regular representation A4 lies in F(A) (where now
the As are right modules), or what is the same on considering ordinary duality with respect to the
field k, that all finitely-generated injective left A-modules lie in (V). A similar thing works when A
is a preordered set. We state a result which is a combination of the statements which appear in [1,
Theorem 3.1] and [17, Theorem 3]. Rather than work with left As and right As (as is done elsewhere)
we choose to work entirely with left modules, so that instead of the right modules A we work with
their vector space duals, which are the left modules V.

Theorem 3.4 (Dlab’s theorem). Let A be a finite-dimensional k-algebra whose simple modules are para-
metrized (up to isomorphism) by a preordered set A for which the associated poset [ A] is linearly ordered.
The following statements are all equivalent to the statement that A is standardly stratified.

) F(A) contains all finitely-generated projective modules.
) F (V) contains all finitely-generated injective modules.

) Ext4(A;, V) =0forall i, u € A.
)
)

These conditions are in turn equivalent to the following seemingly stronger conditions:

(2) Ext{ (A, V) = Oforall i, e Aandallk >1.
(63/) ]—"(é) ={X| Extﬁ(x, V) =0forallp e Aandallk > 1}.
(V3) F(V)={X| Ext’j‘(AA, X)=0forall» e Aandallk > 1}.

Proof. We have observed in part (3) of Corollary 3.2 that condition (A1) is equivalent to the condition
that A is standardly stratified. The proofs of the equivalences which appear in [1] and [17] go through
verbatim with the modules A and V which we have defined here, since these modules satisfy the
same formal properties as the ones considered in [1] and [17].

Certain implications are immediate, as in [1] and [17]. These are (A3)) = (2') = (2), (V3) = (2),
(A3) = (A1) and (V3) = (V1).

We prove (A1) = (2') by an inductive argument involving dimension-shifting, as is done at the
bottom of [17, p. 101], using part (10) of Proposition 3.1 and part (1) of Corollary 3.3; (V1) = (2) is
proved similarly.

(A3) = (A3') and (V3) = (V3') are also proved in this fashion, as is indicated on [17, p. 102].

The harder parts of the proof are (2) = (A3) which proceeds as on [17, pp. 102 and 103], and
(2) = (V3), which proceeds as on [1, pp. 5 and 6]. O

By analogy with [2, Theorem 1.6] we now have:
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Theorem 3.5. Let A be a standardly-stratified algebra with respect to a preordered set A for which the associ-
ated poset [ A] is linearly ordered. Then

(1) F(4) is a functorially finite and resolving subcategory of A-modules.
(2) F(V) is a covariantly finite and coresolving subcategory of A-modules.

Proof. We see from Corollary 3.3 and conditions (A1) and (V1) of Dlab’s theorem that F(A) is
resolving and F(V) is coresolving. The fact that F(A) is functorially finite follows from [23] using
part (5) of Proposition 3.1. The fact that (V) is covariantly finite follows from (1), condition (V3) of
Dlab’s theorem and [5, 3.3]. O

The Ringel dual of a standardly-stratified algebra was constructed in [2] (under the hypothesis
that A is a poset) and it was also constructed independently in [29, Theorem 9.1] (without this
hypothesis), where as part of a more general construction it was shown that the Ringel dual of a
standardly-stratified algebra is again standardly-stratified. The approach used in [29] was to classify
the indecomposable Ext-injective objects in F(A) as the ‘Ext-injective hulls’ T, of the A,, without
using the property that they are precisely the indecomposable objects in F(A) N F(V).

In [29, Theorem 9.1] we gave a sufficient condition for the Ringel dual algebra to be standardly
stratified, but unfortunately there was a significant typographical error in the statement of the the-
orem, and we take the opportunity to point this out. In that theorem the modules which are here
called A, were called @ (1) and the hypothesis Hom(® (1), ®(p)) = 0 unless A > p was made. It
should have read ‘Hom(® (1), ®(p)) =0 unless A > p,” and the proof used this latter condition. We
comment also that in [29, Theorem 9.10] the ® (1) were indexed by the opposite preorder to the one
used here.

