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Symbolic powers of ideals have attracted interest in commu-
tative algebra and algebraic geometry for many years, with a 
notable recent focus on containment relations between sym-
bolic powers and ordinary powers; see for example [3,7,13,
16,18–20] to cite just a few. Several invariants have been 
introduced and studied in the latter context, including the 
resurgence and asymptotic resurgence [3,15].
There have been exciting new developments in this area re-
cently. It had been expected for several years that I(Nr−N+1)⊆
Ir should hold for the ideal I of any finite set of points in PN

for all r > 0, but in the last year various counterexamples 
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Homogeneous ideals
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Projective space

have now been constructed (see [11,17,8]), all involving point 
sets coming from hyperplane arrangements. In the present 
work, we compute their resurgences and obtain in particular 
the first examples where the resurgence and the asymptotic 
resurgence are not equal.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In commutative algebra, ideals are major objects of interest, often given directly by 
specifying generators. Ideals are also important objects of study in algebraic geometry, 
but the ideals are specified indirectly, often in terms of vanishing conditions. Thus in 
commutative algebra it is quite natural to study the behavior of powers of ideals, but 
in algebraic geometry it is more natural to study symbolic powers. For example, given a 
finite set S ⊂ PN of points in projective space (over a field K), we have the polynomial 
ring R = K[PN ] in N +1 variables over K. The ideal IS ⊆ K[PN ] = R is the ideal gener-
ated by all homogeneous polynomials (i.e., forms) vanishing on S. If IS is the ideal sheaf 
on PN corresponding to IS , then the mth symbolic power I(m)

S is canonically isomorphic 
to 

⊕
t H

0(PN , ISm(t)). Alternatively, I(m)
S is generated by all forms vanishing to order 

at least m at each point of S; i.e., if S = {p1, . . . , ps}, then IS = ∩iIpi
and I(m)

S = ∩iI
m
pi

, 
where these intersections take place in R. The precise relationship between ImS and I(m)

S

is that ImS = I
(m)
S ∩Q where Q is primary for the irrelevant ideal M ⊂ K[PN ] (i.e., the 

maximal homogeneous ideal, this being the one generated by the variables of the poly-
nomial ring K[PN ]). Algebraically, taking powers of an ideal can introduce adventitious 
primary components; recovering the symbolic power from the ordinary power requires 
removing these adventitious components. This leads to the general definition of sym-
bolic power, namely the mth symbolic power I(m) of an ideal I ⊆ R is defined to be 
I(m) = R ∩ (∩P∈Ass(I)I

mRP ) (where the intersection takes place in R(0)).
It is immediately apparent from this discussion that one always has ImS ⊆ I

(m)
S . There 

are sets of points S for which all powers of IS are symbolic (i.e., such that ImS = I
(m)
S holds 

for all m > 0), but it is an open problem to characterize those S with this property, and 
there are also easy examples of S where equality sometimes fails, so nontrivial M -primary 
components Q really do occur.

When IrS � I
(r)
S , it is at least true for m sufficiently large (such as for m greater than 

or equal to the maximum of r and the saturation degree of IrS) that we have I(m)
S ⊆ IrS , 

but it is much less obvious what the least such m is. A quantity known as the resurgence
was introduced in [3] to study this issue. Let (0) �= I � R = K[PN ] be a homogeneous 
ideal. Then the resurgence ρ(I) of I is defined to be

ρ(I) = sup
{m : I(m) � Ir

}
.

r
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Its asymptotic version ρ̂(I) is defined as

ρ̂(I) = sup
{m

r
: I(mt) � Irt for t � 0

}
.

It is immediate that

ρ̂(I) ≤ ρ(I).

Whereas it might be expected that these two invariants differ, no examples of ideals where 
this actually happens have been known up to now. In this note we compute examples 
showing that a strict inequality between these two invariants can occur.

A priori it seems possible that ρ(I) could be infinite. However, given r ≥ 1, a funda-
mental result of [18,13], is that

I(m) ⊆ Ir for m ≥ Nr for all homogeneous ideals I ⊆ K[PN ]. (1)

This shows that ρ(I) ≤ N for nontrivial ideals I. On the other hand for a nontrivial 
ideal I we have always ρ̂(I) ≥ 1 by [15, Theorem 1.2].

