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1. Introduction

Let p be a fixed prime number. The Glauberman correspondence appears in many key places in
the character theory of finite groups, specially in those connecting global and local representations.
In what perhaps constitutes the most relevant case, the Glauberman correspondence asserts that if a
finite p-group P acts as automorphisms on a finite group K of order not divisible by p, then there
is a natural bijection between IrrP (K ), the P -invariant irreducible characters of K , and Irr(C), the
irreducible characters of the fixed point subgroup C = CK (P ). (In fact, the Glauberman correspondence
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is defined whenever P is a solvable group acting coprimely on a group G , see Chapter 13 of [Is]. Later
on, M. Isaacs removed the hypothesis of P being solvable in [Is2].) The Glauberman correspondence
(in the case where a p-group is acting) was noticed to be a consequence of the Brauer correspondence
between blocks by J. Alperin in [A].

In 1980, E.C. Dade (using the Brauer correspondence) extended the Glauberman correspondence to
a correspondence between certain defect zero characters of IrrP (K ) and Irr(C), whenever a group K is
acted by a p-group P [D]. This was also discovered independently by H. Nagao (see Theorem (5.12.1)
in [NT]), and we have called this the Dade–Glauberman–Nagao correspondence (DGN) in [NaTi].

While the Glauberman correspondence is a key ingredient in the reduction of the McKay conjec-
ture to simple groups, and the Dade–Glauberman–Nagao correspondence plays an important role in a
reduction of the Alperin Weight Conjecture [NaTi], it is somewhat remarkable that we need now an
extension of the Dade–Glauberman–Nagao correspondence in order to carry out a reduction to simple
groups of the unproven half of Brauer’s Height Zero conjecture [NS].

To state our Theorem A below, we remind the reader that if G is a finite group, N � G , then an
irreducible character χ ∈ Irr(G) has relative p-defect zero with respect to N (or that χ has N-relative
p-defect zero) if

(
χ(1)/θ(1)

)
p = |G/N|p,

where θ ∈ Irr(N) is any irreducible constituent of the restriction χN . (Let us briefly mention here that
the significance of relative p-defect zero characters, or, in their terminology, of N-relatively projective
characters, was already pointed out by B. Külshammer and G.R. Robinson in the remarkable paper [KR],
and that we shall be using here some techniques introduced by them.)

We need some new notation in order to state our main result. Let G be a finite group. If a p-
subgroup P of G normalizes some subgroup K � G , then we denote by Bl(K |P ) the set of p-blocks b
of K such that the unique block of K P covering b has defect group P . (If P is contained in K , then
Bl(K |P ) becomes the set of blocks of K with defect group P .) If τ ∈ Irr(G), then bl(τ ) is the p-block
of G that contains τ . If D � G and μ ∈ Irr(D), then Gμ is the stabilizer of μ in G , and if χ ∈ Irr(G)

lies over μ, then χμ ∈ Irr(Gμ) is the Clifford correspondent of χ over μ.

Theorem A. Let G be a finite group, and let p be a prime. Suppose that K � G, P is a p-subgroup of G = K P
and P ∩ K = D � G. Let C = NK (P ). Then:

(a) There is a natural bijection ′ : Bl(K |P ) → Bl(C |P ).
(b) If b ∈ Bl(K |P ), then there is a natural bijection

′ : IrrP (b) → IrrP
(
b′),

where IrrP (b) are the P -invariant irreducible characters of b.
(c) If η ∈ IrrP (b), then there is a unique C-conjugacy class of P -invariant irreducible constituents μ ∈ Irr(D)

of the restriction ηD such that bl(ημ) ∈ Bl(Kμ|P ). Furthermore, η′ is the unique irreducible D-relative
p-defect zero constituent of ηC with multiplicity not divisible by p lying over μ.

(d) If η ∈ IrrP (b), then

[
ηC , η′] ≡ ±1 mod p.

Of course, when K is a p′-group, then the correspondence in Theorem A is the p-group case of
the Glauberman correspondence, and when D = 1, this is the extension by Dade and Nagao. Also the
case where D ∈ Sylp(K ) was recently obtained in [IN], in a totally different context.
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2. Proofs

We fix a prime number p. We start with a few elementary results on p-blocks. Our notation
follows [N], and all blocks below are p-blocks.

