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From Levi’s Theorem it is known that every finite-dimensional
Lie algebra over a field of characteristic zero is decomposed into
semidirect sum of its solvable radical and semisimple subalgebra.
Moreover, semisimple part is the direct sum of simple ideals.
In Barnes (preprint) [6] Levi’s Theorem is extended to the case
of Leibniz algebras. In the present paper we investigate the
semisimple Leibniz algebras and we show that the splitting
theorem for semisimple Leibniz algebras is not true. Moreover, we
consider some special classes of the semisimple Leibniz algebras
and we find a condition under which they decompose into direct
sum of simple ideals.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Due to Levi’s Theorem the study of finite-dimensional Lie algebras over a field of characteristic zero
is reduced to the study of solvable and semisimple algebras [7]. From results of [12] we can conclude
that the main part of solvable Lie algebra consists of the maximal nilpotent ideal. The classification
of semisimple Lie algebras has been known since the works of Cartan and Killing [7]. According to
the Cartan–Killing theory the semisimple Lie algebra can be represented as a direct sum of simple Lie
algebras.
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Recall that the variety of algebras defined by fundamental identity

[
x, [y, z]] = [[x, y], z

] − [[x, z], y
]

is a non-antisymmetric generalization of Lie algebras and they have been firstly considered in 1965 by
Bloh [5], who called them D-algebras. Unfortunately, his work did not give impulse for study of such
algebras. Later on at the beginning of 90-th of the last century the same variety of algebras appear in
the work of Loday [8] by terminology of Leibniz algebras.

The last 20 years the theory of Leibniz algebras has been actively studied and many results of
the theory of Lie algebras have been extended to Leibniz algebras. Until now a lot of works are
devoted to the description of finite-dimensional nilpotent Leibniz algebras [2–4]. However, simple
and semisimple parts are not studied. It is because the notions of simple and semisimple Leibniz
algebras do not agree with the corresponding classical notions. In fact, in non-Lie Leibniz algebra
L there is non-trivial ideal, which is a subspace spanned by squares of elements of the algebra L
(denoted by I). Therefore, in [1] the notion of simple Leibniz algebra has been suggested, namely,
a Leibniz algebra L is called simple if it contains only ideals {0}, I , L and square of the alge-
bra is not equal to the ideal I . In the case when the Leibniz algebra is Lie algebra, the ideal I
is trivial and this definition agrees with the definition of simple Lie algebra. Obviously, the quo-
tient algebra by ideal I of simple Leibniz algebra is simple Lie algebra, but the converse is not
true.

From an analogue of Levi’s Theorem for Leibniz algebras [6] the description of simple Leibniz al-
gebras immediately follows. In the present paper we present the same description but with another
proof. Moreover, we introduce a notion of a semisimple Leibniz algebra (algebra whose solvable rad-
ical is coincided with I) and investigate such algebras. Note that Leibniz algebra is semisimple if and
only if quotient Lie algebra is semisimple. In particular, we find some sufficient conditions under
which an analogue of splitting theorem for semisimple Leibniz algebras is true. In addition, an ex-
ample of semisimple Leibniz algebra, which is not decomposed into a direct sum of simple Leibniz
ideals, is given.

Actually, there exist semisimple Leibniz algebras (which are not simple in general) for which the
quotient algebra is simple Lie algebra. So, we call such algebras Lie-simple Leibniz algebras. According
to this definition the natural question arises – whether an arbitrary finite-dimensional semisimple
Leibniz algebra is a direct sum of Lie-simple Leibniz algebras. We show that the answer to the ques-
tion is also negative, we give a counterexample.

Finally, for some special classes of semisimple Leibniz algebras we give sufficient conditions un-
der which these classes decomposed into a direct sum of the Lie-simple Leibniz algebras. More
precisely, we consider a semisimple Leibniz algebra consisting of the direct sum of the classical three-
dimensional simple Lie algebras sl2.

In this paper all algebras and vector spaces are considered over a field of characteristic zero and
finite-dimensional.

We shall use symbols: +, ⊕ and +̇ for notations of direct sum of vector spaces, direct and semidi-
rect sums of algebras, respectively.

2. Preliminaries

In this section we give necessary definitions and preliminary results.

Definition 2.1. An algebra (L, [·,·]) over a field F is called a Leibniz algebra if for any x, y, z ∈ L the
so-called Leibniz identity

[
x, [y, z]] = [[x, y], z

] − [[x, z], y
]

holds true.
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For a given Leibniz algebra L we define derived sequence as follows:

L1 = L, L[n+1] = [
L[n], L[n]], n � 1.

Definition 2.2. A Leibniz algebra L is called solvable, if there exists m ∈ N such that L[m] = 0. The
minimal number m with this property is called index of solvability of the algebra L.

Let us recall Levi’s Theorem for Lie algebras.

Theorem 2.3. (See [7].) For an arbitrary finite-dimensional Lie algebra B over a field of characteristic zero with
solvable radical R, there exists semisimple subalgebra G such that B = G +̇ R.

Further we shall need the following splitting theorem for semisimple Lie algebras.

