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We introduce the notion of independent sequences with respect
to a monomial order by using the least terms of polynomials
vanishing at the sequence. Our main result shows that the
Krull dimension of a Noetherian ring is equal to the supremum
of the length of independent sequences. The proof has led to
other notions of independent sequences, which have interesting
applications. For example, we can show that dim R/0 : J∞ is the
maximum number of analytically independent elements in an
arbitrary ideal J of a local ring R and that dim B � dim A if B ⊂ A
are (not necessarily finitely generated) subalgebras of a finitely
generated algebra over a Noetherian Jacobson ring.
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Introduction

Let R be an arbitrary Noetherian ring, where a ring is always assumed to be commutative with
identity. The aim of this paper is to characterize the Krull dimension dim R by means of a monomial
order on polynomial rings over R . We are inspired of a result of Lombardi in [13] (see also Coquand
and Lombardi [4,5]) which says that for a positive integer s, dim R < s if and only if for every sequence
of elements a1, . . . ,as in R , there exist nonnegative integers m1, . . . ,ms and elements c1, . . . , cs ∈ R
such that
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s−1 ams+1

s = 0.

This result has helped to develop a constructive theory for the Krull dimension [6–8].
The above relation means that a1, . . . ,as is a solution of the polynomial

xm1
1 · · · xms

s + c1xm1+1
1 + c2xm1

1 xm2+1
2 + · · · + csxm1

1 · · · x
ms−1
s−1 xms+1

s .

The least term of this polynomial with respect to the lexicographic order is the monomial xm1
1 · · · xms

s ,
which has the coefficient 1. This interpretation leads us to introduce the following notion.

Let ≺ be a monomial order on the polynomial ring R[x1, x2, . . .] with infinitely many variables.
For every polynomial f we write in≺( f ) for the least term of f with respect to ≺. Let R[X] =
R[x1, . . . , xs]. We call a1, . . . ,as ∈ R a dependent sequence with respect to ≺ if there exists f ∈ R[X]
vanishing at a1, . . . ,as such that the coefficient of in≺( f ) is invertible. Otherwise, a1, . . . ,as is called
an independent sequence with respect to ≺.

Using this notion, we can reformulate Lombardi’s result as dim R < s if and only if every sequence
of elements a1, . . . ,as in R is dependent with respect to the lexicographic order. Out of this refor-
mulation arises the question whether one can replace the lexicographical monomial order by other
monomial orders. The proof of Lombardi does not reveal how one can relate an arbitrary monomial
order to the Krull dimension of the ring. We will give a positive answer to this question by proving
that dim R is the supremum of the length of independent sequences for an arbitrary monomial order.
This follows from Theorem 2.7 of this paper, which in fact strengthens the above statement. As an im-
mediate consequence, we obtain other algebraic identities between elements of R than in Lombardi’s
result. Although our results are not essentially computational, the independence conditions can often
be treated by computer calculations. For instance, using a short program written in MAGMA [2], the
first author tested millions of examples which led to the conjecture that the above question has a
positive answer [12]. The proof combines techniques of Gröbner basis theory and the theory of asso-
ciated graded rings of filtrations. It has led to other notions of independent sequences which are of
independent interest, as we shall see below.

Our idea is to replace the monomial order ≺ by a weighted degree on the monomials. Given an
infinite sequence w of positive integers w1, w2, . . . , we may consider R[x1, x2, . . .] as a weighted
graded ring with deg xi = wi , i = 1,2, . . . . For every polynomial f , we write inw( f ) for the weighted
homogeneous part of f of least degree. We call a1, . . . ,as ∈ R a weighted independent sequence with
respect to w if every coefficient of inw( f ) is not invertible for all polynomials f ∈ R[X] vanishing at
a1, . . . ,as . Otherwise, a1, . . . ,as is called a weighted dependent sequence with respect to w. We will see
that if R is a local ring and wi = 1 for all i, the sequence a1, . . . ,as is weighted independent if and
only if the elements a1, . . . ,as are analytically independent, a basic notion in the theory of local rings.
That is the reason why we use the terminology independent sequence for the above notions.

Let Q = (x1 −a1, . . . , xs −as) be the ideal of polynomials of R[X] vanishing at a1, . . . ,as . Let in≺(Q )

and inw(Q ) denote the ideals of R[X] generated by the polynomials in≺( f ) and inw( f ), f ∈ Q . We
want to find a weight sequence w such that in≺(Q ) = inw(Q ). It is well known in Gröbner basis
theory that this can be done if in≺(Q ) and inw(Q ) were the largest term or the part of largest degree
of f . In our setting we can solve this problem only if ≺ is Noetherian, that is, if every monomial has
only a finite number of smaller monomials. In this case, a1, . . . ,as is independent with respect to w if
and only if it is independent with respect to ≺. If ≺ is not Noetherian, we can still find a Noetherian
monomial order ≺′ such that if a1, . . . ,as is independent with respect to ≺, then a1ai, . . . ,asai is
independent with respect to ≺′ for some index i. By this way, we can reduce our investigation on the
length of independent sequences to the weighted graded case.

We shall see that for every weight sequence w, inw(Q ) is the defining ideal of the associated
graded ring of certain filtration of R . Using properties of this associated graded ring we can show
that the length of a weighted independent sequence is bounded above by dim R , and that a1, . . . ,as

is a weighted independent sequence if ht(a1, . . . ,as) = s. From this it follows that dim R is the supre-
mum of the length of independent sequences with respect to w. This is formulated in more detail in
Theorem 1.8 of this paper. Furthermore, we can also show that dim R/

⋃
n�1(0 : Jn) is the supremum
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of the length of weighted independent sequences in a given ideal J . If R is a local ring, this gives a
characterization for the maximum number of analytically independent elements in J .

Since our results for independent sequences with respect to a monomial order and for weighted
independent sequences are analogous, one may ask whether there is a common generalization. We
shall see that there is a natural class of binary relations on the monomials which cover both monomial
orders and weighted degrees and for which the modified statements of the above results still hold.
We call such a relation a monomial preorder. The key point is to show that a monomial preorder ≺
can be approximated by a weighted degree sequence w. This is somewhat tricky because w has to
be chosen such that incomparable monomials with respect to ≺ have the same weighted degree.
Since monomial preorders are not as strict as monomial orders, these results may find applications in
computational problems.

For an algebra over a ring, we can extend the definition of independent sequences to give a gen-
eralization of the transcendence degree. Let A be an algebra over R . Given a monomial preorder ≺,
we say that a sequence a1, . . . ,as of elements of A is independent over R with respect to ≺ if for
every polynomial f ∈ R[X] vanishing at a1, . . . ,an , no coefficient of in≺( f ) is invertible in R . If R is a
field, this is just the usual notion of algebraic independence. In general, dim A is not the supremum
of the length of independent sequences over R . However, if R is a Jacobson ring and A a subfinite
R-algebra, that is, a subalgebra of a finitely generated R-algebra, we show that dim A is the supre-
mum of the length of independent sequences with respect to ≺. So we obtain a generalization of the
fundamental result that the transcendence degree of a finitely generated algebra over a field equals its
Krull dimension. Our result has the interesting consequence that the Krull dimension cannot increase
if one passes from a subfinite algebra over a Noetherian Jacobson ring to a subalgebra. For instance, if
H ⊆ G ⊆ Aut(A) are groups of automorphisms of a finitely generated Z-algebra A, then

dim
(

AG)
� dim

(
AH)

,

even though the invariant rings need not be finitely generated. We also show that the above proper-
ties characterize Jacobson rings.

The paper is organized as follows. In Sections 1 and 2 we investigate weighted independent
sequences and independent sequences with respect to a monomial order. The extensions of these
notions for monomial preorders and for algebras over a Jacobson ring will be treated in Sections 3
and 4, respectively.

We would like to mention that there exists an earlier version of this paper, titled “The transcen-
dence degree over a ring” and authored by the first author [12]. This earlier version will not be
published since its results have merged into the present version.

1. Weighted independent sequences

In this section we will prove some basic properties of weighted independent sequences and our
aim is to show that the Krull dimension is the supremum of the length of weighted independent
sequences.

Throughout this paper, let R be a Noetherian ring. Let a1, . . . ,as be a sequence of nonzero elements
of R , which are not invertible. Note that an element of R is weighted dependent if it is zero or
invertible.

First, we shall see that weighted independent sequences are a generalization of analytically in-
dependent elements. Recall that if R is a local ring, the elements a1, . . . ,as are called analytically
independent if every homogeneous polynomial vanishing at a1, . . . ,as has all its coefficients in the
maximal ideal, which means that they are not invertible.

