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For any group G the set of involutions I in G , that is, the set
of group elements that have order two, forms a G-set under
conjugation. The corresponding kG-permutation module kI is
the involution module of G . Here k is an algebraically closed
field of characteristic two. In this paper we discuss aspects of
the involution module of the general linear group GLn(2 f ). We
determine almost all components of this module. Furthermore we
present a vertex and the Green correspondent of each component.
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1. Introduction

The goal of this paper is to investigate the involution module of the general linear group GLn(2 f ),
where f � 1 is an integer. We start with an introduction to the idea of the involution module. Also
in this section we develop the necessary notation and state some important results which we employ
in our work.

In Section 2 we present a partial decomposition of the involution module of GLn(2 f ). In Theo-
rem 3.1 the possible vertices of a component of our involution module are given. By component we
mean an indecomposable summand. Sections 4–8 focus on each of those possible candidates. Finally
we summarize our results in Theorem 9.1, followed by some further observations.

1.1. The involution module

Let G be a finite group and let k be an algebraically closed field of characteristic 2. By I we
denote the set of involutions in G , that is, the set of elements in G of order two. Then G acts on
I by conjugation. In particular we obtain the kG-permutation module kI. This module is called the
involution module of G . In the paper [15], G.R. Robinson investigated the projective components of
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this module using the Frobenius–Schur indicator. Later J. Murray studied the involution module in
general in [8–11]. He, too, worked with the Frobenius–Schur indicator, but also used block-theoretical
methods, such as the defect class of a block. Furthermore P. Collings studied parts of the involution
module of the symmetric group in his PhD thesis [4], focusing on the fixed point free involutions in
the symmetric group Sym(n). Finally the author studied the involution module of the special linear
group SL2(2 f ) in [12].

The main motivation of this paper is to study the involution module of the general linear group
GLn(2 f ). We are able to determine the number of components and describe the vertex and Green
correspondent of each component. However as many of our calculations are still valid for any prime
number p, we present most results for GLn(p f ) and k of characteristic p.

1.2. Notation

Throughout this paper let k be an algebraically closed field of prime characteristic p. Also let
f ,n � 1 be integers and set q := p f . By Fq we mean the finite field with q elements. Our main
group of interest is the general linear group GLn(q), that is, the group of all invertible n × n-matrices
with entries in Fq . For convenience we denote this group by GLn in the following. Note that both
the upper-triangular matrices in GLn and the upper-triangular matrices in GLn with ones on the main
diagonal form subgroups of GLn . We denote them by Bn and Un , respectively. Furthermore Un is
a Sylow-p-subgroup of both Bn and GLn . As is standard In denotes the identity matrix in GLn . For
integers 1 � k < l � n let Ek,l(α) be the n ×n-matrix with zeros everywhere, except for the (k, l)-entry
which is α ∈ Fq . Then Fk,l := {In + Ek,l(α): α ∈ Fq} is the subgroup of Un of matrices where all entries
off the main diagonal are zero, except for the (k, l)-entry which can be anything in Fq . Finally for any
two integers r, s � 0 we define GLr,s := GLr ×GLs , where GL0 is the trivial group.

Next let λ1, . . . , λt � 0 such that λ1 + · · · + λt = n. Then if Ar ∈ GLλr , for r = 1, . . . , t , we define
Dn(A1, A2, . . . , At) as that matrix in GLn that has the matrices A1, . . . , At on its main diagonal and
zeros everywhere else. Likewise Dn(A1•, A2•, . . . , At) denotes a matrix with the matrices A1, . . . , At

on its main diagonal, zeros below and arbitrary elements in Fq above. Note that Dn(A1•, A2•, . . . , At)

is not unique, but in our considerations it does not matter what the specific entries above the di-
agonal of matrices A1, . . . , At are. In the same sense we define the groups Dn(H1, H2, . . . , Ht) and
Dn(H1•, H2•, . . . , Ht), for Hr � GLλr . Finally set GPλ1,...,λr := Dn(GLλ1 •,GLλ2 •, . . . ,GLλr ). Note that
GPλ1,...,λr is known as a parabolic subgroup of GLn .

Still let n � 1. Then Wn denotes the group of permutation matrices in GLn . Note that we can
identify a permutation matrix with a unique permutation in the symmetric group Sym(n). In fact
ω ∈ Sym(n) corresponds to the permutation matrix (δk,ω(l))k,l , where δ−,− denotes the Kronecker-
symbol.

Finally we discuss some block theory of GLn . Refer to [6] and [16] for definitions and more de-
tails. A block of GLn has either full defect or is of defect zero. There are exactly q − 1 of each type.
Also the module kBn ↑GLn has a unique irreducible projective component Stn , which is called the Stein-

berg module. This module is self-dual and has dimension q
(n

2

)
. Furthermore the center Z(GLn) of GLn

acts trivially on kBn ↑GLn . This follows since Z(GLn) = {α In: α ∈ F∗
q} is a normal subgroup of Bn . In

particular Z(GLn) acts trivially on Stn .
Let S denote the GLn-representation corresponding to Stn . For A ∈ GLn and j = 0,1, . . . ,q − 2, we

define S j(A) := (det(A)) j · S(A). Then S j is a projective irreducible GLn-representation. We denote
the corresponding GLn-module by St j

n . If (St j
n)∗ denotes the dual of St j

n , then (St j
n)∗ = Stq−1− j

n . The
modules Stn , St1

n, . . . ,Stq−2
n are all the projective irreducible GLn-modules. As every block of defect

zero contains a unique irreducible projective module we let Bz
j denote the block that contains St j

n , for
j = 0,1, . . . ,q − 2. Thus

Bz
j = St j

n ⊗Stq−1− j
n , as GLn,n -modules. (1)

In particular Bz
j is projective and irreducible as a GLn,n-module.



L. Pforte / Journal of Algebra 396 (2013) 151–168 153
1.3. Broué’s Theorem

In this section we present a method to study vertices of the components of permutation modules.
The following approach is due to M. Broué [2].

Let G be a finite group. As usual for a subgroup H � G , we denote the normalizer of H in G
by NG(H). Suppose that V � G is a p-group and X is a G-set. By FixX (V ) we mean the set of
elements in X that stay fixed under the action of V . Then FixX (V ) is an NG(V )-set, and k FixX (V ) is
an NG(V )-module.

Theorem 1.1 (Broué). Let V � G be a p-group and X a G-set. Then kX, as kG-module, and k FixX (V ),
as kNG(V )-module, have the same number of components with vertex V . Furthermore the components of
k FixX (V ) with vertex V are the Green correspondents with respect to (G, V ,NG(V )) of the components of kX
with vertex V .

For a subgroup H of G , we have kH↑G ∼= k(G/H). Here G/H is the set of left cosets of H in G ,
regarded as a G-set under translation. Hence kH↑G and k FixG/H (V ) have the same number of com-
ponents with vertex V , for any p-subgroup V of G . The next statement follows from Mackey’s lemma
and the fact that k FixG/H (V ) is a direct summand of (kH↑G)↓NG (V ) .

Lemma 1.2. Let H and V be subgroups of G, with V a p-group. Then

k FixG/H (V ) ∼=
⊕

g∈H\G/NG (V ),
V �H g

kH g∩NG (V )↑NG (V ), as kNG(V )-modules.

1.4. Inflation and deflation

Let ϕ : G → R be a group homomorphism. Set H := ϕ(H), for H � G . Next let L be a group such
that G � L � R . Then every kL-module N can be considered as a module for G using inflation. We
denote the resulting kG-module by Nϕ . If ϕ|H denotes the restriction of ϕ to some subgroup H of G ,
then

Nϕ↓H ∼= Nϕ|H , as kH-modules. (2)

Next let M be a kG-module with kerϕ acting trivially on M . Then M can be considered as a
kG-module via deflation. We denote the arising kG-module by ϕ(M). If H � G , then ϕ(M)↓H

∼=
ϕ|H (M↓H ), as kH-modules. Furthermore (ϕ(M))ϕ ∼= M and ϕ(Nϕ) ∼= N↓G , as kG-modules and
kG-modules, respectively. Also inflation and deflation commute with taking the dual of a module.