Theorem 2.4. (See [7].) An arbitrary finite-dimensional semisimple Lie algebra is decomposed into a direct
sum of simple ideals and the decomposition is unique up to permutations of summands.

In [6] it is shown that for Leibniz algebra L the ideal I = id〈[x, x] | x ∈ L〉 coincides with the space
spanned by squares of elements of L. Moreover, it is readily to see that this ideal belongs to right
annihilator, that is [L, I] = 0. Note that the ideal I is the minimal ideal with respect to the property
that the quotient algebra L/I is a Lie algebra.

According to [7] a three-dimensional simple Lie algebra is said to be split if the algebra contains
an element h such that ad h has a non-zero characteristic root ρ belonging to the base field. It is well
known that any such algebra has a basis {e, f ,h} with the multiplication table

[e,h] = 2e, [ f ,h] = −2 f , [e, f ] = h,

[h, e] = −2e, [h, f ] = 2 f , [ f , e] = −h.

This simple 3-dimensional Lie algebra denoted by sl2 and the basis {e, f ,h} is called canonical
basis. Note that any 3-dimensional simple Lie algebra is isomorphic to sl2.

Here is the result of [11] which describes simple Leibniz algebras whose quotient Lie algebras are
isomorphic to sl2.

Theorem 2.5. Let L be a complex finite-dimensional simple Leibniz algebra. Assume that the quotient Lie
algebra L/I is isomorphic to the algebra sl2 . Then there exists a basis {e, f ,h, x0, x1, . . . , xm} of L such that
non-zero products of basis elements in L are represented as follows:

[e,h] = 2e, [h, f ] = 2 f , [e, f ] = h,

[h, e] = −2e, [ f ,h] = −2 f , [ f , e] = −h,

[xk,h] = (m − 2k)xk, 0 � k � m,

[xk, f ] = xk+1, 0 � k � m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 � k � m.

In [11] Leibniz algebras (they are not necessary to be simple) for which the quotient Lie algebras
are isomorphic to sl2 are described. Let us present a Leibniz algebra L with table of multiplication in
a basis {e, f ,h, x j

1, . . . , x j
t j
, 1 � j � p} which is not simple, but the quotient algebra L/I is a simple

[11]:
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[e,h] = 2e, [h, f ] = 2 f , [e, f ] = h,

[h, e] = −2e, [ f ,h] = −2 f , [ f , e] = −h,[
x j

k,h
] = (t j − 2k)x j

k, 0 � k � t j,[
x j

k, f
] = x j

k+1, 0 � k � t j − 1,[
x j

k, e
] = −k(t j + 1 − k)x j

k−1, 1 � k � t j,

where L = sl2 + I1 + I2 + · · · + I p and I j = 〈x j
1, . . . , x j

t j
〉, 1 � j � p.

Note that the Leibniz algebras presented above are examples of non-simple but Lie-simple Leibniz
algebras.

Now we introduce a notion of semisimplicity for Leibniz algebras.

Definition 2.6. A Leibniz algebra L is called semisimple if its maximal solvable ideal is equal to I .

Since in Lie algebras case the ideal I is equal to zero, this definition also agrees with the definition
of semisimple Lie algebra.

Obviously, for the sets of n-dimensional simple (SimpLn), Lie-simple (LieSimpLn) and semisimple
(SemiSimpLn) Leibniz algebras the following embeddings are true:

SimpLn ⊆ LieSimpLn ⊆ SemiSimpLn.

Although Levi’s Theorem is proved for the left Leibniz algebras [6], it is also true for right Leibniz
algebras (here we considering right Leibniz algebras).

Theorem 2.7 (Levi’s Theorem). (See [6].) Let L be a finite-dimensional Leibniz algebra over a field of character-
istic zero and R be its solvable radical. Then there exists a semisimple subalgebra S of L, such that L = S +̇ R.

From the proof of Theorem 2.7 it is not difficult to see that S is a semisimple Lie algebra. Therefore,
we have that a simple Leibniz algebra is a semidirect sum of simple Lie algebra S and irreducible right
module I , i.e. L = S +̇ I . Hence, we get the description of simple Leibniz algebras in terms of simple
Lie algebras and their ideals I . For example see the algebras of Theorem 2.5.

Definition 2.8. A non-zero module M whose only submodules are the module itself and zero module
is called irreducible module. A non-zero module M which is a direct sum of irreducible modules is said
to be completely reducible.

Further we shall use the following classical result of the theory of Lie algebras.

Theorem 2.9. (See [7].) Let G be a semisimple Lie algebra over a field of characteristic zero. Then every finite-
dimensional module over G is completely reducible.

Here is an example of simple Leibniz algebras constructed in [1].

Example 1. Let G be a simple Lie algebra and M be an irreducible skew-symmetric G-module (i.e.
[x,m] = 0 for all x ∈ G , m ∈ M). Then the vector space Q = G + M equipped with the multiplication
[x + m, y + n] = [x, y] + [m, y], where m,n ∈ M , x, y ∈ G is a simple Leibniz algebra.
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3. The main results

As it was mentioned above from Theorem 2.7 it follows that any simple Leibniz algebra is pre-
sented as a semidirect sum of a simple Lie algebra and the ideal I .

