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Let F be a field of characteristic 0, G a finite abelian group and A a
G-graded algebra. We prove that A generates a variety of G-graded
algebras of almost polynomial growth if and only if A has the same
graded identities as one of the following algebras:

(1) F C p , the group algebra of a cyclic group of order p, where p
is a prime number and p | |G|;

(2) U T G
2 (F ), the algebra of 2 × 2 upper triangular matrices over F

endowed with an elementary G-grading;
(3) E , the infinite dimensional Grassmann algebra with trivial G-

grading;
(4) in case 2 | |G|, EZ2 , the Grassmann algebra with canonical Z2-

grading.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an associative algebra over a field F of characteristic zero graded by a finite abelian
group G . Graded polynomials and graded polynomial identities are defined in a natural way and
there is a copious literature on the subject (see for instance [3,5,14]). An effective way of measuring
the graded polynomial identities satisfied by A is through the study of the asymptotic behavior of its
sequence of G-codimensions cG

n (A), n = 1,2, . . . .
Let X = {x1, x2, . . .} be a countable set, F 〈X, G〉 the free G-graded algebra on X and IdG(A) the

ideal of G-graded identities of A. One considers the relatively free G-graded algebra F 〈X, G〉/ IdG(A)

and denotes by cG
n (A) the dimension of the subspace of multilinear elements in the homogeneous

components of n free generators. The sequence cG
n (A), n = 1,2, . . . , is called the sequence of G-

codimensions of A and one can compare cG
n (A) and cn(A), n = 1,2, . . . , the ordinary codimension
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sequence of A. It turns out that cn(A) � cG
n (G), and in case A is a PI-algebra, i.e. satisfies an ordinary

(non-graded) identity, cG
n (A) � |G|ncn(A) [11].

Throughout we shall assume that A is a PI-algebra. In this case, by a result of Regev [17], the
sequence cn(A) is exponentially bounded. Hence by the above, also cG

n (A) is exponentially bounded.
Moreover in [12] and [13] it was proved that if A is any PI-algebra, limn→∞ n

√
cn(A) = exp(A) exists

and is an integer called the PI-exponent of A. Recently in [2] and [8] the authors computed the
exponential rate of growth of the sequence of G-graded codimensions for any G-graded PI-algebra A
and it turns out to be still an integer.

From this result in particular it follows that no intermediate growth (between polynomial and
exponential) is allowed. This fact resembles the ordinary (non-graded) case. In fact by a result of
Kemer [15], (see also [14]), it was known that the sequence of codimensions of a PI-algebra is either
polynomially bounded or grows exponentially. This phenomenon still holds for Lie PI-algebras [16] but
fails in general for non-associative PI-algebras. In fact in [10] it was shown that for any real number
0 < α < 1 there exists an algebra A such that cn(A) grows as nnα

.
At the light of the above results we shall search for G-graded PI-algebras, or varieties of G-graded

algebras, of minimal exponential growth. Now, recall that if V = varG(A) is the variety generated by a
G-graded algebra A, we write IdG(V ) = IdG(A), cG

n (V ) = cG
n (A), and the growth of V is the growth of

the sequence cG
n (V ), n = 1,2, . . . . Also we say that V has polynomial growth if cG

n (V ) is polynomially
bounded and V has almost polynomial growth if cG

n (V ) is not polynomially bounded but every proper
subvariety of V has polynomial growth.

In this paper we classify the varieties of G-graded algebras having almost polynomial growth. We
shall prove that such a variety is generated by one of the following algebras: 1) U T G

2 , the algebra of
2 × 2 upper triangular matrices over F endowed with an elementary G-grading induced by a pair of
elements of G , 2) F C p , the group algebra over F of a cyclic group of prime order p, p | |G|, endowed
with the natural grading induced by C p = 〈g〉, where g ∈ G , o(g) = p, 3) E , the infinite dimensional
Grassmann algebra with trivial grading, 4) EZ2, the Grassmann algebra with its natural Z2-grading.
This last case occurs only when 2 | |G|.

As a consequence we shall get that if A is a G-graded PI-algebra, then V = varG(A) has polynomial
growth if and only if E, U T G

2 , F C p do not belong to V , where U T G
2 is endowed with any G-grading

and p runs over all primes dividing |G|. In case 2 | |G|, one must add EZ2 , to the above list.
Our main tool in proving this result will be the explicit description of the G-exponent given in [2]

and [8]. We shall also make use of a basic result recently proved independently by Aljadeff–Belov [1]
and Sviridova [19] allowing us to reduce our problem to the study of the Grassmann envelope of a
finite dimensional G × Z2-graded algebra.

