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Let X be a generic alternating matrix, t be a generic row 
vector, and J be the ideal Pf4(X) + I1(tX). We prove 
that J is a perfect Gorenstein ideal of grade equal to the 
grade of Pf4(X) plus two. This result is used by Ramos 
and Simis in their calculation of the Aluffi algebra of the 
module of derivations of the homogeneous coordinate ring of a 
smooth projective hypersurface. We also prove that J defines 
a domain, or a normal ring, or a unique factorization domain 
if and only if the base ring has the same property. The main 
object of study in the present paper is the module N which is 
equal to the column space of X, calculated mod Pf4(X). The 
module N is a self-dual maximal Cohen–Macaulay module of 
rank two; furthermore, J is a Bourbaki ideal for N. The ideals 
which define the homogeneous coordinate rings of the Plücker 
embeddings of the Schubert subvarieties of the Grassmannian 
of planes are used in the study of the module N.
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1. Introduction

Aluffi [1] introduced a class of algebras which are intermediate between the symmetric 
algebra and the Rees algebra of an ideal in order to define the characteristic cycle of a 
hypersurface parallel to the conormal cycle in intersection theory. These algebras were 
investigated by Nejad and Simis [28], who called them Aluffi algebras. At the end of 
his paper, Aluffi observed that it would be computationally desirable to up-grade his 
methods to more general schemes. A first step in the direction of Aluffi’s proposed 
up-grade is a good notion of the Rees algebra of a module, such as the one described by 
Simis, Ulrich, and Vasconcelos in [30]. A second step in the direction of Aluffi’s proposed 
up-grade is a good notion of the Aluffi algebra of a module, such as the one introduced 
by Ramos and Simis in [29].

Ramos and Simis compute the Aluffi algebra of the module of derivations of the 
homogeneous coordinate ring of a smooth projective hypersurface. In other contexts this 
module is also called the module of tangent vector fields or the differential idealizer or the 
module of logarithmic derivations. As part of the Ramos–Simis program, it is necessary 
to understand the homological nature of the ideal J = Pf4(X) + I1(tX), where X is a 
generic alternating matrix and t is a generic row vector. Simis told us that he and Ramos 
conjectured that J is a Gorenstein ideal of height two more than the height of Pf4(X). 
The purpose of this paper is to prove the Ramos–Simis conjecture.

Let R0 be an arbitrary commutative Noetherian ring, f be an integer with 4 ≤ f,

R = R0[{xi,j | 1 ≤ i < j ≤ f} ∪ {ti | 1 ≤ i ≤ f}]

be a polynomial ring in 
(
f

2
)
+ f indeterminates, X be the f × f alternating matrix with xi,j

in position (row i, column j) for i < j, t be the 1 × f matrix with tj in column j, I be the 
ideal Pf4(X) which is generated by the set of Pfaffians of the principal 4 ×4 submatrices 
of X, K be the ideal I1(tX), which is generated by the entries of the product of t times 
X, and J be the ideal I +K of R. The main result in the paper, Theorem 4.8, is that J
is a perfect Gorenstein ideal in R of grade 

(
f−2
2
)
+ 2. In particular, if R0 is a Gorenstein 

ring, then R/J is a Gorenstein ring. Some consequences of the main result are contained 
in Corollary 5.3 where it is shown that R/J is a domain, or a normal ring, or a unique 
factorization domain if and only if the base ring R0 has the same property.



A.R. Kustin / Journal of Algebra 472 (2017) 115–145 117
The main ingredient in the proof of Theorem 4.8 takes place over the polynomial ring

R = R0[{xi,j | 1 ≤ i < j ≤ f}].

We prove in Lemma 3.1 that “the column space of X, calculated mod I”, which is equal 
to the submodule

C = {Xθ ∈ (RI )f | θ ∈ (RI )f} of (RI )f, (1.0.1)

is a perfect R-module of projective dimension 
(
f−2
2
)
. If R0 is a Cohen–Macaulay domain, 

then we prove, in Observation 3.14.d, that the module of (1.0.1) is a self-dual maximal 
Cohen–Macaulay R/I-module of rank two; and we prove, see Remark 4.4.b, that the 
ideal J(R/I), which is the central object in this paper, is a Bourbaki ideal for R ⊗R C; 
and therefore, homological properties of C are inherited by R/J . For more discussion 
about Bourbaki ideals, see, for example, [2,26,4,30].

The ideal I is the ideal of “quadratic relations” which define the homogeneous co-
ordinate ring of the image of the Plücker embedding of the Grassmannian Gr(2, f) into 
projective space P

(
f

2
)
−1. Properties of the Schubert subvarieties of Gr(2, f) play a crucial 

role in our proof of the properties of the module (1.0.1).
The ideal I1(tX) has already been studied. If f is odd, then I1(tX) is a type two almost 

complete intersection ideal introduced by Huneke and Ulrich in [16] and further studied 
in [23]. If f is even, then I1(tX) is a mixed ideal; its unmixed part is I1(tX) + Pff(X); 
see, for example, [24]. This ideal is a deviation two, grade f − 1 Gorenstein ideal also 
introduced in [16] and further studied in [21,31,22].

2. Notation, conventions, and preliminary results

2.1. Let M and N be modules over a commutative Noetherian ring R. Whenever the 
meaning is unambiguous, we write M∗, M ⊗ N , Hom(M, N), and 

∧i
M in place of 

HomR(M, R), M ⊗R N , HomR(M, N), and 
∧i

R M , respectively.

2.2. An element x of a ring R is regular on the R-module M if x is a non-zero-divisor 
on M . In other words, if xm = 0 for some element m ∈ M , then m = 0.

2.3. If x is a non-nilpotent element of a commutative Noetherian ring R, then the local-
ization of R at x, denoted Rx, is the ring S−1R where S is the set {1, x, x2, x3, . . .}. If 
x is a regular element of R, then we use the notation Rx and R[x−1] interchangeably.

2.4. We denote the ring of integers by Z.

2.1. Perfection

2.5. Let R be a Noetherian ring, I be a proper ideal of R, and M be a non-zero finitely 
generated R-module.
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(a) The grade of I is the length of a maximal regular sequence on R which is contained 
in I. (If R is Cohen–Macaulay, then the grade of I is equal to the height of I.)

(b) The R-module M is called perfect if the grade of the annihilator of M (denoted 
annR M) is equal to the projective dimension of M (denoted pdR M). The inequality

grade(annR M) ≤ pdR M (2.5.1)

holds automatically if M �= 0.
(c) If M is a perfect R-module, then

pdRP
MP = grade annRP

MP = grade annR M

for all prime ideals P in the support of M . (See, for example, [6, Prop. 16.17].)
(d) If R is a polynomial ring over a field or over the ring of integers and M is a finitely 

generated graded R-module, then M is a perfect R-module if and only if M is a 
Cohen–Macaulay R-module. (This is not the full story. For more information, see, 
for example, [6, Prop. 16.19] or [5, Thm. 2.1.5].)

(e) The ideal I in R is called a perfect ideal if R/I is a perfect R-module. A perfect ideal 
I of grade g is a Gorenstein ideal if ExtgR(R/I, R) is a cyclic R-module.

The concept of perfection is particularly useful because of the “Persistence of Perfec-
tion Principle”, which is also known as the “transfer of perfection”; see [14, Prop. 6.14]
or [6, Thm. 3.5].

Theorem 2.6. Let R → S be a homomorphism of Noetherian rings, M be a perfect 
R-module, and P be a resolution of M by projective R-modules. If S ⊗R M �= 0 and

grade(annM) ≤ grade(ann(S ⊗R M)),

then S ⊗R M is a perfect S-module with pdS(S ⊗R M) = pdR M and S ⊗R P is a 
resolution of S ⊗R M by projective S-modules.

2.2. Multilinear algebra

2.7. Many of our calculations are made in a coordinate-free manner. If the calculation is 
coordinate free, then the signs take care of themselves. In particular, when working with 
Pfaffians, we prefer to use elements of an exterior algebra rather than to define and keep 
track of sign conventions which mimic operations that take place in an exterior algebra.

Let R be a commutative Noetherian ring and F be a free module of finite rank f
over R. We make much use of the exterior algebras 

∧•
F and 
∧•

F ∗, the fact that 
∧•

F

and 
∧•

F ∗ are modules over one another, and the fact that the even part of an exterior 
algebra comes equipped with a divided power structure. The rules for a divided power 
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algebra are recorded in [12, section 7] or [10, Appendix 2]. (In practice these rules say 
that w(a) behaves like wa/(a!) would behave if a! were a unit in R.)