Below we give another proof of the description of simple Leibniz algebras without using Levi’s
Theorem.

Theorem 3.1. Let L be a finite-dimensional simple Leibniz algebra. Then it has the construction of Example 1
for G ∼= L/I and M = I .

Proof. Let L be an algebra satisfying the conditions of theorem. It should be noted, that the ideal I
may be considered as a right L/I-module by the action:

m ∗ (a + I) = [m,a],
where m ∈ I , a + I ∈ L/I . Since L/I is a simple Lie algebra then by Whytehead’s Lemma [7] we have
H2(L/I, I) = 0.

J.-L. Loday and T. Pirashvili [9] established that there exist the following natural bijection:

Ext(L, M) ∼= H L2(L, M).

Recall a result of T. Pirashvili [10], which says the following:
Let g be a semisimple Lie algebra and M a right irreducible module over g such that H2(g, M) = 0.

Then H L2(g, M) = 0.
Let now L = L′ ⊕ I is a direct sum vector spaces, where L′ ∼= L/I is a simple Lie algebra. Since

ideal I is contained in right annihilator of the algebra L then we have [L′, I] = 0 and [I, I] = 0. Due to
simplicity of Leibniz algebra L we derive that the ideal I is irreducible L/I-module. Using Pirashvili’s
result we have that H L2(L/I, I) = 0, but the condition 0 = H L2(L/I, I) ∼= Ext(L/I, I) is equivalent to
L ∼= L/I +̇ I . �

Let us investigate the case of semisimple Leibniz algebras. Let L be a semisimple Leibniz algebra.
Similarly to the case of simple Leibniz algebras we can establish that L ∼= L/I +̇ I . It is known the result
on decomposition of semisimple Lie algebra L/I into a direct sum of simple Lie ideals. Moreover, we
have that L/I-module I is completely reducible and hence, ideal I is decomposed into a direct sum
of irreducible submodules over the Lie algebra L/I .

Taking into account these results for semisimple Leibniz algebras it seems that the following con-
clusion is true for Leibniz algebras case:

Conjecture. An arbitrary finite-dimensional semisimple Leibniz algebra is decomposed into direct sum of sim-
ple Leibniz algebras.

Let L be a finite-dimensional semisimple Leibniz algebra. Then according to Theorem 2.7 we have
that L = S +̇ I , where S is a semisimple Lie algebra and [I, S] = I . From Theorem 2.4 we get S =
S1 ⊕ S2 ⊕ · · · ⊕ Sk , where Si (1 � i � k) is a simple Lie algebra. Thus, we have

L = (S1 ⊕ S2 ⊕ · · · ⊕ Sk) +̇ I.

Let us introduce the denotation I j = [I, S j] for 1 � j � k.

Lemma 3.2. The following are true:

a) I = I1 + I2 + · · · + Ik;
b) I j is an ideal of L for all j (1 � j � k);
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c) I j = [I j, S j] for all j (1 � j � k);
d) S j + I j is an ideal of L for all j (1 � j � k).

Proof. Since I is an ideal of L then I j = [I, S j] ⊆ I for all j. Hence, I1 + I2 + · · · + Ik ⊆ I .
From

I = [I, S] = [I, S1 ⊕ S2 ⊕ · · · ⊕ Sk] ⊆ [I, S1] + [I, S2] + · · · + [I, Sk] = I1 + I2 + · · · + Ik,

we have the correctness of the statement a).
The proof of the statement b) follows from property [S j, S j] = S j and we have

[I j, L] = [[I, S j], L
] ⊆ [

I, [S j, L]] + [[I, L], S j
]

= [
I,

[
S j, (S1 ⊕ S2 ⊕ · · · ⊕ Sk) +̇ I

]] + [[
I, (S1 ⊕ S2 ⊕ · · · ⊕ Sk) +̇ I

]
, S j

]
⊆ [

I, [S j, S1 ⊕ S2 ⊕ · · · ⊕ Sk]
] + [[I, S1 ⊕ S2 ⊕ · · · ⊕ Sk], S j

]
⊆ [

I, [S j, S j]
] + [I, S j] ⊆ [I, S j] = I j .

Since from b) we have that I j is an ideal of L, we obtain [I j, S j] ⊆ I j and from

I j = [I, S j] = [
I, [S j, S j]

] ⊆ [[I, S j], S j
] + [[I, S j], S j

] = [I j, S j],

we get [I j, S j] = I j . So, the statement c) is also proved.
From the following equalities:

[S j + I j, L] = [
S j + I j, (S1 ⊕ S2 ⊕ · · · ⊕ Sk) +̇ I

]
= [S j, S1 ⊕ S2 ⊕ · · · ⊕ Sk] + [S j, I] + [I j, S1 ⊕ S2 ⊕ · · · ⊕ Sk] + [I j, I] ⊆ S j + I j,

[L, S j + I j] = [
(S1 ⊕ S2 ⊕ · · · ⊕ Sk) +̇ I, S j + I j

]
= [S1 ⊕ S2 ⊕ · · · ⊕ Sk, S j] + [I, S j] + [S1 ⊕ S2 ⊕ · · · ⊕ Sk, I j] + [I, I j] ⊆ S j + I j,

we get that S j + I j is an ideal of L. Thus, the part d) is also proved. �
The following example shows that the Conjecture is not true in general.