2. Graded identities and graded codimensions

Throughout the paper F will denote a field of characteristic zero, G a finite abelian group, |G| = k,
and A a G-graded algebra over F . Since codimensions do not change upon extension of the base
field, we shall assume throughout that F is algebraic closed. Let G = {g1 = e, g2, . . . , gk} and let
A = ⊕k

i=1 Agi , where Agi Ag j ⊆ Agi g j , 1 � i, j � k, and the Agi ’s are the homogeneous components
of A.

Let F 〈X, G〉 be the free associative G-graded algebra on a countable set X over F . Write X as

X =
k⋃

i=1

Xgi ,

where Xgi = {x1,gi , x2,gi , . . .} are disjoint sets, and the elements of Xgi have homogeneous degree
gi . In general, given a monomial xi1,g j1

· · · xit ,g jt
its homogeneous degree is g j1 · · · g jt . If F gi is the

subspace of the free algebra F 〈X, G〉 generated by all monomials in the variables of X having homo-
geneous degree gi, then F 〈X, G〉 = ⊕

i F gi is the natural G-grading of F 〈X, G〉.
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Recall that an element f = f (x1,g1 , . . . , xt1,g1 , . . . , x1,gk , . . . , xtk,gk ) of F 〈X, G〉 is called a graded
polynomial. Also, f is a graded polynomial identity of A, and we write f ≡ 0, if f vanishes under all
evaluations xi,g j → ag j ∈ Ag j , 1 � j � k.

For n � 1 we define

P G
n = spanF {xσ (1),giσ (1)

· · · xσ (n),giσ (n)
| σ ∈ Sn, gi1 , . . . , gin ∈ G},

the space of multilinear G-graded polynomials in the variables x1,gi1
, . . . , xn,gin

, gi j ∈ G .
The graded identities of A form an ideal

IdG(A) = {
f ∈ F 〈X, G〉 ∣∣ f ≡ 0 on A

}

which is invariant under all graded endomorphisms of F 〈X, G〉 (we say that IdG(A) is a TG -ideal).
Since char F = 0, IdG(A) is determined by its multilinear polynomials i.e., by the sequence of sub-
spaces P G

n ∩ IdG(A), n = 1,2, . . . . Then one defines

P G
n (A) = P G

n

P G
n ∩ IdG(A)

,

and

cG
n (A) = dimF P G

n (A), n � 1,

is called the nth G-graded codimension of A.
We denote by Pn the space of multilinear polynomials in the variables x1, . . . , xn and by

Id(A) = { f ∈ F 〈Y 〉 | f ≡ 0 on A} the T-ideal of ordinary polynomial identities of A. Then cn(A) =
dimF Pn/(Pn ∩ Id(A)) is the n-th ordinary codimension of A.

It is well known that for a general algebra A satisfying an ordinary polynomial identity, the se-
quence of codimensions is exponentially bounded [17]. The same conclusion about the G-graded
codimensions can be drawn in case A satisfies an ordinary polynomial identity. In fact the follow-
ing inequalities hold (see [11])

cn(A) � cG
n (A) � |G|ncn(A), n � 1, (1)

and the sequence of G-graded codimensions is exponentially bounded.
In [12] and [13] it was proved that if A is any algebra satisfying an ordinary polynomial identity,

then the limit exp(A) = limn→∞ n
√

cn(A) exists and is an integer called the exponent of the algebra A.
Recently in [2] and [8] an analogous results was proved for graded algebras satisfying an ordinary
polynomial identity. In fact the authors proved that if A is a G-graded PI-algebra, then the limit
G-exp(A) = limn→∞ n

√
cG

n (A) exists and is an integer called the G-exponent of A.
We point out that these results were accomplished by using methods of representation theory of

the group G � Sn , the wreath product of G and Sn .
Let E = 〈e1, e2, . . . | eie j = −e jei〉 be the infinite dimensional Grassmann algebra over F . E has a

natural Z2-grading, E = E0 ⊕ E1 where E0 and E1 are the subspaces of E spanned by the monomials
in the e′

i s of even and odd length respectively.
A basic theorem that we shall need in the sequel is the following result proved independently

by Aljadeff–Belov in [1] and Sviridova in [19]. We should point out that this theorem was proved
in [1] for non-necessarily abelian groups. We first recall that if A is a G ×Z2-graded algebra, then the
Grassmann envelope of A is

E(A) =
⊕
g∈G

(E0 ⊗ A(g,0) ⊕ E1 ⊗ A(g,1))

where A = ⊕
(g,i)∈G×Z

A(g,i) is the decomposition of A into its homogeneous components.