(2.1) Lemma. Suppose that K � G has p-power index, and let b be a block of K . Let B be the unique block of G
that covers b, and suppose that B has defect group P .

(a) Then b is G-invariant if and only if K P = G.
(b) Suppose that b is G-invariant. If B ′ is the Brauer First Main correspondent of B, then B ′ covers a unique

block b′ of NK (P ). Also, b and b′ have defect group P ∩ K .

Proof. First of all, recall that b is covered by a unique block of G , by Corollary (9.6) of [N]. We
start with (a). Suppose that K P = G . Let T be the stabilizer of b in G . If bT is the Fong–Reynolds
correspondent of B over b (Theorem (9.14) of [N]), then bT has defect group P g by the Fong–Reynolds
correspondence. If T < G , then there is some proper normal subgroup T ⊆ M � G . Then P g ⊆ M and
this is not possible. Conversely, suppose that b is G-invariant. Then K P = G by Fong’s Theorem (9.17)
of [N]. This completes the proof of (a).

For (b), we have by (a) that G = K P . Hence NG(P ) = NK (P )P and again by (a), we have that B ′
covers a unique block of NK (P ), which we call b′ . By Fong’s Theorem (9.17) of [N], we also have that
P ∩ K is a defect group of b and that P ∩ K is a defect group of b′ . �
(2.2) Notation. Suppose that K ⊆ G , P is a p-subgroup of G normalizing K . As in the Introduction,
we write Bl(K |P ) for the blocks b of K such that the unique block B of K P covering b has defect
group P . If P is contained in K , of course Bl(K |P ) is the set of blocks of K with defect group P . If
b ∈ Bl(K |P ), notice that b is P -invariant by Lemma (2.1), and that we have uniquely defined a block
b′ of NK (P ), which is the unique block of NK (P ) covered by B ′ , the Brauer First Main correspondent
of B . We call b′ the P -correspondent of b.

(2.3) Lemma. If H is a subgroup of G, ξ ∈ Irr(H) belongs to b, and ξ G = χ ∈ Irr(G) belongs to B, then every
defect group of b is contained in a defect group of B.

Proof. This follows from Corollary (6.2) and Lemma (4.13) of [N]. �
If N � G and δ ∈ Irr(N), as we have said, we denote by Gδ the stabilizer of δ in G . Also Irr(G|δ)

is the set of the irreducible characters χ of G such that χN contains δ, and recall that the Clifford
correspondence states that induction defines a bijection Irr(Gδ |δ) → Irr(G|δ). If χ ∈ Irr(G|δ), then we
denote by χδ ∈ Irr(Gδ |δ) the Clifford correspondent of χ over δ. Also, recall that

[χN , δ] = [
(χδ)N , δ

]
.

(For a proof, see Theorem (6.11) of [Is].) Also, if τ ∈ Irr(H), then bl(τ ) is the unique p-block of H that
contains τ .

(2.4) Lemma. Suppose that G/K is a p-group and that b ∈ Bl(K ) has defect group D � G. Suppose that B,
the only block of G covering b, has defect group P . If η ∈ Irr(b) is P -invariant, then ηD has a P -invariant
constituent μ such that bl(ημ) ∈ Bl(Kμ|P ). Also, any two of them are NK (P )-conjugate.