2.8. We recall some of the properties of the divided power structure on the subalge-
bra 
∧2•

F of the exterior algebra 
∧•

F . Suppose that e1, . . . , ef is a basis for the free 
R-module F and

f2 =
∑

1≤i1<i2≤f

ai1,i2 ei1 ∧ ei2

is an element of 
∧2

F , for some ai1,i2 in R. Let A be the f × f alternating matrix with

Ai,j =

⎧⎪⎪⎨
⎪⎪⎩
ai,j , if i < j,
0, if i = j, and
−ai,j , if j < i.

For each positive integer �, the �-th divided power of f2 is

f
(�)
2 =
∑
I

AIeI ∈
∧2�

F,

where the 2�-tuple I = (i1, . . . , i2�) roams over all increasing sequences of integers with 
1 ≤ i1 and i2� ≤ f, eI = ei1 ∧ . . . ∧ ei2� , and AI is the Pfaffian of the submatrix of A
which consists of rows and columns {i1, . . . , i2�}, in the given order. Furthermore, 

∧2•
F

is a DGΓ-module over 
∧•

F ∗. In particular, if τ ∈ F ∗ and v1, . . . , vs are homogeneous 
elements of 

∧2•
F , then

τ
(
v
(�1)
1 ∧ . . . ∧ v(�s)

s

)
=

s∑
j=1

τ(vj) ∧ v
(�1)
1 ∧ . . . ∧ v

(�j−1)
j ∧ . . . ∧ v(�s)

s . (2.8.1)

For more details see, for example, [10, Appendix A2.4] or [8, Appendix and Sect. 2].

The following fact about the interaction of the module structures of 
∧•

F on 
∧•

F ∗

and 
∧•

F ∗ on 
∧•

F is well known; see [7, section 1] and [8, Appendix].

Proposition 2.9. Let F be a free module of finite rank over a commutative Noetherian 
ring R. If f1 ∈ F , fp ∈

∧p
F , and φq ∈

∧q(F ∗), then

(f1(φq))(fp) = f1 ∧ (φq(fp)) + (−1)1+qφq(f1 ∧ fp). �
The following fact is important for our purposes. We prove it carefully in order to 

illustrate some of the ideas contained in 2.7 and 2.8.
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Observation 2.10. Let R be a commutative Noetherian ring, F be a free R-module of 
finite rank, and f2 be an element of 

∧2
F .

(a) If φ3 ∈
∧3

F ∗, then [f2(φ3)](f2) = φ3(f (2)
2 ).

(b) If φ1, φ′
1, and φ′′

1 are in F ∗, then

f2(φ1 ∧ φ′
1 ∧ φ′′

1) = f2(φ1 ∧ φ′
1) · φ′′

1 − f2(φ1 ∧ φ′′
1) · φ′

1 + f2(φ′
1 ∧ φ′′

1) · φ1.

Proof. We prove (a) by showing that the two elements [f2(φ3)](f2) and φ3(f (2)
2 ) of F

are equal by showing that φ1

(
[f2(φ3)](f2)

)
= φ1

(
φ3(f (2)

2 )
)

for every element φ1 of F ∗. 
Observe that

φ1([f2(φ3)](f2)) = −[f2(φ3)][φ1(f2)] = −[φ1(f2)][f2(φ3)] = −[φ1(f2) ∧ f2](φ3)

= −[φ1(f (2)
2 )](φ3) = −φ3[φ1(f (2)

2 )] = φ1[φ3(f (2)
2 )].

The first and last equalities hold because 
∧•

F is a module over the graded-commutative 
ring 
∧•

F ∗. The second and fifth equalities follow from the fact that the module actions 
of 
∧•

F ∗ on 
∧•

F and 
∧•

F on 
∧•

F ∗ are compatible in the sense that

φi(fi) = fi(φi) for φi ∈
∧i

F ∗ and fi ∈
∧i

F. (2.10.1)

The third equality is a consequence of the module action of 
∧•

F on 
∧•

F ∗. The fourth 
equality is explained in (2.8.1).

The proof of (b) is similar. �
2.3. Mapping cone

The mapping cone of the map of complexes c : F → E:

· · ·
f2

F1
f1

c1

F0

c0

· · ·
e2

E1
e1

E0

is the complex M :

· · · →
E3
⊕
F2

[
e3 c2
0 −f2

]
−−−−−−−−→

E2
⊕
F1

[
e2 c1
0 −f1

]
−−−−−−−−→

E1
⊕
F0

[
e1 c0

]
−−−−−−−→ E0.

The three complexes are related by the short exact sequence
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0 → E → M → F [−1] → 0;

and hence by the long exact sequence of homology

· · · → H1(M) → H0(F ) → H0(E) → H0(M) → 0.

One can iterate the procedure. If F , E, and D are resolutions of H0(F ), H0(E), and 
H0(D), respectively,

0 → H0(F ) γ−→ H0(E) β−→ H0(D)

is an exact sequence of modules, and c : F → E is a map of complexes which covers γ, 
then the mapping cone M of c is a resolution of coker(γ) ∼= im(β). If b : M → D is a 
map of complexes which covers imβ ⊆ H0(D), then the mapping cone of b is a resolution 
of cokerβ.

2.4. The set up

2.11. We set up the data in a coordinate-free manner in 2.12 and 2.13; a version with 
coordinates is given in 2.14. The critical calculation, Lemma 3.1, involves “xi,j ’s”, but 
not “ti’s”; the ambient ring for this calculation is called R. The information about R is 
given in 2.12.a, 2.13.a, and 2.14.a. The main result in the paper, Theorem 4.8, involves 
both “xi,j ’s” and “ti’s”; the ambient ring for this result is called R. The ring R is an 
extension of R; the extra information about R is given in 2.12.b, 2.13.b, and 2.14.b.

Data 2.12. Let f be a positive integer, R0 a commutative Noetherian ring, and V be a 
free R0-module of rank f.

(a) Let R =
⊕∞

i=0 Ri be the standard graded polynomial ring

R = SymR0
• (
∧2

R0
V ∗)

and F be the free R-module F = R⊗R0 V . Consider the R-module homomorphism

ξ ∈ HomR(
∧2

R F ∗, R) =
∧2

R F,

which is given as the composition

ξ :
∧2

R F ∗ = R⊗R0

∧2
R0

V ∗ = R⊗R1
multiplication−−−−−−−−−→ R.

(b) View 
∧2

R0
V ∗ ⊕ V as a bi-graded free R0-module where each element of 

∧2
R0

V ∗

has degree (1, 0) and each element of V has degree (0, 1). Let R be the bi-graded 
polynomial ring
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R = SymR0
• (
∧2

R0
V ∗ ⊕ V )

and F be the free R-module F = R ⊗R0 V . Consider the R-module homomorphism

τ ∈ HomR(F,R) = F∗

which is given as the composition

F = R⊗R0 V = R⊗ R0,1
multiplication−−−−−−−−−→ R.

(c) There is a natural inclusion map R R and a natural projection map 

R R . The R-module F of (b) is also equal to F = R ⊗R F ; furthermore, 
the element ξ ∈

∧2
R F of (a) is also equal to the element

ξ = 1 ⊗ ξ of
∧2

R F = R⊗R

∧2
R F.

Notation 2.13. Adopt Data 2.12.

(a) Let
(i) I be the ideal I = im(ξ(2) :

∧4
F ∗ → R), of R,

(ii) A be the ring R/I,
(iii) be the functor A ⊗R −, and
(iv) N be the cokernel of the map d1 :

∧3
F

∗ → F
∗ where d1 :

∧3
F ∗ → F ∗ is the 

map d1(φ3) = ξ(φ3), for φ3 ∈
∧3

F ∗.
(b) Let

(i) K and J be the ideals

K = im(τ(ξ) : F∗ → R), and

J = IR + K

of R,
(ii) A be the ring R ⊗R A, and
(iii) N be the R-module R ⊗R N .