No examples are known for which ρ(I) = N , but examples from [3] show that ideals 
I can be given with ρ(I) arbitrarily close to N . Thus no expression of the form m > cr

for constant c < N can ensure containment I(m) ⊆ Ir for all homogeneous ideals I ⊆ R

and all r. This still leaves open the question of whether there are lower bounds on m
smaller than Nr guaranteeing containment I(m) ⊆ Ir for all I and r.

For example, if I is an ideal of points in P2, then we have I(2r) ⊆ Ir and hence 
I(4) ⊆ I2. C. Huneke asked if I(3) ⊆ I2 also always holds for ideals I of finite sets of 
points in the plane. This led to the following (now known to be false) conjecture of the 
second author [1] as a possible improvement on (1):

Conjecture 1.1. The containment I(rN−(N−1)) ⊆ Ir holds for all homogeneous ideals in 
K[PN ].

The containment of Conjecture 1.1 does indeed hold for many ideals I for many r and 
N (see for example, [2,1,16]), including for ideals of finite sets of general points when 
N = 2, 3 [3,12], but it is now known that failures can occur. The first failure found is that 
of [11] showing that I(3) � I2 occurs for the ideal of a certain configuration of twelve 
points in P2 over the field K = C of complex numbers. These twelve points are dual 
to the twelve lines meeting a smooth plane cubic curve only at the flex points of the 
cubic, and thus have the combinatorially interesting property of there being nine lines 
passing through subsets of exactly four of the twelve points, and for each of the twelve 
points there is a subset of exactly three of the nine lines which vanish at the point. Any 
twelve of the 13 points of P2 over the finite field K of three elements also have this same 
combinatorial structure, and the ideal J of these points also has J (3) � J2 (see [2]; for 
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additional counterexamples to Conjecture 1.1, for various values of N and r, see [17]). 
However, the resurgences distinguish the two ideals; indeed, ρ(I) = 3/2 and ρ̂(I) = 4/3, 
while ρ(J) = ρ̂(J) = 5/3 (see Theorems 2.1 and 3.2).

Recently a new counterexample with N = r = 2 has been announced [8], which can 
be constructed over the rationals (see Fig. 1). Its combinatorial structure is different 
from those of [11,2] mentioned above, and the asymptotic resurgence is different for 
all three, but interestingly, its resurgence turns out to be the same as that of [11] (see 
Theorem 2.1 and Theorem 2.2). The asymptotic resurgence, surprisingly, thus is perhaps 
a more sensitive invariant for differentiating between various counterexamples.

The goal of this note is to compute ρ(I) and ρ̂(I) for various ideals I giving coun-
terexamples to Conjecture 1.1 for ideals of points in PN , including those of [11,2,8] and 
some of those of [17].

2. Results specific to the plane

Up to choice of coordinate variables x, y and z on P2, the ideal I of [11] for which 
I(3) � I2 can be taken to be I = (x(y3 − z3), y(z3 − x3), z(x3 − y3)). More generally, for 
n ≥ 3 and K any field of characteristic not equal to 2 but containing n distinct roots of 1, 
then I(3) � I2 holds for the ideal I = (x(yn − zn), y(zn − xn), z(xn − yn)) ⊂ K[x, y, z]
(see [17]); we note that I is the ideal of a certain very special set of n2 + 3 points of 
P2, these being the three coordinate vertices in addition to a complete intersection of 
n2 points. We begin by computing the resurgence of these ideals.

To this end it is useful to recall Waldschmidt’s constant. For a homogeneous ideal 
(0) �= J � R = K[PN ], Waldschmidt’s constant α̂(J) is defined to be the following limit:

α̂(J) = lim
m→∞

α(J (m))
m

= inf
m≥1

α(J (m))
m

, (2)

where α(J (m)) is the least degree of a nonzero homogeneous element of J (m). (The 
existence of the limit and the equality to the infimum follow from sub-additivity of α; 
see [3, Lemma 2.3.1].)

The connection between the various invariants has been discussed in [15, Theorem 
1.2]. In particular we have

α(I)
α̂(I) ≤ ρ̂(I) ≤ ρ(I). (3)

We are now in position to prove our first main result.