Let w = 1,1, . . . , the weight sequence with all wi = 1. The weighted degree in this case is the
usual degree. Hence inw( f ) is the homogeneous part of smallest degree of a polynomial f . Thus,
a1, . . . ,as is analytically dependent if there exists a homogeneous polynomial vanishing at a1, . . . ,as

which has an invertible coefficient.
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Example 1.1. Let a,b be two arbitrary integers. Since the greatest common divisor of a2 and b2 divides
the product ab, there exist c,d ∈ Z such that ab = ca2 +db2. This relation shows that a,b is a weighted
dependent sequence with respect to w = 1,1, . . . .

Set R[X] = R[x1, . . . , xs]. Let f ∈ R[X] be an arbitrary polynomial vanishing at a1, . . . ,as and g =
inw( f ), where w = 1,1, . . . . Write every term u of f with deg u > deg g in the form u = hv , where
v is a monomial with deg v = deg g , and replace u by the term h(a1, . . . ,as)v . Then we obtain a
homogeneous polynomial of the form g + a1 g1 + · · · + as gs vanishing at a1, . . . ,as . If R is a local
ring, the coefficients of g are not invertible if and only if the coefficients of g + a1 g1 + · · · + as gs

are not invertible. Hence a1, . . . ,as is a weighted independent sequence if and only if a1, . . . ,as are
analytically independent.

Unlike analytically independent elements, the notion of weighted independent sequences depends
on the order of the elements if the weight sequence w contains some distinct numbers.

Example 1.2. Let R = K [u, v] be a polynomial ring in two indeterminates over a ring K . The sequence
uv, v is dependent with respect to the weights 1,2 because x1 − ux2 vanishes at uv, v and inw(x1 −
ux2) = x1. On the other hand, the sequence v, uv is independent with respect to the same weights.
To see this let f = (x1 − v)g + (x2 − uv)h be an arbitrary polynomial of R[x1, x2] vanishing at v, uv .
If vg + uvh 	= 0, inw( f ) = − inw(vg + uvh), whose coefficients are divided by v , hence not invertible.
If vg + uvh = 0, g = uh and inw( f ) = inw(x1uh + x2h) = inw(x1uh) since deg x1 = 1 < 2 = deg x2. All
coefficients of inw(x1uh) are divided by u, hence not invertible.

Let w be an arbitrary weight sequence. Let Q = (x1 − a1, . . . , xs − as), the ideal of polynomials of
R[X] vanishing at a1, . . . ,as . Let C be the set of the coefficients of all polynomials inw( f ), f ∈ Q . It is
easy to see that C is an ideal. Therefore, a1, . . . ,as is a weighted independent sequence with respect
to w if and only if C is a proper ideal of R . Using this characterization, we obtain the following
property of weighted independent sequences under localization.

Proposition 1.3. The sequence a1, . . . ,as is weighted independent if and only if there is a prime P of R such
that a1, . . . ,as is weighted independent in R P .

Proof. If a1, . . . ,as is a weighted independent sequence, then C is contained in a maximal ideal P
of R . Since Q P is the ideal of the polynomials in R P [X] vanishing at a1, . . . ,as , C P is the set of
the coefficients of all polynomials inw( f ), f ∈ Q P . Since C P is a proper ideal of R P , a1, . . . ,as is a
weighted independent sequence in R P .

Conversely, if a1, . . . ,as is a weighted independent sequence in R P for some prime P of R , then C P

is a proper ideal and so is C , too. Therefore, a1, . . . ,as is a weighted independent sequence in R . �
Let inw(Q ) denote the ideal in R[X] generated by the polynomials inw( f ), f ∈ Q . Then C is

also the set of the coefficients of all polynomials in inw(Q ). Therefore, weighted independence is a
property of inw(Q ). We shall see that R[X]/ inw(Q ) is isomorphic to the associated graded ring of
certain filtration of R .

Let S denote the subring R[a1t w1 , . . . ,ast ws , t−1] of the Laurent polynomial ring R[t, t−1]. Since S
is a graded subring of R[t, t−1], we may write S = ⊕

n∈Z Intn . It is easy to see that

In =
∑

m1 w1+···+ms ws�n
m1,...,ms�0

am1
1 · · ·ams

s R (1.1)

for n � 0 and In = R for n < 0. The ideals In , n � 0, form a filtration of R . In the case w1 = · · · =
ws = 1, we have In = In , where I := (a1, . . . ,as). So we may consider S as the extended Rees algebra
of this filtration.
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Let G = S/t−1 S . Then G ∼= ⊕
n�0 In/In+1. In other words, G is the associated graded ring of the

above filtration.

Lemma 1.4. G ∼= R[X]/ inw(Q ).

Proof. Let y be a new variable and consider the polynomial ring R[X, y] as weighted graded with
deg xi = wi and deg y = −1. Then we have a natural graded map R[X, y] → S , which sends xi to
ait wi , i = 1, . . . , s, and y to t−1. Let � denote the kernel of this map. Then S ∼= R[X, y]/�, hence

G ∼= R[X, y]/(�, y) ∼= R[X]/((�, y) ∩ R[X]).
It remains to show that (�, y) ∩ R[X] = inw(Q ).

Let g be an arbitrary element of (�, y) ∩ R[X]. Then g = F + H y for some polynomials F ∈ �
and H ∈ R[X, y]. Without loss of generality we may assume that g is nonzero and that g and F
are weighted homogeneous. Then F has the form F = g + g1 y + · · · + gn yn , where gi is a weighted
homogeneous polynomial of R[X] with deg gi = deg g + i, i = 1, . . . ,n. Set f = g + g1 + · · · + gn . We
have f (a1, . . . ,as)tdeg g = F (a1t w1 , . . . ,ast ws , t−1) = 0. Therefore, f (a1, . . . ,as) = 0 and hence f ∈ Q .
Since g = inw( f ), g ∈ inw(Q ).

Conversely, every polynomial f ∈ Q can be written in the form f = g + g1 + · · · + gn , where
g = inw( f ) and gi is a weighted homogeneous polynomial with deg gi = deg g + i, i = 1, . . . ,n. Set
F = g + g1 y + · · · + gn yn . Then F (a1t w1 , . . . ,ast ws , t−1) = f (a1, . . . ,as)tdeg g = 0. Therefore F ∈ � and
hence inw( f ) = F − (g1 + · · · + gn yn−1)y ∈ (�, y). �
Corollary 1.5. If a1, . . . ,as is a weighted independent sequence, then s � dim G.

Proof. Since inw(Q ) ⊆ C R[X], there is a surjective map R[X]/ inw(Q ) → R[X]/C R[X]. Since C is a
proper ideal of R , s � dim R[X]/C R[X] because R[X]/C R[X] ∼= (R/C)[X], the polynomial ring in s
variables over R/C . Thus, s � dim R[X]/ inw(Q ) = dim G . �

The following formula for dim G follows from a general formula for the dimension of the associated
graded ring of a filtration [3, Theorem 4.5.6(b)]. This formula is a generalization of the well-known
fact that dim G = dim R if R is a local ring and G is the associated graded ring of an ideal (see
Matsumura [14, Theorem 15.7] or Eisenbud [9, Exercise 13.8]).

Lemma 1.6. Let I = (a1, . . . ,as). Then

dim G = sup{ht P | P ⊇ I is a prime of R}.

As a consequence, we always have dim G � dim R . Together with Corollary 1.5, this implies that
the length of a weighted independent sequence cannot exceed dim R . Now we will show that there
exist weighted independent sequences of length ht P for any maximal prime P of R .

Let bight(I) denote the big height of I , that is, the maximum height of the minimal primes over I .

Proposition 1.7. Let a1, . . . ,as be elements of R such that bight(a1, . . . ,as) = s. Then a1, . . . ,as is a weighted
independent sequence with respect to every weight sequence w.

Proof. Let P be a minimal prime of I = (a1, . . . ,as) with ht P = s. By Proposition 1.3, a1, . . . ,as is a
weighted independent sequence in R if a1, . . . ,as is a weighted independent sequence in R P . There-
fore, we may assume that R is a local ring and a1, . . . ,as is a system of parameters in R . In this case,
dim G = s by Lemma 1.6.

Let m be the maximal ideal of R . There exists an integer r such that mr ⊆ I . Since I1 = I ,
mr In ⊆ In+1 for all n. Therefore, mr G = 0. Hence dim G/mG = dim G = s. Let k = R/m. By Lemma 1.4,
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G/mG = R[X]/(inw(Q ),m) = k[X]/ J for some ideal J of k[X]. If a1, . . . ,as were weighted dependent,
there would be a polynomial in inw(Q ) which has a coefficient not in m, implying J 	= 0 and the
contradiction dim(G/mG) � s − 1. �

Summing up, we obtain the following results on the Krull dimension in terms of weighted inde-
pendent sequences.