In fact, the usual development of the properties of the Ringel dual, as described for example in [2],
holds in the situation where A is a preordered set, and we now summarize it. The Ringel dual is the
algebra B =Enda(T) where T =&, ., T.. We adopt the convention consistent with [29], but opposite
to a frequently used convention, that homomorphisms are applied and composed on the left. Thus
starting with a left A-module T, we regard T also as a left B-module. There are four contravariant
functors we consider, namely F4 = Homa(—, T) : A-mod — B-mod, G4 = D Homy4 (T, —) : A-mod —
B-mod where D(X) =Homg(X, k), and also Fg = Homg(—, T), Gg = D Hompg (T, —) which go in the
opposite direction to F4 and G 4. At this point we introduce the notation of placing a superscript A on
a symbol that denotes an A-module, and a superscript B on a symbol that denotes a B-module. The
exception to this is T, which is both an A-module and a B-module, and appears without a superscript.

Theorem 3.6. Let A be a finite-dimensional k-algebra whose simple modules are parametrized (up to isomor-
phism) by a preordered set A for which the associated poset [ A] is linearly ordered. The isomorphism types of
indecomposable objects of F(A%) N F(VA) are parametrized as T, where A € A. For each A there are short
exact sequences

O—>Af—>Tx—>Xf—>O,

0-Y) T, > Voo

where X3! has a filtration with factors Af, where ju < ). and Y3 has a filtration with factors V', where p < 1.
(In fact T is the Ext-injective hull in F(A) of A% (in the sense of [29]).) The module T = @, ., T2 isa
tilting module for A. The dual algebra B = End 4 (T) is again standardly stratified, with preordered set A°P,
standard modules A® = F,(A%) and proper costandard modules V8 = G 4 (V4). Up to isomorphism the in-
decomposable summands of T as a B-module are precisely the indecomposable modules in F(AB) N F(VB),
T is a tilting module for B, and A = Endpg (T) which is Morita equivalent to the dual algebra of B. The functors
Fa and Fg provide a duality between F(A*) and F(AP) which interchanges P{ with T8 and T/ with P5.
The functors Ga and G provide a duality between F(V#) and F (V) which interchanges 12 with T5 and
T4 with I3,



4084 P. Webb / Journal of Algebra 320 (2008) 4073-4091

Proof. We will describe a way to approach this which at many points is similar to the line of devel-
opment in [2]. For a number of arguments we choose to quote from [29], but other references are
possible.

The modules in F(A%) N F(VA) are the Ext-injective objects of F(A#) by Dlab’s theorem, and
these were classified in [29, 8.6] as the Ext-injective hulls of the Af. This provides the first of the
short exact sequences in the statement of the theorem and it follows from the construction there
that Xf has a filtration with factors Aﬂ where u < A. It follows from [29, Theorem 9.1] that B is
standardly-stratified with preordered set A°P (according to the convention we are using here) and
with standard modules AZ = F(a%).

We next show that T is a tilting module, for which we must show that T has finite projective
dimension, Exti‘(T, T) =0 for all i > 0, and that the regular representation 4A has a finite resolution
by modules which are summands of direct sums of T. In fact every object of F(A#) has both a
finite resolution by projective modules and also a finite resolution by Ext-injective modules, from
the properties of Ext-projective and Ext-injective hulls developed in [29] (for example), and the Ext-
injective hulls are always summands of a direct sum of copies of T. The fact that Extiq(T, T) =0 for
all i > 0 is immediate from (A3’) or (V3') of Dlab’s theorem.

Because T is a tilting module the canonical map A — Endg(T) is an isomorphism, and so the
isomorphism types of projective A-modules biject with the isomorphism types of summands of T as
a B-module, and these are parametrized by A. Since the indecomposable objects of F(AB) N F(VB)
are also parametrized by A, we will know that, as a B-module, T is the sum of all of them (perhaps
taken with multiplicity) provided we can show that T is Ext-injective in F(A®). For this it suffices to
show that Ext}g(AB, T) =0 for all » € A. Take an Ext-injective resolution

O—>Af—>Té—>~~—>T,f—>0

where the A-modules TiA are direct sums of summands of T. Applying the functor F4, which is exact
on F(A?) and sends summands of T to projectives, we obtain a projective resolution