Proof. Since η is P -invariant, then we have that b is P -invariant, and G = K P by Lemma (2.1). Also,
K ∩ P = D . Let δ ∈ Irr(D) be under η. Let T = Gδ be the stabilizer of δ in G . Since η is P -invariant
(and then G-invariant), we have that K T = G by the Frattini argument. Let ξ ∈ Irr(T ∩ K ) be the
Clifford correspondent of η over δ, and let τ ∈ Irr(T ) be any character over ξ . By Mackey, (τ G)K =
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(τK∩T )K contains η, and therefore (τ G)K = eη. Hence τT ∩K = eξ . Now, the block bl(τ )G is defined
and covers b, so necessarily bl(τ )G = B . Now, let R be a defect group of bl(τ ). Recall that D ⊆ R by
Theorem (4.8) of [N]. We claim that R is a defect group of B . By Lemma (2.3), we have that R is
contained in some G-conjugate of P . Since the block of ξ is T -invariant, by Theorem (9.26) of [N],
we have that R ∩ T ∩ K is a defect group of the block of bl(ξ). Now, D ⊆ R ∩ T ∩ K , and again by
Lemma (2.3), we have that R ∩ T ∩ K should be contained in D . Hence R ∩ T ∩ K = D . Since bl(ξ) is T -
invariant, by Lemma (2.1), we have that R(T ∩ K ) = T . Therefore R K = G and R ∩ K = R ∩ T ∩ K = D .
Since P ∩ K = D , we conclude that |R| = |P |. Hence R and P are G-conjugate. Therefore P g is a defect
group of the block of Gδ that covers bl(ξ). Now, if μ = δg−1

(and using that η is G-invariant), we have
that μ is P -invariant, and that P is a defect group of the unique block that covers bl(ημ). Hence,
bl(ημ) ∈ Bl(Kμ|P ). Finally, if ε = μg is P -invariant and P is also a defect group of the unique block
B1 of Gε that covers ηε , then we have that P g is also a defect group of B1. Thus P g = P x for some
x ∈ Gε . Hence y = gx−1 ∈ NG(P ) and μy = ε . Since NG(P ) = NK (P )P , we may choose y ∈ NK (P ). �
(2.5) Lemma. Suppose that b ∈ Bl(G|D), where D � G. If η ∈ Irr(b), then η has D-relative p-defect zero.

Proof. We have that b covers a block e of E = DCG(D) with defect group D . If I is the stabilizer of e
in G , and b′ is the Fong–Reynolds correspondent of b over e, then we have that b′ has defect group D ,
and that η = (η′)G for some η′ ∈ Irr(b′). If I < G , then η′ has D-relative p-defect zero by induction.
If μ ∈ Irr(D) lies under η′ , then (η′(1)/μ(1))p = |I : D|p and using that |G : I|η′(1) = η(1), we see
that η also has D-relative p-defect zero. So we may assume that I = G . Hence G/E is a p′-group by
Theorem (9.22) of [N]. Now, let τ ∈ Irr(E|μ) below η. Thus η(1)p = τ (1)p by Corollary (11.29) of [Is].
Now using Theorem (9.12) of [N], and its notation, we have that τ = θμ , where θ ∈ Irr(E/D) has defect
zero. Hence (τ (1)/μ(1))p = |E : D|p , and we deduce that (η(1)/μ(1))p = |G : D|p , as desired. �

Now we restate the Dade–Glauberman–Nagao correspondence in a convenient way, while we add
some new information that we shall need below and in [NS]. We use dz(H) to denote the p-defect
zero irreducible characters of H .

(2.6) Theorem. Suppose that K � G, where G/K is a p-group. Suppose that θ ∈ Irr(K ) is G-invariant and has
defect zero. Assume that the unique block B of G covering θ has defect group P , and let C = NK (P ).

(a) We have that

θC = eθ ′ + p	 + Ξ,

where p does not divide e, θ ′ ∈ Irr(C) has defect zero, all irreducible constituents of the character 	 have
defect zero, and none of the irreducible constituents of the character Ξ has defect zero.

(b) We have that

θ(1)p′ ≡ e|K : C |p′θ ′(1)p′ mod p

and

e ≡ ±1 mod p.

(c) If x ∈ K with P ∈ Sylp(CG(x)), then

θ(x) ≡ eθ ′(x) mod p.