Theorem 2.1. Let I = (x(yn − zn), y(zn −xn), z(xn − yn)) ⊂ R = K[x, y, z], where n ≥ 3
and K is any field of characteristic not equal to 2 containing n distinct roots of 1. Then

ρ̂(I) = n + 1
n

and ρ(I) = 3/2.
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Proof. Since I(3) � I2 by [17], we have 3/2 ≤ ρ(I). We will show that also ρ(I) ≤ 3/2
and hence ρ(I) = 3/2.

From the statement of [3, Lemma 2.3.4], we know that α(I(m)) ≥ r reg(I) implies 
I(m) ⊆ Ir; however, the proofs of [3, Lemma 2.3.3c] and [3, Lemma 2.3.4] actually show 
more, namely that α(I(m)) ≥ reg(Ir) implies I(m) ⊆ Ir. (The proof of containment 
merely needs α(I(m)) to be at least as big as the saturation degree of Ir, and, as pointed 
out in the proof of [3, Lemma 2.3.3c], reg(Ir) is an upper bound on the saturation 
degree.) But α(I(m)) ≥ mα̂(I) by (2) and we will show momentarily that α̂(I) = n. By 
[5, Theorem 1.7.1] or [6, Theorem 0.5], we have

reg(Ir) ≤ 2 reg(I) + (r − 2)ω(I), (4)

where ω(I) is the maximum among the degrees of a minimal set of homogeneous genera-
tors of I. In separate work by Nagel and Seceleanu still in preparation, the minimal free 
resolutions of Ir have been determined for all r ≥ 1. The following resolution is the spe-
cial case of this result obtained using their argument with r = 1. By the Hilbert–Burch 
Theorem, the minimal free graded resolution of I is

0 → R(−2n) ⊕R(−n− 3) → R(−n− 1)3 → I → 0.

Indeed, set A =
[

xy xz yz
zn−1 yn−1 xn−1

]T
and note that the ideal I is generated by the 

maximal minors of A. Furthermore, since I is the defining ideal of a reduced set of 
points in P2(K), we have dim(R/I) = depth(R/I) = 1 and so the projective dimension 
has pd(R/I) = 2. Now the Hilbert–Burch theorem guarantees that 0 → R(−2n) ⊕
R(−n − 3) A−→ R(−n − 1)3 → R → R/I → 0 is a minimal free resolution of R/I, which 
implies that the minimal resolution of I fits the description above.

Thus reg(I) = 2n − 1 and ω(I) = n + 1 = α(I), so the bound in (4) becomes

reg(Ir) ≤ 4n− 2 + (r − 2)(n + 1) = r(n + 1) + 2(n− 2).

Claim. α̂(I) = n.

To see this, note that I is contained in the complete intersection ideal J = (yn −
zn, zn − xn) of n2 points. Thus

α(I(3m)) ≥ α(J (3m)) = α(J3m) = 3mα(J) = 3mn.

But ((xn−yn)(xn−zn)(yn−zn))m is in I(3m) so 3mn ≥ α(I(3m)). Thus α(I(3m)) = 3mn, 
hence α̂(I) = n.

Now, r ≥ 4 is equivalent to 3rn/2 ≥ (n + 1)r + 2(n − 2), so for m/r > 3/2 and r ≥ 4
we obtain

α(I(m)) ≥ mα̂(I) = mn > 3rn/2 ≥ (n + 1)r + 2(n− 2) ≥ reg(Ir)
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Fig. 1. A configuration of 12 lines with 19 triple points.

and hence we have I(m) ⊆ Ir whenever r ≥ 4 and m/r > 3/2. If r = 2 but m/r > 3/2, 
then m ≥ 4, hence in this case we have I(m) ⊆ Ir by (1).