Remark 2.14. Adopt Data 2.12 and Notation 2.13. If one picks dual bases e1, . . . , ef for 
V and e∗1, . . . , e

∗
f for V ∗, let xi,j represent e∗j ∧ e∗i ∈

∧2
R0

V ∗ = R1,0, for 1 ≤ i < j ≤ f, 
and let ti represent ei ∈ V = R0,1, for 1 ≤ i ≤ f, then the following statements hold.

(a) The standard graded polynomial ring R is R = R0[{xi,j | 1 ≤ i < j ≤ f}]. Further-
more,
(i) the element ξ of 

∧2
F is ξ =

∑
xi,j ei ∧ ej ,
i<j
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(ii) the matrix for the R-module homomorphism d0 : F ∗ → F , with d0(φ1) = φ1(ξ), 
with respect to the bases {e∗j} and {ei}, is −X, where X is the generic f × f

alternating matrix whose entry in position (row i, column j) is
⎧⎪⎪⎨
⎪⎪⎩
xi,j if i < j

0 if i = j

−xj,i if j < i,

and
(iii) the ideal I of Notation 2.13 is equal to Pf4(X), which is the ideal of R generated 

by the set of Pfaffians of the principal 4 × 4 submatrices of X.
(b) The bi-graded polynomial ring R is R = R0[{xi,j | 1 ≤ i < j ≤ f} ∪ {ti | 1 ≤ i ≤ f}]. 

Furthermore,
(i) the element τ of F∗ is τ =

∑
i tie

∗
i ,

(ii) the matrix for τ : F → R with respect to the basis {ei} for F is the row vector

t = [t1, . . . , tf],

(iii) the element τ(ξ) in F is an R-module homomorphism F∗ → R and the matrix 
for this homomorphism, with respect to the basis {e∗i } is the row vector tX, 
and

(iv) the ideal K of Notation 2.13 is equal to I1(tX), which is the ideal of R generated 
by the entries of the product of t times X, and

(v) the ideal J of Notation 2.13 is equal to Pf4(X) · R + I1(tX).

Remark 2.15. Adopt the language of 2.12.a and 2.13.a. The following maps appear often 
in the paper:

M :
∧3

F ∗ d1−−→ F ∗ d0−−→ F
δ1−→
∧3

F, (2.15.1)

with d1(φ3) = ξ(φ3), d0(φ1) = φ1(ξ), and δ1(f1) = f1 ∧ ξ, for φ3 ∈
∧3

F ∗, φ1 ∈ F ∗, and 
f1 ∈ F . Use Observation 2.10.a and (2.8.1) to see that

(d0 ◦ d1)(φ3) = [ξ(φ3)](ξ) = φ3(ξ(2)) and (δ1 ◦ d0)(φ1) = [φ1(ξ)] ∧ ξ = φ1(ξ(2));

so, in particular A ⊗RM is a complex. In (3.11) we prove that a modification of A⊗R M
is exact and in Observation 3.14 we prove that A ⊗R M is exact.

If one uses the notation Remark 2.14.a, then the matrix for d0 is −X, the matrix 
for d1 has f rows and 

(
f

3
)

columns and the column corresponding to e∗k ∧ e∗j ∧ e∗i , for 
1 ≤ i < j < k ≤ f, is

[0 . . . 0 xj,k 0 . . . 0 −xi,k 0 . . . 0 xi,j 0 . . . 0]T , (2.15.2)
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where the non-zero entries appear in positions i, j, and k, respectively; see Observa-
tion 2.10.b and Remark 2.14.ai. (We use MT to represent the transpose of the matrix M .) 
The matrix for δ1 is the transpose of the matrix for d1.

3. The main ingredient

In this section we prove the following result.

Lemma 3.1. Adopt Data 2.12.a and Notation 2.13.a with 4 ≤ f. If the base ring R0 is 
an arbitrary commutative Noetherian ring, then the R-module N is perfect of projective 
dimension 

(
f−2
2
)
.

The proof of Lemma 3.1 is given in 3.12 at the end of the section. In Observation 3.14
we show that the module N of Lemma 3.1 is isomorphic to the module of (1.0.1).

Remark 3.2. The assertion of Lemma 3.1 does not hold for f = 3. Indeed, in the language 
of Remark 2.14, N , which is resolved by

0 → R

[
x2,3 −x1,3 x1,2

]T
−−−−−−−−−−−−−−−−−→ R3,

is not a perfect R-module and has projective dimension one, which is not equal to 
(
f−2
2
)
. 

(We use MT to represent the transpose of the matrix M .)

It is convenient to let

A′ be the ring A/(x1,2 , x2,3 , x1,3),

in the language of Remark 2.14.a. The proof of Lemma 3.1 depends on Lemma 3.3 and 
on information about the rings A and A′ which is contained in Lemma 3.7.

Lemma 3.3. Adopt Data 2.12.a and Notation 2.13.a with 3 ≤ f. If the base ring R0 is a 
commutative Noetherian domain, then there is an exact sequence of A-modules:

0 → N → A3 → A → A′ → 0. (3.3.1)

In particular, if (0) is the zero ideal of A, then N(0) is isomorphic to A(0) ⊕A(0).

The proof of Lemma 3.3 is given in 3.11.
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Remarks 3.4.

(a) A strengthened version of Lemma 3.3 may be found in Proposition 5.5.
(b) Lemma 3.3 does hold when f = 3; indeed, (3.3.1) becomes

0 → R3([
x2,3
−x1,3
x1,2

])
⎡
⎢⎣

0 x1,2 x1,3
−x1,2 0 x2,3
−x1,3 −x2,3 0

⎤
⎥⎦

−−−−−−−−−−−−−−−−−→ R3

[
x2,3 −x1,3 x1,2

]
−−−−−−−−−−−−−−−−→ R → R0 → 0,

which is exact.

Definition 3.5. Adopt the language of 2.12.a, 2.13.a and 2.14.a. For each integer λ, be-
tween 1 and f − 1, let Iλ be the ideal

Iλ = I + ({xi,j | 1 ≤ i < j ≤ λ})

of R.

Example 3.6. Retain the notation of Definition 3.5. The ideal I1 is equal to I (because 
the empty set generates the zero ideal) and the ideal If−1 is equal to ({xi,j | 1 ≤ i < j ≤
f − 1}) (because I is contained in the ideal ({xi,j | 1 ≤ i < j ≤ f − 1})). In particular, 
A = R/I1 and A′ = R/I3.

Lemma 3.7. Adopt the language of 2.12.a, 2.13.a, 2.14.a, and 3.5. Let λ be an integer 
between 1 and f − 1.

(a) If the base ring R0 is an arbitrary commutative Noetherian ring, then Iλ is a perfect 
ideal in R of grade 

(
f−2
2
)
+λ −1. In particular, if 4 ≤ f, then grade I3 = grade I1 +2.

(b) If the base ring R0 is a commutative Noetherian domain, then Iλ is a prime ideal.
(c) If the base ring R0 is an arbitrary commutative Noetherian ring, then I is a Goren-

stein ideal in the sense of 2.5.e. In particular, if R0 is a Gorenstein ring, then R/I

is a Gorenstein ring.

Remark 3.8. The “in particular assertion” in (a) would be false if f were equal to 3; 
because, in this case, I1, which is equal to (0), has grade 0, and I3, which is equal to 
(x1,2 , x1,3 , x2,3), has grade 3. Of course, the parameter λ, which is assumed to be at 
most f − 1, is not permitted to be 3, when f = 3.

Proof. (a, b) The ideal Iλ is equal to the ideal Pf(X; λ; λ) of [18]. The assertion follows 
from [18, Thm. 12]. The statement of [18, Thm. 12] only considers the case where R0 is a 
domain; however, as soon as one knows that Iλ is a perfect ideal when R0 is equal to the 
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ring of integers and when R0 is equal to a field, then Iλ built with R0 = Z is a generically 
perfect ideal and consequently Iλ built over an arbitrary commutative Noetherian R0 is 
a perfect ideal; see, for example [6, Prop. 3.2 and Thm. 3.3].