0<—Af<—Pg<—-~~<—Pr'l3<—0

and compute ExtE(AB, T) as the homology H*(HomB(P.B, T)). Since Homp(—, T) = Fp is an equiva-
lence between the projective B-modules on the one hand and the sums of summands of T on the
other, we see that Homp (PE, T) is the original resolution of A4, which is acyclic above degree 0. This
shows that Ext},(AB, T) =0, and hence A =Endp(T) is indeed the dual algebra of B (up to Morita
equivalence). It follows also that Fg(A%) = Af.

We prove that Fj, Fp are inverse dualities between F(A4) and F(A8). This is proven for example
in [8, 3.8.2], but to save the reader the trouble of chasing references we present an argument. We
show that both F4 and Fp are full and faithful. In the case of Fj4, it is full and faithful on the
full subcategory of F(A%) whose modules are the direct sums of summands of T, by the Fitting
correspondence. Because every module in F(A?) has an Ext-injective resolution by such modules,
F, is full and faithful on F(A4). The argument for Fp is similar, and so F4, Fp are inverse dualities
between F(A%) and F(APB) since they are exact and exchange A% with A5.

It follows from tilting theory (see [21, Theorem 1.16] taken together with the duality isomorphism
which appears on [21, p. 114], or [14]) that the functors G4 and Gp provide a duality between F(V4)
and F(VB) and by the Fitting correspondence these functors interchange indecomposable summands
of T and indecomposable injective modules. More specifically, consider the indecomposable summand
T of T which has a A%-filtration with A4 at the bottom, and let e; € B be the idempotent which
is the composite of projection and inclusion T — Tf — T. Then FA(Tf) = HomA(TA, T) = Be,, and
Homyx (T, Tf) = e, B are the indecomposable projective left and right B-modules corresponding to A,
from which we see that GA(T{‘) = If is the injective left B-module parametrized by A. Hence also
Ga(IH=T2.
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Because the V# and V¥ are identified in F(V#) and F(V®) as the objects which do not have
proper filtrations by any other objects in these categories, it follows that G4 and Gp interchanges
them, so that GA(§){‘) = ﬂ’; for some p depending on A. We show that A = p.

To do this, we show that in any sequence

0->YA>TA VA0

where Y € F(VA) we must have A = p. It will follow from this on applying the functor G4 that
GAWQ) is a submodule of If, and hence must be ?f. We start by observing that this same proce-
dure shows that in any such sequence the right-hand term must be the same V4, because its image
under G, is always V5, being a submodule of I2. Thus all factors V# in a VA-filtration of Y# must
satisfy v < p by Proposition 3.1 part (8). Since Af is a submodule of T){‘, for some such v we have
Homy (A4, 5'3) # 0 which implies A = v by Proposition 3.1 part (2), so A < p. At the same time, all
factors Ay of T, in a A-filtration have either 0 < A or o = A by Proposition 3.1 part (5) and there
exists such a o for which Homu (A, 5,,) # 0. This implies that o = p by Proposition 3.1 part (2).
Thus either p < A, which is not possible by our previous conclusion, or p = A, which is what we were
aiming to prove. 0O

We see that the Tf have a stronger property than the one stated in the last theorem, namely that
if Ag — T/{‘ is any monomorphism then necessarily p = A and the quotient has a A“-filtration, and
also that if Tf — §Q is any epimorphism then again A = p and the kernel has a VA-filtration. This
follows because on applying F4 we obtain an epimorphism of B-modules Pf — Ag which forces A

to equal o and the kernel to have a AB-filtration, whereupon on applying Fz we obtain that the
cokernel of A% — T4 has a A#-filtration. The argument for T/ — ¥4 is similar using G4 and Gp.

There are further properties of these categories which we could mention and whose proofs we
leave to the reader. Thus it follows from the fact that any module in F(A#) has a finite resolution
by summands of direct sums of T, taken together with condition (V3) of Dlab’s theorem, that F(V4)
may be characterized as {X | Ext%(T, X) = 0}. There is also a BGG reciprocity statement, which follows
from (2) of Proposition 3.1.