Example 2. Let L be a semisimple Leibniz algebra such that L = (sl12 ⊕ sl22) +̇ I , where I = I1 ⊕ I2 and
[I1, sl22] = [I2, sl12] = 0. Moreover, I1 = I1,1 ⊕ I1,2, I2 = I2,1 ⊕ I2,2, where I1,1 and I1,2 are irreducible
sl12-modules. Respectively, I2,1 and I2,2 are irreducible sl22-modules. Then, using Theorem 2.5 we con-

clude that, there exists a basis {e1,h1, f1, e2,h2, f2, x j
0, x j

1, . . . , x j
t j
} (1 � j � 4) such that multiplication

table of L in this basis has the following form:

[
sli2, sli2

] :
[ei,hi] = 2ei, [ f i,hi] = −2 f i, [ei, f i] = hi,

[hi, ei] = −2ei [hi, f i] = 2 f i, [ f i, ei] = −hi, i = 1,2,

[
I1, sl12

] :

[
x j

k,h1
] = (t j − 2k)x j

k, 0 � k � t j,[
x j

k, f1
] = x j

k+1, 0 � k � t j − 1,[
x j

, e1
] = −k(t j + 1 − k)x j

, 1 � k � t j, j = 1,2,
k k−1
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[
I2, sl22

] :

[
x j

k,h2
] = (t j − 2k)x j

k, 0 � k � t j,[
x j

k, f2
] = x j

k+1, 0 � k � t j − 1,[
x j

k, e2
] = −k(t j + 1 − k)x j

k−1, 1 � k � t j, j = 3,4,

where I1,1 = {x1
0, . . . , x1

t1
}, I1,2 = {x2

0, . . . , x2
t2

}, I2,1 = {x3
0, . . . , x3

t3
} and I2,2 = {x4

0, . . . , x4
t4

}.
Evidently, the algebra L is semisimple and it is decomposed into the direct sum of two ideals

sl12 +̇ (I1,1 ⊕ I1,2) and sl22 +̇ (I2,1 ⊕ I2,2), which are not simple Leibniz algebras, but they are not simple
Leibniz algebras (they are Lie-simple Leibniz algebras).

Example 2 shows that if I j is a reducible module over a simple Lie algebra S j , then Conjecture
is not true. Now we consider the case of I j is an irreducible module. First we prove the following
lemma.

Lemma 3.3. Let L be a semisimple Leibniz algebra such that L = (sl2 ⊕ S) +̇ I , where S is an arbitrary simple
Lie algebra. Let I is irreducible over sl2 , then [I, S] = 0.

Proof. Let dim I = m + 1, then similarly as in the proof of Theorem 2.5 we have the existence of basis
{e, f ,h, x0, x1, . . . , xm} of sl2 +̇ I such that table of multiplication has the following form:

[e,h] = 2e, [h, f ] = 2 f , [e, f ] = h,

[h, e] = −2e, [ f ,h] = −2 f , [ f , e] = −h,

[xi,h] = (m − 2i)xi, 0 � i � m,

[xi, f ] = xi+1, 0 � i � m − 1,

[xi, e] = −i(m + 1 − i)xi−1, 1 � i � m.

Let {y1, y2, . . . , yn} be a basis of the algebra S . We set

[x0, y j] =
m∑

k=0

αk, j xk, 1 � j � n.

Consider the Leibniz identity

[[x0, y j], f
] = [

x0, [y j, f ]] + [[x0, f ], y j
] = [x1, y j].

On the other hand

[[x0, y j], f
] =

[
m∑

k=0

αk, j xk, f

]
=

m−1∑
k=0

αk, j xk+1.

Hence, we get

[x1, y j] =
m−1∑

αk, j xk+1, 1 � j � n.
k=0
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Applying induction process and the equality [[xi, y j], f ] = [xi, [y j, f ]] + [[xi, f ], y j], we obtain

[xi, y j] =
m−i∑
k=0

αk, j xk+i, 0 � i � m, 1 � j � n.

Consider the Leibniz identity

[[x0, y j], e
] = [

x0, [y j, e]] + [[x0, e], y j
] = 0.

On the other hand,

[[x0, y j], e
] =

[
m∑

k=0

αk, j xk, e

]
=

m∑
k=1

k(−m − 1 + k)αk, j xk−1.

We obtain αi, j = 0, for 1 � i � m, 1 � j � n. For the sake of convenience we shall assume α j := α0, j ,
i.e. we have

[xi, y j] = α j xi, 0 � i � m, 1 � j � n.