(c) A proof that R/I is a Gorenstein ring whenever R0 is Gorenstein is given in [18, 
Thm. 17]. A more explicit statement and proof of this result is given in [3, Corollary]. 
In particular, when R0 is equal to the ring of integers, then there exists a resolution F of 
R/I by free R-modules which has the property that the length of F is 

(
f−2
2
)

and the free 
module of F in position 

(
f−2
2
)

has rank one. Now let R0 be an arbitrary commutative 
Noetherian ring. We explained in the proof of (a) and (b) that I is a perfect ideal in R. 
The “Persistence of Perfection Principle”, Theorem 2.6, now guarantees that the back 
Betti number in a resolution of R/I by free R-modules is one; and therefore, I is a 
Gorenstein ideal in the sense of 2.5.e. �
Remark 3.9. An alternate phrasing of the proof of Lemma 3.7, parts (a) and (b), (but 
really the same argument in a different form) involves the Grassmannian Gr(2, f) of rank 2
free summands of the rank f free R0-module V . The ideal I is the ideal of “quadratic 
relations” which define the homogeneous coordinate ring of the image of the Plücker 
embedding of Gr(2, f) into P(

∧2
V ). The ideal Iλ defines the homogeneous coordinate 

ring of the Plücker embedding of the Schubert subvariety Ω(f − λ, f) of Gr(2, f). The 
Schubert subvariety Ω(f− λ, f) consists of all W in Gr(2, f) such that i ≤ rank(W ∩ Vi)
for the flag V1 � V2 where V1 is the summand of V with basis eλ+1, . . . , ef and V2 = V . 
The original proofs that the homogeneous coordinate rings of the Schubert subvarieties 
of the Grassmannian are Cohen–Macaulay domains are [15, Thm. 3.1∗, (3.10), Cor. 4.2], 
[25, Thm. 1], and [27, Thm. II.4.1 and Thm. III.4.1]. A version which contains many 
details is [6, Thm. 1.4, the bottom of page 52, Cor. 5.18, Thm. 6.3].

One consequence of Lemma 3.7 is that I is grade unmixed. This fact facilitates the 
identification of regular elements in A. Corollary 3.10 and its style of proof are used in 
the proof of Corollary 5.3.a.

Corollary 3.10. Adopt the language of 2.12.a, 2.13.a, and 2.14.a. If the base ring R0 is 
an arbitrary commutative Noetherian ring, then x1,2, x1,3 is a regular sequence on A.

Proof. Every associated prime P of R/I in R has grade PRP =
(
f−2
2
)
. Lemma 3.7.a

assures that I2, which equals (I , x1,2), is a perfect ideal of grade 
(
f−2
2
)

+ 1 in R; hence 
x1,2 is not in any associated prime of R/I (that is, x1,2 is regular on R/I) and every 
associated prime P of R/(I , x1,2) in R has grade PRP =

(
f−2
2
)
+ 1. We prove that x1,3

is regular on R/(I , x1,2) by showing that 
(
f−2
2
)

+ 2 ≤ gradePRP for all primes P of R
which contain (I , x1,2 , x1,3). Let P be such a prime. Consider the Pfaffian

x1,2x3,j − x1,3x2,j + x1,jx2,3 ∈ I ⊆ P.
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Thus, x2,3x1,j is in P for 3 ≤ j ≤ f. It follows that either I3, which is (I , x1,2 , x1,3 , x2,3), 
is contained in P or (I , x1,2 , x1,3 , . . . , x1,f) ⊆ P . Lemma 3.7.a ensures that I3 has 
grade 
(
f−2
2
)

+ 2. The ideal (I , x1,2 , x1,3 , . . . , x1,f) is equal to Pf4(X′) plus an ideal 
generated by f − 1 indeterminates, where X′ is X with row and column 1 deleted. Thus 
(I , x1,2 , x1,3 , . . . , x1,f) has grade

(
f−3
2
)

+ f− 1 =
(
f−2
2
)

+ 2.

In either event, 
(
f−2
2
)

+ 2 ≤ gradeP and the proof is complete. �
3.11. Proof of Lemma 3.3. We prove that

∧3
F

∗ d1−−−−→ F
∗ d′

0−−−−→ A3 ρ−−−→ A → A′ → 0 (3.11.1)

is an exact sequence of A-modules, where d1 :
∧3

F ∗ → F ∗ is d1(φ3) = ξ(φ3), as given 
in Notation 2.13.aiv and Remark 2.15, d′0 is the composition

F
∗ d0−−−−→ F =

f⊕
i=1

Aei
projection−−−−−−−−−→

3⊕
i=1

Aei,

where d0 : F ∗ → F is d0(φ1) = φ1(ξ) as described in Remark 2.14.aii and Remark 2.15, 
and ρ is given by the matrix

ρ = [x2,3 −x1,3 x1,2 ] . (3.11.2)

(The basis e1, . . . , ef for F is introduced in Remark 2.14.) Once we show that (3.11.1) is 
an exact sequence, then the proof is complete. Indeed,

N = coker d1 ∼= im d′0 = ker ρ; hence, (3.11.3)

0 → N → A3 ρ−−−→ A → A′ → 0

is exact, as claimed in (3.3.1).
We first show that (3.11.1) is a complex. To show that d′0 ◦ d1 = 0 it suffices to show 

that the image of d0 ◦ d1 is contained in I · F and this was done in Remark 2.15. The 
matrix for ρ is given in (3.11.2) and the matrix

d′0 = −
[ 0 x1,2 x1,3 x1,4 . . . x1,f
−x1,2 0 x2,3 x2,4 . . . x2,f
−x1,3 −x2,3 0 x3,4 . . . x3,f

]
(3.11.4)

for d′0 may be read from the discussion in Remark 2.15. It is clear that ρ ◦ d′0 = 0 and 
that the complex (3.3.1) is exact at A and A′. We next show that (3.3.1) is exact at A3. 
Suppose



128 A.R. Kustin / Journal of Algebra 472 (2017) 115–145
α = [a1 a2 a3 ]T

is an element of A3 with ρ(α) = 0 in A. (We use MT to represent the transpose of the 
matrix M .) In other words, x2,3a1 − x1,3a2 + x1,2a3 = 0 in A. In particular,

x2,3a1 ∈ (x1,2 , x1,3)A ⊆ (x1,2 , x1,3 , . . . , x1,f)A.

The ideal (x1,2 , x1,3 , . . . , x1,f)A of A is prime; indeed,

(x1,2 , x1,3 , . . . , x1,f) + I = (x1,2 , x1,3 , . . . , x1,f) + Pf4(X′),

where X′ is the matrix X of Remark 2.14.aii with row one and column one deleted. 
The matrix X′ is a generic alternating matrix which does not involve the variables 
x1,2 , . . . , x1,f; so [18, Thm. 12] guarantees that Pf4(X′) is prime; see, for example 
Lemma 3.7.

The product x2,3a1 is in the prime ideal (x1,2, . . . , x1,f)A and x2,3 /∈ (x1,2, . . . , x1,f)A; 
thus, a1 ∈ (x1,2, . . . , x1,f)A and a quick glance at (3.11.4) shows that there is an element 
φ1 in F such that

α− d′0(φ1) = [0 a′2 a′3 ]T ,

for some a′2 and a′3 in A. The equation −x1,3a
′
2 +x1,2a

′
3 = 0 in A shows that x1,3a

′
2 is an 

element of the prime ideal (x1,2)A = I2A; see Lemma 3.7. Hence, a′2 is in (x1,2)A and a 
further modification α − d′0(φ1) by a boundary which only involves the first column of 
d′0 yields an element of the kernel of ρ of the form [0 0 a′′3 ]T. The element a′′3 is zero 
because A is a domain; and therefore, α ∈ im d′0.

The argument that (3.3.1) is exact at F ∗ is very similar to the preceding argument. 
Suppose α = [a1 , . . . , af]T is an element of ker d′0. The third row of the equation 
d′0α = 0 yields that x3,faf is an element of the prime ideal If−1A, in the language of 
Definition 3.5 and Lemma 3.7; but x3,f /∈ If−1A; so af ∈ If−1. On the other hand, for 
each xi,j ∈ If−1,

d1(e∗f ∧ e∗j ∧ e∗i ) = xj,fe
∗
i − xi,fe

∗
j + xi,je

∗
f ;

hence there is an element φ3 ∈
∧3

F
∗ so that

α− d1(φ3) = [a′1 , . . . , a′f−1 , 0]T.