(d) If dzG(K |P ) is the set of G-invariant p-defect zero characters of K covered by a block of G with defect
group P , then the map dzG(K |P ) → dz(C) given by θ 
→ θ ′ is a bijection.
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Proof. Parts (a) and (d) follow from Theorem (5.12.1) of [NT], and we freely use the proof of that
theorem in what follows. Recall also that P is a complement of K in G and that N = NG(P ) = C × P ,
where C = CK (P ) = NK (P ). Next we prove (b). By our hypotheses, we have that θ has an extension
ψ to G . (See Problem (3.10) of [N] for an elementary proof.) It then follows that Irr(B) = {τψ | τ ∈
Irr(G/K )}, using Gallagher’s Corollary (6.17) of [Is], and Theorem (9.2.b) of [N]. If B ′ is the Brauer First
Main correspondent of B , we also have that Irr(B ′) = {τψ ′ | τ ∈ Irr(N/C)}, where ψ ′ = θ ′ × 1P . By the
definition of the dimension of blocks, we have

dim(B) =
∑

χ∈Irr(B)

χ(1)2 = θ(1)2|P |.

In the same way,

dim
(

B ′) = θ ′(1)2|P |.

Now, by using the formula at the third paragraph of Theorem (2.1) in [M], we have that

dim(B)p′ = (|G : N|p′
)2

dim
(

B ′)
p′ .

We deduce that

θ(1)p′ ≡ ±|K : C |p′θ ′(1)p′ mod p, (∗)

as wanted.
Now, let ρ = (ψ ′)G . This character can be decomposed as the sum of its B̃-components ρB̃ for

B̃ ∈ Bl(G). According to Corollary 5.3.2 of [NT] we have that

ρB̃(1)p > ρB(1)p = ρ(1)p

for every B̃ ∈ Bl(G) − {B}. Now,

|G : N|θ ′(1) = (
ψ ′)G

(1) = ρB(1) +
∑

B̃∈Bl(G)−{B}
ρB̃(1)

and by dividing by ρ(1)p , we obtain

|G : N|p′θ ′(1)p′ ≡ ρB(1)p′ mod p.

Write (ρB)K = eθ for some integer e. Since [(ρB̃)K , θ] = 0 for B̃ ∈ Bl(G) − {B}, we have that

e = [
(ρB̃)K , θ

] = [ρK , θ] = [(
θ ′)K

, θ
] = [

θC , θ ′]

which we know is not divisible by p by Theorem (5.12.1) of [NT]. Hence ρB(1)p′ = eθ(1)p′ and
|K : C |p′θ ′(1)p′ ≡ eθ(1)p′ . By using our previous congruence (∗), we deduce that

e ≡ ±1 mod p,

as desired.
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Finally we show (c). We have that x ∈ K with P ∈ Sylp(CG(x)). Then ClN(x) = ClG(x) ∩ CG(P ) by
Lemma (4.16) of [N]. Now since (B ′)G = B , we use that (λB ′ )G = λB to obtain that

( |ClG(x)|ψ(x)

ψ(1)

)∗
=

( |ClN(x)|ψ ′(x)

ψ ′(1)

)∗
.

Now

|G|θ(x)

|CG(x)|θ(1)
= |K |θ(x)

|CK (x)|θ(1)
= |K |p′θ(x)

|CK (x)|θ(1)p′

and in the same way,

|N|θ ′(x)

|CN(x)|θ ′(1)
= |C |p′θ ′(x)

|CC (x)|θ ′(1)p′
.

Now, |CK (x) : CC (x)| = |CG(x) : CN (x)| = |CG(x) : NCG (x)(P )| ≡ 1 mod p by Sylow theory. Since 1 =
P ∩ CK (x) ∈ Sylp(CK (x)), we have that CK (x) is not divisible by p. Using that ψ(x) = θ(x) and part (b),
all this easily implies (d). �

In the next results, we heavily use the following fact: if D � K and μ ∈ Irr(D) is K -invariant,
then there exists a natural bijection χ 
→ μχ between the set dz(K/D) of the defect zero characters
of K/D and the set rdz(K |μ) of the D-relative p-defect zero characters of K over μ. (See Section 2
of [N1] for a proof of this result. In [N1] the character μχ was denoted by χμ , but we have already
used this notation in this paper.)

(2.7) Lemma. Suppose that G/K is a p-group and that b ∈ Bl(K ) has defect group D � G. Suppose that B
is the only block of G covering b, and assume that B has defect group P . Let C = NK (P ) and let b′ be the
P -correspondent of b. Let μ ∈ Irr(D) be G-invariant, and suppose that χ ∈ dz(K/D) is P -invariant.