Using the Leibniz identity, we have

[
xi, [y j, yk]

] = [[xi, y j], yk
] − [[xi, yk], y j

] = [α j xi, yk] − [αkxi, y j] = α jαkxi − αkα j xi = 0.

Taking into account the property [S, S] = S and arbitrariness of elements {xi, y j, yk} we get
[I, [S, S]] = [I, S] = 0. �

In the following theorem we show the trueness of the Conjecture under some conditions.

Theorem 3.4. Let L be a semisimple Leibniz algebras such that L = (sl12 ⊕ sl22 ⊕ · · · ⊕ slk−1
2 ⊕ Sk) +̇ I . Let I j is

irreducible module over sl j
2 for j = 1, . . . ,k − 1 and Ik is irreducible over Sk. Then L is decomposed into direct

sum of simple Leibniz algebras, namely,

L = (
sl12 +̇ I1

) ⊕ (
sl22 +̇ I2

) ⊕ · · · ⊕ (
slk−1

2 +̇ Ik−1
) ⊕ (Sk +̇ Ik).

Proof. By Lemma 3.2 it is known that sl j
2 + I j and Sk + Ik are ideals of L. Since I j is irreducible over

sl j
2, then by Lemma 3.3 we obtain [I j, sli2] = 0 for all i, j (i 
= j).

Taking into account that I j ⊆ I and [L, I] = 0 we conclude

[
sli2 + Ii, sl j

2 + I j
] = 0, i 
= j, 1 � i, j � k − 1.

Moreover, from Lemma 3.3 we have [Ii, Sk + Ik] = 0 for 1 � i � k − 1. In order to complete the
proof of theorem it is necessary to establish the equality [Ik, sl j

2] = 0 for all j = 1, . . . ,k − 1.

Let us assume the contrary, i.e. [Ik, sl j
2] 
= 0, for some j (1 � j � k − 1). Since Ik is an ideal of L,

then we have [Ik, sl j
2] ⊆ Ik .

From

[
Ik, sl j

2

] = [[I, Sk], sl j
2

] ⊆ [
I,

[
Sk, sl j

2

]] + [[
I, sl j

2

]
, Sk

] = [I j, Sk] ⊆ I j,

we obtain [Ik, sl j
2] ⊆ I j .
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Hence, we get Ik ∩ I j 
= 0. Since Ik ∩ I j is an ideal of the algebra L, then it can be considered as the

right module over sl j
2 and Sk . Due to I j and Ik are irreducible, we have that Ik ∩ I j = I j = Ik . From

[I j, Sk] = 0 we derive [Ik, Sk] = 0, but it is a contradiction with condition

[Ik, Sk] = Ik.

Therefore, we have

[
Ik, sl j

2

] = 0.

Thus, we get that [Sk + Ik, sl j
2 + I j] = [sl j

2 + I j, Sk + Ik] = 0, which leads that the Leibniz algebra L
is decomposed into direct sum of simple ideals. �

In Example 2, it is shown that if I j is reducible over S j , then the semisimple Leibniz algebra is not
decomposable into direct sum of simple ideals. However this algebra is decomposed into direct sum
of Lie-simple algebras.

Then a natural question arises: whether any semisimple Leibniz algebra can be represented as a
direct sum of Lie-simple Leibniz algebras.

The following example gives the negative answer to this question.

Example 3. Let L be a 10-dimensional semisimple Leibniz algebra. Let {e1,h1, f1, e2,h2, f2, x1, x2,

x3, x4} be a basis of the algebra L such that I = {x1, x2, x3, x4}, and multiplication table of L has the
following form:

[
sli2, sli2

] :
[ei,hi] = 2ei, [ f i,hi] = −2 f i, [ei, f i] = hi,

[hi, ei] = −2ei [hi, f i] = 2 f i, [ f i, ei] = −hi, i = 1,2,

[
I, sl12

] :
[x1, f1] = x2, [x1,h1] = x1, [x2, e1] = −x1, [x2,h1] = −x2,

[x3, f1] = x4, [x3,h1] = x3, [x4, e1] = −x3, [x4,h1] = −x4,

[
I, sl22

] :
[x1, f2] = x3, [x1,h2] = x1, [x3, e2] = −x1, [x3,h2] = −x3,

[x2, f2] = x4, [x2,h2] = x2, [x4, e2] = −x2, [x4,h2] = −x4

(omitted products are equal to zero).
From this table of multiplications we have [I, sl12] = [I, sl22] = I . Moreover, I splits over sl12 (i.e.

I = 〈x1, x2〉 ⊕ 〈x3, x4〉) and over sl22 (i.e. I = 〈x1, x3〉 ⊕ 〈x2, x4〉). Therefore,

L = (
sl12 ⊕ sl22

) +̇ I 
= (
sl12 +̇ I1

) ⊕ (
sl22 +̇ I2

)
.

Indeed, if the equality (sl12 ⊕ sl22) +̇ I = (sl32 +̇ I1) ⊕ (sl42 +̇ I2) holds for some copies of sl32, sl42 and
I1, I2, then for dimensions of (I1, I2) we need to consider the cases: (4,0), (3,1) and (2,2).