4. Representations of the orbit category and Alperin’s weight conjecture

In this section we focus on the orbit category Ogs of a finite group G with respect to the set S of
p-subgroups of G where p is the characteristic of the algebraically closed field k and write A =kOs.
The orbit category has as its objects the transitive G-sets G/H where H € § and Autp,(G/H) =
N¢g(H)/H, so that the simple kOs-modules are parametrized by pairs (G/H,V) where H € S is
taken up to conjugacy and V is a simple representation of NG(H)/H taken up to isomorphism. For
brevity we will write such a pair as (H, V), and write SH v P{} v H v for the corresponding simple,
projective and standard A-modules, etc. When we consider these modules for the Ringel dual B of A,
they will acquire a superscript B.

In [3] Alperin defines a weight of G to be a pair (H, V) where H is a p-subgroup of G taken up
to conjugacy and V is a simple projective k[N¢(H)/H]-module, taken up to isomorphism. Alperin’s
weight conjecture states that the number of weights for G at the prime p equals the number of
isomorphism types of irreducible kG-modules.

We see that the weights are a subset of the preordered set which parametrizes the simple rep-
resentations of ©g. We will identify by categorical properties subsets of the F(A) and F(V) which
biject with the simple kG-modules, and with the weights. In particular we identify by categorical
properties the Aﬁ_v when H =1 and when (H, V) is a weight. For completeness, we also identify
the Aﬁ,v when H is a Sylow p-subgroup of G. We conclude with reformulations of Alperin’s conjec-
ture.

In the following results the canonical modules to which we refer are the indecomposable modules
Ty in F(AY N F(V4) and Tf“, in F(AB)n F(VE).



4086 P. Webb / Journal of Algebra 320 (2008) 4073-4091

Theorem 4.1. Let A = kOg where Ogs is the orbit category of G with respect to its p-subgroups, and let B be
the Ringel dual of A. The following are equivalent.

(1) Ay =Sf  is asimple kOs-module,
(2) Vi y = 1§y is injective,

( Vg v =TB , is a canonical B-module,
(

3)
4) (H,'V) is a weight.

Proof. To show that (1) < (4) observe that AA Huv is the projective cover Py of V as a module for
k[N¢(H)/H], concentrated at the object G/H of Og, and it is simple if and only if the projective
cover is simple, which occurs if and only if V is projective.

The equivalence (2) < (3) is formal because of the duality between F(V#) and F (V).

It remains to show (2) < (4). We use the fact that I,’_‘,!V is isomorphic to Homk(P,’f‘:i,,k), so that

14, (H) = Py. Assuming (2) we have
Ify(H)y=Py=V§ ,(V)=V

so that V is projective and (H, V) is a weight. Conversely if (H, V) is a weight then Iﬂ’V(H) =
V= ﬁA v (H). Apart from S¢ |/, all the other composition factors S{é.ﬂ, of Iﬁ,v Eave K <¢ H and so
(K, W) 15 strictly smaller than (H, V). We see from the definition of Vﬁ,v that Vﬁ,v = Iﬁ,V' |

In the proof of the next result we quote some of the theory of Mackey functors, as much as a
convenience as for any other reason. As a guide to theory of Mackey functors we may refer to [28].

Theorem 4.2. Let A = kOg where Og is the orbit category of G with respect to its p-subgroups, and let B be
the Ringel dual of A. The following are equivalent.

1) Aﬁ,v = T,’f} v s a canonical kO s-module,
2) Ay, =1{;  is an injective A-module,

3) Ag v = PH v Is a projective B-module,
4) H=1.

Proof. The equivalence (1) < (3) is formal because of the duality between F(A”*) and F(AB).
Condition (1) is equivalent to the statement that Ag v is Ext-injective in F(A%), because the

indecomposable Ext-injectives are precisely the T ,,,, and T/} #.v is the Ext-injective hull of AH v (in
the terminology of [29]). Since injectives are Ext-injective, we obtain the implication (2) = (1).