Lemma 1.3. Let ϕ : G → R be a homomorphism of groups. Also let H � G so that kerϕ � H. Then for every

kH-module N, (N↑G)ϕ ∼= (Nϕ|H )↑G , as kG-modules.

Proof. The isomorphism is given by
∑t

j=1 x j ⊗ n j 
→ ∑t
j=1 ϕ(x j) ⊗ n j , where {x1, . . . , xt} is a left

transversal for G/H . �
Next for K � R we define ϕ−1(K ) := {g ∈ G: ϕ(g) ∈ K }. Observe that ϕ(ϕ−1(K )) = K ∩ ϕ(G).

Lemma 1.4. Let ϕ : G → R be a homomorphism of groups. Furthermore suppose that N is an indecomposable
kG-module. Assume that W � G is a vertex of N and V � G is a vertex of Nϕ . Then W is G-conjugate to V
and V is G-conjugate to a Sylow-p-subgroup of ϕ−1(W ).
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Proof. Set H := ϕ−1(W ). Then H = W and kerϕ � H . Thus Nϕ is a component of (NH↑G)ϕ . Also

(NH↑G)ϕ ∼= (NH )ϕ|H ↑G , by Lemma 1.3, and so Nϕ is relatively H-projective. Hence w.l.o.g. V � S , for
some S ∈ Sylp(H).

As V � ϕ−1(V ), we get that Nϕ is a component of (Nϕ↓ϕ−1(V ))↑G . Hence N is a com-

ponent of ϕ((Nϕ↓ϕ−1(V ))↑G). Since Nϕ↓ϕ−1(V )
∼= (N↓V )

ϕ|
ϕ−1(V ) , it follows with Lemma 1.3 that

ϕ((Nϕ↓ϕ−1(V ))↑G) ∼= (N↓V )↑G . Thus, W �G V . As V �G S � W we conclude that W =G V , that is,

V is G-conjugate to W .
Since kerϕ acts trivially on Nϕ , V contains a Sylow-p-subgroup of kerϕ . But then V ∩ kerϕ =

S ∩ kerϕ , and since V = S , it follows that V = S . �
In the following let p�(M) denote the number of projective components of a module M , and let

P (V ) be the projective cover of V .

Lemma 1.5. Let ϕ : G → G be an epimorphism of groups, let H � G and suppose that kerϕ is a p-group, with

H ∩ kerϕ = 〈1〉. Then p�(kH↑G) = p�(kH↑G).

Proof. Since kerϕ is a normal p-subgroup of G , Clifford theory shows that the irreducible kG-mod-
ules are in bijection with the irreducible kG-modules by deflation/inflation with respect to ϕ . Hence
for every irreducible kG-module V there exists an irreducible kG-module V such that V ∼= V ϕ . The
lemma follows if the multiplicity of P (V ) as a summand of kH↑G equals the multiplicity of P (V ) as
a summand of kH↑G .

Assume P (V ) appears exactly d times in kH↑G . Then Theorem 3 in [14] shows that P (kH ) ap-
pears exactly d times in V ↓H . Since kerϕ|H = 〈1〉, every kH-module M can be considered as a
kH-module by deflation with respect to ϕ|H . Then ϕ|H (V ↓H ) ∼= ϕ|H (V ϕ↓H ) ∼= V ↓H , by (2). As cer-
tainly ϕ|H (P (kH )) ∼= P (kH ) and P (kH ) ∼= (P (kH ))ϕ|H , it follows that P (kH ) appears exactly d times in

V ↓H . Again by Theorem 3 in [14], we conclude that P (V ) appears exactly d times in kH↑G . �
2. The involution module of GLn(2 f )

In this section let p = 2 and let G := GLn(2 f ), for some integer f � 1. We aim to study the
involution module of G . First we determine all involutions in G . As is standard, 
r� denotes the
greatest integer less or equal to r ∈R.

Lemma 2.1. There are exactly 
 n
2 � conjugacy classes of involutions in G.

Proof. It is a straightforward exercise to show that a Jordan form of order 2 does only contain 1-by-1
and 2-by-2 Jordan blocks, with all its eigenvalues equal to one. In particular there are exactly 
 n

2 �
such Jordan forms. It furthermore follows that each involution X ∈ G is G-conjugate to its Jordan
form. �

Our goal in this section is to partially decompose the involution module into direct summands
that are easier to handle. Hence we determine the G-conjugacy classes of the involutions in G and
calculate the centralizer of a representative for each of these classes. Let i = 1, . . . , 
 n

2 �. We define

Ti :=
( Ii Ii

In−2i
I i

)
. (3)

This notation means that Ti has 1’s on the main diagonal and a 1 in each entry ( j,n − i + j), for
j = 1, . . . , i. All other entries are zero. Note that Ti is an involution. We denote the centralizer of Ti
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in G by CG(Ti). We define

Ci := {
Dn(A•, B•, A): A ∈ GLi, B ∈ GLn−2i

}
. (4)

In the following let m := 
 n
2 �.

Lemma 2.2. Let i = 1, . . . ,m. Then CG(Ti) = Ci . Moreover T1, . . . , Tm represent the m different conjugacy
classes of elements of order p in G. In particular they represent the m different conjugacy classes of involutions
in G.

Proof. An easy matrix calculation shows that CG(Ti) = Ci . Also observe that the rank of Ti − In

equals i. Hence different Ti lie in different conjugacy classes. The last part of the statement follows
from Lemma 2.1. �

This provides a first partial decomposition of the involution module kI as now:

kI ∼=
m⊕

i=1

kCG (Ti)↑G =
m⊕

i=1

kCi ↑G . (5)

3. A more general framework

For the remainder of this paper we work in the following more general framework. Let k be an
algebraically closed field of prime characteristic p. Also let G := GLn(q), where q = p f , for some f � 1.
Furthermore set m := 
 n

2 �. For i = 1, . . . ,m consider the element Ti and the group Ci as defined in
(3) and (4), respectively. Note that still Ci is the centralizer of the element Ti , which is an element of
order p.

Our aim is to study the module
⊕m

i=1 kCi ↑G , which includes the case of the involution module of
GLn(2 f ), that is, when p = 2. In the following we fix i ∈ {1, . . . ,m} and focus on the direct summand
kCi ↑G . In addition to Ci we define the following groups:

Si := Ci ∩ Un = {
Dn(A•, B•, A) ∈ G: A ∈ Ui, B ∈ Un−2i

}
,

Ni := {
Dn(A•, B•,αA): A ∈ GLi, B ∈ GLn−2i, α ∈ F×

q

}
,

Ri := Dn(GLi •,GLn−2i •,GLi). (6)

Then Si � Ci � Ni � Ri � G . Note that |Si| = q
(n

2

)−( i
2

)
= |Ci |p = |Ni |p . So Si is a Sylow-p-subgroup of

both Ci and Ni .
Furthermore for r, s � 1 such that r + s � n we set

Vr,s := Dn(Ir•, Un−r−s•, Is). (7)

Then, if defined for i and n, we have V i+1,i+1 � V i,i+1, V i+1,i � V i,i � Si . In [13] the author has shown
the following:

Theorem 3.1. Suppose M is a component of kCi ↑G . Then, one of the following groups is a vertex of M:

Si, V i,i, V i+1,i, V i,i+1, V i+1,i+1, 〈In〉.