(a) We have that μχ ∈ Irr(b) if and only if χ ∈ Irr(b). In this case, the unique block of G/D covering {χ} has
defect group P/D.

(b) Suppose that the block of G/D covering χ has defect group P/D, and let χ ′ ∈ Irr(C/D) be the Dade–
Glauberman–Nagao correspondent of χ . Then χ ∈ Irr(b) if and only if χ ′ ∈ Irr(b′).

Proof. Let z ∈ CK (D) be p-regular. Then D〈z〉 = D × 〈z〉 and μ̂(z) = μ(1), by the definition of the
function μ̂ in [N1]. Therefore we have that

(
(μχ)0)

CK (D)
= μ(1)

(
χ0)

CK (D)
.

In particular, the Brauer characters χ0 and (μχ)0 have irreducible constituents τ1 and τ2 in IBr(K ),
respectively, which lie over a common δ ∈ IBr(CK (D)). Let e be the block of δ. Suppose that μχ ∈
Irr(b). Since δ lies under τ2 ∈ IBr(b), then b covers e (Corollary (9.2) of [N]) and eK = b (since b is
the only block covering e by Corollary (9.21) of [N]). Since the block of τ1 also covers e, we have that
τ1 ∈ IBr(b) and χ belongs to b. The same argument proves the converse.

Suppose now that χ ∈ Irr(b), and consider χ̃ ∈ Irr(G/D) to be an extension of χ . Then χ̃ belongs
to B . If L = ClG(x) is a p-regular defect class for B , then, using that CG/D(Dx) = CG(x)D/D , we have
that

ωχ̃ (L̂) = |ClG(x)|χ(x)

χ(1)
= ∣∣CG(x)D : CG(x)

∣∣(∣∣ClG/D(Dx)
∣∣ χ̃ (Dx)

χ̃ (1)

)
,
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where on the right hand side we view χ̃ as a character of G/D . Now, by Theorem (4.4) of [N], we
deduce that a defect group of the block of G/D containing χ̃ is contained in P/D . Since this defect
group has to complement K/D in G/D , the proof of (a) is now complete.

To prove (b), write χ = χ̄ ∈ Irr(K/D) viewed as a character of K/D and let B̃ be the block of G/D
that covers {χ̄}. Recall that B̃ is contained in B if and only if the same happens with its Brauer
correspondents (B̃)′ and B ′ . (This follows easily from Lemma (3.2) of [N2], for instance.) By the
construction of the DGN correspondence, we have that (B̃)′ is the only block of NG(P )/D cover-
ing (χ̄ )′ = χ ′ . Suppose that χ ∈ Irr(b). Then B̃ is contained in B , and the same happens with Brauer
First Main correspondents (B̃)′ and B ′ . Then χ̄ ′ is covered by (B̃)′ and thus χ ′ is covered by B ′ . Thus
χ ′ ∈ Irr(b′). Suppose conversely that χ ′ ∈ Irr(b′), so B ′ contains (B̃)′ and B contains B̃ , so χ ∈ Irr(b),
since b is the only block of K covered by B . �
(2.8) Theorem. Suppose that G/K is a p-group, that b ∈ Bl(K ) has defect group D � G. Suppose that B,
the only block of G covering b, has defect group P . Let C = NK (P ). Let μ ∈ Irr(D) be G-invariant, and let
IrrP (b|μ) = Irr(K |μ) ∩ IrrP (b). Suppose that η ∈ IrrP (b|μ).

(a) We have that

ηC = eη′ + p	 + Ψ,

where η′ ∈ Irr(C) has D-relative p-defect zero, p does not divide e, every irreducible constituent of 	 has
D-relative p-defect zero and no irreducible constituent of Ψ has D-relative p-defect zero.

(b) We have that

η(1)p′ ≡ e|K : C |p′η′(1)p′ mod p

and

e ≡ ±1 mod p.