If (dim I1,dim I2) = (4,0), then [I1, sl42] = 0. From the condition [I1,a] = 0 for an element a ∈ sl42
we deduce a ∈ I , which is a contradiction.

If (dim I1,dim I2) = (3,1), then 0 
= I2 belongs to Center(L), but Center(L) = 0. So, we have a con-
tradiction.

If (dim I1,dim I2) = (2,2), then we put I1 = 〈y1, y2〉, I2 = 〈y3, y4〉 and y1 = α1x1 + α2x2 + α3x3 +
α4x4. Taking into account that I1 is an ideal of L, the products

[y1, e1], [y1, f1], [y1,h1], [y1, e2], [y1, f2], [y1,h2]
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belong to I1 and therefore,

rank

⎡
⎢⎢⎢⎢⎢⎣

α2 0 α4 0
0 α1 0 α3
α1 −α2 α3 −α4
α3 α4 0 0
0 0 α1 α2
α1 α2 −α3 −α4

⎤
⎥⎥⎥⎥⎥⎦ � 2.

This condition implies α1 = α2 = α3 = α4 = 0, which is a contradiction. Therefore, the equality
(sl12 ⊕ sl22) +̇ I = (sl32 +̇ I1) ⊕ (sl42 +̇ I2) is impossible.

Below we find some types of semisimple Leibniz algebras which are decomposed into a direct sum
of Lie-simple Leibniz algebras.

Let L be a semisimple Leibniz algebra such that L = (sl2 ⊕ S) +̇ I , where S is a simple Lie algebra.
Let I1 = [I, sl2] be irreducible over sl2, then according to Theorem 2.9 the module I1 is completely
reducible, i.e. I1 = I1,1 ⊕ I1,2 ⊕ · · · ⊕ I1,p , where I1,i is irreducible over sl2.

Let us consider the case of p = 2.

Proposition 3.5. If dim I1,1 
= dim I1,2 , then L = (sl2 +̇ I1) ⊕ (S +̇ I2).

Proof. Let I1 = I1,1 ⊕ I1,2, then there exists a basis {e,h, f , x1
0, x1

1, . . . , x1
t1

, x2
0, x2

1, . . . , x2
t2

} of sl2 + I1,
such that

[I1, sl2] :

[
x j

k,h
] = (t j − 2k)x j

k, 0 � k � t j,[
x j

k, f
] = x j

k+1, 0 � k � t j − 1,[
x j

k, e
] = −k(t j + 1 − k)x j

k−1, 1 � k � t j, j = 1,2,

where I1,1 = 〈x1
0, . . . , x1

t1
〉, I1,2 = 〈x2

0, . . . , x2
t2

〉.
Without loss of generality we can assume that t1 > t2.
Let {y1, y2, . . . , ym} be a basis of the algebra S .
We put

[
xi

0, y1
] =

2∑
j=1

t j∑
r=0

α
j
i,r x j

r , 1 � i � 2.

Consider equalities

[[
x1

0, f
]
, y1

] = [
x1

0, [ f , y1]
] + [[

x1
0, y1

]
, f

] =
[

2∑
j=1

t j∑
r=0

α
j
1,r x j

r , f

]
=

2∑
j=1

t j−1∑
r=0

α
j
1,r x j

r+1.

On the other hand

[[
x1

0, f
]
, y1

] = [
x1

1, y1
]
.

Hence, we get

[
x1

1, y1
] =

2∑
j=1

t j−1∑
r=0

α
j
1,r x j

r+1.
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From equalities

[
x1

k , y1
] = [[

x1
k−1, f

]
, y1

] = [
x1

k−1, [ f , y1]
] + [[

x1
k−1, y1

]
, f

]
and induction we derive

[
x1

k , y1
] =

2∑
j=1

t j−k∑
r=0

α
j
1,r x j

r+k, 1 � k � t2,

[
x1

k , y1
] =

t1−k∑
r=0

α
j
1,r x j

r+k, t2 + 1 � k � t1.

Consider the products

[[
x1

0, e
]
, y1

] = [
x1

0, [e, y1]
] + [[

x1
0, y1

]
, e

] = [[
x1

0, y1
]
, e

]

=
[

2∑
j=1

t j∑
r=0

α
j
1,r x j

r , e

]
=

2∑
j=1

t j∑
r=1

α
j
1,r

(−r(t j + 1 − r)
)
x j

r−1.

On the other hand

[[
x1

0, e
]
, y1

] = 0.

Comparing the coefficients at the basis elements, we obtain

α
j
1,r = 0, 1 � j � 2, 1 � r � t j.

Thus, we have

[
x1

k , y1
] = α1

1,0x1
k + α2

1,0x2
k , 0 � k � t2,[

x1
k , y1

] = α1
1,0x1

k , t2 + 1 � k � t1.

Similarly, from the products [[x2
k , f ], y1] for 0 � k � t2 − 1 and [[x2

0, e], y1] we obtain

[
x2

k , y1
] = α1

2,0x1
k + α2

2,0x2
k , 0 � k � t2.