The third row of the equation d′0(α − d1(φ3)) = 0 yields that x3,f−1a
′
f−1 ∈ If−2A. Use 

elements of the form d1(e∗f−1 ∧ e∗j ∧ e∗i ) to remove a′f−1 (while keeping 0 in the bottom 

position). Continue in this manner to find φ3
† ∈
∧3

F
∗ so that

α− d1(φ3
†) = [a†1 , a†2 , a†3 , 0 , . . . , 0]T.
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The second equation of

[ 0 x1,2 x1,3
−x1,2 0 x2,3
−x1,3 −x2,3 0

]⎡⎢⎣
a†1

a†2

a†3

⎤
⎥⎦ = d′0(α− d1(φ3

†) = 0

yields a†3 ∈ (x1,2)A; hence there exists φ3
‡ ∈
∧3

F
∗, so that

α− d1(φ3
‡) = [a‡1 , a‡2 , 0 , . . . , 0]T.

Now one sees that x1,2a
‡
1 = x1,2a

‡
2 = 0 in the domain A; hence a‡1 = a‡2 = 0, α is a 

boundary, and (3.3.1) is exact.
The final assertion, that N has rank two as an A-module, is an immediate consequence 

of the exactness of (3.3.1). Indeed, A is a domain (see [18, Thm. 12] or Lemma 3.7) and 
A′

(0) = 0. �
3.12. Proof of Lemma 3.1. The module N , built over an arbitrary ring R0, is ob-
tained from the module N , built over the ring of integers Z, by way of the base change 
R0 ⊗Z −. According to the theory of generic perfection (see, for example [6, Prop. 3.2 
and Thm. 3.3]) in order to prove that N , built over an arbitrary ring R0, is a perfect 
R-module, it suffices to prove that N is a perfect R-module when R0 = Z and when R0
is a field. Fix one of these choices for R0 and consider the exact sequence of Lemma 3.3.

It was observed in Example 3.6 that A = R/I1 and A′ = R/I3; consequently, 
Lemma 3.7.a guarantees that A and A′ are perfect R-modules and pdR A′ = pdR A + 2. 
(This is where the hypothesis 4 ≤ f is required; see Remark 3.8.) Let P be a prime ideal 
of R which is in the support of N . Lemma 3.3 shows that the module N embeds into a 
free A-module; hence, P is in the support of A and AP is a Cohen–Macaulay ring. The 
localization A′

P is either zero or a Cohen–Macaulay ring with dimA′
P = dimAP − 2. In 

either event, we apply the usual argument about the growth of depth in an exact sequence 
(see, for example, [5, Prop. 1.2.9]), to the localization of the exact sequence (3.3.1) at P
in order to conclude that depthAP ≤ depthNP . At this point the inequalities

depthNP ≤ dimNP ≤∗ dimAP = depthAP ≤ depthNP (3.12.1)

all hold; consequently, equality holds throughout. (The inequality labeled * holds because 
NP is an AP -module.) Thus, NP is a Cohen–Macaulay RP -module and

pdRP
NP = pdRP

AP = pdR A =
(
f−2
2
)
. (3.12.2)

(The first equality is a consequence of the Auslander–Buchsbaum theorem; the second 
equality is explained in 2.5.c; and the third equality is a consequence of Lemma 3.7.) 
Thus, N is a perfect R-module of projective dimension 

(
f−2
2
)

(see 2.5.d, if necessary) and 
the proof is complete. �
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Section 4 is concerned with the ring R of Data 2.12 and Notation 2.13. The ring R is a 
polynomial ring over R and the R-modules N = R ⊗R N , A = R ⊗R A, and F = R ⊗R F

are obtained from the corresponding R-modules by way of a base change. It is convenient 
to record the results of the present section in the language of the future section.

Corollary 3.13. Adopt Data 2.12 and Notation 2.13 with 4 ≤ f. If the base ring R0 is 
an arbitrary commutative Noetherian ring, then the R-modules N and A are perfect of 
projective dimension 

(
f−2
2
)
; furthermore IR is a Gorenstein ideal.

Proof. Apply Lemmas 3.1 and 3.7. �
We close this section by redeeming assorted promises. Assertion (a) was promised 

in Remark 2.15. Assertion (b) was promised in the introduction when we claimed that 
Section 3 is about the image of d0; however, until this point, it appears that Section 3 is 
about N , which is the cokernel of d1. The homological properties of N , which are listed 
in (c) and (d), were also promised in the introduction.

Observation 3.14. Adopt the language of 2.12.a, 2.13.a, 2.14.a, and (2.15.1). Assume that 
R0 is a domain.

(a) The complex A ⊗R M is exact.
(b) The module N (of Lemma 3.1 and elsewhere) is isomorphic to the module of (1.0.1).
(c) The A-module N is self-dual.
(d) If R0 is a Cohen–Macaulay domain, then N is a self-dual maximal Cohen–Macaulay 

A-module of rank two.
(e) If R0 is a Gorenstein domain, and

X : · · · d4−−→ X3
d3−−→ X2

d2−−→
∧3

F
∗ d1−−→ F

∗

is a resolution of N by free A-modules, then

Y : · · · d4−−→ X3
d3−−→ X2

d2−−→
∧3

F
∗ d1−−→ F

∗ d0−−→ F
δ1−→
∧3

F
d∗
2−−→ X∗

2
d∗
3−−→ X∗

3
d∗
4−−→ · · ·

is a self-dual totally acyclic complex. (In other words, H•(Y) = H•(Y∗) = 0 and, 
after making the appropriate shift, Y∗ is isomorphic to Y.)

Proof. (a) We are supposed to prove that the complex

∧3
F

∗ d1−−→ F
∗ d0−−→ F

δ1−→
∧3

F (3.14.1)

is exact. (Recall from 2.13.aiii that is the functor A ⊗R −.) We showed in (3.11.1) that
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∧3
F

∗ d1−−→ F
∗ projection ◦d0−−−−−−−−−→ A3

is exact. It follows that

im d1 ⊆ ker d0 ⊆ ker(projection ◦d0) = im d1

and (3.14.1) is exact at F ∗.
We now prove that (3.14.1) is exact at F . Let f1 =

∑f

i=1 aiei be in ker δ1, with ai ∈ Ai

and e1, . . . , en a basis for F . Use the coefficient of e1 ∧ ei ∧ ej in 0 = δ1(f1) in order to 
see that

xi,ja1 ∈ (x1,i , x1,j) ⊆ (x1,2 , x1,3 , . . . , x1,f)

for all i and j with 2 ≤ i < j ≤ f. The ideal (x1,2 , x1,3 , . . . , x1,f) of A is prime (indeed, 
A/(x1,2 , x1,3 , . . . , x1,f) is the domain defined by “Pf4” of a smaller generic matrix) and 
xi,j is not in (x1,2 , x1,3 , . . . , x1,f). Therefore, a1 ∈ (x1,2 , x1,3 , . . . , x1,f) and there 
is an element φ1 ∈ F

∗ with f†
1 = f1−d0(φ1) =

∑f

i=2 a
†
iei. (Recall that −X is the matrix 

for d0.) The coefficient of e1∧e2∧e3 in 0 = δ1(f†
1 ) shows a†2x1,3 is in the prime ideal (x1,2); 

hence, a†2 ∈ (x1,2) and one may use the first column of X to remove a†2 without damaging 
a†1 = 0. In other words, there exists φ‡

1 ∈ F
∗ with f‡

1 = f1 − d0(φ‡
1) =
∑f

i=3 aiei. The 
coefficient of e1∧e2∧ej in 0 = δ1(f‡

1 ) shows that x1,2a
‡
j = 0 for 3 ≤ j ≤ f. Hence, a‡j = 0

for 3 ≤ j ≤ f, f1 is a boundary in (3.14.1), and (3.14.1) is exact.
(b) Apply (a) to see that N = coker d1 ∼= im d0 = (1.0.1).
(c) The definition N = coker d1 guarantees that 

∧3
F

∗ d1−−→ F
∗ → N → 0 is exact. 

Apply HomA(−, A) to learn that

0 → N∗ → F
∗∗ d1

∗

−−→
∧3

F
∗∗

is exact. It is easy to see that F ∗∗ d1
∗

−−→
∧3

F
∗∗ is isomorphic to F

δ1−→
∧3

F . Assertion 
(a) now gives that N ∼= ker δ1 ∼= ker d1

∗ ∼= N∗.
(d) Lemma 3.1, especially (3.12.1), ensures that N is a maximal Cohen–Macaulay 

A-module. The rank of N is calculated in Lemma 3.3. The self-duality of N is established 
in (c).