We are left with the case of r = 3 and so m ≥ 5; if I(5) ⊆ I3 (and hence I(m) ⊆
I(5) ⊆ I3), then I(m) ⊆ Ir for all m and r with m/r > 3/2, hence ρ(I) ≤ 3/2 and so 
ρ(I) = 3/2. Thus we now check that I3 contains I(5). We have

α(I(5)) ≥ 5α̂(I) = 5n > 5n− 1 = 3(n + 1) + 2(n− 2) ≥ reg(I3),

so I3 indeed contains I(5).
The asymptotic resurgence of I is easily established taking into account that the upper 

bound

ρ̂(I) ≤ ω(I)
α̂(I) (5)

(which was established in [15, Theorem 1.2]) agrees in our situation with the lower bound 
stated in (3). �

Next we consider the example constructed in [8]. Fig. 1 shows the example. It consists 
of 12 lines with 19 triple points (and 9 double points, which we ignore). The configuration 
as considered in [8] used a specific set of points defined over the reals, but in fact the 
points can be defined over the rationals (or any field K large enough to accommodate 
the desired combinatorial structure of the arrangement of lines). This is because one 
has some freedom in choosing the points. This is indicated in Fig. 1 by representing the 
points A, B and C as open circles; these points are free to be placed anywhere, as long 
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as they are not collinear. The three points shown as triangles (D, E and F ) are required 
to lie on the lines through pairs of the points A, B and C but are otherwise (mostly) 
free. The other points are determined in terms of these 6. By fixing an appropriate 
choice of coordinates, we see there is in fact a single degree of freedom, represented in 
our construction below by the parameter t. The specific example considered in [8] is 
the one for which all of the points are affine and the points E, F and L in Fig. 1 form 
an equilateral triangle. It corresponds (up to a choice of coordinates) to choosing our 
parameter t to be t = −

√
3−1
2 (as is easy to see by computing cross ratios for the points 

F , B, K and C). Note however, that for some values of t, the configuration of points 
becomes degenerate (for example, some of the points can coincide, as we will see below), 
and so some values of t are not allowed.

So here is the construction: take three general points A, B, C ∈ P2, as shown in Fig. 1. 
We may assume that A = [0 : 0 : 1], B = [0 : 1 : 0] and C = [1 : 0 : 0]. We may also 
assume K[P2] = K[x, y, z], where x = 0 is the line AB through A and B, y = 0 is the 
line AC through A and C, and z = 0 is the line BC through B and C. Now pick general 
points D ∈ AB, E ∈ AC and F ∈ BC. By appropriate choice of coordinates, we may 
assume D = [0 : 1 : 1] and E = [1 : 0 : 1], but this fixes the coordinate system on P2, so 
now F must be written as F = [1 : t : 0], for some parameter t, which can either be in K
or in some extension field of K. (However, not all values of t are allowed. If t = 0, then 
F = C, but as Fig. 1 shows, F and C should be distinct. As we will see below, we also 
need t �= −1, −2: if t = −1, then F = K and DE = NO, while if t = −2, then S = D. 
Also, we must avoid t2 + t + 1 = 0, since in that case M = N = C.)

With these choices, BE is x − z = 0, AF is tx − y = 0, DF is tx − y + z = 0 and DE

is x + y − z = 0. Then we obtain the following points, shown in Fig. 1: G = [1 : t : 1]
is the point AF ∩ BE, H = [1 : t + 1 : 1] is the point DF ∩ BE, I = [1 : 0 : −t] is 
the point DF ∩ AC, J = [1 : t : t + 1] is the point AF ∩ DE, and K = [1 : −1 : 0] is 
the point BC ∩DE. Then HJ is the line (t2 + t + 1)x − ty − z = 0 and L is the point 
[0 : 1 : −t] = HJ ∩ AB, M is the point [1 : 0 : t2 + t + 1] = HJ ∩ AC, and N is the 
point [t : t2 + t + 1 : 0] = HJ ∩BC. Next, IK is the line tx + ty + z = 0, O is the point 
[t : −(t + 1) : t] = IK ∩ BE and P is the point [1 : t : −(t2 + t)] = IK ∩ AF . (Note 
that L has already been defined as the point HJ ∩AB, but it is easy to check that L is 
also on IK and is thus the point of intersection of all three lines, HJ, AB, IK, as shown 
in Fig. 1.) We now get the line GM : (t3 + t2 + t)x − (t2 + t)y − tz = 0 and the points 
Q = [0 : −t : t2+t] = [0 : −1 : t +1] = GM∩AB and R = [t2+2t : t3+2t2+t : t] = [t +2 :
t2 +2t +1 : 1] = GM ∩DF , followed by the line NO: (t2 + t +1)x − ty−(t2 +2t +2)z = 0
(note that R is on NO, hence R is the point of intersection of GM, DF, NO). The 19th 
and final point is S = [t2 +3t +2 : −(t +1) : t2 +2t +1] = [t +2 : −1 : t +1] = DE∩NO. 
(Note that if t = −1, then DE = NO, so S is not defined, and if t = −2, then S = [0 :
1 : 1] = D.) There is one last line, CQ: (t + 1)y + z = 0, and it is easy to check that P
and S are on CQ.