Consider

[[
x2

t2
, f

]
, y1

] = [
x2

t2
, [ f , y1]

] + [[
x2

t2
, y1

]
, f

] = [
α1

2,0x1
t2

+ α2
2,0x2

t2
, f

] = α1
2,0x1

t2+1.

From the equality [x2
t2

, f ] = 0 we obtain α1
2,0 = 0. Thus, we get

[
x2

k , y1
] = α2

2,0x2
k , 0 � k � t2.

Consider the products[[
x1

0,h
]
, y1

] = [
x1

0, [h, y1]
] + [[

x1
0, y1

]
,h

] = [
α1

1,0x1
0 + α2

1,0x2
0,h

] = t1α
1
1,0x1

0 + t2α
2
1,0x2

0.
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On the other hand

[[
x1

0,h
]
, y1

] = [
t1x1

0, y1
] = t1α

1
1,0x1

0 + t1α
2
1,0x2

0.

Comparing the coefficient at the basis elements, we have (t1 − t2)α
2
1,0 = 0. The condition t1 
= t2,

implies α2
1,0 = 0.

Thus, we can assume that

[
x1

k , y1
] = α1,1x1

k , 0 � k � t1,[
x2

k , y1
] = α2,1x2

k , 0 � k � t2.

In a similar way as above we obtain

[
xi

k, y j
] = αi, jx

i
k, 1 � i � 2, 0 � k � ti, 1 � j � m.

Consider the equalities

[
xi

k, [yp, yq]
] = [[

xi
k, yp

]
, yq

] − [[
xi

k, yq
]
, yp

] = [
αi,pxi

k, yq
] − [

αi,qxi
k, yp

]
= αi,pαi,qxi

k − αi,qαi,pxi
k = 0.

Taking into account the property [S, S] = S and arbitrariness of the elements {xi
k, yp, yq} we obtain

that [I1, S] = 0.
Moreover, [I2, sl2] = 0. Indeed,

[I2, sl2] = [[I2, S], sl2
] ⊆ [

I2, [S, sl2]
] + [[I2, sl2], S

] = [[I2, sl2], S
] ⊆ [I1, S] = 0.

Thus, we have proved that the semisimple Leibniz algebra L is decomposed into the direct sum of
two Lie-simple Leibniz algebras, i.e. L = (sl2 +̇ I1) ⊕ (S +̇ I2). �

Let L be a semisimple Leibniz algebra such that L = (sl12 ⊕ sl22 ⊕ · · · ⊕ slk−1
2 ⊕ Sk) +̇ I and I j is a

reducible module over sl j
2. Then the module I j is completely reducible over sl j

2, i.e. I j = I j,1 ⊕ I j,2 ⊕
· · · ⊕ I j,p j , where I j,i is irreducible over sl j

2.
We generalize Proposition 3.5 and define some types of semisimple Leibniz algebras which are

decomposed into direct sum of Lie-simple ones.

Theorem 3.6. If dim I j,r 
= dim I j,q for any 1 � j � k − 1, 1 � r,q � p j , r 
= q then

L = (
sl12 +̇ I1

) ⊕ (
sl22 +̇ I2

) ⊕ · · · ⊕ (
slk−1

2 +̇ Ik−1
) ⊕ (Sk +̇ Ik).

Proof. In order to prove theorem it is sufficient to prove

[
sl j

2 + I j, Sk + Ik
] = [

Sk + Ik, sl j
2 + I j

] = 0.

Without loss of generality, we can suppose j = 1 and I1 = I1,1 ⊕ I1,2 ⊕· · ·⊕ I1,p . Let {e,h, f , x1
0, x1

1, . . . ,

x1
t , x2

0, x2
1, . . . , x2

t , . . . xp
0 , xp

1 , . . . , xp
t } be a basis of sl12 + I1 such that
1 2 p
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[
x j

k,h
] = (t j − 2k)x j

k, 0 � k � t j,[
x j

k, f
] = x j

k+1, 0 � k � t j − 1,[
x j

k, e
] = −k(t j + 1 − k)x j

k−1, 1 � k � t j,

where I1, j = 〈x j
0, x j

1, . . . , x j
t j
〉, 1 � j � p.

Since dim I1,r 
= dim I1,q , then without loss of generality we can assume that t1 > t2 > · · · > tp .
Let {y1, y2, . . . , ym} be a basis of Sk . Put

[
xi

0, y1
] =

p∑
j=1

t j∑
r=0

α
j
i,r x j

r , 1 � i � p.

Similarly as in the proof of Proposition 3.5 considering Leibniz identity

[[
x1

k , f
]
, y1

] = [
x1

k , [ f , y1]
] + [[

x1
k , y1

]
, f

]
,

we obtain

[
x1

k , y1
] =

p∑
j=1

t j−k∑
r=0

α
j
1,r x j

r+k, 0 � k � tp,

[
x1

k , y1
] =

p−q∑
j=1

t j−k∑
r=0

α
j
1,r x j

r+k, 1 � q � p − 1, tp−q+1 + 1 � k � tp−q.