Theorem 1.8. Let R be a Noetherian ring and s a positive integer.

(a) If s � dim R, there exists a sequence a1, . . . ,as ∈ R that is weighted independent with respect to every
weight sequence.

(b) If s > dim R, every sequence a1, . . . ,as ∈ R is weighted dependent with respect to every weight sequence.

Proof. If s � dim R , there exists a prime P in R of height s. It is a standard fact that there exists
a sequence a1, . . . ,as ∈ P such that P is a minimal prime of (a1, . . . ,as). Hence (a) follows from
Proposition 1.7. If s > dim R , then s > dim G by Lemma 1.6. Hence (b) follows from Corollary 1.5. �

As a consequence, dim R is the supremum of the length of weighted independent sequences with
respect to an arbitrary weight sequence.

Remark. A maximal weighted independent sequence need not to have length dim R . To see that
we consider a Noetherian ring that has a maximal ideal P = (a1, . . . ,as) with s = ht P < dim R . By
Proposition 1.7, a1, . . . ,as is weighted independent with respect to every weight sequence w. It is
maximal because any extended sequence a1, . . . ,as+1 with as+1 /∈ P is weighted dependent. This
follows from the fact R = (a1, . . . ,as+1), which implies that there is a polynomial f of the form
1 + c1x1 + · · · + cs+1xs+1 vanishing at a1, . . . ,as+1 with inw( f ) = 1.

Similarly, we can study weighted independent sequences in a given ideal J of R . Let 0 : J∞ =⋃
m�0 0 : Jm . Note that 0 : J∞ is the intersection of all primary components of the zero-ideal 0R

whose associated primes do not contain J and that 0 : J∞ = 0 : Jm for m large enough.

Theorem 1.9. For every ideal J ⊆ R, dim R/0 : J∞ is the supremum of the length of weighted independent
sequences in J with respect to an arbitrary weight sequence.

Proof. Let P be a maximal prime of R/0 : J∞ and s = ht P . Using Proposition 1.7 we can find ele-
ments a1, . . . ,ad in R such that their residue classes in R/0 : J∞ is a weighted independent sequence.
Choose c ∈ J such that c is not contained in any associated prime of 0R not containing J . Then
0 : c∞ = 0 : J∞ . We claim that a1cw1 , . . . ,ascws is a weighted independent sequence. To see this
let f be a polynomial in R[X] vanishing at a1cw1 , . . . ,ascws and r = deg inw( f ). Write f in the
form f = inw( f ) + g1 + · · · + gn , where gi is a weighted homogeneous polynomial of degree r + i,
i = 1, . . . ,n. Then

f
(
a1cw1 , . . . ,ascws

) = cr inw( f )(a1, . . . ,as) + cr+1 g1(a1, . . . ,as) + · · · + cr+n gn(a1, . . . ,as) = 0.

Therefore, if we put h = inw( f ) + cg1 + · · · + cn gn , then h(a1, . . . ,as) ∈ 0 : cd ⊆ 0 : J∞ and inw(h) =
inw( f ). By the choice of a1, . . . ,as , the coefficients of inw( f ) cannot not be invertible. This shows the
existence of a weighted independent sequence of length s in J . Hence dim R/0 : J∞ is less than or
equal to the supremum of the length of weighted independent sequences in J .

Now we will show that s � dim R/0 : J∞ for any weighted independent sequence a1, . . . ,as in J .
Let m be a positive number such that 0 : J∞ = 0 : Jm . Then (0 : J∞)am

i = 0, i = 1, . . . , s. This im-
plies (0 : J∞)xm

i ⊆ inw(Q ). Hence 0 : J∞ ⊆ C , where C is the ideal of the coefficients of polynomials
in inw(Q ). Let m be a maximal ideal of R containing C . Then inw(Q ) + (0 : J∞)R[X] ⊆ mR[X].
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By Lemma 1.6 there is a surjective map G/(0 : J∞)G → R[X]/mR[X]. From this it follows that
s = dim R[X]/mR[X] � dim G/(0 : J∞)G . We have

G/
(
0 : J∞)

G =
⊕
n�0

In/
((

0 : J∞)
In + In+1

)
,

and we will compare this with the ring

G ′ :=
⊕
n�0

(
In + (

0 : I∞
))

/
(

In+1 + (
0 : I∞

))
,

which is the associated graded ring of R/0 : J∞ with respect to the filtration (In + (0 : J∞))/(0 : J∞),
n � 0. Note that dim G ′ � dim R/0 : J∞ by Lemma 1.6. Then s � dim R/0 : J∞ if we can show that
dim G/(0 : J∞)G = dim G ′ .

Let wmax := max{wi | i = 1, . . . , s}. By Eq. (1.1) we have In ⊆ Im for n � mwmax. This implies (0 :
J∞)In ⊆ (0 : J∞)Im = 0. Using Artin–Rees lemma we can also show that (0 : J∞) ∩ In = 0 for n large
enough. Thus, there exists a positive number r such that (0 : J∞)In = (0 : J∞) ∩ In = 0 for n � r. This
relation implies

In/
((

0 : J∞)
In + In+1

) = In/
((

0 : J∞) ∩ In + In+1
) ∼= (

In + (
0 : J∞))

/
(

In+1 + (
0 : J∞))

.

Hence

⊕
n�0

Inr/
((

0 : J∞)
Inr + Inr+1

) ∼=
⊕
n�0

(
Inr + (

0 : J∞))
/
(

Inr+1 + (
0 : J∞))

.

The graded rings on both sides are Veronese subrings of G/(0 : J∞)G and G ′ , respectively. Since the
dimension of a Veronese subring is the same as of the original ring, we get dim G/(0 : J∞)G = dim G ′ ,
as required. �

Theorem 1.9 has the following immediate consequence.

Corollary 1.10. Let R be a local ring and J an ideal of R. Then dim R/0 : J∞ is the maximum number of
analytically independent elements in J .

This result seems to be new though there was a general (but complicated) formula for the max-
imum number of a-independent elements in J , where a is an ideal containing J (see [1,17]). Recall
that the elements a1, . . . ,as are called a-independent if every homogeneous form in R[X] vanishing
at a1, . . . ,as has all its coefficients in a. This notion was introduced by Valla [18].

2. Independent sequences with respect to a monomial order

In this section we will show how to approximate a monomial order by a weighted degree and we
will prove that the Krull dimension is the supremum of the length of independent sequences with
respect to an arbitrary monomial order.

Let a1, . . . ,as be elements of a Noetherian ring R . Recall that a1, . . . ,as is a dependent sequence
with respect to a monomial order ≺ if there exists f ∈ R[x1, . . . , xs] vanishing at a1, . . . ,as such that
the coefficient of in≺( f ) is invertible. Otherwise, a1, . . . ,as is called an independent sequence with
respect to ≺.

The following example suggests that dependence with respect to a monomial order is more subtle
than weighted dependence.
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Example 2.1. Let R = Z and let ≺ be the lexicographic order with x1 � x2. Clearly the single elements
that are dependent with respect to ≺ are 0 and the invertible elements. We claim that a sequence
of two arbitrary integers a,b is always dependent with respect to ≺. The relation ab = ca2 + db2

found in Example 1.1 does not show the dependence, so we have to argue in a different way. We may
assume a and b to be nonzero and write

a = ±
r∏

i=1

pdi
i and b = ±

r∏
i=1

pei
i ,

where the pi are pairwise distinct prime numbers and di, ei ∈ N0. Choose n ∈ N0 such that n � di/ei
for all i with ei > 0. Then

gcd
(
a,bn+1) =

r∏
i=1

pmin{di ,(n+1)ei}
i divides

r∏
i=1

pnei
i = bn,

so there exist c,d ∈ Z such that bn = ca + dbn+1. Since the least term of f = xn
2 − cx1 − dxn+1

2 is xn
2

this relation shows that a,b are dependent, as claimed.
The argument can easily be adapted to any Dedekind domain.

It is easy to see that the notion of independent sequence depends on the order of the elements.
For instance, the sequence uv, v of Example 1.2 is independent with respect to the lexicographic
order, while v, uv is not by using the same arguments.