(As an aside we also mention that there are 10 conics through sets of 6 points, as can 
be seen directly if one carries out the construction above using, for example, the software 
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Geogebra, available on-line for free and which we used to create Fig. 1. Each of the points 
A, H, K, B, D, E, F, I, J, L is a triple point, but the union of the three lines through any 
one of these 10 points contains only 13 of the 19 points A, . . . , S. The missing 6 lie on a 
conic, reducible for the points A, H and K.)

Given any field F, one can construct the ideal I ⊂ F(t)[x, y, z] of the points A, . . . , S
using software such as Singular [10] (see the script provided in [8]) or Macaulay2 [21]
(code is included as commented out text in the TEX source file for this article available 
in the arXiv). When F = Q is the rationals, so K = F(t) for an indeterminate t, one 
finds that I is generated by 3 quintics and has α(I) = ω(I) = 5 and reg(I) = 7, and 
that I(3) � I2 (this failure of containment can be checked fairly efficiently by checking 
that the product of the forms defining the 19 lines, which clearly is in I(3), is not in I2). 
In fact, the same results will hold for K = Q by taking t to be any sufficiently general 
element of either Q or of an extension field of Q. One can even take K to be a finite 
field. For example, for K = Z/31 991Z and t = 5637 (a specific but randomly chosen 
value), Macaulay2 shows that the points A, . . . , S are distinct and that I again satisfies 
α(I) = ω(I) = 5, reg(I) = 7 with I(3) � I2.

Theorem 2.2. Let K be a field such that the points A, . . . , S ∈ K[P2] specified above are 
distinct and the ideal I of the set Z of these 19 points satisfies α(I) = ω(I) = 5 and 
reg(I) = 7 with I(3) � I2. Then

ρ(I) = 3
2 and ρ̂(I) = 5

4 .

Proof. We begin by computing the Waldschmidt constant α̂(I) of I (we will show that 
α̂(I) = 4). By way of contradiction, assume that there exists m ≥ 1 such that

α(I(m)) ≤ 4m− 1. (6)

Let D be a divisor of degree d ≤ 4m − 1 vanishing on Z to order at least m.
Since every line in the configuration contains at least 4 configuration points, Bezout’s 

Theorem implies that each configuration line is a component of D. Subtracting these 12
lines from D we obtain a divisor D′ of degree d′ = d − 12 vanishing at each point of Z
to order at least m − 3. In other words, we are in the situation of (6) with m replaced 
by m′ = m − 3. Indeed

α(I(m′)) ≤ d′ = d− 12 ≤ 4(m− 3) − 1 = 4m′ − 1.

Continuing by a finite descent, we will be reduced to a situation in which m′ is either 1, 2
or 3 and the degree d′ is at most either 3, 7 or 11 respectively. Each of these possibilities 
is eliminated by one more application of Bezout’s Theorem. Hence our assumption in 
(6) was false and it must be that

α(I(m)) ≥ 4m
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for all m ≥ 1 and hence α̂(I) ≥ 4. Since the 12 lines give a form in I(3), we have 
α(I(3)) ≤ 12 (and hence α(I(3m)) ≤ mα(I(3)) ≤ 12m, so α̂(I) ≤ 4), hence α̂(I) = 4.

Now applying (3) and (5), we obtain

ρ̂(I) = 5
4 .