2
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Theorem 1. (See [1,19].) Let A be a G-graded algebra satisfying an ordinary polynomial identity. Then there
exists a finite dimensional G × Z2-graded algebra B such that IdG(A) = IdG(E(B)).

Next we recall how to compute the G-exponent of a PI G-graded algebra A. According to the above
theorem there exists a finite dimensional G × Z2-graded algebra B such that IdG(A) = IdG(E(B)).

By the Wedderburn–Malcev theorem [7], we write B = B ′ + J where B ′ is a maximal semisimple
subalgebra of B and J = J (B) is the Jacobson radical of B . It is well known that J is a graded ideal
(see [6]), moreover we may assume that B ′ is a G × Z2-graded subalgebra of B (see [18]). Hence we
can write B ′ = B1 ⊕ · · · ⊕ Bk where B1, . . . , Bk are G × Z2-graded simple algebras. Now, in [8] it is
proved that

G-exp(A) = G-exp
(

E(B)
) = max dim(C1 ⊕ · · · ⊕ Ch)

where C1, . . . , Ch ∈ {B1, . . . , Bk} are distinct and C1 J C2 J · · · J Ch �= 0.
Another theorem that we shall need in the sequel is the following

Theorem 2. (See [9].) Let A = ⊕
g∈G Ag be an F -algebra graded by a finite group G. Then the sequence cG

n (A),
n = 1,2, . . . , is polynomially bounded if and only if for some positive integers m and r the algebra A satisfies
the following graded identities:

1) [x1,1G , x2,1G ] · · · [x2m−1,1G , x2m,1G ] ≡ 0;

2) x1,1G x3,1G · · · x2r−1,1G x1,g x2,1G x4,1G · · · x2r,1G

−
∑

1 �=τ∈H

aτ xτ (1),1G xτ (3),1G · · · xτ (2r−1),1G x1,g xτ (2),1G xτ (4),1G · · · xτ (2r),1G ≡ 0

for all g ∈ G, where H is the subgroup of S2r generated by the transpositions (12), (34), . . . , (2r − 1 2r),
and aτ ∈ F depends on g ∈ G;

3) the ideal of A generated by
⊕

g �=1 Ag is nilpotent.

3. The algebra F C p

Let C p = 〈g〉 be a cyclic group of order p and A = F C p the group algebra of C p over F . Clearly A

has a natural C p -grading, A = ⊕p−1
i=0 Agi , where Agi = F gi , 0 � i � p − 1. It is clear that if g ∈ G , then

A can be regarded as a G-graded algebra by setting Ah = 0 for all h /∈ 〈g〉. We shall assume this point
of view throughout this paper.

Next we study the C p -graded algebra A = F C p and we prove that it generates a variety of G-
graded algebras of almost polynomial growth, for any finite group G such that p | |G|.

Since F C p is commutative, the graded identities of F C p are easily computed and we have

Remark 3. IdG(F C p) is generated as a T G -ideal by the polynomials [x1,gi , x1,g j ], 0 � i � j � p − 1.

Proposition 4. Let G be an abelian group and p a prime such that p | |G|. Then varG(F C p) has almost poly-
nomial growth and G-exp(F C p) = p.

Proof. Since F C p is commutative, it is easily checked that cG
n (F C p) = pn . Hence G-exp(F C p) = p. This

is also seen by [2], since F C p is graded simple.
Let U be a proper subvariety of varG(F C p). We need to show that cG

n (U ) is polynomially bounded.
We shall do so by showing that if B is a generating algebra of U , then B satisfies the conditions of
Theorem 2.

Since IdG(B) � IdG(F C p) there exists a polynomial f ∈ IdG(B), f /∈ IdG(F C p). Moreover, by the
standard multilinearization process we may assume that f is multilinear. Since f is not an identity of



A. Valenti / Journal of Algebra 334 (2011) 247–254 251
F C p , we can reduce f modulo IdG(F C p) and get a non-trivial identity of B that we shall still call f .
Hence, recalling that the variables of homogeneous degree h ∈ G \C p lie in IdG(F C p) and the variables
of homogeneous degree gi commute modulo the identities of F C p , we may assume that f is of the
form

f = x1,gi1 x2,gi2 · · · xk,gik , (2)

for some 1 � i1, . . . , ik � p − 1.
Now fix t , 1 � t � p − 1. Since C p is a cyclic group of order p, for all j, 1 � j � k, we can write

gi j = gtm j . Hence x
j,gi j has the same homogeneous degree as a product of m j variables of homoge-

neous degree gt .
By applying a suitable endomorphism of the free G-graded algebra to (2), it follows that we can

find m � k such that

x1,gt x2,gt · · · xm,gt (3)

is a graded identity of B , for all t , 1 � t � p − 1.
If we now take any monomial of length m(p − 1) in variables of homogeneous degree different

from 1, it is clear that it is a consequence of one of the polynomials in (3), modulo IdG(F C p), i.e., it is
a graded identity of B . Also, if we insert variables of homogeneous degree 1 into any such monomial,
we still get an identity of B . The outcome of the above discussion is that