Furthermore if M has a trivial vertex, then i = 
 n
2 �.
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Observe that these six groups are not conjugate in G as they all have different size apart from
V i,i+1 and V i+1,i , which however have different numbers of fixed points on the natural GLn-module
(Fq)

n .
Next we state some observations. It is easy to see that Ci is normal in Ni . In fact Ni = NG(Ci), but

we do not require this stronger fact and thus omit a proof. Also observe that Ni/Ci ∼= F×
q is the cyclic

group of order q − 1. Hence

kCi ↑Ni ∼=
q−2⊕
r=0

Wr, (8)

where Wr is a one-dimensional Ni -module, and Dn(A•, B•,αA) ∈ Ni acts on Wr by multiplication
by αr . In particular, W0 ∼= kNi . Furthermore observe that Wq−1−r ⊗ Wr ∼= kNi . If W ∗

r denotes the dual
of Wr , then

W ∗
r

∼= Wq−1−r, for all r = 0, . . . ,q − 2. (9)

Since Ci acts trivially on Wr , for all r = 0, . . . ,q − 2, it follows that Si is contained in a vertex of Wr .
Thus Wr has vertex Si , as Si ∈ Sylp(Ni).

Next consider the epimorphism

R : Ri → GLi,i : Dn(A•, B•, C) 
→ (A, C). (10)

Note that R(Ci) = �GLi , where �H := {(h,h): h ∈ H}, for any group H . Moreover kerR � Ci . Then
kCi ↑Ri ∼= (k� GLi ↑GLi,i )R , by Lemma 1.3. But k� GLi ↑GLi,i is the direct sum of all p-blocks of GLi , re-
garded as GLi,i-modules. In particular

kCi ↑Ri ∼=
⊕

B a p-block
of GLi

BR. (11)

As each B is a component of k� GLi ↑GLi,i , we now have a decomposition of kCi ↑Ri into a direct sum of
indecomposable Ri -modules.

Theorem 3.2. (a)

kCi ↑G ∼=
q−2⊕
r=0

Wr↑G . (12)

Furthermore Wr↑G has at least one component with vertex Si . In particular, kCi ↑G has at least q − 1 such
components.

(b)

kCi ↑G ∼=
⊕

B a p-block
of GLi

BR ↑G . (13)

Furthermore if B has full defect then BR ↑G has at least one component with vertex Si . If B has defect zero,
then BR ↑G has at least one component with vertex V i,i . In particular, kCi ↑G has at least q − 1 components
with vertex V i,i .
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(c) For all r = 0,1, . . . ,q − 2 there is a unique block B of GLi of full defect such that BR ↑G is a direct
summand of Wr↑G . We denote this block by Br . Then for s := gcd(q − 1, i) and q − 1 = s · t, we have

Wr↑G ∼=
{

BR
r ↑G , if i = 1 or s � r,

BR
r ↑G ⊕ ⊕s−1

u=0(Bz
l+ut)

R ↑G , if i � 2 and s | r,

where l ∈ {0,1, . . . , t − 1} such that il ≡ −r mod (q − 1). Such an l is uniquely determined in the case s | r.

Proof. Part (a) follows from (8) and transitivity of induction. Furthermore, as Wr has vertex Si , the
same must be true for at least one component of Wr↑G .

The decomposition (13) in part (b) follows from (11). Next recall that a block B of GLi is either of
defect zero or full defect. In the first case B is projective as a GLi,i-module. Since V i,i ∈ Sylp(kerR)

we conclude from Lemma 1.4 that BR has vertex V i,i . In the second case B has vertex �Ui . Since
�Ui �R(Ri) and Si ∈ Sylp(R−1(�Ui)), Lemma 1.4 implies that BR has vertex Si .

It remains to prove part (c). Note that kCi ↑Ri has exactly q − 1 components with vertex Si , which
arise from the blocks of full defect. Since Wr has vertex Si , the direct summand Wr↑Ri of kCi ↑Ri

must have a component of vertex Si . Hence this must be some BR for some p-block B of GLi with
full defect.

Next if i = 1, then the blocks of full defect coincide with the blocks of defect zero and thus we have
Wr↑Ri ∼= BR

r . Hence in the following let i � 2. Recall from (1) that Bz
j
∼= St j

i ⊗Stq−1− j
i is an irreducible

GLi,i -module. Then (Bz
j)
R is an irreducible Ri -module. First we show that (Bz

j)
R is a component of

Wr↑Ri if and only if (Bz
j)
R appears in the head of Wr↑Ri . We only need to verify the sufficiency of

this claim. So let (Bz
j)
R appear in the head of Wr↑Ri . Then Bz

j appears in the head of R(Wr↑Ri ).

But Bz
j is projective, and thus must be a component of R(Wr↑Ri ). Therefore (Bz

j)
R is a component of

Wr↑Ri .
Next we claim W−i j appears in the socle of (Bz

j)
R↓Ni . As (Bz

j)
R is a component of kCi ↑Ri there

exists some λ = λ1 ⊗ λ2 ∈ St j
i ⊗Stq−1− j

i , such that Ci acts trivially on λ. The claim follows once we
have shown that kNi · λ ∼= W−i j . So let X ∈ Ni . Then X = Dn(A•, B•,αA) ∈ Dn(In−i,α Ii) · Ci . Thus

X · λ = Dn(In−i,α Ii) · λ = λ1 ⊗ (
(α Ii) · λ2

)
.

But α Ii ∈ Z(GLi) acts trivially on Sti , and therefore (α Ii) ·λ2 = α−i j ·λ2. In particular Dn(A•, B•,αA) ·
λ = α−i j · λ, and thus kNi · λ ∼= W−i j .

By Frobenius reciprocity it now follows that (Bz
j)
R appears in the head of W−i j↑Ri . Overall the

previous two paragraphs show that (Bz
j)
R is a component of Wr↑Ri if and only if i j ≡ −r mod (q−1).

Next suppose s � r. Since s divides both q − 1 and i, there is no l � 0, such that il ≡ −r mod (q − 1).
In particular, there are no blocks of defect zero contributing towards Wr↑Ri , and so Wr↑Ri ∼= Br .

If s | r, then there exists l ∈ {0,1, . . . , t − 1} such that il ≡ −r mod (q − 1), as gcd(i/s, t) = 1. Now
i(l + ut) ≡ −r mod (q − 1), for all u = 0,1, . . . , s − 1. So Bz

l , Bz
l+t, . . . , Bz

l+(s−1)t are components of

Wr↑Ri . Since t different integers in {0,1, . . . ,q − 2} are divisible by s, we have accounted for all
blocks of defect zero. In particular this completes the proof. �
Remark 3.3. We claim that the block B0 as given by Theorem 3.2(c) is the principal block of GLi .
Since W0 ∼= kNi , we know that kRi appears in the socle of W0↑Ri . Hence R(W0↑Ri ) has kGLi,i in its
socle. Consequently, considered as a GLi -module it contains the trivial GLi -module. In particular the
principal block must appear as a component of R(W0↑Ri ), and thus equals B0.
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We conclude this section with a useful duality on GLn . Let η ∈ Wn be the permutation matrix that
corresponds to (1,n)(2,n − 1) . . . ∈ Sym(n). We define

ϕ : G → G: g 
→ ((
g−1)T )η

.

Then ϕ is an automorphism. Furthermore it is a straightforward exercise to show that ϕ(Ci) = Ci and
ϕ(V i,i+1) = V i+1,i . Consequently we obtain

Lemma 3.4. The module kCi ↑G has the same number of components with vertex V i,i+1 and V i+1,i .

4. The group Si as a vertex

Let i ∈ {1, . . . , 
 n
2 �}. In this and the following sections we consider each of the six groups found

in Theorem 3.1 and investigate how many components of kCi ↑G have each group as a vertex. If V is
the p-group in question then by Theorem 1.1 it is enough to determine the number of components of
k FixG/Ci (V ), considered as a kNG(V )-module. Furthermore for each component of kCi ↑G with vertex
V we determine its Green correspondent with respect to (G, V ,NG(V )).