(e) It follows from local duality (or the Auslander–Bridger formula, see, for example, 
[9, Thms. 1.4.8 and 1.4.9]) that the maximal Cohen–Macaulay module N over the Goren-
stein ring A satisfies ExtiA(N, A) = 0 for all positive i. So X → N → 0 and 0 → N∗ → X∗

are both acyclic. The complexes X and X∗ may be patched together at N ∼= N∗ to form 
the totally acyclic complex Y. �
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4. The main result

The main result of the paper is Theorem 4.8 where we prove that J is a perfect 
Gorenstein ideal of grade 

(
f−2
2
)

+ 2. We estimate the grade of J in Lemma 4.1 and we 
use the exact sequence (4.3.1) to estimate the projective dimension of R/J .

Lemma 4.1. Adopt the language of 2.12 and 2.13 with 3 ≤ f. If the base ring R0 is 
an arbitrary commutative Noetherian ring, then the height of the ideal J satisfies the 
inequality

(
f−2
2
)

+ 2 ≤ htJ.

Remark 4.2. The assertion of Lemma 4.1 is false when f = 2 because in this case J equals 
(t1x1,2 , t2x1,2), which has height 1; see Remark 4.4.e for a continuation of this example. 
On the other hand, Lemma 4.1 does hold when f = 3; indeed, in this case, J is the ideal 
generated by the maximal minors of the generic matrix

[
t1 t2 t3
x2,3 −x1,3 x1,2

]
;

see Remark 4.4.f for a continuation of this example.

Proof. It suffices to replace R0 with R0/p for some minimal prime ideal p in R0 and to 
prove the result when R0 is a domain. We use the language of Remark 2.14 and view J
as the ideal Pf4(X) + I1(tX) in the ring R = R0[{xi,j}, {ti}]. Let P be a prime ideal of 
R which contains J . We show

(
f−2
2
)

+ 2 ≤ htP.

If t1 ∈ P , then I ′ = Pf4(X) + (t1) is a prime ideal of height 
(
f−2
2
)

+ 1 which is 
contained in P ; furthermore, the first entry of tX is a non-zero element of P \ I ′. Thus, (
f−2
2
)

+ 2 ≤ htP .
If t1 /∈ P , then let X′ be X with the first column removed, X′′ be X with the first 

row and first column removed, and I ′′ be the ideal Pf4(X′′). Observe that I ′′ is a prime 
ideal of height 

(
f−3
2
)

(this is where we use the hypothesis that 3 ≤ f); I ′′ is contained 
in P ; and the entries of tX′ form a regular sequence on Rt1/I

′′Rt1 in PRt1 . It follows 
that

(
f−2
2
)

+ 2 =
(
f−3
2
)

+ f− 1 ≤ htPRt1 = htP. �
Proposition 4.3. Adopt the language of 2.12 and 2.13. If 2 ≤ f and R0 is a Cohen–
Macaulay domain, then there is an exact sequence of A-modules:

A : 0 → A
τ−→ N

τ(ξ)−−−→ A → R/J → 0. (4.3.1)
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The map τ : A → N sends the element 1 of A to the class of τ in

N = A⊗R coker
(
ξ :
∧3

F∗ → F∗).
If φ1 is in F∗, then the map τ(ξ) : N → A sends the class of φ1 in N to the class of 
[τ(ξ)](φ1) in A = R/(I · R). The map A → R/J is the natural quotient map

A = R/(I · R) → R/(I · R + K) = R/J.

The proof of Proposition 4.3 is given in 4.7.

Remarks 4.4.

(a) After we prove Theorem 4.8, we are able to improve Proposition 4.3. In the im-
proved version, R0 is allowed to be an arbitrary commutative Noetherian ring. See 
Proposition 5.5.

(b) The exact sequence 0 → A → N → JA → 0, which is a consequence of (4.3.1), 
exhibits JA as a Bourbaki ideal of N, in the sense of [2,26,4,30].

(c) The map τ(ξ) of (4.3.1) is well-defined. Indeed, if φ3 ∈
∧3

F∗, then ξ(φ3) represents 
0 in N and [τ(ξ)](ξ(φ3)), which is equal to ξ(2)(φ3 ∧ τ) by (2.8.1) and (2.10.1), is 
equal to 0 in A.

(d) It is not difficult to see that (4.3.1) is a complex of A-modules.
(e) If f = 2, then R = A and, in the language of Remark 2.14, the complex (4.3.1) is

0 → R

[
t1
t2

]
−−−→ R2

[
−t2x1,2 t1x1,2

]
−−−−−−−−−−−−−−→ R → R/(t1x1,2 , t2x1,2) → 0,

which is exact, see Remark 4.2.
(f) If f = 3, then R = A and, in the language of Remark 2.14, the complex (4.3.1) is

0 → R

⎡
⎢⎣
t1
t2
t3

⎤
⎥⎦

−−−−→ R3([
x2,3
−x1,3
x1,2

])
[
−t2x1,2 − t3x1,3 t1x1,2 − t3x2,3 t1x1,3 + t2x2,3

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R

→ R/(−t2x1,2 − t3x1,3 , t1x1,2 − t3x2,3 , t1x1,3 + t2x2,3) → 0,

which is exact; see Remark 4.2.
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(g) In the language of Remarks 2.14 and 2.15, the exact sequence (4.3.1) is equal to

0 → R

Pf4(X)
tT−−−−→

(
R

Pf4(X)

)f
im d1

tX−−−−→ R

Pf4(X) → R

Pf4(X) + I1(tX) → 0,

where the 
(
f

3
)

generators of im d1 are listed in (2.15.2).

Observation 4.5 and Lemma 4.6 are used in the proof of Proposition 4.3.

Observation 4.5. Retain the hypotheses of Proposition 4.3. The complex (4.3.1) is exact 
at R/J and at both copies of A.

Proof. It is clear that (4.3.1) is exact at R/J and at the right hand A. We prove that 
(4.3.1) is exact at the left hand A. Let r ∈ R with r · τ ≡ ξ(φ3) mod IF for some 
φ3 ∈
∧3

F∗. Apply rτ to ξ and use Observation 2.10.a to learn that

r · τ(ξ) ≡ [ξ(φ3)](ξ) ≡ φ3(ξ(2)) ∈ IF.

It follows that r ·K ⊆ I. The ideal I is prime and degree considerations show that K � I. 
It follows that r ∈ I. Thus, τ : A → N is an injection. �
Lemma 4.6. Adopt the language of 2.12 and 2.13. Let φ1, φ′

1 be elements of F∗ with 
the property that the element φ1 ∧ φ′

1 is part of a basis for F∗ and let x be the element 
ξ(φ1 ∧ φ′

1) of R. Then the following statements hold.

(a) If the base ring R0 is a commutative Noetherian domain, then the localization Ax of 
the complex (4.3.1) at x is isomorphic to

0 → Ax

[−[τ(ξ)](φ′
1)

[τ(ξ)](φ1)

]
−−−−−−−−−−−→ Ax ⊕Ax

[
[τ(ξ)](φ1) [τ(ξ)](φ′

1)
]

−−−−−−−−−−−−−−−−−−−→ Ax

−→ Ax

([τ(ξ)](φ1) , [τ(ξ)](φ′
1))Ax

→ 0.

(b) If R0 is a Cohen–Macaulay domain, then the localization Ax is exact.

Remark 4.6.2. Once we prove Theorem 4.8, then a much stronger version of Lemma 4.6
is also true, see Proposition 5.5.

Proof. (a) The element x in R is a non-zero element of R(1,0). The ideal I · R of R is a 
prime ideal generated by elements of R(2,0); hence x is a non-zero-divisor in A = R/(I ·R). 
Consider the map

Ax ⊕Ax −→ Nx, (4.6.2)
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which sends [a1 a2 ]T to the class of a1φ1 + a2φ
′
1. This map is onto because, if φ′′

1 ∈ F, 
then the equation

0 = ξ(φ1 ∧ φ′
1 ∧ φ′′

1) = x · φ′′
1 − ξ(φ1 ∧ φ′′

1) · φ′
1 + ξ(φ′

1 ∧ φ′′
1) · φ1 (4.6.3)

holds in N (see Observation 2.10.b); and therefore the class of φ′′
1 in Nx is in the image 

of the map (4.6.2). Let (0) be the prime ideal (0) in the domain A and L be the kernel 
of (4.6.2). We know from Lemma 3.3 that N(0) = A(0) ⊕ A(0); hence L(0) = 0. On the 
other hand, L is a submodule of a free Ax-module and Ax is a domain; thus, L = 0 and 
(4.6.2) is an isomorphism.