We next prove (4) = (2), namely that if H =1 then AA v Is injective. We may construct injectives
using the duality between covariant functors and contrax}ariant functors on Og. Writing M(x)* =
Homy (M(x), k), given a covariant functor M we obtain a contravariant functor M*, and conversely,
and it is evident that projectives and injectives are interchanged by this duality. Since k Hom(—, x) is
a projective contravariant functor (by an analogous result to Proposition 2.3), the functor kHom(—, x)*
is an injective covariant functor. Taking x to be the object G/1 in Os we obtain an injective functor
which is the direct sum of the Af v corresponding to the decomposition of the regular representation
kG into projectives. Since every A v appears here, they are all injective.

We prove finally that (1) = (4) and will do it by showing that if H # 1 is a p-subgroup and V is
a simple k[N¢(H)/H]-module then there is a non-split short exact sequence of kOs-modules

O—>A§!V—>M1—>M2—>0

in which all terms lie in F(A”). This will show that A% |, is not Ext-injective in 7 (A%) and hence
not Tf .
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We will construct M; in stages. Let X be the projective cover of V as a k[N¢(H)/H]-module. When
we regard X as a k[Ng(H)]-module it has vertex H and a Green correspondent U, say, as a kG-module
(see [4] for background). Consider the kOs-module F = FQy which assigns to each subgroup J the
fixed quotient FQu(J) =k ®; U. Now F(1) = U is indecomposable and the functorial morphisms
F(1) — F(H) (i.e. the corestriction maps) are all surjective, so F is generated as a kOs-module by
F(1). It follows that F is indecomposable as a kOs-module, since if F = F{ & F, then one summand,
say Fq, must have F1(1) = F(1) and hence F{ = F, because F is generated by its value at 1.

Next we claim that the value of F at H has X as a summand. This is because the restriction
U ¢ﬁG(H) has X as a summand by the properties of Green correspondence, and this survives to the

fixed quotient under H. Thus Af;,v is a quotient of a submodule of F, because it is supported only
at H.

Now let L — F be the projective cover of F as a kOs-module, so that L is also generated by
its value at 1, and L = PA DD P Ty, s a direct sum of indecomposable projectives. For each
subgroup Q we let (L(Q)) be the subfunctor of L generated by its value at Q. Now

Do) Y ()= any,

Q>H Q>H

has Ag,v as an image, and so some indecomposable projective functor P{‘,w has Aﬁ,v appearing in a
A?-filtration. The quotient by the term in this filtration of P4, which leaves A4 |, in the socle of the

quotient is an indecomposable module M in F(A?) (indecomposable because its semisimple quotient
is simple) which, provided H # 1, gives rise to a non-split extension 0 — Aﬁ v = M1 — My — 0 with

all terms in F(A%). It follows if H # 1 that A% |, is not Ext-injective. O

Although we will not use it in reformulating Alperin’s conjecture, we include the next result for
completeness.

Theorem 4.3. Let A = kOgs where Og is the orbit category of G with respect to its p-subgroups, and let B be
the Ringel dual of A. The following are equivalent.

(1) A4 Hy= P #1.v is a projective kO s-module,
(2) g v is Ext-projective in F(A%),

(3) A
(4)

v = TH v Is a canonical B-module,
H is a Sylow p-subgroup of G.

AG
A

Proof. Some of the implications are immediate. We have (4) = (1) because (H, V) is a minimal
elemgnt of A. Also, (1) = (2) is trivial. (2) < (3) follows from the duality between F(A#) and
F(A®).

(2) = (1) holds because the projectives lie in F(A%), so they lie among the Ext-projective objects,
and the number of indecomposable Ext-projectives equals the number of indecomposable projectives
(for example, by [29, 8.6] where it is shown that the indecomposable Ext-projectives are the Ext-
projective covers of the As).