Set R[X] = R[x1, . . . , xs] and Q = (x1 − a1, . . . , xs − as), the ideal of all polynomials of R[X] van-
ishing at a1, . . . ,as . Let in≺(Q ) denote the ideal generated by the terms in≺( f ), f ∈ Q . One may
ask whether there exists a weight sequence w such that inw(Q ) = in≺(Q ). For this will imply that
a1, . . . ,as is an independent sequence with respect to ≺ if and only if it is a weighted independent
sequence with respect to w.

To study this problem we need the following result in Gröbner basis theory.

Lemma 2.2. (See Eisenbud [9, Exercise 15.12], [11, Exercise 9.2(b)].) Let M be a finite set of polynomials. Then
there exists a weight sequence w such that in≺( f ) = inw( f ) for all f ∈M.

We call ≺ a Noetherian monomial order if for every monomial f ∈ R[X] there are only finitely
many monomials g ∈ R[X] with g ≺ f . This class of monomial orders is rather large. For instance,
every monomial order that first compares the (weighted) degree of the monomials is Noetherian.

Proposition 2.3. For every ideal � of R[X], there exists a weight sequence w such that in≺(�) ⊆ inw(�). If ≺
is Noetherian, w can be chosen such that in≺(�) = inw(�).

Proof. Choose g1, . . . , gr ∈ � such that in≺(�) = (in≺(g1), . . . , in≺(gr)). From Lemma 2.2 it follows
that there exists a weight sequence w such that in≺(gi) = inw(gi) for all i = 1, . . . , r. This implies the
first assertion:

in≺(�) = (
inw(g1), . . . , inw(gr)

) ⊆ inw(�).

Now we will assume that ≺ is Noetherian and prove equality. By way of contradiction, assume that
there exists a polynomial f ∈ � such that inw( f ) /∈ in≺(�). Choose f such that inw( f ) has the least
possible number of terms. For every g ∈ R[X] we have in≺(g) � in≺(inw(g)), so in≺(inw( f )) is an
upper bound for all initial terms of polynomials g with inw(g) = inw( f ). By the assumption on the
monomial order, we can therefore choose f such that for all g ∈ �,
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inw(g) = inw( f ) implies in≺(g) � in≺( f ). (2.1)

Since in≺( f ) ∈ in≺(�), we have in≺( f ) = h1 in≺(g1)+· · ·+hr in≺(gr) for some polynomials h1, . . . ,hr .
By deleting some terms of the hi , we may assume that either hi = 0 or hi is a term such that hi in≺(gi)

and in≺( f ) are R-multiples of the same monomial. Set h = h1 g1 + · · · + hr gr ∈ �. Then

in≺( f ) = in≺(h) = inw(h), (2.2)

where the second equality follows from in≺(gi) = inw(gi). For g := f − h ∈ �, this implies in≺(g) �
in≺( f ), so inw(g) 	= inw( f ) by (2.1). We also have inw(h) 	= inw( f ) because otherwise inw( f ) =
in≺( f ) ∈ in≺(I) by (2.2). For the weighted degrees we have the inequality

deg
(
inw( f )

)
� deg

(
in≺( f )

) = deg
(
inw(h)

)
.

In combination with inw(g) 	= inw( f ) 	= inw(h), this implies that inw( f ), inw(h), and inw(g) all have
the same degree. So inw(g) = inw( f ) − inw(h). By (2.2), subtracting inw(h) from inw( f ) removes the
initial term of inw( f ) but leaves all other terms unchanged. So inw(g) has fewer terms than inw( f ),
and because of the choice of f we conclude inw(g) ∈ in≺(�). But since inw(h) ∈ in≺(�) by (2.2), this
implies inw( f ) ∈ in≺(�), a contradiction. �

We do not know whether the Noetherian hypothesis is really necessary for the second assertion
of Proposition 2.3.

Remark. For a polynomial f ∈ R[X], we can also consider the leading term LT≺( f ) and the weighted
homogeneous part of highest degree, i.e., the leading form LFw( f ). This defines LT≺(�) and LFw(�)

for an ideal � ⊆ R[X]. Then Proposition 2.3 remains correct without the Noetherian hypothesis if
we substitute in≺ by LT≺ and inw by LFw . This is a well-known result in Gröbner basis theory (see
Eisenbud [9, Proposition 15.16] or [11, Exercise 9.2(c)]).

Proposition 2.3 implies the following relationship between weighted independent sequences and
independent sequences with respect to monomial orders.

Corollary 2.4. Let a1, . . . ,as be a sequence of elements in R.

(a) If the sequence is weighted independent with respect to every weight sequence, it is independent with
respect to every monomial order.

(b) If the sequence is weighted dependent with respect to every weight sequence, it is dependent with respect
to every Noetherian monomial order.

Proof. By Proposition 2.3 there exists a weight sequence w such that in≺(Q ) ⊆ inw(Q ), with equality
if ≺ is Noetherian. Under the hypothesis of (a) there exists a maximal ideal m ⊂ R such that inw(Q ) ⊆
mR[X], so in≺(Q ) ⊆mR[X]. This shows that the sequence is independent with respect to ≺.

Under the hypothesis of (b), the ideal C of coefficients of polynomials in inw(Q ) is R . Since
inw(Q ) = in≺(Q ), this implies that the sequence is dependent with respect to ≺. �

We will get rid of the Noetherian hypothesis on a monomial order by showing that an independent
sequence with respect to an arbitrary monomial order can be converted to an independent sequence
of the same length with respect to a Noetherian monomial order. To do that we shall need Robbiano’s
characterization of monomial orders.

Lemma 2.5. (See [15].) For every monomial order ≺ in s variables, there exists a real matrix M having s rows

such that xm1
1 · · · xms

s ≺ x
m′

1
1 · · · x

m′
s

s if and only if
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(m1, . . . ,ms) · M <lex
(
m′

1, . . . ,m′
s

) · M,

where <lex is the lexicographic order. Moreover, the first column of M is nonzero and all its entries are non-
negative.

Proposition 2.6. Let a1, . . . ,as ∈ R be an independent sequence with respect to an arbitrary monomial or-
der ≺. Then there exists an index i such that the sequence a1ai, . . . ,asai is independent with respect to some
Noetherian monomial order ≺′ .

Proof. By Lemma 2.5, there exists a real vector (v1, . . . , vs) having nonnegative components with

some vi > 0 such that xm1
1 · · · xms

s ≺ x
m′

1
1 · · · x

m′
s

s implies
∑s

j=1 m j v j �
∑s

j=1 m′
j v j . Define ≺′ by the

rule:

xm1
1 · · · xms

s ≺′ x
m′

1
1 · · · x

m′
s

s if (x1xi)
m1 · · · (xsxi)

ms ≺ (x1xi)
m′

1 · · · (xsxi)
m′

s .

It is easy to see that ≺′ is a monomial order. If xm1
1 · · · xms

s ≺′ x
m′

1
1 · · · x

m′
s

s , then
∑s

j=1 m j(vi + v j) �∑s
i=1 m′

j(vi + v j). Since vi + v j > 0 for all j = 1, . . . , s, ≺′ is Noetherian.
Let f be a polynomial in R[X] such that f (a1ai, . . . ,asai) = 0. Put g = f (x1xi, . . . , xsxi). Then

in≺(g) has the same coefficient as in≺′ ( f ). Since g(a1, . . . ,as) = 0, the coefficient of in≺(g) is not
invertible. This shows that the coefficient of in≺′ ( f ) is not invertible. �

Now we are ready to extend Lombardi’s characterization of the Krull dimension to an arbitrary
monomial order.

Theorem 2.7. Let R be a Noetherian ring and s a positive integer.

(a) If s � dim R, there exists a sequence a1, . . . ,as ∈ R that is independent with respect to every monomial
order.

(b) If s > dim R, every sequence a1, . . . ,as ∈ R is dependent with respect to every monomial order.

Proof. If s � dim R , there exists a sequence a1, . . . ,as ∈ R which is weighted independent with re-
spect to every weight sequence by Theorem 1.8(a). By Corollary 2.4(a), this implies that a1, . . . ,as is
independent with respect to every monomial order.

If s > dim R , every sequence a1, . . . ,as ∈ R is weighted dependent with respect to every weight
sequence by Theorem 1.8(b). If a1, . . . ,as is independent for some monomial order, then a1ai, . . . ,asai
is independent with respect to some Noetherian monomial order for some i by Proposition 2.6. By
Corollary 2.4(b), a1ai, . . . ,asai is weighted independent with respect to some weight sequence, a con-
tradiction. �

As a consequence, dim R is the supremum of the length of independent sequences with respect
to an arbitrary monomial order. In the following we show how this result can be used to prove the
existence of certain relations which look like polynomial identities in R .