(c) If b′ is the P -corresponding block of b, then the map

IrrP (b|μ) → IrrP
(
b′∣∣μ)

defined by η 
→ η′ is a well-defined natural bijection.
(d) If x ∈ K is p-regular with P ∈ Sylp(CG(x)), we have that

η(x)

μ(1)
≡ e

η′(x)

μ(1)
mod p.

Proof. Again, we use Theorem (2.1) of [N1]. Hence, we have that the map dz(K/D) → rdz(K |μ) given
by χ 
→ μχ is a canonical bijection. Also,

μχ(k) = 0 = χ(k)

for all k ∈ K with kp /∈ D , and μχ(k) = μ̂(k)χ(k) if kp ∈ D (where μ̂ is the canonical extension of μ
to D〈k〉).

Suppose that γ ∈ Irr(C |μ) and ξ ∈ Irr(K |μ) have D-relative p-defect zero. Hence γ = μθ and
ξ = μχ for some defect zero θ ∈ dz(C/D) and χ ∈ dz(K/D). Write C = Dx1 ∪ · · · ∪ Dxt , as a disjoint
union, and suppose that Dx1, . . . , Dxs are exactly the cosets Dx with xp ∈ D . Notice that if xp ∈ D
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then (dx)p ∈ D for all d ∈ D because xp ∈ D if and only if Dx has order not divisible by p. Using that
D is contained in the kernel of θ and χ , it follows that

[ξC , γ ] = [
(μχ)C , μθ

] = 1

|C |
t∑

j=1

(∑
d∈D

μχ(dx j)μθ(dx j)

)

= 1

|C |
s∑

j=1

(∑
d∈D

χ(dx j)μ̂(dx j)θ(dx j)μ̂(dx j)

)

= 1

|C |
s∑

j=1

χ(x j)θ(x j)

(∑
d∈D

μ̂(dx j)μ̂(dx j)

)

= |D|
|C |

s∑
j=1

χ(x j)θ(x j)

= |D|
|C |

t∑
j=1

χ(x j)θ(x j) = [χC/D , θ],

where we have used Lemma (8.14.c) of [Is].
Suppose now that η ∈ IrrP (b|μ); that is, η ∈ Irr(b) is P -invariant and lies over μ. In particular, we

have that b is P -invariant and G = K P and D = K ∩ P , by Lemma (2.1). Then η has D-relative p-defect
zero by Lemma (2.5), and therefore η = μχ for a unique defect zero χ ∈ Irr(K/D). By uniqueness, we
see that χ is P -invariant. By Lemma (2.7), we have that the block of G/D that covers χ has defect
group P/D . Then, by Theorem (2.6), we can write

χC = eχ ′ + p	0 + Ξ,

where p does not divide e, all irreducible constituents of 	0 have defect zero, and no irreducible
constituent of Ξ has defect zero. Also, e ≡ ±1 mod p and

χ(1)p′ ≡ e|K : C |p′χ ′(1)p′ mod p.

From this equality and the equation in the second paragraph, we deduce that

ηC = eη′ + p	 + Ψ,

where η′ = μ(χ ′) ∈ Irr(b′) (by Lemma (2.7)), and 	 and Ψ are as required in the statement. Also,
(μχ(1))p′ = χ(1)p′ .

Now, using the same ideas as in the previous paragraphs, it is straightforward to prove that if b′
is the P -corresponding block of b, then the map η 
→ η′ defines a bijection IrrP (b|μ) → IrrP (b′|μ).

Finally, to prove (d), notice that CG/D(Dx) = CG(x)/D since x is p-regular. Hence we can apply
Theorem (2.6.d) to χ and use that μ̂(x) = μ(1). �

In the notation of the previous theorem, notice that if χ is a defect zero character of K/D and
η = μχ for some G-invariant μ ∈ Irr(D), then η′ = μ(χ ′), where χ ′ is the Dade–Glauberman–Nagao
correspondent of χ .