It remains to demonstrate (1) = (4), which we do by showing that if H is not a Sylow p-subgroup
then Aﬁ_v is not projective. So let H be a p-subgroup of G and let X be the projective cover of
V as a k[Ng(H)/H]-module. In the notation used in [27] and [29], consider the Mackey functor
(lnf%gEZ;/H FQyx) TgG(H), namely the inflation to Ng(H) of the fixed quotient functor FQx, induced
to G. In [29] such Mackey functors played a key role as factors in certain filtrations, and were denoted
there Ay x, but to avoid confusion we do not use this notation here, because it is not the same as
our present usage. In [29, 3.4] we show that this Mackey functor is generated by its value at H. This
implies that it is still generated by its value at H if we consider only the operations which form the
covariant part of the Mackey functor (see e.g. [26, 2.1]), and hence if we let M be the kOs-module
which is the restriction to Og of this Mackey functor then M is generated by its value at H. As in



4088 P. Webb / Journal of Algebra 320 (2008) 4073-4091

[29, 3.1] we have M(H) = X, which is indecomposable, and so we deduce that M is indecomposable
as a kOs-module (since if M = My & M3 then, say, M1(H) = M(H) and hence M = M).
Consider now the short exact sequence of kOg-modules

0>K—>M—Af,—0

where K is the submodule of M generated by the values of M at groups strictly larger than H.
Suppose that H is not a Sylow p-subgroup of G. Then there is a non-identity p-subgroup J/H of
Ng(H)/H and it has a non-zero fixed quotient X;. This implies that M(J) # 0 and hence that K # 0
(because K(J) #0). Since M is indecomposable the short exact sequence is not split, and so Ai\l,v is
not projective. O

We immediately obtain several reformulations of Alperin’s weight conjecture by substituting for
the numbers of simple kG-modules or weights the other numbers indicated by these theorems. The
reformulations are appealing because they are expressed in terms of objects defined by categorical
properties of a single category, kOs-mod, together with knowledge of the preorder on A. The struc-
ture of this category has the potential to provide a reason why the numbers are equal since up to
Morita equivalence the group algebra may be recovered from kOg-mod and A using Theorem 4.2.
Our hope is that the theory of stratifications may shed light on Alperin’s conjecture.

Some of our reformulations of Alperin’s conjecture reveal a symmetry between the two numbers
which it asserts to be equal, and it is particularly apparent if we allow ourselves to express them in
terms of the Ringel dual. We single out now two of the reformulations which have this symmetry.

Corollary 4.4. Let A = kOg where Og is the orbit category of G with respect to its p-subgroups, and let B be
the Ringel dual of A. The assertion of Alperin’s weight conjecture for the group G is equivalent to each of the
following two statements.

(1) The number of » = (H, V) for which A = T2 is equal to the number of » for which V& = T5.
(2) The number of > = (H, V) for which A% = P8 is equal to the number of 1 for which V = I£..

We illustrate these assertions with a small example, which nevertheless demonstrates the key
features. We consider the orbit category Os for the symmetric group G = S3, taking S to be the
2-subgroups of S3. Thus S contains the identity subgroup and three subgroups of order 2 and Og
has four objects. Since the three subgroups of order 2 are all conjugate, the corresponding objects of
Og are all isomorphic, and we denote one of these objects by G/C,. By Lemma 2.1 we can delete
the other two isomorphic objects without changing the Morita type of the category algebra, and
we do this. The automorphism groups of the objects are Aut(G/1) = G and Aut(G/Cy) =1, so that
taking k =, (a splitting field!) there are three simple representations of Og parametrized by pairs
(G/1,1)=(1,1), (G/1,2) =(1,2) and (G/Cy,1) = (C2, 1), where we denote representations of the
automorphism groups by their dimensions. To simplify the notation we will write the simple kOg-
modules as a=S{,, b=S{, and c =S¢ ..

The relevant representations of A = ks and its Ringel dual, B, appear in Tables 1 and 2. We see
that the weights (1,2) and (C3,1) determine the columns of the table for A in which the AQ are
simple, and also in which the 5’;‘ are injective. In the table for B these are the columns in which
VB =T2. At the same time the columns indexed by (1,1) and (1,2) are those in which A% =T/ or
equivalently A? =1# for A, and PP = AP for B. For completeness we describe all the indecompos-
able F,Og-modules. The ones in F(A4) and F(V4) appear in Table 3. In addition to the modules
displayed in these diagrams there is one further indecomposable F,Os-module, which is g In these
pictures we place a symbol ¢ to the left of a module when it is Ext-projective, and to the right of a
module when it is Ext-injective.