Finally we turn to ρ(I). The proof follows the same lines as that of Theorem 2.1. 
Suppose I(m) � Ir. This never happens for r = 1, so consider r = 2. Since I(m) ⊆ I2

for m ≥ 2r and since we know I(3) � I2, we have I(m) � I2 if and only if m ≤ 3 and 
hence mr ≤ 3

2 . Now assume that r > 2. Then α(I(m)) < reg(Ir), but we saw above that 
4m ≤ α(I(m)) and reg(Ir) ≤ 2 reg(I) + (r − 2)ω(I) = 5r + 4, hence 4m < 5r + 4, or 
m
r < 5

4 + 1
r . If r ≥ 4, then mr < 5

4 + 1
4 = 3

2 . If r = 3, then 4m < 5r + 4 = 19, so m ≤ 4, 
hence mr ≤ 4

3 < 3
2 . Thus mr ≤ 3

2 in all cases, with equality in one case (namely, m = 3, 
r = 2) so ρ(I) = 3

2 . �
3. Results in dimension N ≥ 2 over finite fields

Here we compute the resurgences for some ideals including a range of ideals giving 
exclusively positive characteristic counterexamples to Conjecture 1.1.

So in this section we let K = Fs be a field of characteristic p > 0 of s elements and 
let K′ = Fp be the subfield of order p. Let I ⊆ K[PN ] = K[x0, . . . , xN ] be the ideal of all 
of the K-points of PN = PN (K) but one. We recall that I(Nr−(N−1)) � Ir holds for the 
following cases (see [17, Proposition 2.2 and Section 3]):

(i) p > 2, N = 2 and r = (s + 1)/2;
(ii) s = p > 2, r = 2 and N = (p + 1)/2 (in which case Nr − (N − 1) = (p + 3)/2) and
(iii) r = (p + N − 1)/N (in which case Nr − (N − 1) = p), s = p > (N − 1)2 and 

p ≡ 1 (mod N).

Lemma 3.1. Let I be the ideal of all but one of the K-points of PN (K); let q be the 
excluded point. Then reg(I) = N(s − 1) + 1.

Proof. Let J be the defining ideal of the set of K-lines through q, and let H be a 
hyperplane not passing through q. Without loss of generality we may assume that q =
[1 : 0 : . . . : 0] and that H is defined by x0. The defining ideal of the set of points 
of PN (K) off H and excluding q is given by B = C : Iq, where Iq is the defining 
ideal of the point q and C is the ideal defining the set of points PN (K) \ {H}, namely 
the complete intersection C = (x1(xs−1

1 − xs−1
0 ), . . . , xN (xs−1

N − xs−1
0 )). To see that C

is precisely the ideal indicated before, note that both are unmixed ideals of the same 
degree which satisfy an obvious containment. The relation B = C : Iq yields that B is 
linked to Iq via the complete intersection C. As a consequence of a well-known formula 
for the behavior of Hilbert functions under linkage, we have, as in [9, Theorem 3], that 
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α(Iq/C) +reg(R/B) = reg(R/C). The Koszul resolution shows that reg(R/C) = N(s −1). 
Since α(Iq/C) = 1, we conclude reg(B) = 1 + reg(R/B) = N(s − 1).

By [17, Lemma 4.7], I is a basic double link of B, i.e., I = x0B + J . It follows that 
there is a short exact sequence

0 → (R/B)(−1) → R/I → R/(x0, J) → 0,

where the embedding is induced by multiplication by x0. Taking cohomology we get

reg(I) = max{1 + reg(B), reg(x0, J)} = max{1 + reg(B), reg(J)}. (7)

In order to compute the regularity of J we use induction on N . Let D be the ideal of 
all K-points of PN (K). We claim reg(D) = N(s − 1) + 2.

Indeed, the ideal x0C + J is a basic double link of C. Thus, it is saturated of degree

degC + deg J = degD.

Since x0C+J ⊂ D and both saturated ideals have the same degree, we get x0C+J = D. 
As above, this gives

reg(D) = max{1 + reg(C), reg(J)}. (8)

Now observe that J is the defining ideal of the cone in PN(K) over the K-points in 
the hyperplane H. Hence, the induction hypothesis yields reg(J) = (N − 1)(s − 1) + 2. 
Using reg(C) = N(s − 1) + 1, Equation (8) provides reg(D) = N(s − 1) + 2, as claimed.