⊕
h∈G
h �=1

Bh

generates a nilpotent ideal of B . We now apply Theorem 2 to B and conclude that U = var(B) has
polynomial growth. �
4. Classifying varieties of almost polynomial growth

Let U T2 be the algebra of 2 × 2 upper triangular matrices over the field F and denote by U T G
2

the algebra U T2 endowed with a G-grading. In [20] we classified the G-gradings on U T2. It turns out
that if G is any (non-necessarily abelian) group, then any G-grading on U T2 is elementary and can
be induced by a pair (1, g), for some g ∈ G . Let ei j be the usual matrix units. We recall that in this
grading e11 and e22 have homogeneous degree 1 and e12 has homogeneous degree g ∈ G .

In [20] we computed the Z2-cocharacter of U T Z2
2 and showed that U T Z2

2 generates a variety of
Z2-graded algebras of almost polynomial growth. We point out that, by looking at the decomposition
into homogeneous spaces, it is readily seen that [20] actually shows the following:

Proposition 5. If G is any group, U T G
2 generates a variety of G-graded algebras of almost polynomial growth.

Recall that the infinite dimensional Grassmann algebra E over F has a natural Z2-grading E =
E0 ⊕ E1. Let us denote by E, the Grassmann algebra with trivial grading and by EZ2 the algebra E
with the above Z2-grading; notice that if 2 | |G|, we can regard EZ2 with induced G-grading.

Now by [15], E generate a variety of algebras of almost polynomial growth and, by [21], EZ2

generates a variety of Z2-graded of almost polynomial growth. Reading this result in terms of G-
gradings we get

Proposition 6. E generates a variety of G-graded algebras of almost polynomial growth. Moreover if 2 | |G|,
also EZ2 generates such a variety of G-graded algebras.
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In what follows we shall need the description of finite dimensional G-graded simple algebras
given in [4]. It should be mentioned that this result holds for arbitrary groups (and not only for finite
abelian groups). We have

Theorem 7. (See [4].) Let A be a G-graded simple algebra. Then there exists a subgroup H of G, a 2-cocycle
α : H × H → F ∗ where the action of H on F is trivial, an integer m and an m-tuple (g1 = 1, g2, . . . , gm) ∈ Gm

such that A is G-graded isomorphic to R = F α H ⊗ Mm(F ) where R g = spanF {bh ⊗ ei j | g = g−1
i hg j}. Here

bh ∈ F α H is a representative of h ∈ H.

Next we prove the following technical lemma.

Lemma 8. Let A be a G-graded algebra and t � 1. If every monomial of P G
n containing at least t variables of

homogeneous degree different from 1 is an identity of A, then cG
n (A) � βnt−1cn(A), for some constant β .

Proof. Let f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) be a basis of Pn (mod Id(A)). Then, for any σ ∈ Sn ,

xσ (1) · · · xσ (n) =
∑

i

ασ,i f i
(
mod Id(A)

)
.

Now every variables xi can be written as xi = xi,g1 + · · · + xi,gk where G = {g1 = 1, . . . , gk}. This says,
by eventually putting equal to zero some of the xi,g j , that for any fixed n-tuple (h1, . . . ,hn) ∈ Gn ,

xσ (1),hσ (1)
· · · xσ (n),hσ (n)

=
∑

i

ασ,i f i(x1,h1 , . . . , xn,hn )
(
mod Id(A)

)
.

Since Id(A) ⊆ IdG(A) we get that

{
f i(x1,h1 , . . . , xn,hn )

∣∣ (h1, . . . ,hn) ∈ Gn, 1 � i � m
}

spans P G
n (mod IdG(A)).

Moreover by the hypothesis we have only to consider n-tuples (h1, . . . ,hn) such that hi = 1 except
for at most t − 1 elements. By counting we get cG

n (A) � βnt−1cn(A), for some constant β . �
Now we are able to prove the following

Theorem 9. Let G be a finite abelian group and A a G-graded algebra satisfying an ordinary polynomial iden-
tity. Then cG

n (A) � ant , for some constants a and t, if and only if either |G| is odd and U T G
2 , F C p, E /∈ varG(A),

for all primes p, such that p | |G| and for all G-gradings on U T2 or |G| is even and U T G
2 , F C p, E, EZ2 /∈

varG(A).