Let ≺ be an arbitrary monomial order. For every term g of R[X] there is a unique set M(g) of
monomials h � g such that

(i) every monomial u � g is divisible by a monomial of M(g),
(ii) the monomials of M(g) are not divisible by each other.

For every polynomial f ∈ R[X] vanishing at a1, . . . ,as , we can always find a polynomial vanishing at
a1, . . . ,as of the form
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g +
∑

h∈M(g)

chh

where g = in≺( f ) and ch ∈ R . To see this, one only needs to write every term u � g of f in the
form u = vh for some h ∈ M(g) and replace u by the term v(a1, . . . ,as)h. Therefore, a1, . . . ,as is
a dependent sequence with respect to ≺ if and only if there exists a polynomial of the above form
vanishing at a1, . . . ,as such that the coefficient of g is 1. Since the monomials of M(g) can be written
down in a canonical way from the exponent vector of g , this polynomial yields an algebraic relation
between elements of R which are similar to a polynomial identity.

Example 2.8. Let ≺ be the lexicographic order. For a monomial g = xm1
1 · · · xms

s , M(g) is the set of

the monomials xm1+1
1 , xm1

1 xm2+1
2 , . . . , xm1

1 · · · x
ms−1
s−1 xms+1

s . Therefore, a1, . . . ,as is a dependent sequence
with respect to the lexicographic order if and only if there exists a relation of the form

am1
1 · · ·ams

s + c1am1+1
1 + c2am1

1 am2+1
2 + · · · + csa

m1
1 · · ·a

ms−1
s−1 ams+1

s = 0,

where c1, . . . , cs ∈ R . This explains why Theorem 2.7 is a generalization of Lombardi’s result in [13].
In that paper Lombardi calls a1, . . . ,as a pseudo-regular sequence if

am1
1 · · ·ams

s + c1am1+1
1 am2

2 · · ·ams
s + · · · + csa

m1
1 · · ·a

ms−1
s−1 ams+1

s 	= 0

for all nonnegative integers m1, . . . ,ms and c1, . . . , cs ∈ R . By the above observation, a1, . . . ,as is
pseudo-regular if and only if it is independent with respect to the lexicographic order.

Similarly as for weighted independent sequences, one may ask whether dim R/0 : J∞ is the supre-
mum of the length of independent sequences in an ideal J ⊆ R with respect to an arbitrary monomial
order. Unlike the case of weighted independent sequences, we could not give a full answer to this
question. This shows again that independence with respect to a monomial order is more subtle than
weighted independence.

Proposition 2.9. Let J be an arbitrary ideal of R. The length of independent sequences in J with respect to an
arbitrary monomial order is bounded above by dim R/0 : J∞ .

Proof. Let a1, . . . ,as be an independent sequence in J with respect to an arbitrary monomial order ≺.
By Lemma 2.6, a1ai, . . . ,asai is an independent sequence with respect to some Noetherian monomial
order for some i. By Corollary 2.4, a1ai, . . . ,asai is weighted independent for some weight sequence.
Since a1ai, . . . ,asai ∈ J , s � dim R/0 : J∞ by Theorem 1.9. �
3. Generalization to monomial preorders

In the previous sections we have considered weight sequences and monomial orders, and shown
analogous results in both cases. So one may ask whether there is a common generalization of these
results. We shall see that the following notion provides the platform for such a generalization.

Recall that a strict weak order is a binary relation ≺ on a set M such that for f , g,h ∈ M with
f ≺ g we have:

(i) f ≺ h or h ≺ g , and
(ii) g ⊀ f (i.e., g ≺ f does not hold).

This is equivalent to say that ≺ is a strict partial order in which the incomparability relation (given
by f ⊀ g and g ⊀ f ) is an equivalence relation and the equivalence classes of incomparable elements
are totally ordered.
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We call a strict weak order ≺ on the set of monomials of the variables x1, x2, . . . a monomial
preorder if it satisfies the following conditions:

(iii) 1 ≺ f for all monomials f 	= 1, and
(iv) for all monomials f , g,h the equivalence

f ≺ g ⇐⇒ f h ≺ gh

holds.

Notice that the actual preorder � is given by f � g ⇔ g ⊀ f , not by f ≺ g . This slight inaccuracy in
terminology follows common practice in Gröbner basis theory.

Obviously, every monomial order is a monomial preorder. A weight sequence w = w1, w2, . . . gives
rise to a preorder ≺w by comparing their weighted degree, i.e.

∏
i

xmi
i ≺w

∏
i

x
m′

i
i if

∑
i

mi wi <
∑

i

m′
i wi .

We call this the w-weighted preorder. The following example shows that monomial preorders are
much more general than monomial orders and weighted preorders.

Example 3.1. Let M be a real matrix of s rows such that the first column is nonzero with nonnegative
entries and every row is nonzero with the first nonzero entry positive. Then M defines a monomial
preorder in a polynomial ring of s variables by

f ≺ g if exp( f ) · M <lex exp(g) · M,

where f , g are monomials, exp( f ) and exp(g) denote the exponent vectors of f , g , and <lex is the
lexicographic order. Note that the assumption on the rows of M is equivalent to (iii). Then every
monomial order arises in such a way by Lemma 2.5. If M has only one column and if its entries are
positive integers, then we get a weighted preorder.

Lemma 3.2. Every monomial preorder ≺ can be refined to a monomial order ≺∗ , i.e. f ≺ g implies f ≺∗ g.

Proof. We choose an arbitrary monomial ordering ≺′ and use it to break ties in the equivalence
classes of incomparable elements. More precisely, we define f ≺∗ g if f ≺ g or if f , g is incomparable
and f ≺′ g . It is straightforward to check that ≺∗ is a monomial order and refines ≺. �

A monomial preorder can be approximated by a weighted preorder by the following lemma, which
is well-known in the case of monomial orders (Lemma 2.2).

Lemma 3.3. Let ≺ be a monomial preorder and let M be a finite set of monomials. Then there exists a weight
sequence w such that the restrictions of ≺ and ≺w to M coincide.

Proof. Assume that M is a set of monomials in s variables x1, . . . , xs . We consider the “positive cone”

P := {
exp( f ) − exp(g)

∣∣ f , g are monomials such that g ≺ f
} ⊆ Zs

and the “nullcone”

N := {
exp( f ) − exp(g)

∣∣ f , g are incomparable monomials
} ⊆ Zs.
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We also consider the sets

P+ :=
{

n∑
i=1

αiui

∣∣∣ n ∈N>0, ui ∈ P, αi ∈R>0

}
⊆Rs

and

N ∗ :=
{

n∑
i=1

αi vi

∣∣∣ n ∈ N>0, vi ∈ N , αi ∈R

}
⊆Rs.

Assume that P+ ∩ N ∗ 	= ∅. Then there exist vectors u1, . . . , un ∈ P and v1, . . . , vm ∈ N and real
numbers α1, . . . ,αn ∈R>0 and β1, . . . , βm ∈ R such that

n∑
i=1

αiui −
m∑

j=1

β j v j = 0. (3.1)

So (α1, . . . ,αn, β1, . . . , βm) ∈ Rn+m is a solution of a system of linear equations with coefficients in Z

that satisfies the additional positivity conditions αi > 0. The existence of a solution in Rn+m satisfying
the positivity conditions implies that there also exists a solution in Qn+m satisfying these conditions.
So we may assume αi ∈ Q>0 and βi ∈ Q, and then, by multiplying by a common denominator, αi ∈
N>0 and βi ∈ Z. It follows from the definition of a monomial preorder that P is closed under addition
and that N is closed under addition and subtraction. Therefore,

∑n
i=1 αiui ∈ P and

∑m
j=1 β j v j ∈ N .

Hence (3.1) implies P ∩ N 	= ∅. So there exist monomials g ≺ f and incomparable monomials h,k
such that

exp( f ) − exp(g) = exp(h) − exp(k).

This implies f k = gh. By condition (iv) of the definition of a monomial preorder, gh and gk are
incomparable, hence so are f k, gk. This implies that f , g are incomparable, a contradiction. Thus, we
must have P+ ∩N ∗ = ∅.

Now we form the finite set

T := {
exp( f ) − exp(g)

∣∣ f , g ∈ M, g ≺ f
} ∪ {e1, . . . , es},

where e1, . . . , es ∈ Rs are the standard basis vectors. Then T ⊆ P since 1 ≺ xi for all i. We write
T = {u1, . . . , un} and form the convex hull

H :=
{

n∑
i=1

αiui

∣∣∣ αi ∈R�0,

n∑
i=1

αi = 1

}
⊆ P+.