We start with the Sylow-p-subgroup Si of Ci . Since any G-conjugate of Si contained in Ci must
be a Ci -conjugate of Si we obtain by Lemma 1.2 that

k FixG/Ci (Si) ∼= kNCi (Si)↑NG (Si), as kNG(Si)-modules.

At first we describe the normalizer NG(Si) of Si in G . Recall the definition of the groups Fk,l , as given
in subsection 1.2.

Lemma 4.1.

NG(Si) = {
Dn(A•, B•, A Z): A ∈ Bi, B ∈ Bn−2i, Z ∈ CGLi (Ui)

} = NNi (Si) · Fn−i+1,n.

Proof. Let H denote the described set in the middle and let X ∈ NG(Si). Then Si
X � Ri . By Bruhat

decomposition (see [1]) we have X = g1μg2, for g1, g2 ∈ Bn and μ ∈ Wn . As Bn � Ri we get
(Si

g1 )μ � Ri . Note that for every k � l, there is some h ∈ Si
g1 with hk,l �= 0. Hence μ acts on the

sets {1, . . . , i}, {i + 1, . . . ,n − i} and {n − i + 1, . . . ,n}. That means, μ ∈ Ri , and so X ∈ Ri .
Write X = Dn(A•, B•, C), for A, C ∈ GLi and B ∈ GLn−2i . Since Si = Si

X we have A, C ∈ NGLi (Ui) =
Bi , B ∈ NGLn−2i (Un−2i) = Bn−2i and A−1C ∈ CGLi (Ui). As now C = A Z , where Z ∈ CGLi (Ui), we conclude
that NG(Si) ⊆ H .

Next let X = Dn(A•, B•, A Z) ∈ H . Note that Z = α · I1,i(β), for some α ∈ F×
q and β ∈ Fq . Then X =

Dn(A•, B•,αA) · Dn(In−i, I1,i(β)) ∈ Ni · Fn−i+1. The fact that F1,i centralizes Ui , shows that Fn−i+1,n
normalizes Si . In particular we have X ∈ NNi (Si) · Fn−i+1,n , that is, H ⊆ NNi (Si) · Fn−i+1,n .

Finally NNi (Si) · Fn−i+1,n � NG(Si) is obvious as Fn−i+1,n � NG(Si). �
Lemma 4.2. For all r = 0,1, . . . ,q − 2, let Wr be the one-dimensional kNi -module given in (8). Then

kNCi (Si)↑NG (Si) ∼=
q−2⊕
r=0

(Wr↓NNi (Si))↑NG (Si).

Furthermore (Wr↓NNi (Si))↑NG (Si) , for r = 0,1, . . . ,q − 2, are pairwise non-isomorphic indecomposable
NG(Si)-modules with vertex Si .
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Proof. Note that Ni = Ci · NNi (Si). So kCi ↑Ni ↓NNi (Si)
∼= kNCi (Si)↑NNi (Si) , by Mackey’s lemma. Hence the

decomposition follows from (8).
Since NNi (Si) ∩ Fn+1−i,n = 〈In〉, we get by Lemma 4.1 and Mackey’s lemma that

(
Wr↓NNi (Si)↑NG (Si)

)↓Fn+1−i,n
∼= k〈In〉↑Fn+1−i,n .

As Fn+1−i,n is a p-group, k〈In〉↑Fn+1−i,n is indecomposable. Thus so is Wr↓NNi (Si)↑NG (Si) . Its vertex is Si ,
as Wr has vertex Si .

Next let T := Dn(In−i,Z(GLi)) � NG(Si). Then NG(Si) = NNi (Si) · Fn−i+1,n · T , by Lemma 4.1. Clearly
Fn−i+1,n � CG(T ), and thus T g ∩ NNi (Si) = T , for all g ∈ Fn−i+1,n . Since |NG(Si) : NNi (Si)| = q, it fol-
lows from Mackey’s lemma that ((Wr↓NNi (Si))↑NG (Si))↓T is the direct sum of q copies of Wr↓T . As

the various Wr↓T are non-isomorphic, the same is true for the various (Wr↓NNi (Si))↑NG (Si) . �
We summarize our results on the components that have vertex Si . Recall the homomorphism

R : Ri → GLi,i given by (10).

Theorem 4.3. Let i ∈ {1, . . . , 
 n
2 �}. Then kCi ↑G has exactly q − 1 components with vertex Si . In decom-

position (12) each summand Wr↑G has exactly one component Mr with vertex Si . In decomposition (13),
Mr is a component of BR

r ↑G . Furthermore with respect to (G, Si,NG(Si)) the Green correspondent of Mr is
(Wr↓NNi (Si))↑NG (Si) . Finally, the modules M0, M1, . . . , Mq−2 are pairwise non-isomorphic.

Proof. By Lemma 4.2 we see that kCi ↑G has exactly q − 1 components with vertex Si . Then by
Theorem 3.2(a) each of the q − 1 modules Wr↑G in the decomposition (12) has exactly one such
component, which we denote by Mr . By Theorem 3.2(b) + (c) it follows that Mr is a component of
BR

r ↑G .
As Wr is a component of Wr↓NNi (Si)↑Ni , we get that Mr is a component of (Wr↓NNi (Si)↑NG (Si))↑G .

Now the rest of statement follows by Lemma 4.2. �
5. On the groups V r,s

Let i ∈ {1, . . . , 
 n
2 �}. Recall the groups Vr,s , as defined in (7), for integers r, s � 1, such that r +s � n.

Below we study k FixG/Ci (Vr,s), as an NG(Vr,s)-module, for certain pairs (r, s). In particular we need
to understand NG(Vr,s).

Lemma 5.1. Let r, s � 1 be positive integers, such that r + s � n. Then

NGLn (Vr,s) = Dn(GLr •, Bn−r−s•,GLs).

Proof. Clearly Dn(GLr •, Bn−r−s•,GLs) normalizes Vr,s . Now the Bruhat decomposition and the obser-
vation that if μ ∈ Wn normalizes Vr,s , then μ = Dn(μ1, In−r−s,μ2), for some μ1 ∈ Wr and μ2 ∈ Ws ,
imply the rest. �
Lemma 5.2. Let r, s � i so that r + s � n, and let V = Vr,s . Then

k FixG/Ci (V ) ∼= kNCi (V )↑NG (V ), as NG(V )-modules.

Proof. By Lemma 1.2 it is enough to show that if V X � Ci , for some X ∈ G , then X ∈ NG(V ) · Ci .
However observe that Ri = NG(V i,i) · Ci � NG(V ) · Ri , and hence NG(V ) · Ci = NG(V ) · Ri . Since Bn �
NG(V ) ∩ Ri and Ci � Ri it follows from the Bruhat decomposition that it is sufficient to show that if
V μ � Ri , for some μ ∈ Wn , then μ ∈ NG(V ) · Ri .
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So let V μ � Ri , for some μ ∈ Wn . Observe that there is some λ ∈ Wn ∩ Ri such that for μ′ := μλ

we have μ′(i + 1) < · · · < μ′(n − i). For more details see the proof of Lemma 3.4 in [13].
It is a straightforward exercise to show that ω({1, . . . , i}) ⊆ {1, . . . , r} and ω({n − i + 1, . . . ,n}) ⊆

{n − s + 1, . . . ,n}, for all ω ∈ Wn such that V ω � Ri . Hence this is true for μ′ and we conclude from
Lemma 5.1 that μ′ ∈ NG(V ). This concludes the proof. �

Recall the homomorphism R : Ri → GLi,i given by (10).

Lemma 5.3. Under the above assumptions let M be a component of the module (BR↓NRi (V ))↑NG (V ) with

vertex V . Then the Green correspondent of M with respect to (G, V ,NG(V )) is a component of BR ↑G .

Proof. It follows from Mackey’s lemma that (BR↓NRi (V ))↑NG (V ) is a direct summand of (BR ↑G)↓NG (V ) .