Proof of Theorem A. (a) We have that the map ′ : Bl(K |P ) → Bl(C |P ) given by b 
→ b′ is a bijection by
the Brauer First Main theorem and Lemma (2.1).
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We prove the rest of the theorem simultaneously. Suppose that b ∈ Bl(K |P ) and η ∈ IrrP (b). By
Lemma (2.4), ηD contains a P -invariant constituent μ such that, if τ = ημ is the Clifford correspon-
dent of η over μ and T = Kμ , then bl(τ ) ∈ Bl(T |P ). Also, any other choice of such a μ is C-conjugate
to μ. Now, by the Clifford correspondence (see Lemma (2.5) of [S] for a proof), we have that

ηC = (
τ K )

C = (τT ∩C )C + Ξ,

where no irreducible constituent of Ξ lies over μ, and

[
ηC ,ρC ] = [τT ∩C ,ρ]

for ρ ∈ Irr(T ∩ C |μ). Since induction of characters gives a bijection Irr(T ∩ C |μ) → Irr(C |μ), which
sends D-relative p-defect zero characters onto D-relative p-defect zero characters, part (c) of Theo-
rem A follows now from Theorem (2.8) applied to τ and by defining η′ = (τ ′)C . It is straightforward
to check that our map is a bijection. �

As happens with the Glauberman correspondence, the deeper applications of our correspondence
will occur when we will have D , K and G as normal subgroups of some finite overgroup Γ and we
wish to relate the characters in Irr(Γ |η) with the characters of Irr(NΓ (P )|η′).

We finish this paper with an apparently elementary property of our correspondence that shall be
used elsewhere, and that illustrates how we deal with this new correspondence. First, it is convenient
to introduce the following definition.

(2.9) Definition. Suppose that K , P are subgroups of some finite group G , where P normalizes K
and P ∩ K = D � K . Suppose that θ ∈ Irr(K ) is P -invariant. If the unique block of K P that covers
the block of K that contains θ has defect group P , then we say that the P -correspondent of θ is
defined. Also, the character θ ′ ∈ Irr(NK (P )) provided by Theorem A is called the P -correspondent
of θ . (Notice that in this situation, we have that D is the defect group of the block of θ , using, for
instance, Theorem (9.26) of [N].)

We shall use the following.

(2.10) Lemma. Suppose that a p-group P acts on G, and suppose that N � G is P -invariant and that p does
not divide |N|. If P acts trivially on G/N, then G = CG(P )N.

Proof. This follows from Theorem (3.27) of [Is1]. �
Suppose that E �G , write Ḡ = G/E and use the bar-convention. Recall that if K ⊆ G , then K/(E ∩ K )

is naturally isomorphic to the subgroup K E/E of G/E . Consequently, all the characters τ of K that
contain E ∩ K in its kernel can be seen as characters τ̄ of K̄ = K E/E , where

τ̄ (k̄) = τ̄ (Ek) = τ (k)

for all k ∈ K .

(2.11) Theorem. Suppose that K and P are subgroups of a finite group G, where P is a p-subgroup of G
that normalizes K , with K ∩ P = D � K . Suppose that the P -correspondent θ ′ ∈ Irr(NK (P )) of θ ∈ Irr(K ) is
defined, and suppose that E � G is such that E ∩ K ⊆ ker(θ). Let Ḡ = G/E and use the bar convention. Then
NK (P ) = NK̄ ( P̄ ), the P̄ -correspondent of θ̄ ∈ Irr(K̄ ) is defined and

(θ̄ )′ = θ ′.
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Proof. Let M = K P , let b be the block of θ , let B be the unique block of M that covers b, which
we know has defect group P by hypothesis. Also, we know that b is P -invariant and has defect
group D = P ∩ K � M . Let b̄ be the block of K̄ that contains θ̄ ∈ Irr(K̄ ). We have that b̄ is M̄-invariant
because θ̄ is P̄ -invariant. Now, if c is the block of θ ∈ Irr(K/E ∩ K ) viewed as character of K/E ∩ K
by Theorem (9.9.a) of [N], we have that D(E ∩ K )/(E ∩ K ) contains a defect group of c. However
every defect group of c contains Op(K/E ∩ K ) (Theorem (4.8) of [N]), and since D is normal in K ,
we conclude that D(E ∩ K )/(E ∩ K ) is the defect group of the block of θ ∈ Irr(K/E ∩ K ). Now, since
K/E ∩ K is naturally isomorphic to K E/E = K̄ , we conclude that the block of θ̄ ∈ Irr(K̄ ) has defect
group D E/E = D̄ � K̄ .