Since H is a compact subset of Rs and N ∗ is a linear subspace, there exist u ∈ H and v ∈ N ∗ such
that the Euclidean distance between u and v is minimal.

Set w := u − v . Then

w ∈ (
N ∗)⊥

(3.2)

(the orthogonal complement), since otherwise there would be points in N ∗ that are closer to u
than v . Set d := 〈w, w〉, where 〈·,·〉 denotes the standard scalar product. From P+ ∩ N ∗ = ∅ we
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conclude that d > 0. Moreover, (3.2) implies 〈w, u〉 = 〈w, u − v〉 = d. Take u′ ∈ H arbitrary. Then for
every α ∈R with 0 � α � 1 the linear combination u + α(u′ − u) also lies in H, so

d �
〈
u + α

(
u′ − u

) − v, u + α
(
u′ − u

) − v
〉 = 〈

w + α
(
u′ − u

)
, w + α

(
u′ − u

)〉
= d + 2α

(〈
w, u′〉 − d

) + α2〈u′ − u, u′ − u
〉
.

Since this holds for arbitrarily small α, we conclude 〈w, u′〉 � d > 0. In particular,

〈w, ui〉 > 0 for i = 1, . . . ,n. (3.3)

Since N ∗ has a basis in Zs , the existence of a vector w ∈ Rs satisfying (3.2) and (3.3) implies that
there also exists such a vector in Qs , and then even in Zs . So we may assume w ∈ Zs and retain (3.2)
and (3.3). Since the standard basis vectors e j occur among the ui , (3.3) implies that w has positive
components.

Let w = w1, w2, . . . be a weight sequence starting with w1, . . . , ws chosen above. Let f , g be
two arbitrary monomials of M. Then f ≺w g if and only if 〈w,exp( f )〉 < 〈w,exp(g)〉. If f and g are
incomparable with respect to ≺, then exp( f )−exp(g) ∈N ∗ , hence 〈w,exp( f )〉 = 〈w,exp(g)〉 by (3.2).
This implies that f and g are incomparable with respect to ≺w . If f ≺ g , then exp(g) − exp( f ) ∈ T ,
hence 〈w,exp(g)−exp( f )〉 > 0 by (3.3). This implies that f ≺w g . So we can conclude that ≺ and ≺w
coincide on M. �
Remark. It is clear that any binary relation on the set of monomials satisfying the assertion of
Lemma 3.3 is a monomial preorder. Since the lemma is crucial for obtaining the results of this section,
this shows that we are working in just the right generality.

Let R be a Noetherian ring and R[X] := R[x1, . . . , xs]. Let ≺ be a monomial preorder. For a polyno-
mial f ∈ R[X] we define in≺( f ) to be the sum of all terms of f that are associated with the minimal
monomials appearing in f . As in the previous sections, we call a sequence a1, . . . ,as ∈ R dependent
with respect to ≺ if there exists a polynomial f ∈ R[X] vanishing at a1, . . . ,as such that in≺( f ) has at
least one invertible coefficient. Otherwise, the sequence is called independent with respect to ≺. These
notions cover both weighted (in-)dependent sequences and (in-)dependent sequences with respect to
a monomial order.

The following result allows us to reduce the study of these notions to weighted independent se-
quences and dependent sequences with respect to a monomial order.

Proposition 3.4. Let a1, . . . ,as ∈ R be a sequence of elements.

(a) The sequence is independent with respect to every monomial preorder if it is weighted independent with
respect to every weight sequence.

(b) The sequence is dependent with respect to every monomial preorder if it is dependent with respect to every
monomial order.

Proof. (a) Assume that a1, . . . ,as is weighted independent with respect to every weight sequence. If
a1, . . . ,as is dependent with respect to some monomial preorder ≺, there is a polynomial f ∈ R[X]
vanishing at a1, . . . ,as such that in≺( f ) has an invertible coefficient. By Lemma 3.3 there exists a
weight sequence w such that in≺( f ) = inw( f ). So a1, . . . ,as is weighted dependent with respect to w,
a contradiction.

(b) Assume that a1, . . . ,as is dependent with respect to every monomial order. If a1, . . . ,as is
independent with respect to some monomial preorder ≺, we use Lemma 3.2 to find a monomial
order ≺∗ that refines ≺. If f ∈ R[X] is a polynomial vanishing at a1, . . . ,as , then in≺( f ) has no
invertible coefficient. Since the least term in≺∗( f ) of f is minimal with respect to ≺∗ , is also minimal
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with respect to ≺, so it is a term of in≺( f ). Therefore the coefficient of in≺∗ ( f ) is not invertible. But
this means that the sequence is independent with respect to ≺∗ , a contradiction. �

Combining Proposition 3.4 with Theorems 1.8(a) and 2.7(b), we obtain the following generalization
of the main results of the two previous sections.

Theorem 3.5. Let R be a Noetherian ring and s a positive integer.

(a) If s � dim R, there exists a sequence a1, . . . ,as ∈ R that is independent with respect to every monomial
preorder.

(b) If s > dim R, every sequence a1, . . . ,as ∈ R is dependent with respect to every monomial preorder.

As a consequence, dim R is the supremum of the length of independent sequences with respect to
an arbitrary monomial preorder.

4. Algebras over a Jacobson ring

In this section we extend our investigation to algebras over a ring. Our aim is to generalize the
characterization of the Krull dimension of algebras over a field by means of the transcendence degree.

Let A be an algebra over a ring R . Given a monomial preorder ≺, we say that a sequence a1, . . . ,as

of elements of A is dependent over R with respect to ≺ if there exists a polynomial f ∈ R[X] :=
R[x1, . . . , xs] vanishing at a1, . . . ,as such that in≺( f ) has at least one coefficient that is invertible
in R . Otherwise, the sequence is called independent over R with respect to ≺. Note that if R is a field,
these are just the usual notions of algebraic dependence and independence, and they do not depend
on the choice of the monomial preorder. In this case, it is well known that dim A is equal to the
transcendence degree of A over R . So we may ask whether dim A is equal to the maximal length of
independent sequences over R with respect to ≺.

The following example shows that this question has a negative answer in general.

Example 4.1. Let R be an one-dimensional local domain. Let A = R[a−1], where a 	= 0 is an element
in the maximal ideal of R . Then dim A = 0, whereas a is an independent element over R with respect
to every monomial preorder. (In fact, there exists only one monomial preorder in just one variable.)

We shall see that the above question has a positive answer if R is a Noetherian Jacobson ring.
Recall that R is called a Jacobson ring (or Hilbert ring) if every prime of R is the intersection of
maximal ideals. It is well known that every finitely generated algebra over a field is a Jacobson ring
(see Eisenbud [9, Theorem 4.19]). More examples are given by tensor products of extensions of a field
with finite transcendence degree [16].

Clearly, R is a Jacobson ring if and only if every nonmaximal prime P of R is the intersection of
primes P ′ ⊃ P with ht(P ′/P ) = 1. Therefore, the following lemma will be useful in studying Jacobson
rings. This lemma seems to be folklore. Since we could not find any references in the literature, we
provide a proof for the convenience of the reader.

Lemma 4.2. Let R be a Noetherian ring and P a nonmaximal prime of R.

(a) For every prime Q ⊃ P with ht(Q /P ) � 2, there exist infinitely many primes P ′ with P ⊆ P ′ ⊆ Q and
ht(P ′/P ) = 1 in Q .

(b) If M is a set of primes P ′ ⊃ P with ht(P ′/P ) = 1, then P = ⋂
P ′∈M P ′ if and only if M is infinite.

Proof. (a) By factoring out P and localizing at Q we may assume that P is the zero-ideal of a local
domain R with maximal ideal Q . We have to show that the set of height one primes of R is infinite.
By Krull’s principal theorem, every element a 	= 0 in Q is contained in some height one prime P ′ . So
Q is contained in the union of all height one primes of R . If the number of these primes were finite,
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it would follow by the prime avoidance lemma that Q is contained in one of them, contradicting the
hypothesis ht(Q ) � 2.

(b) Let I = ⋂
P ′∈M P ′ . If P 	= I , every prime P ′ of M is a minimal prime over I . Hence M is finite

because R is Noetherian. Conversely, if M is finite, then M is the set of minimal primes over I . This
implies ht(P ) < ht(I), hence P 	= I . �
Corollary 4.3. A Noetherian ring R is a Jacobson ring if and only if for every prime P with dim R/P = 1 there
exist infinitely many maximal ideals containing P .