Apply (4.6.3), with τ in place of φ′′
1 , to see that the composition

Ax
x−→ Ax

τ−→ Nx

sends 1 ∈ Ax to

xτ = [τ(ξ)](φ1) · φ′
1 − [τ(ξ)](φ′

1) · φ1

in Nx; and therefore, the composition

Ax
x−→ Ax

τ−→ Nx
(4.6.2)−1

−−−−−−→ Ax ⊕Ax

sends 1 ∈ Ax to
[−[τ(ξ)](φ′

1)
[τ(ξ)](φ1)

]
∈ Ax ⊕Ax.

It is clear that the composition

Ax ⊕Ax
(4.6.2)−−−−→ Nx

τ(ξ)−−−→ Ax

sends [
1
0

]
�→ [τ(ξ)](φ1) and

[
0
1

]
�→ [τ(ξ)](φ′

1).

This completes the proof of (a).

(b) We know from (a) that the ideal JAx is generated by [τ(ξ)](φ1) and [τ(ξ)](φ′
1) and 

we know from Lemma 4.1 that 2 ≤ ht(JA). The ring A is Cohen–Macaulay; so,

2 ≤ ht(JA) = gradeJA ≤ gradeJAx.

It follows that Ax, which, according to (a), is isomorphic to the augmented Koszul 
complex on the generating set {[τ(ξ)](φ1) , [τ(ξ)](φ′

1)} of JAx, is exact. �
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4.7. The proof of Proposition 4.3. In light of Remark 4.4.e, we may assume that 4 ≤ f. 
We know from Observation 4.5 that (4.3.1) is a complex of A-modules which is exact 
everywhere except possibly at N. Let H be the homology of (4.3.1) at N. We argue by 
contradiction. Assume that H �= 0. Let P be an associated prime of H. Lemma 4.6 shows 
that Hx = 0 for every x in R of the form

x = ξ(φ1∧φ′
1) where φ1 and φ′

1 are in F∗ with φ1∧φ′
1 part of a basis for

∧2
F∗. (4.7.1)

The fact that Hx = 0 and HP �= 0 forces x to be an element of P . The R0-module R(1,0)
is generated by elements x of the form (4.7.1); therefore, R(1,0) ⊆ P .

Consider the complex (4.3.1). Let B be the image of τ : A → N and Z be the kernel 
of τ(ξ) : N → A. Combine the exact sequences

0 → A → B → 0 from Observation 4.5, and

0 → B → Z → H → 0

in order to obtain the exact sequence

0 → A → Z → H → 0. (4.7.2)

The R-modules A and N are both perfect and their annihilators have grade 
(
f−2
2
)
; see 

Corollary 3.13. The ring R is Cohen–Macaulay; so, AP and NP are both Cohen–Macaulay 
RP -modules with

depthNP = dimNP = dimAP = depthAP ;

and this common number is equal to dimRP −
(
f−2
2
)
. Furthermore, the ideal (R1,0) of R, 

which is prime of height 
(
f

2
)
, is contained in P . It follows that

2 ≤
(
f

2
)
−
(
f−2
2
)
≤ dimAP .

(The left most inequality holds because 3 ≤ f.) The module ZP is a non-zero submodule 
of NP ; so 1 ≤ depthZP . We have chosen P with HP �= 0 and depth HP = 0. The usual 
argument about the growth of depth in a short exact sequence shows that the exact 
sequence

0 → AP → ZP → HP → 0,

which is obtained by localizing the short exact sequence (4.7.2) at P , is impossible; see, 
for example, [5, Prop. 1.2.9]. This contradiction establishes the result. �
Theorem 4.8. Adopt the language of 2.12 and 2.13. If 4 ≤ f and R0 is an arbitrary 
commutative Noetherian ring, then J is a perfect Gorenstein ideal of R of grade 

(
f−2
2
)
+2. 

In particular, if R0 is a Gorenstein ring, then R/J is a Gorenstein ring.
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Proof. We employ the theory of generic perfection as described at the beginning of 3.12. 
It suffices to prove the result when R0 is equal to the ring of integers and when R0 is a 
field. In particular, we may assume that R0 is a Cohen–Macaulay domain. Proposition 4.3
(see also Remark 4.4.g) guarantees that there exists an exact sequence of R-modules

0 → A → N → A → R/J → 0

and Corollary 3.13 ensures that A and N have free resolutions of length 
(
f−2
2
)
; further-

more, the back Betti number in the resolution of A is one. Resolve A and N and form 
the iterated mapping cone in order to find a free resolution of R/J of length 

(
f−2
2
)

+ 2. 
The back Betti number in the resolution of R/J is one. We see that

(
f−2
2
)

+ 2 ≤ gradeJ ≤ pdR R/J ≤
(
f−2
2
)

+ 2.

(The first inequality is Lemma 4.1 and the second inequality is (2.5.1).) Thus, equality 
holds throughout and the proof is complete. �
5. Consequences of the main result

In this section, especially in Corollary 5.3, we prove some consequences of the fact that 
J is a perfect ideal in R. We begin by identifying some relations on the generators of J . 
These relations are used in the proof of Corollary 5.3.b that (R/J)xi,j

is a polynomial 
ring over R0[xi,j , x−1

i,j ].

Definition 5.1. Adopt the language of 2.12 and 2.13. Define the maps and modules

E2
D2−−→ E1

D1−−→ E0

by

E2 =

∧3
F∗

⊕
ker
(
F∗ ⊗
∧5

F∗ multiplication−−−−−−−−−→
∧6

F∗
)
,

⊕∧3
F∗ ⊗
∧3

F∗

E1 =
F∗

⊕∧4
F∗

, E0 = R,

D2

([
φ3
0

φ′
3 ⊗ φ′′

3

])
=
[

ξ(φ3)
τ ∧ φ3 + ξ(φ′

3) ∧ φ′′
3 − φ′

3 ∧ ξ(φ′′
3)

]
,

D1

([
φ1
φ4

])
= [τ(ξ)](φ1) + ξ(2)(φ4),

and the middle component of D2 is induced by the map F ∗ ⊗
∧5

F∗ →
∧4

F∗ which 
sends φ1 ⊗ φ5 to [φ1(ξ)](φ5).
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Observation 5.2. The maps and modules of Definition 5.1 form a complex and the image 
of D1 is the ideal J of 2.13.

Proof. We verify that D1 ◦D2 = 0. We use (2.8.1), (2.10.1), Observation 2.10.a, and the 
module action of 

∧•
F and 
∧•

F∗ on one another to compute

(D1 ◦D2)(φ3) = D1

([
ξ(φ3)
τ ∧ φ3

])
= [τ(ξ)](ξ(φ3)) + ξ(2)(τ ∧ φ3)

= [τ(ξ(2))](φ3) − (φ3 ∧ τ)(ξ(2)) = 0,

(D1 ◦D2)(
∑
i

φ1,i ⊗ φ5,i) =
∑
i

D1([φ1,i(ξ)](φ5,i)) =
∑
i

ξ(2)([φ1,i(ξ)](φ5,i))

=
∑
i

[φ1,i(ξ(3))](φ5,i) = (
∑
i

φ5,i ∧ φ1,i)(ξ(3)) = 0, and

(D1 ◦D2)(φ′
3 ⊗ φ′′

3) = D1
(
ξ(φ′

3) ∧ φ′′
3 − φ′

3 ∧ ξ(φ′′
3)
)

= ξ(2)(ξ(φ′
3) ∧ φ′′

3 − φ′
3 ∧ ξ(φ′′

3)
)

= ξ(2)(ξ(φ′
3) ∧ φ′′

3
)
− ξ(2)(φ′

3 ∧ ξ(φ′′
3)
)
.