Hence there exists a component N of BR ↑G such that M is a component of N↓NG (V ) . Now a
result by Burry and Carlson [3] implies that N is the Green correspondent of M with respect to
(G, V ,NG(V )). �
6. The group V i,i as a vertex

Let i ∈ {1, . . . , 
 n
2 �}. In this section we determine the number of components of kCi ↑G that have

vertex V i,i . As V 1,1 = S1, let i � 2. Furthermore set V := V i,i . By Theorem 1.1 and Lemma 5.2
it is enough to determine the components of kNCi (V )↑NG (V ) with vertex V . Note that NG(V ) =
Dn(GLi •, Bn−2i•,GLi) � Ri , by Lemma 5.1. Let R be the epimorphism given by (10), and let R′ :=
R|NG (V ) be its restriction to NG(V ). Recall that Bz

0, Bz
1, . . . , Bz

q−2 denote the p-blocks of GLi of defect
zero.

Lemma 6.1. The module kNCi (V )↑NG (V ) has exactly q − 1 components with vertex V . They are given by

(Bz
j)
R|NG (V ) , for j = 0,1, . . . ,q − 2. In particular these components are pairwise non-isomorphic.

Proof. Note that R′(NG(V )) = GLi,i , R′(NCi (V )) = �GLi and kerR′ = Dn(Ii•, Bn−2i•, Ii) � NCi (V ).
Hence kNCi (V )↑NG (V ) ∼= (k� GLi ↑GLi,i )R

′
, by Lemma 1.3.

Clearly, V ∈ Sylp(kerR′). Hence Lemma 1.4 implies that the components of kNCi (V )↑NG (V ) that

have vertex V are exactly the R′-inflations of the projective components of k� GLi ↑GLi,i . These are
the p-blocks Bz

0, Bz
1, . . . , Bz

q−2 of GLi of defect zero. As they are pairwise non-isomorphic the proof is
complete. �

Now we can summarize our results on components with vertex V i,i .

Theorem 6.2. Let i ∈ {1, . . . , 
 n
2 �}. Then kCi ↑G has exactly q − 1 components with vertex V i,i . Next let s :=

gcd(q − 1, i). In decomposition (12) the module Wr↑G has exactly s components with vertex V i,i if and only
if s divides r. Otherwise it has no such components. In decomposition (13) each (Bz

r )
R ↑G admits exactly

one component Mr with vertex V i,i . With respect to (G, V i,i,NG(V i,i)) the Green correspondent of Mr is

(Bz
r )

R|NG (Vi,i ) . Finally the components M0, M1, . . . , Mq−2 are pairwise non-isomorphic.

Proof. By Lemma 6.1 we know that kCi ↑G has exactly q − 1 components with vertex V . By Theo-
rem 3.2(c) it follows that (Bz

r )
R ↑G in the decomposition (13) admits a unique component Mr with

vertex V . The statement on Wr↑G follows from Theorem 3.2(b).
By Lemma 6.1 we know that (Bz

r )
R|NG (V ) has vertex V . Since NG(V ) = NRi (V ), Lemma 5.3 now

implies that the Green correspondent of (Bz
r )

R|NG (V ) is Mr . Finally M0, M1, . . . , Mq−2 are pairwise
non-isomorphic, as their Green correspondents are pairwise non-isomorphic, by Lemma 6.1. �
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7. The groups V i,i+1, V i+1,i and V i+1,i+1 as a vertex

Let i = 1, . . . , 
 n
2 �, and let (r, s) ∈ {(i, i + 1), (i + 1, i), (i + 1, i + 1)} provided that r + s � n. By

Theorem 1.1 and Lemma 5.2 we know that kCi ↑G and kNCi (Vr,s)↑NG (Vr,s) have the same number of
components with vertex Vr,s . We have NG(Vr,s) = Dn(GLr •, Bn−r−s•,GLs), by Lemma 5.1. Also observe
that NCi (Vr,s) = {Dn(A•, B•, A): A ∈ GLi, B ∈ Bn−2i}. Next we define the epimorphism

Pr,s : NG(Vr,s) → GLr,s: Dn(A•, B•, C) 
→ (A, C). (14)

Then kerPr,s = Dn(Ir•, Bn−r−s•, Is), and Vr,s is a Sylow-p-subgroup of kerPr,s . For every 0 � t � i we
define the group

Q t
r,s := {(

Dt+r−i(A•, X), Ds(Y •, A)
)
: A ∈ GLt, X ∈ Br−i, Y ∈ Bs−t

}
. (15)

Then Q t
r,s � GP(t,r−i) ×GP(s−t,s) � GLt+r−i,s . Also Pr,s(NCi (Vr,s)) = Q i

r,s . Recall the definition of the
groups GP(t,r−i) and GP(s−t,s) from Section 1.2.

Lemma 7.1. We have

kNCi (Vr,s)↑NG (Vr,s) ∼= (
kQ i

r,s
↑GLr,s

)Pr,s
.

Also the number of components of kNCi (Vr,s)↑NG (Vr,s) that have vertex Vr,s is given by p�(kQ i
r,s

↑GLr,s ).

Proof. Since kerPr,s � NCi (Vr,s), the first assertion follows from Lemma 1.3. As Vr,s ∈ Sylp(kerPr,s),
Lemma 1.4 implies the second assertion. �
Lemma 7.2.

(a) p�
(
kQ i

i+1,i+1
↑GLi+1,i+1

)
� p�

(
kQ i

i,i+1
↑GLi,i+1

)
,

(b) p�
(
kQ t

i,i+1
↑GLt,i+1

)
� p�

(
kQ t−1

i,i+1
↑GLt−1,i+1

)
, for 1 � t � i,

(c) p�
(
kQ 0

i,i+1
↑GL0,i+1

)
� 1.

Proof. For every integer t such that 0 � t � i we define the subgroup

Kt := {
(X, Y ) ∈ GP(1,t) ×GLi+1: det(X) · det(Y ) = 1

}
,

of GLt+1,i+1. Furthermore consider the epimorphism

ϕt : Kt → GLt,i+1:
(

Dt+1(α•, A), B
) 
→ (A, B).

Then kerϕt = {(Dt+1(1•, It), Ii+1)} is a normal p-subgroup of Kt .
(a) Let ω′ ∈ Wi+1 be the permutation matrix that corresponds to the permutation (1,2, . . . , i +1) ∈

Sym(i +1). Then the (GP(1,i),GP(i,1))-double cosets of GLi+1 are represented by {Ii+1,ω
′}. This follows

from the Bruhat decomposition and the observation that for η ∈ Wi+1 we have η ∈ GP(1,i) ·GP(i,1) if
and only if η(i + 1) �= 1, and η ∈ GP(1,i) · ω′ · GP(i,1) if and only if η(i + 1) = 1.
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Set ω := (ω′, Ii+1) ∈ GLi+1,i+1. Then the (Ki, Q i
i+1,i+1)-double cosets of GLi+1,i+1 are represented

by {(Ii+1, Ii+1),ω}. Now by Mackey’s lemma we have

(
kQ i

i+1,i+1
↑GLi+1,i+1

)↓Ki
∼= kQ i

i+1,i+1∩Ki
↑Ki ⊕ kT ↑Ki ,

where T := (Q i
i+1,i+1)

ω ∩ Ki . One checks easily that

T = {(
Di+1(α, A), Di+1(β•, A)

) ∈ Ki: A ∈ GLi, α,β ∈ F×
q

}
.

Observe that (I1,i+1(1), Ii+1) ∈ kerϕt ∩ Q i
i+1,i+1 ∩ Ki . As kerϕt is a normal p-group, kQ i

i+1,i+1∩Ki
↑Ki

is projective-free. Hence p�(kQ i
i+1,i+1

↑GLi+1,i+1 ) � p�(kT ↑Ki ). Since kerϕt ∩ T is trivial and ϕt(T ) =
Q i

i,i+1, Lemma 1.5 implies that p�(kT ↑Ki ) = p�(kQ i
i,i+1

↑GLi,i+1 ). This concludes part (a).