Proof. Since the algebras U T G
2 , F C p, E, EZ2 have exponential growth of the G-codimensions, it is clear

that if varG(A) has polynomial growth, U T G
2 , F C p, E /∈ varG(A) (we add EZ2 if 2 | |G|).

Conversely, suppose that U T G
2 , F C p, E /∈ varG(A), and in case 2 | |G|, also EZ2 /∈ varG(A). By Theo-

rem 1, there exists a finite dimensional G × Z2-graded algebra B such that varG(A) = varG(E(B)). We
shall study the algebra E(B). Write B = B ′ + J where J = J (B) is the Jacobson radical of B and B ′ is
a maximal semisimple G × Z2-graded subalgebra.

Let B ′ = B1 ⊕ · · · ⊕ Bt be the decomposition of B ′ into its G-graded simple components. Then,
according to Theorem 7, we have that, for 1 � i � t , Bi ∼= Mni (F αi Hi), where Hi is a subgroup of
G × Z2 and αi is a corresponding 2-cocycle.

Suppose first that for some i, we have that Bi ∼= Mn(F α H), and n > 1. Then C = F e11 ⊕ F e12 ⊕ F e22
is a G × Z2-graded subalgebra of Bi . Here the ei j ’s are the usual matrix units, e11 and e22 have
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homogeneous degree (e,0), where e = 1G , and e12 has homogeneous degree (g,0) or (g,1), for some
g ∈ G .

But then, either

E(C) =
(

E0 E0
0 E0

)
or E(C) =

(
E0 E1
0 E0

)
.

It is easily checked that in either case IdG(E(C)) = IdG(U T G
2 ) where U T G

2 has elementary grading
induced by the pair (e, g). Thus E(C) ⊆ E(Bi) ∈ varG(E(B)), and this contradicts the fact that U T G

2 /∈
varG(E(B)). Thus B ′ = F α1 H ⊕ · · · ⊕ F αt H .

Let F α H be one of the G × Z2-graded simple components. Suppose first that (g,0) ∈ H , for some
g ∈ G of order a prime p. Then being C p = 〈(g,0)〉 cyclic, we may assume that α is trivial on C p .
Thus E(F C p) = E0 ⊗ F C p has the same G-identities of F C p . It follows that F C p ∈ var(E(B)), contrary
to the assumption.

Suppose now that (g,1) ∈ H with g ∈ G of order a prime p. It is clear that we get into the previous
case unless p = 2 and, so, G is of even order. In this last case we have

E(F H) ⊇ E0 ⊗ F (e,0) ⊕ E1 ⊗ F (g,1) ∼= E0 ⊕ E1 = EZ2 ∈ varG(
E(B)

)
,

a contradiction.
The only cases left are H = {e} × Z2 or H trivial. In the first case E(F H) ∼= E with trivial grading

and E ∈ varG(E(B)) is not allowed. Thus H is the trivial subgroup and B ′ = F ⊕· · ·⊕ F is a direct sum
of copies of F with trivial grading.

By taking the Grassmann envelope we get E(B) = E(B ′)+ E( J ) and since E(B ′) ⊆ E(B)e , we obtain
that

⊕
g∈G, g �=1 E(B)g ⊆ E( J ).

Now, the algebra B is finite dimensional, hence J = J (B) is a nilpotent ideal. It follows that⊕
g∈G, g �=1 E(B)g generates a nilpotent ideal of E(B), of index of nilpotence, say, t . This implies that

every monomial of P G
n containing at least t variables of homogeneous degree different from 1 is an

identity of E(B). Then, by Lemma 8, cG
n (E(B)) � βnt−1cn(E(B)), for some constant β .

Now, let var(E(B)) be the ordinary variety of algebras generated by E(B), i.e., we consider only
algebras with trivial grading. Then if U T2 is the algebra U T G

2 with trivial grading, by hypothesis,
E, U T2 /∈ var(E(B)). But then, by a result of Kemer [15], var(E(B)) has polynomial growth. It follows
that cn(E(B)) � γnq , for some γ ,q, and, so cG

n (A) = cG
n (E(B)) � βnt−1cn(E(B)) � βγnt−1nq and the

proof is complete. �
We immediately get the following consequence.

Corollary 10. Let V be a variety of G-graded algebras. Then V has almost polynomial growth if and only if
V = varG(A) where either A ∼= U T G

2 , for some G grading on U T2 , or A ∼= F C p , for some prime p such that
p | |G|, or A ∼= E, the Grassmann algebra with trivial grading or, in case |G| is even, A ∼= EZ2 .
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