We conclude with some remarks. The first is that there is a block-by-block refinement of Alper-
in’s conjecture which may be described as follows. Given a block idempotent e2 = e € Z(kG), for
each p-subgroup H < G the Brauer morphism provides a central idempotent Bry(e) € Z(k[C¢(H)]) C
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Table 1
Modules for A =F,Ogs where S is the set of 2-subgroups of S3.
A (1, 1) (1,2) (C2, 1)
Simple S# a b G
Projective P e b c
Injective I£ a b @b
Af g b c
v a b ¢, B
I e b e
Table 2
Modules for B = the Ringel dual of A.
A (1, 1) (1,2) (C2, 1)
Simple S8 o B y

foct y
Projective P8 %‘ B 5" 5

Y
Injective 2 @ A {Z/
a3 ¥ p v
\/ : ) y
Y

TS i 4 14

Table 3
Modules for A =F,Os with a AA-filtration and with a VA-filtration.

o a ©
/! N /
F(aMh o ¢ H“Cb o
N /! N\
o .t b o
o 9
/! N
o uacb a
FEY: N\ 7
a “Cb o
N
o b ¢

k[N (H)] (see [25]). Regarding each simple k[Ng(H)/H]-module V as a k[Ng(H)]-module we may
say that V belongs to e if Bry(e) - V # 0 (in which case Bry(e) acts as the identity on V and
Bry(e) -V = V). The block-by-block version of Alperin’s weight conjecture states that for each block of
kG, the number of simple kG-modules belonging to the block equals the number of weights belonging
to the block.

We see from the example with S3 at p =2 that kOs need not respect the blocks of kG since kS3
has two blocks, but kOs has only one block. It thus appears at first sight that the reformulations of
Alperin’s conjecture using kOs might not be well adapted to block-by-block versions.
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In fact, we may produce such reformulations in the following way. The category algebra kOg
contains an idempotent 1,y for each object G/H of Ogs. These idempotents are orthogonal and
1g/n - kOs - 161 = k[Ng(H)/H]. Given a block idempotent e of kG we regard each Bry(e) as an
element of 16/ - kOgs - 16/4 and let E = ZHes/G Bry(e). Now E is idempotent, and E - kOg - E is an
algebra whose simple modules are the Sy v where V belongs to e, and which is standardly stratified,
with structure obtained by applying the functor M — E - M to the stratification of kOs. We leave it to
the interested reader to complete the argument that the analogues of 4.1 and 4.2 hold for E -kOgs - E.
Thus, for example, H =1 and V belongs to e if and only if AFAT = TEAF: and (H, V) is a weight
belonging to e if and only if VEAL = IFAE.

We remark that the property required of kOs which Corollary 4.4 states to be equivalent to Alper-
in’s conjecture is not satisfied by standardly stratified algebras in general, and it is quite easy to find
examples of this. One such example is given on [2, p. 153] where there is exhibited a standardly
stratified algebra in which the number of A for which A, = T, is 1 but the number of A for which
V,, =1, is 0. This means that to establish Alperin’s conjecture by using these reformulations, further
specific properties of the orbit category algebra kOg must be used. If we knew how to identify the
right properties then it would no doubt be possible to prove Alperin’s conjecture. Equally, without
knowing a proof it is hard to see what the appropriate properties might be.

The many reformulations of the conjecture which have appeared over the years can be viewed
as attempts to identify the mechanism which underlies it, and the present work is no different in
this respect. Like some other attempts we have focused on the structure of the orbit category, and
we mention [19,24] as recent contributions which also exploit this structure. By comparison, another
recent approach of Linckelmann [18] uses the structure of the Frobenius category. This has the advan-
tage that it behaves better than the orbit category when it comes to getting block-by-block versions of
the conjecture, but it has the disadvantage that the Frobenius category loses some information about
p-subgroups, which it appears to be necessary to restore by considering an appropriate extension
category. At the moment it is hard to know which category to favor. It seems quite possible that once
the conceptual underpinnings of Alperin’s conjecture have been properly worked out and understood,
many of these approaches to the conjecture will become viable.
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