(b) Let 1 � t � i. First note that GLt,i+1 = Kt−1 · Q t
i,i+1. This follows as for all (A, B) ∈ GLt,i+1 and

α := det(B) · det(A−1) we have

(A, B) = (
It, B · Di+1

(
α−1, Ii−t, A−1)) · (A, Di+1(α, Ii−t, A)

)
.

Now (kQ t
i,i+1

↑GLt,i+1 )↓Kt−1
∼= kQ t

i,i+1∩Kt−1
↑Kt−1 . Observe that ker(ϕt−1) ∩ Q t

i,i+1 ∩ Kt−1 is trivial and

ϕt−1(Q t
i,i+1 ∩ Kt−1) = Q t−1

i,i+1. So p�(kQ t
i,i+1∩Kt−1

↑Kt−1) = p�(kQ t−1
i,i+1

↑GLt−1,i+1 ), by Lemma 1.5. Thus

p�
(
kQ t

i,i+1
↑GLt,i+1

)
� p�

(
kQ t

i,i+1∩Kt−1
↑Kt−1

) = p�
(
kQ t−1

i,i+1
↑GLt−1,i+1

)
.

(c) Note that Q 0
i,i+1

∼= Bi+1 and GL0,i+1 ∼= GLi+1. As GLi+1 = SLi+1 · Bi+1 and SLi+1 ∩Bi+1 = S Bi+1

it follows from Mackey’s lemma that

p�
(
kQ 0

i,i+1
↑GL0,i+1

) = p�
(
kBi+1↑GLi+1

)
� p�

(
kS Bi+1↑SLi+1

) = 1. �
Next we define the two homomorphisms

τr : GP(i,r−i) → GLi,

Dr(A•, X) 
→ A,
and

μs : GP(s−i,i) → GLi,

Ds(X•, B) 
→ B,

Note that since r, s ∈ {i, i + 1}, the variable X either represents a scalar or nothing, that is, these
homomorphism might just be the identity. Also recall that Str denotes the Steinberg module in GLr .

Lemma 7.3. The module Str is a component of (Sti)
τr ↑GLr , and the module Sts is a component of (Sti)

μs ↑GLs .

Proof. We only prove the first assertion of the statement, as the second one is shown similarly. As the
statement is trivial if r = i, let r = i + 1. Since Sti+1 is a projective irreducible module, by Frobenius
reciprocity it is enough to show that HomkG P(i,1)

((Sti)
τr ,Str ↓GP(i,1)

) �= 0. We claim that Str ↓GP(i,1)
∼=

((Sti)
τr ↓GLi,1 )↑GP(i,1) , which then completes the proof.

Observe that (Sti)
τr |GLi,1 ∼= (Sti)

τr ↓GLi,1 , by (2), and since ker(τr |GLi,1 ) is a p′-group, (Sti)
τr ↓GLi,1

is projective, by Lemma 1.4. Hence (kBi ↑GLi )
τr |GLi,1 ∼= kDi+1(Bi ,F

×
q )↑GLi,1 , by Lemma 1.3, and thus

(Sti)
τr ↓GLi,1↑GP(i,1) is a projective summand of kDi+1(Bi ,F

×
q )↑GP(i,1) . But Di+1(Bi,F

×
q ) = GP(i,1) ∩(Bi+1)

ω ,

where ω ∈ Wi+1 corresponds to (1,2, . . . , i + 1) ∈ Sym(i + 1). So, by Mackey’s lemma,
(Sti)

τr ↓GLi,1↑GP(i,1) is a projective summand of (kBi+1↑GLi+1 )↓GP(i,1)
.
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As p�((kBi+1 ↑GLi+1 )↓GP(i,1)
) � p�((kBi+1↑GLi+1 )↓Ui+1 ) = 1, we get that Str ↓GP(i,1)

is the unique pro-
jective component of (kBi+1↑GLi+1 )↓GP(i,1)

. Consequently Str ↓GP(i,1)
∼= (Sti)

τr ↓GLi,1↑GP(i,1) . �
Next we define ξr,s := τr ⊗ μs , that is,

ξr,s : GP(i,r−i) ×GP(s−i,s) → GLi,i,(
Dr(A•, X), Ds(Y •, B)

) 
→ (A, B).

Furthermore let Str,s := Str ⊗Sts , considered as a GLr,s-module. Then Str,s is projective.

Lemma 7.4. As GLr,s-modules, Str,s is a direct summand of (Bz
0)

ξr,s ↑GLr,s and kQ i
r,s

↑GLr,s . In particular,

p�(kQ i
r,s

↑GLr,s ) � 1.

Proof. First we claim that (Bz
0)

ξr,s ↑GLr,s is a direct summand of kQ i
r,s

↑GLr,s . Observe that ξr,s(Q i
r,s) =

�GLi and ξr,s(GP(i,r−i) ×GP(s−i,i)) = GLi,i . Since ker ξr,s � Q i
r,s , we obtain kQ i

r,s
↑GP(i,r−i) × GP(s−i,i) ∼=

(k� GLi ↑GLi,i )ξr,s from Lemma 1.3. Considering the block Bz
0 of GLi as a GLi,i-module, we see that

(Bz
0)

ξr,s is a direct summand of kQ i
r,s

↑GP(i,r−i) × GP(s−i,i) . Now the claim follows.

Next we show that Str,s is a direct summand of (Bz
0)

ξr,s ↑GLr,s . Since Bz
0
∼= Sti,i , as GLi,i -modules, we

get (Bz
0)

ξr,s ∼= (Sti)
τr ⊗ (Sti)

μs , as GP(i,1),(1,i)-modules. Then (Bz
0)

ξr,s ↑GLr,s ∼= (Sti)
τr ↑GLr ⊗ (Sti)

μs ↑GLs , as
GLr,s-modules, follows by (10.17) in [5]. By Lemma 7.3 we know that Str is a component of (Sti)

τr ↑GLr

and Sts is a component of (Sti)
μs ↑GLs . In particular the projective module Str,s is a direct summand

of (Bz
0)

ξr,s ↑GLr,s . �
Lemma 7.5. The NG(Vr,s)-module (Str,s)

Pr,s is indecomposable with vertex Vr,s . It is the only such component
of kNCi (Vr,s)↑NG (Vr,s) . Also (Str,s)

Pr,s is a component of ((Bz
0)

R↓NRi (Vr,s))↑NG (Vr,s) .

Proof. Lemmas 7.2 and 7.4 show that p�(kQ i
r,s

↑GLr,s ) = 1 for (r, s) ∈ {(i, i + 1), (i + 1, i + 1)}. Hence

kNCi (Vr,s)↑NG (Vr,s) has a unique component with vertex Vr,s , by Lemma 7.1. The case (r, s) = (i + 1, i)
now follows from Lemma 3.4.

From Lemmas 7.1 and 7.4 we get that (Str,s)
Pr,s is a direct summand of kNCi (Vr,s)↑NG (Vr,s) . As

Vr,s ∈ Sylp(kerPr,s), each component of (Str,s)
Pr,s has vertex Vr,s , by Lemma 1.4. Hence (Str,s)

Pr,s

is indecomposable with vertex Vr,s .
Lemma 7.4 shows that Str,s is a component of (Bz

0)
ξr,s ↑GLr,s . So (Str,s)

Pr,s is a component of
((Bz

0)
ξr,s ↑GLr,s )Pr,s . Next observe that Pr,s(NRi (Vr,s)) = GP(i,r−i) ×GP(s−i,s) . As kerPr,s � NRi (Vr,s), we

conclude from Lemma 1.3 that (Bz
0)

ξr,s ↑GLr,s ∼= (Bz
0)

γ ↑NG (Vr,s) , where γ := ξr,s ◦ Pr,s|NRi (Vr,s) . But

ξr,s ◦Pr,s|NRi (Vr,s) =R|NRi (Vr,s) , and (Bz
0)

R|NRi
(V ) ∼= (Bz

0)
R↓NRi (Vr,s) , by (2). �

Theorem 7.6. Let i ∈ {1, . . . , 
 n
2 �} and (r, s) ∈ {(i, i + 1), (i + 1, i), (i + 1, i + 1)}, provided that r + s � n.