Proof. By Lemma 4.2, every prime P of a Noetherian ring R with dim R/P � 2 is the intersection
of primes P ′ ⊃ P with ht(P ′/P ) = 1. Therefore, R is a Jacobson ring if and only if every prime P
with dim R/P = 1 is the intersection of maximal primes. By Lemma 4.2(b), this is equivalent to the
condition that there exist infinitely many maximal ideals containing P . �

We use the above results to prove the following lemma which will play a crucial role in our
investigation on independent sequences over R .

Lemma 4.4. Let a be an element of a Noetherian ring R and set

Ua := {
an(1 + ax)

∣∣ n ∈N0, x ∈ R
}
.

Then the localization U−1
a R is a Jacobson ring.

Proof. We will use the inclusion-preserving bijection between the primes of S := U−1
a R and the

primes P of R satisfying Ua ∩ P = ∅. Let P be such a prime of R with dim(S/U−1
a P ) = 1. Then

there exists a prime P1 ⊃ P of R with ht(P1/P ) = 1 and Ua ∩ P1 = ∅. The latter condition implies
a /∈ P1 and 1 /∈ (P1,a). Let Q be a prime of R containing (P1,a). Then ht(Q /P ) � 2. By Lemma 4.2(a),
the set

M := {
P ′ ∈ Spec(R)

∣∣ P ⊂ P ′ ⊂ Q , ht
(

P ′/P
) = 1

}
is infinite. Consider the set N := {P ′ ∈ M | Ua ∩ P ′ 	= ∅}. If N is infinite, P = ⋂

P ′∈N P ′ by
Lemma 4.2(b). Since Ua ∩ P = ∅, a /∈ P . Therefore, there exists a prime P ′ ∈ N such that a /∈ P ′ .
Since Ua ∩ P ′ 	= ∅, this implies 1 + ax ∈ P ′ for some x ∈ R . Hence 1 ∈ (P ′,a) ⊆ Q , a contradiction. So
N must be finite, and we can conclude that M \ N is infinite. By the definition of M and N , the
set of primes P ′ ⊃ P with ht(P ′/P ) = 1 and Ua ∩ P ′ = ∅ is infinite. Since this set corresponds to the
set of maximal ideals of S containing U−1

a P , the assertion follows from Corollary 4.3. �
Remark. The localization U−1

a R from Lemma 4.4 was already used by Coquand and Lombardi to give
a short proof for the fact that the Krull dimension of a polynomial ring over a field is equal to the
number of variables [5]. They called it the boundary of a in R .

Now we are going to give a characterization of the Krull dimension of algebras over a Jacobson
ring R by means of independent elements over R with respect to an arbitrary monomial preorder ≺.
First we need to consider the case where ≺ is the lexicographic order with xi > xi+1 for all i.

We call an R-algebra subfinite if it is a subalgebra of a finitely generated R-algebra. A subfinite
algebra needs not to be finitely generated.

Theorem 4.5. Let A be a subfinite algebra over a Noetherian Jacobson ring R and let s be a positive integer.
There exists a sequence a1, . . . ,as ∈ A that is independent over R with respect to the lexicographic order if and
only if s � dim A.
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Proof. If s � dim A, Lombardi [13] (which does require A to be Noetherian) tells us that there exists
a sequence of length s that is independent over A with respect to the lexicographic order. Therefore
it is also independent over R .

The next step is to prove the converse under the hypothesis that A is finitely generated. We use
induction on s. We may assume that A 	= {0}, dim A < ∞, and s = dim A + 1. We have to show that
every sequence a1, . . . ,as ∈ A is dependent over R with respect to the lexicographic order.

Let T be the set of univariate polynomials f ∈ R[x] whose initial term in( f ) has coefficient 1.
Since T is multiplicatively closed, so is the set

U := {
f (as)

∣∣ f ∈ T
} ⊆ A.

Let A′ := U−1 A. If dim A′ = s − 1, then A has a height s − 1 prime P with U ∩ P = ∅. This prime
must be maximal because dim A = s − 1. Since R is a Jacobson ring, A/P is a finite field extension
of R/(R ∩ P ) [9, Theorem 4.19]. Since U ∩ P = ∅, as /∈ P . These facts imply that there exists g ∈ R[x]
such that as g(as) − 1 ∈ P . But 1 − xg ∈ T , so 1 − as g(as) ∈ U ∩ P , a contradiction. So we can conclude
that dim A′ < s − 1.

If A′ = {0} (which must happen if s = 1), then 0 ∈ U , hence there exists f ∈ T with f (as) = 0.
So the sequence a1, . . . ,as is dependent over R with respect to the lexicographic order. Having dealt
with this case, we may assume A′ 	= {0}. Let R ′ := U−1 R[as]. Then A′ is finitely generated as an
R ′-algebra. By Lemma 4.4, R ′ is a Jacobson ring. So we may apply the induction hypothesis to A′ .
This tells us that the sequence a1, . . . ,as−1 (as elements of A′) is dependent over R ′ with respect to
the lexicographic order. Thus, there exists a polynomial g ∈ R ′[x1, . . . , xs−1] vanishing at a1, . . . ,as−1
such that the coefficient of inlex(g) is invertible in R ′ . We may assume that this coefficient is 1. By
the definition of A′ there exists c0 ∈ R such that c0 g ∈ R[as][x1, . . . , xs−1] and (c0 g)(a1, . . . ,as−1) = 0
(as an element of A). Replacing every coefficient c ∈ R[as] of the polynomial c0 g by a polynomial
c∗ ∈ R[xs] with c∗(as) = c, we obtain a polynomial g∗ ∈ R[x1, . . . , xs] vanishing at a1, . . . ,as . Since
c0 ∈ U , we may choose c∗

0 ∈ T . Clearly, the coefficient of inlex(g∗) is equal to the coefficient of in(c∗
0),

which is 1. This shows that a1, . . . ,as are dependent over R with respect to the lexicographic order.
Now we deal with the case A is a subalgebra of a finitely generated R-algebra B . Let P1, . . . , Pn ∈

Spec(B) be the minimal primes of B , and assume that we can show that for every i, the images of
a1, . . . ,as in A/(A ∩ Pi) are dependent over R with respect to the lexicographic order. Then for every i,
there exists a polynomial f i ∈ R[x1, . . . , xs] with f i(a1, . . . ,as) ∈ Pi such that the coefficient of inlex( f i)

is invertible. Since
∏n

i=1 f i(a1, . . . ,as) lies in the nilradical of B , there exists k such the polynomial
f := ∏n

i=1 f k
i vanishes at a1, . . . ,as . Since the coefficient of inlex( f ) is also invertible, this shows that

a1, . . . ,as are dependent over R with respect to the lexicographic order. So we may assume that B
is an integral domain. By Giral [10, Proposition 2.1(b)] (or [11, Exercise 10.3]), there exists a nonzero
a ∈ A such that A[a−1] is a finitely generated R-algebra. Since dim A[a−1] � dim A < s, the sequence
a1, . . . ,as is dependent over R with respect to the lexicographic order. This completes the proof. �

One can use Theorem 4.5 to prove the existence of nontrivial relations between algebraic numbers
(i.e., elements of an algebraic closure of Q).

Example 4.6. Let a and b be two nonzero algebraic numbers. There exists d ∈ Z \ {0} such that a
and b are integral over Z[d−1]. So A := Z[a,b,d−1] has Krull dimension 1. By Theorem 4.5, there is a
polynomial f ∈ Z[x1, x2] vanishing at a,b such that the coefficient of inlex( f ) is 1. Let inlex( f ) = xm

1 xn
2.

Then all monomials of f are divisible by xm
1 . Hence we may assume m = 0. Thus,

bn = a · g(a,b) + bn+1 · h(a,b)

for some g,h ∈ Z[x1, x2]. It is not clear how the existence of such a relation follows directly from
properties of algebraic numbers. In the case that Z[a,b] is a Dedekind ring, we derived such a relation
in Example 2.1.
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To the best of our knowledge, the following immediate consequence of Theorem 4.5 is new even
for finitely generated algebras.

Corollary 4.7. Let R be a Noetherian Jacobson ring. If A ⊂ B are subfinite R-algebras, then

dim A � dim B.

Now we turn to arbitrary monomial preorders and prove the main result of this section. The proof
relies on Corollary 4.7.

Theorem 4.8. Let A be a subfinite algebra over a Noetherian Jacobson ring R and let s be a positive integer.

(a) If s � dim A, there exists a sequence a1, . . . ,as ∈ A that is independent over R with respect to every
monomial preorder.

(b) If s > dim A, every sequence a1, . . . ,as ∈ A is dependent over R with respect to every monomial preorder.