Consider the equalities

[[
x1

0, e
]
, y1

] = [
x1

0, [e, y1]
] + [[

x1
0, y1

]
, e

] = [[
x1

0, y1
]
, e

]

=
[ p∑

j=1

t j∑
r=0

α
j
1,r x j

r , e

]
=

p∑
j=1

t j∑
r=1

α
j
1,r

(−r(t j + 1 − r)
)
x j

r−1.

On the other hand

[[
x1

0, e
]
, y1

] = 0.

Comparing the coefficients at the basis elements, we get

α
j
1,r = 0, 1 � j � p, 1 � r � t j .

Thus, we have

[
x1

k , y1
] =

p∑
j=1

α1
1, j x

j
k, 0 � k � tp,

[
x1

k , y1
] =

p−q∑
j=1

α1
1, jx

j
k, 1 � q � p − 1, tp−q+1 + 1 � k � tp−1.
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Consider the equalities

[[
x1

0,h
]
, y1

] = [
x1

0, [h, y1]
] + [[

x1
0, y1

]
,h

] =
[ p∑

j=1

α1
1, jx

j
0,h

]
=

p∑
j=1

t jα
1
1, jx

j
0.

On the other hand

[[
x1

0,h
]
, y1

] = [
t1x1

0, y1
] = t1

p∑
j=1

α1
1, jx

j
0.

Comparing the coefficient at the basis elements, we have (t1 − t j)α
j
1, j = 0. The condition t1 
= t j

implies that α
j
1, j = 0 for all 2 � j � p.

Thus, rewriting the index of the coefficients, we obtain

[
x1

k , y1
] = α1,1x1

k , 0 � k � t1.

Similarly we obtain

[
xi

k, y j
] = αi, j x

i
k, 1 � i � p, 0 � k � ti, 1 � j � m.

Consider the products

[
xi

k, [yp, yq]
] = [[

xi
k, yp

]
, yq

] − [[
xi

k, yq
]
, yp

] = [
αi,pxi

k, yq
] − [

αi,qxi
k, yp

]
= αi,pαi,qxi

k − αi,qαi,pxi
k = 0.

From the arbitrariness of elements {xi
k, yp, yq} and condition [Sk, Sk] = Sk we have that

[I1, [Sk, Sk]] = [I1, Sk] = 0.
From

[
Ik, sl12

] = [[Ik, Sk], sl2
] ⊆ [

Ik,
[

Sk, sl12
]] + [[

Ik, sl12
]
, Sk

] = [[
Ik, sl12

]
, Sk

] ⊆ [I1, Sk] = 0

we get [Ik, sl12] = 0.
Thus, we obtain

[
sl j

2 + I j, Sk + Ik
] = [

Sk + Ik, sl j
2 + I j

] = 0. �
Analyzing the proof of Theorem 3.6 we obtain the result, which generalize Example 3.

Theorem 3.7. Let L be a semisimple Leibniz algebra such that L = (sl2 ⊕ S) +̇ I and I1 = [I, sl2] is a reducible
over sl2 . Let I1 = I1,1 ⊕ I1,2 ⊕ · · · ⊕ I1,p , where I1, j is an irreducible over sl2 . If

dim I1, j1 = dim I1, j2 = · · · = dim I1, js = t + 1,

then there exist (t + 1) pieces of s-dimensional submodules I2,1, I2,2, . . . , I2,t+1 of module I2 = [I, S] (i.e.
dim I2,i = s, 1 � i � t + 1) such that

I2,1 + I2,2 + · · · + I2,t+1 = I1 ∩ I2.



JID:YJABR AID:14289 /FLA [m1G; v 1.101; Prn:3/06/2013; 13:21] P.15 (1-15)

S. Gómez-Vidal et al. / Journal of Algebra ••• (••••) •••–••• 15
Proof. Let L satisfies the condition of theorem. By renumerating of the subindexes 1 := j1, 2 :=
j2, . . . , s := js , without loss of generality, we can assume that

dim I1,1 = dim I1,2 = · · · = dim I1,s = t + 1.

Analogously as in the proof of Proposition 3.5 considering the Leibniz identity for the products

[[
x1

k , f
]
, y j

] = [
x1

k , [ f , y j]
] + [[

x1
k , y j

]
, f

]
,[[

x1
k , e

]
, y j

] = [
x1

k , [e, y j]
] + [[

x1
k , y j

]
, e

]
,[[

x1
k ,h

]
, y j

] = [
x1

k , [h, y j]
] + [[

x1
k , y j

]
,h

]
,

we obtain

[
xi

k, y j
] =

s∑
r=1

αi
j,r xr

k,

where 0 � k � t , 1 � i � s, 1 � j � m.
From these products it is not difficult to see that

I2, j = 〈
x1

j , x2
j , . . . , xs

j

〉
, 0 � j � t

are s-dimensional submodules of I2 over S . �
Finally, we remark that a semisimple Leibniz algebra is decomposed into a direct sum of Lie-simple

ones if and only if I p ∩ Iq = {0} for any p 
= q (in denotations of Lemma 3.2).
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