Now M̄/K̄ is a p-group, so there is a unique block B̄ of M̄ that covers b̄. We want to show next
that P̄ is a defect group of B̄ .

Let γ̄ ∈ Irr(M̄) be over θ̄ , and let γ̂ ∈ Irr(M E) be the irreducible character of M E that contains
E in its kernel and that corresponds to γ̄ . We have that γ̄ belongs to B̄ . Also, we have that γ̂M ∈
Irr(M) lies over θ . Hence γ̂M belongs to B . Also, notice that γ̂M has M ∩ E in its kernel. In particular,
B covers the principal block of M ∩ E , and we conclude that P ∩ E is a Sylow p-subgroup of M ∩ E
by Theorem (9.26) of [N]. By Theorem (9.9.a) of [N], we have that a defect group P0/E ∩ M of γ̂M ∈
Irr(M/E ∩ M) (viewed as a character of M/E ∩ M) is contained in P (E ∩ M)/(E ∩ M). Since M/E ∩ M
and M E/E are naturally isomorphic, we deduce that the block B̄ of γ̄ has a defect group P0 E/E = P̄0
that is contained in P̄ . Also, since b̄ is M̄-invariant and has defect group D̄ � M̄ , we know that P̄0 is
a complement of K̄ in M̄ . It is enough then to show that

| P̄ |/|D̄| = |M̄|/|K̄ |.

This easily reduces to checking

|M ∩ E|/|E ∩ P | = |K ∩ E|/|D ∩ E|,

which is true because P ∩ E ∈ Sylp(M ∩ E) and (M ∩ E)/(K ∩ E) is a p-group. We then conclude that
P̄ is a defect group of B̄ , and this proves that the P̄ -correspondent of θ̄ is defined.

Next we show that NK (P ) = NK̄ ( P̄ ). So if J = NK E(P E), then we wish to show that J = NK (P )E .
Let I = J ∩ K . Hence J = I E . Since P ∩ E ∈ Sylp(M ∩ E), we have that D ∩ E = P ∩ K ∩ E ∈ Sylp(K ∩ E).
Therefore K ∩ E/(D ∩ E) is a normal p′-subgroup of I/(D ∩ E). Because K E/E is naturally isomorphic
to K/K ∩ E and P acts trivially on J/D E (because P E/D E complements K E/D E in M E/D E), it follows
that P acts trivially on I/D(K ∩ E). By Lemma (2.10), applied to the action of P on I/D and using
that D(E ∩ K )/D is a normal p′-subgroup of I/D , we conclude that

I/D = D(K ∩ E)/DCI/D(P ) ⊆ D(K ∩ E)/DCK/D(P ) ⊆ D(E ∩ K )NK (P )/D.

Hence I ⊆ (K ∩ E)NK (P ), and therefore J ⊆ ENK (P ), which is trivially contained in NK E(P E) = J .
By Lemma (2.4), we know that the restriction θD has a unique NK (P )-conjugacy class of irreducible

constituents μ ∈ Irr(D) such that the block of Kμ P that covers the block of θμ has defect group P .
Now, since E ∩ K is in the kernel of θ and (θμ)K = θ , then we have that E ∩ K ⊆ ker(θμ) by elementary
character theory. Now, by the first part of this proof we conclude that the block of θμ ∈ Irr(KμE/E)

has defect group D̄ . Since E ∩ K is contained in the kernel of θ , we have that E ∩ D is contained in
the kernel of μ, and therefore μ naturally corresponds to a character μ̄ ∈ Irr(D̄). We also notice that
the stabilizer (K̄ )μ̄ = KμE/E . Finally, we observe that |NK (P )E : D E|p = |NK (P ) : D|p using again that
D ∩ E is a Sylow p-subgroup of E ∩ K . Finally, we are able to use Theorem A(c) to easily check that

(θ̄ )′ = θ ′,

as desired. �
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