Proof. (a) Let A be a subalgebra of a finitely generated R-algebra B . Since
√

0A = √
0B ∩ A and since

the nilradical is the intersection of all minimal primes, the set of the minimal primes of A is contained
in the set of prime ideals of the form P ∩ A, where P is a minimal prime ideal of B . Therefore, there
exists a minimal prime ideal P of B such that dim A/P ∩ A = dim A. If a1, . . . ,as ∈ A is independent
over R in A/P ∩ A, then it is also independent over R in A. Therefore, we may replace A by A/P ∩ A
and assume that B is an integral domain. By Giral [10, Proposition 2.1(b)] (or [11, Exercise 10.3]), there
exists a nonzero a ∈ A such that A[a−1] is a finitely generated R-algebra. Then dim A[a−1] � dim A.
By Corollary 4.7, dim A � dim A[a−1]. Hence s � dim A = dim A[a−1]. Choose a1, . . . ,as ∈ A such that
(a1, . . . ,as)A[a−1] has a minimal prime ideal of height s. Then a1, . . . ,as is independent over R with
respect to every monomial preorder by Proposition 1.7 and Theorem 3.4(a).

(b) Let A′ := R[a1, . . . ,as] ⊆ A. By Corollary 4.7, dim A′ � dim A. So Theorem 3.5(b) yields for every
monomial preorder ≺ a polynomial f ∈ A′[x1, . . . , xs] vanishing at a1, . . . ,as such that in≺( f ) has an
invertible coefficient c0. We may assume c0 = 1. Write f = ∑n

i=0 citi with ci ∈ A′ and ti pairwise
different monomials such that t0 is minimal among the ti . Choose polynomials c∗

i ∈ R[x1, . . . , xs] with
c∗

i (a1, . . . ,as) = ci and c∗
0 = 1. Set f ∗ = ∑n

i=0 c∗
i ti . Then f ∗ is a polynomial of R[x1, . . . , xs] vanishing

at a1, . . . ,as . From the compatibility of monomial preorders with multiplication we conclude that t0 is
a term of in≺( f ∗). This shows that the sequence a1, . . . ,as is dependent over R with respect to ≺. �

Theorem 4.8 generalizes a result of Giral [10] which says that the dimension of a subfinite algebra
over a field is equal to its transcendence degree.

As a consequence of the above results, we give a characterization of Jacobson rings, which implies
that the hypothesis that R is a Jacobson ring cannot be dropped from Corollary 4.7 and Theorem 4.8.

Corollary 4.9. For a Noetherian ring R, the following statements are equivalent:

(a) R is a Jacobson ring.
(b) For every subfinite R-algebra A and every monomial preorder, dim A is the supremum of the length of

independent sequences over R in A.
(c) If A ⊆ B is a pair of subfinite R-algebras, then dim A � dim B.

Proof. The only implication that requires a proof is that (c) implies (a). But if R is not a Jacobson ring,
then by [9, Lemma 4.20], R has a nonmaximal prime ideal P such that A := R/P contains a nonzero
element b for which B := A[b−1] is a field. So (c) fails to hold. �



800 G. Kemper, N. Viet Trung / Journal of Algebra 399 (2014) 782–800
Acknowledgments

The authors wish to thank Peter Heinig for bringing Coquand and Lombardi’s article [5] to their
attention, which initiated our investigation. They also thank José Giral, Shiro Goto, Jürgen Klüners,
Gerhard Pfister, Lorenzo Robbiano, Keiichi Watanabe for sharing their expertise, and the referee for
pointing out that Lemma 1.6 can be found in [3]. The second author is grateful to the Mathematical
Sciences Research Institute at Berkeley for its support to his participation to the Program Commutative
Algebra 2012–2013, when part of this paper was written down. He is supported by a grant of the
National Foundation for Sciences and Technology Development of Vietnam.

References

[1] J.-E. Björk, On the maximal number of a-independent elements in ideals of Noetherian ring, in: Seminaire d’Algebre Paul
Dubreil et Marie-Paule Malliavin, Paris, 1981, in: Lecture Notes in Math., vol. 924, Springer-Verlag, New York/Berlin, 1982,
pp. 413–422.

[2] W. Bosma, J.J. Cannon, C. Playoust, The magma algebra system I: The user language, J. Symbolic Comput. 24 (1997)
235–265.

[3] W. Bruns, J. Herzog, Cohen–Macaulay Rings, Cambridge University Press, Cambridge, 1993.
[4] T. Coquand, H. Lombardi, Hidden constructions in abstract algebra (3) Krull dimension of distributive lattices and commu-

tative rings, in: Commutative Ring Theory and Applications, Fez, 2001, in: Lect. Notes Pure Appl. Math., vol. 231, Dekker,
New York, 2003, pp. 477–499.

[5] T. Coquand, H. Lombardi, A short proof for the Krull dimension of a polynomial ring, Amer. Math. Monthly 112 (2005)
826–829.

[6] T. Coquand, H. Lombardi, M.-F. Roy, An elementary characterization of Krull dimension, in: From Sets and Types to Topology
and Analysis, in: Oxford Logic Guides, vol. 48, Oxford Univ. Press, Oxford, 2005, pp. 239–244.

[7] T. Coquand, L. Ducos, H. Lombardi, C. Quitté, Constructive Krull dimension. I. Integral extensions, J. Algebra Appl. 8 (1)
(2009) 129–138.

[8] L. Ducos, Sur la dimension de Krull des anneaux noethériens, J. Algebra 322 (4) (2009) 1104–1128.
[9] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995.

[10] J.M. Giral, Krull dimension, transcendence degree and subalgebras of finitely generated algebras, Arch. Math. (Basel) 36
(1981) 305–312.

[11] G. Kemper, A Course in Commutative Algebra, Grad. Texts in Math., vol. 256, Springer-Verlag, Berlin, Heidelberg, 2011.
[12] G. Kemper, The transcendence degree over a ring, preprint, Technische Universität München, 2011, arXiv:1109.1391v1.
[13] H. Lombardi, Dimension de Krull, Nullstellensätze et évaluation dynamique, Math. Z. 242 (2002) 23–46.
[14] H. Matsumura, Commutative Ring Theory, Cambridge Stud. Adv. Math., vol. 8, Cambridge University Press, Cambridge, 1986.
[15] L. Robbiano, Term orderings on the polynomial ring, in: EUROCAL ’85, vol. 2, Linz, 1985, in: Lecture Notes in Comput. Sci.,

vol. 204, Springer, Berlin, 1985, pp. 513–517.
[16] N.V. Trung, On the tensor product of extensions of a field, Q. J. Math. 35 (1984) 337–339.
[17] N.V. Trung, Maximum number of independent elements and dimension of prime divisors in completions of local rings, J.

Algebra 93 (1985) 418–438.
[18] G. Valla, Elementi independenti rispetto ad un ideale, Rend. Semin. Mat. Univ. Padova 44 (1970) 339–354.

http://refhub.elsevier.com/S0021-8693(13)00561-9/bib426A6F726B3A3832s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib426A6F726B3A3832s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib426A6F726B3A3832s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib426F736D613A31393937s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib426F736D613A31393937s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib422D48s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib436F7175616E642D4C6F6D62617264693A3033s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib436F7175616E642D4C6F6D62617264693A3033s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib436F7175616E642D4C6F6D62617264693A3033s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib436F7175616E642D4C6F6D62617264693A3035s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib436F7175616E642D4C6F6D62617264693A3035s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib436F7175616E642D4C6F6D62617264692D526F79s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib436F7175616E642D4C6F6D62617264692D526F79s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib436F7175616E642D4475636F732D4C6F6D62617264692D517569747465s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib436F7175616E642D4475636F732D4C6F6D62617264692D517569747465s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib4475636F733A3039s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib656973s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib476972616C3A3831s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib476972616C3A3831s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib4B656D7065722E436F6D616C67s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib4B656D7065723A32303131s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib4C6F6D62617264693A32303032s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib4D617473756D7572613A3836s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib526F626269616E6F3A3835s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib526F626269616E6F3A3835s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib5472756E673A3834s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib5472756E673A3835s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib5472756E673A3835s1
http://refhub.elsevier.com/S0021-8693(13)00561-9/bib56616C6C613A3730s1

	Krull dimension and monomial orders
	Introduction
	1 Weighted independent sequences
	2 Independent sequences with respect to a monomial order
	3 Generalization to monomial preorders
	4 Algebras over a Jacobson ring
	Acknowledgments
	References