Finally, applying Equation (7), we obtain

reg(I) = max{N(s− 1) + 1, (N − 1)(s− 1) + 2} = N(s− 1) + 1,

as desired. �
Theorem 3.2. Let I be the ideal of all but one of the K-points of PN (K). Then ρ(I) =
ρ̂(I) = N(s−1)+1

s and α̂(I) = s.

Proof. Let q be the excluded point and let F be the product of all hyperplanes defined 
over K but not vanishing at q, so deg(F ) = sN . Since F vanishes with multiplicity sN−1

at each non-q point, we have F (N(s−1)+1)t ∈ I((N(s−1)+1)tsN−1). By the argument of 
[17, Proposition 3.8] (which assumes s = p but works also for s > p), I vanishes at all 
K-points in degrees less than N(s − 1) + 1, hence Is

N t+1 vanishes at q in degrees less 
than (sN t + 1)(N(s − 1) + 1). Since deg(F (N(s−1)+1)t) = (N(s − 1) + 1)tsN < (sN t +
1)(N(s −1) +1), we obtain I((N(s−1)+1)sN−1t) � Is

N t+1, thus (N(s−1)+1)sN−1t
sN t+1 ≤ ρ(I) for 

all t, hence, after passing to the limit as t → ∞, we obtain N(s−1)+1
s ≤ ρ(I).

To show that ρ(I) ≤ N − N−1
s , it suffices to prove that I(m) ⊆ Ir, whenever m

r >
N(s−1)+1 , that is whenever ms > r(N(s − 1) + 1). Recall that by Lemma 3.1 we have 
s
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reg(I) = N(s − 1) + 1 and, as a consequence of work of [4,14] improved upon in [5, 
Proposition 1.7.1], it follows that reg(Ir) ≤ r reg(I) = r(N(s − 1) + 1) for any positive 
integer r. (Note that the preceding inequality is guaranteed to hold only for homogeneous 
ideals I with dim(R/I) ≤ 1, a hypothesis which is satisfied by our ideal.) Without loss of 
generality we may assume that q = [1 : 0 : . . . : 0]. Next, note that the ideal I is contained 
in the complete intersection C = (x1(xs−1

1 − xs−1
0 ), . . . , xN (xs−1

N − xs−1
0 )) defining the 

sN points of PN (K) that are not situated on H = V (x0) and are distinct from q. Thus 
I(m) ⊆ C(m) = Cm and so α(I(m)) ≥ α(Cm) = mα(C) = ms. Combining the three 
inequalities gives α(I(m)) ≥ ms > r(N(s − 1) + 1) ≥ reg(Ir). By [3, Lemma 2.3.4], 
α(I(m)) > reg(Ir) implies I(m) ⊆ Ir as desired.

Now we show that ρ̂(I) = ρ(I) = N − N−1
s . We know that ρ̂(I) ≤ ρ(I) = N − N−1

s . It 
remains to see that the opposite inequality holds. Recall from the first paragraph of this 
proof that I((N(s−1)+1)sN−1t) � Is

N t+1 for all t > 0. Now for u, v > 0, letting t = uv, 
we deduce that I((N(s−1)+1)sN−1uv) � Is

Nuv+1. As a consequence, I((N(s−1)+1)sN−1uv) �

Is
Nuv+u = I(sNv+1)u, because I(sNv+1)u ⊆ Is

Nuv+1. Thus we have (N(s−1)+1)sN−1v
(sNv+1) ≤

ρ̂(I) for all v > 0 and hence N(s−1)+1
s = limv→∞

(N(s−1)+1)sN−1v
sNv+1 ≤ ρ̂(I).

To finish, note by the argument in the first paragraph above that F t ∈ I(tsN−1), hence

α(I(tsN−1))
tsN−1 ≤ deg(F t)

tsN−1 = tsN

tsN−1 = s,

so taking the limit as t → ∞ gives α̂(I) ≤ s. But we also saw that α(I(m)) ≥ α(Cm) =
mα(C) = ms, so α(I(m))

m ≥ s, hence also α̂(I) ≥ s. �
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