Then kCi ↑G has exactly one component Mr,s with vertex Vr,s . In decomposition (12), Mr,s is a compo-
nent of W0↑G ∼= kNi ↑G . In decomposition (13), Mr,s is a component of (Bz

0)
R ↑G . Finally with respect to

(G, Vr,s,NG(Vr,s)) the Green correspondent of Mr,s is (Str,s)
Pr,s .

Proof. By Theorem 1.1 and Lemma 7.5 we derive that kCi ↑G has a unique component Mr,s with
vertex Vr,s , whose Green correspondent with respect to (G, Vr,s,NG(Vr,s)) is (Str,s)

Pr,s . Furthermore
as (Str,s)

Pr,s is a component of ((Bz
0)

R↓NRi (Vr,s))↑NG (Vr,s) , by Lemma 7.5, it follows from Lemma 5.3

that Mr,s is a component of (Bz
0)

R ↑G . In particular we have located Mr,s in the decomposition (13).
Now Theorem 3.2(c) shows that Mr,s is a component of W0↑G . �
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8. The trivial group as a vertex

The trivial group turns out to be the most exceptional vertex. By Theorem 3.1 we deduce that in
the decomposition (5) the module kCm ↑G , where m := 
 n

2 �, is the only summand that could have a
projective component.

Let us briefly only consider the case of the involution module, that is, when p = 2. Theorem 8 of
[8] states that all projective components of kI are self-dual, irreducible and appear with multiplicity
one. On the other hand all self-dual and irreducible projective kG-modules appear in kI. But in the
case p = 2, the Steinberg-module Stn is the only self-dual irreducible projective kG-module, and thus
it is unique as a projective component of the involution module.

We have no equivalent statement to the above theorem in the case of odd characteristic. However
below we verify that there is at least one projective component.

In the following let p again be arbitrary. First we describe the restriction of St j
n to Rm , for all

j = 0,1, . . . ,q − 2. We define

R∗
m := {

Dn(A, B, C): A, C ∈ GLm, B ∈ GLn−2m
}
.

Then R∗
m � Rm . Note that n−2m is either zero or one. Next we set R∗ := R|R∗

m
, where R : Rm → GLm,m

is the homomorphism defined in (10). Finally we define the GLm,m-module Stm,m := Stm ⊗Stm .

Lemma 8.1. St j
n ↓Rm

∼= ((Stm,m)R
∗
) j↑Rm , for all j = 0,1, . . . ,q − 2.

Proof. Recall that Stm is a projective component of kBm ↑GLm . So Stm,m is a projective component of
kBm×Bm ↑GLm,m , by [7] (Proposition 1.2). Note that kerR∗ is a p′-group. Hence Lemma 1.4 implies that
(Stm,m)R

∗
is projective. Also R∗(Bn ∩ R∗

m) = Bm × Bm and kerR∗ � Bn . So we conclude from Lemma 1.3
that (kBm×Bm ↑GLm,m )R

∗ ∼= kBn∩R∗
m
↑R∗

m . In particular (Stm,m)R
∗↑Rm is a projective direct summand of

kBn∩R∗
m
↑Rm .

Next observe that Stn ↓Rm is a direct summand of (kBn ↑G)↓Rm . As Un � Rm , it follows that
p�((kBn ↑G)↓Rm ) � 1. Hence Stn ↓Rm is the unique projective component of (kBn ↑G)↓Rm . But Mackey’s
lemma implies that kBn∩R∗

m
↑Rm is a direct summand of (kBn ↑G)↓Rm , since Rm ∩ B g

n = Bn ∩ R∗
m , where

g :=
( Im

In−2m

Im

)
.

Hence Stn ↓Rm
∼= (Stm,m)R

∗↑Rm . Our statement follows as ((Stm,m)R
∗↑Rm ) j ∼= ((Stm,m)R

∗
) j↑Rm and

St j
n ↓Rm

∼= (Stn ↓Rm ) j . �
Lemma 8.2. For every p-block B of G and j = 0,1, . . . ,q − 2 we have

HomkG
(
St j

n, BR ↑G) ∼= HomkR∗
m

((
(Stm,m)R

∗) j
, BR∗)

.

Proof. By Frobenius reciprocity and Lemma 8.1 we get

HomkG
(
St j

n, BR ↑G) ∼= HomkRm

(
St j

n ↓Rm , BR
)

∼= HomkRm

((
(Stm,m)R

∗) j↑Rm , BR
)

∼= HomkR∗
m

((
(Stm,m)R

∗) j
, BR↓R∗

m

)
∼= HomkR∗

m

((
(Stm,m)R

∗) j
, BR∗)

,

where the isomorphism BR↓R∗
m

∼= BR∗
follows from (2). �
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Now we give the final statement on the projective components of
⊕m

i=1 kCi ↑G . Recall that Bz
0

denotes the block of GLm that contains Stm . Then Bz
0
∼= Stm,m , as GLm,m-modules, by (1).

Theorem 8.3. The Steinberg module Stn is a component of kCi ↑G if and only if i = m. In the decompositions
(12) and (13) of kCm ↑G it appears as a component of kNm ↑G , and (Bz

0)
R ↑G , respectively.

Furthermore in the case of the involution module kI, that is, when p = 2, the Steinberg module Stn is the
unique projective component.

Proof. Since (Bz
0)

R is a direct summand of both kNm ↑G and kCm ↑G , it is enough to show that Stn is
a component of (Bz

0)
R . Being projective and irreducible, Stn is a component of BR ↑G if and only if

HomkG(Stn, (Bz
0)

R ↑G) is non-trivial. But this is the case by Lemma 8.2 and the fact that Bz
0
∼= Stm,m , as

GLm,m-modules. The rest of the statement has been established in the introduction to this section. �
Lemma 8.4. If n = 2m and p is odd, then St j

n is a projective component of (Bz
j)
R ↑G , where j = q−1

2 .

Proof. Since p is odd, j is an integer. As n = 2m we have ((Stm,m)R
∗
) j ∼= ((Stm,m) j)R

∗
. Furthermore

(Stm,m) j ∼= St j
m ⊗St j

m
∼= St j

m ⊗Stq−1− j
m

∼= Bz
j . Now the statement follows from Lemma 8.2. �

Note that in the above lemma the module St j
n is irreducible, projective and self-dual. In particular

this is not a counter-example to an odd-characteristic version of Theorem 8 in [8].

Lemma 8.5. If n = 2m + 1 and p is odd, then St j
n , where j = q−1

2 , is not a component of kCm ↑G , and thus not
a component of

⊕m
i=1 kCi ↑G .

Proof. Suppose that St j
n is a component of kCm ↑G . Then there is some p-block B of G so that St j

n is a

component of BR . By Lemma 8.2, we have HomkG(St j
n, BR ↑G) ∼= HomkR∗

m
(((Stm,m)R

∗
) j, BR∗

), which
is then non-trivial. Thus there is a non-trivial homomorphism φ : ((Stm,m)R

∗
) j → BR∗

.

Next let H := Dn(Im+1,GLm). Then ((Stm,m)R
∗
) j↓H ∼= (kGLm ⊗ St j

m)R
∗
. So φ gives rise to a 〈Im〉 ×

GLm-homomorphism from kGLm ⊗ (Stm) j to the block B . Hence St j
m appears in the block B , and so

B ∼= St j
m ⊗Stq−1− j

m
∼= Bz

j . Now let x ∈ ((Stm,m)R
∗
) j and set y = φ(x) ∈ (Bz

j)
R∗

. Also let β ∈ F∗
q , such that

β j �= 1. Then

y = Dn(Im, β, Im) · φ(x) = φ
(

Dn(Im, β, Im) · x
) = φ

(
β j · x

) = β j · φ(x) = β j · y.

As this is a contradiction, φ does not exist. �
9. The involution module of GLn(2 f )

We conclude this paper with a comprehensive description of the involution module kI of GLn(2 f ),
which we introduced in Section 2. Let G = GLn(2 f ), for some integer f � 1 and let m = 
 n

2 �. Then
kI ∼= ⊕m

i=1 kCi ↑G , by (5). Using Theorems 4.3, 6.2, 7.6 and 8.3 we obtain

Theorem 9.1. Let i ∈ {1, . . . , 
 n
2 �}. Then

kCi ↑G ∼=
⊕

B a p-block of GLi

BR ↑G .

Unless B = Bz
0 , the summand BR ↑G is indecomposable, with the respective vertex Si or V i,i , depending on

whether B is a block of full defect or of defect zero. The summand (Bz
0)

R ↑G decomposes in the following way:
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If n = 2i, then (Bz
0)

R ↑G has two components, the Steinberg module, which is projective and a component
that has vertex V i,i .
If n = 2i + 1, then (Bz

0)
R ↑G has four components, the Steinberg module and a component with each of

the respective groups V i,i , V i,i+1 and V i+1,i as a vertex.
If n � 2i + 2, then (Bz

0)
R ↑G has four components with each of the respective groups V i,i , V i,i+1 , V i+1,i

and V i+1,i+1 as a vertex.

Finally all components of kCi ↑G are pairwise non-isomorphic.

Remark 9.2. Theorem 9.1 is also true for odd characteristic unless i = 
 n
2 �. In this case the statement

is true unless there are additional projective components. In fact the only unaccounted components
would have to be projective. However only if n = 2i are we aware of such an additional component,
that is, St j

n appearing as a component of (Bz
j)
R ↑G , where j = q−1

2 . See Lemma 8.4.

We can now count the number of components of kI.

Corollary 9.3. The involution module kI of GLn(2 f ) decomposes into exactly 2 f (n − 1)+ (r − 1) components,
if n = 2r, and into 2 f (n − 2) + (r + 1) components, if n = 2r + 1.

Proof. Note that S1 = V 1,1. First let n = 2r. We start with r = 1. Then kI ∼= kC1↑G . Hence there are
2 f − 1 components with vertex S1 and one projective component. So there are 2 f components, and
thus the claim is true.

Now let r � 2. Then kC1↑G has 2 f − 1 components with vertex S1 and three components with
the respective vertices V 1,2, V 2,1 and V 2,2. For all j ∈ {2, . . . , r − 1} we find that kC j ↑G has 2 f − 1

components with vertex S j , 2 f − 1 components with vertex V j, j , and another three components
with the respective vertices V j, j+1, V j+1, j and V j+1, j+1. Finally kCr ↑G has 2 f − 1 components with
vertex Sr , q − 1 components with vertex Vr,r and one projective component. Altogether the claim
follows for even n. Likewise one shows the claim for odd n. �
Corollary 9.4. The only self-dual components of kCi ↑G are the various components of (Bz

0)
R ↑G and the com-

ponent BR
0 ↑G .

Proof. Let M be a self-dual component of kCi ↑G . Then M is a component of BR ↑G , for some 2-block
B of G . But according to Theorem 9.1 no two components of kCi ↑G are isomorphic, and thus BR ↑G

must be self-dual. So if B is of full defect, then (9) implies that BR ↑G is self-dual if and only if
B = B0. On the other hand if B is of defect zero, then using (1), we must have B = Bz

0. Considering
their vertices we see that each component of (Bz

0)
R ↑G is indeed self-dual. �

Corollary 9.5. For every i ∈ {1, . . . , 
 n
2 � − 1} the component Mi+1,i+1 of kCi ↑G that has vertex V i+1,i+1 (see

Theorem 7.6) is isomorphic to the component M0 of kCi+1↑G (see Theorem 6.2). Moreover this is the only way
a component of the involution module can occur with multiplicity greater than one.

Proof. Let M and M ′ be different components of the involution module that are isomorphic. Then
there are integers i, j such that 1 � i < j � 
 n

2 �, and M is a component of kCi ↑G and M ′ is a com-
ponent of kC j ↑G . Now let V be a common vertex of M and M ′ . Since i �= 
 n

2 �, we know that V is
non-trivial. Therefore V is G-conjugate to one of the groups {Si, V i,i, V i,i+1, V i+1,i, V i+1,i+1} and to
one of groups {S j, V j, j, V j, j+1, V j+1, j, V j+1, j+1}. A straightforward comparison of the size of the var-
ious groups shows that the only possibility is V = V i+1,i+1 and j = i + 1. Hence M ∼= Mi+1,i+1, by
Theorem 7.6. Furthermore with respect to (G, V ,NG(V )) its Green correspondent is (Sti+1,i+1)

Pi+1,i+1 ,

which is isomorphic to (St j, j)
R|NG (V j, j ) . In particular M ∼= M0, where M0 is described in Theo-

rem 6.2. �
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In the following let i ∈ {1, . . . , 
 n
2 �}. Recall decomposition (8).

Lemma 9.6. Set s := gcd(q − 1,n) and let r ∈ {0,1, . . . ,q − 2}. Then Wr↑G is indecomposable if and only if
i = 1 and r �= 0 or i � 2 and s � r.

Proof. By Theorem 3.2(c) we see that Wr↑G is surely not indecomposable if i � 2 and s | r. So suppose
that i = 1. Then Wr↑G ∼= BR

r ↑G . Note that GL1 is a 2′-group. So the 2-blocks of full defect coincide
with the blocks of defect zero. As the trivial module kGL1 coincides with the Steinberg module, we
conclude that B0 = Bz

0. So it follows from Theorem 9.1 that Wr↑G is indecomposable if and only if
r �= 0.

Next suppose that i � 2 and s � r. Then Theorem 3.2(c) shows again that Wr↑G ∼= BR
r ↑G . As now

Br � Bz
0, we conclude that Wr↑G is indecomposable, by Theorem 9.1. That completes the proof. �

We conclude this section by calculating the dimension of the modules BR ↑G , for all 2-blocks B of
GLi . In particular we know the dimension of most of the components of the involution module kI of
GLn(2 f ). For any integer m � 1 we define

[m]q :=
m∏

j=1

(
q j − 1

)
.

Lemma 9.7. Let r = 0,1, . . . ,q − 2 and set s := gcd(n,q − 1). Then

dimk
(

Bz
r

)R ↑G = qi(i−1) · [n]q

[i]2
q · [n − 2i]q

,

dimk BR
r ↑G =

⎧⎪⎨
⎪⎩

q
( i
2
)

q−1 · [n]q
[i]q·[n−2i]q

, if i = 1 or s � r,

q
( i
2
)

q−1 · [n]q

[i]2
q ·[n−2i]q

· ([i]q − s · (q − 1) · q
( i

2

)
), otherwise.

Proof. Since dimk Sti = q
( i

2

)
, it follows from (1) that dimk Bz

r = qi(i−1) . Hence dimk(Bz
r )

R ↑G = qi(i−1) ·
|G : Ri |, where |G : Ri | = [n]q

[i]2
q ·[n−2i]q

.

Theorem 3.2(c) gives BR
r ↑G ∼= Wr↑G , if i = 1 or s � r. Then dimk Wr↑G = |G : Ni |, where |G : Ni | =

q
( i
2
)

q−1 · [n]q
[i]q ·[n−2i]q

. Finally let i � 2 and s | r. Then dimk BR
r ↑G = |G : Ni | − s · (qi(i−1) · |G : Ri |), by Theo-

rem 3.2(c). �
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