Furthermore, we compute

ξ(2)(ξ(φ′
3) ∧ φ′′

3
)

= −[φ′′
3 ∧ ξ(φ′

3)](ξ(2)) = −φ′′
3
(
[ξ(φ′

3)](ξ(2))
)

= −φ′′
3
(
[ξ(φ′

3)](ξ) ∧ ξ
)

= −φ′′
3
(
φ′

3(ξ(2)) ∧ ξ
)

= −[φ′
3(ξ(2))](ξ(φ′′

3)) = −[ξ(φ′′
3) ∧ φ′

3](ξ(2))

= [φ′
3 ∧ ξ(φ′′

3)](ξ(2)) = ξ(2)[φ′
3 ∧ ξ(φ′′

3)];

and therefore, (D1 ◦D2)(φ′
3 ⊗ φ′′

3) = 0. �
Corollary 5.3. Adopt the language of 2.12, 2.13, and 2.14. Assume that 4 ≤ f and R0 is 
an arbitrary commutative Noetherian ring. The following statements hold.

(a) The elements x1,2, x1,3 form a regular sequence on R/J .
(b) For each pair i, j with 1 ≤ i < j ≤ f, the localization of the ring R/J at the element 

xi,j is isomorphic to a polynomial ring over R0[xi,j , x−1
i,j ].

(c) The ring R/J is a domain if and only if R0 is a domain.
(d) If R0 is a domain, then (x1,2)R/J is a prime ideal in R/J .
(e) The ring R/J is normal if and only if R0 is normal.
(f) If R0 is a normal domain, then the divisor class group of R0 is isomorphic to the 

divisor class group of R/J . In particular, R0 is a unique factorization domain if and 
only if R/J is a unique factorization domain.

Proof. (a) We employ the method of proof that is described in Corollary 3.10. It suffices 
to show that
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(
f−2
2
)

+ 3 ≤ gradePRP for all P ∈ SpecR with J + (x1,2) ⊆ P situation 1, and(
f−2
2
)

+ 4 ≤ gradePRP for all P ∈ SpecR with J + (x1,2 , x1,3) ⊆ P situation 2

Fix a prime P from situation 1 or situation 2. There are two cases. Assume first that 
tf /∈ P . The ring RP is a localization of Rtf and Rtf is equal to the polynomial ring

(R0[t1 , . . . , tf , t−1
f

, {xi,j | 1 ≤ i < j ≤ f− 1}])[(tX)1 , . . . , (tX)f−1].

Let X′ represent X with row and column f deleted. Apply Corollary 3.10. In situation 1, 
the ideal (x1,2, J)Rtf contains the grade

(
f−3
2
)

+ 1 ideal (x1,2 , Pf4(X′) of

R0[t1 , . . . , tf , t−1
f

, {xi,j | 1 ≤ i < j ≤ f− 1}] (5.3.1)

as well as the f − 1 indeterminates (tX)1, . . . , (tX)f−1. Thus,

(
f−2
2
)

+ 3 =
((

f−3
2
)

+ 1
)

+ (f− 1) ≤ grade(x1,2 , J)Rtf .

Similarly, in situation 2, Corollary 3.10 guarantees that

(
f−3
2
)

+ 2 ≤ grade(x1,2 , x1,3 , Pf4(X′)) · (5.3.1);

so, 
(
f−2
2
)

+ 4 ≤ grade(x1,2 , x1,3 , J)Rtf . The same argument works if tf−1 /∈ P . The 
second case is tf and tf−1 are both in P . In this case, Corollary 3.10 yields

(tf , tf−1) + Pf4(X) + (x1,2) ⊆ P and
(
f−2
2
)

+ 3 ≤ gradeP in situation 1, and

(tf , tf−1) + Pf4(X) + (x1,2 , x1,3) ⊆ P and
(
f−2
2
)

+ 4 ≤ gradeP in situation 2.

(b) It is notationally convenient to prove the result for (i, j) = (1, 2). Let S1 and S2 be 
the following subsets of R:

S1 = {xi,j |1 ≤ i ≤ 2 , 3 ≤ j ≤ f} ∪ {tj | 3 ≤ j ≤ f} and (5.3.2)

S2 = {x1,2xi,j − x1,ix2,j + x1,jx2,i | 3 ≤ i < j ≤ f}

∪
{
x1,2t2 +

f∑
j=3

x1,jtj , x1,2t1 −
f∑

j=3
x2,jtj

}
.

Notice that

(A) S1 ∪ S2 is a set of indeterminates over the ring R0[x1,2 , x−1
1,2],

(B)
(
R0[x1,2 , x−1

1,2]
)
[S1 ∪ S2] = R[x−1

1,2], and
(C) JR[x−1

1,2] = (S2)R[x−1
1,2].
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Assertions (A) and (B) are obvious. Once (C) is established, we will have shown that

(R/J)x1,2 is the polynomial ring R0[x1,2 , x−1
1,2][S1] over R0[x1,2 , x−1

1,2]

for S1 given in (5.3.2).
(5.3.3)

We now prove (C). Observe first that S2 ⊂ J . Indeed, in the language of Observation 5.2
and Remark 2.14, the ideal S2R is the image, under D1, of the submodule

W = Re∗1 ⊕ Re∗2 ⊕ R(e∗1 ∧ e∗2) ∧
∧2

F∗

of E1. We show that

x1,2F
∗ ⊆ W + imD2

x1,2R(e∗1 , e∗2) ∧
∧3

F∗ ⊆ W + imD2, and
x1,2
∧4

F∗ ⊆ W + R(e∗1 , e∗2) ∧
∧3

F∗ + imD2.

(5.3.4)

Once (5.3.4) is established, then iteration of (5.3.4) gives x2
1,2E1 ⊆ W + imD2; hence, 

x2
1,2J is contained in S2R and (C) holds.
If φ1 ∈ F∗, then use Observation 2.10.b to see that

x1,2φ1 = ξ(e∗2 ∧ e∗1) · φ1 = ξ(φ1 ∧ e∗2 ∧ e∗1) + ξ(φ1 ∧ e∗1) · e∗2 − ξ(φ1 ∧ e∗2) · e∗1
= D2(φ1 ∧ e∗2 ∧ e∗1) − τ ∧ φ1 ∧ e∗2 ∧ e∗1 + ξ(φ1 ∧ e∗1) · e∗2 − ξ(φ1 ∧ e∗2) · e∗1

∈ W + imD2.

If φ3 ∈
∧3

F∗, then

x1,2e
∗
1 ∧ φ3 = ξ(e∗2 ∧ e∗1) · e∗1 ∧ φ3 = [e∗1(ξ)](e∗2 ∧ e∗1 ∧ φ3) + an element of W

= D2(e∗1 ⊗ e∗2 ∧ e∗1 ∧ φ3) + an element of W ∈ W + imD2.

The calculation x1,2e
∗
2 ∧ φ3 ∈ W + imD2 is similar.

If φ1 ∈ F∗ and φ3 ∈
∧3

F∗, then

x1,2φ1 ∧ φ3 = ξ(e∗2 ∧ e∗1) · φ1 ∧ φ3

= ξ(φ1 ∧ e∗2 ∧ e∗1) ∧ φ3 + ξ(φ1 ∧ e∗1) · e∗2 ∧ φ3 − ξ(φ1 ∧ e∗2) · e∗1 ∧ φ3

= D2((φ1 ∧ e∗2 ∧ e∗1) ⊗ φ3) + φ1 ∧ e∗2 ∧ e∗1 ∧ ξ(φ3) + an element of R(e∗1 , e∗2) ∧
∧3

F∗

∈ W + R(e∗1 , e∗2) ∧
∧3

F∗ + imD2.

This completes the proof of (5.3.4) and hence the proof of (b).

(c) Apply (a) and then (b) to see that R/J is a domain if and only if (R/J)x1,2 is a 
domain if and only if R0 is a domain.
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(d) Suppose α and β are elements of R/J with αβ ∈ (x1,2) · R/J . We know from (b) 
that (x1,2) · (R/J)x1,3 is a prime ideal; so, one of the elements α or β (say, α) is in 
(x1,2) · (R/J)x1,3 . It follows that xs

1,3α ∈ (x1,2) · R/J , for some s. Apply (a) to see that 
α is in (x1,2) · R/J .

(e) (⇐) We apply the Serre criteria for normality in order to prove that R/J is normal. 
It suffices to prove that (R/J)P is normal for all primes P with depth(R/J)P ≤ 1. If 
depth(R/J)P ≤ 1, then (a) guarantees that at least one of the elements x1,2 or x1,3 is 
not in P . Thus, we know from (b) that (R/J)P is a localization of a polynomial ring 
over R0; hence, (R/J)P is a normal domain.

(e) (⇒) The hypothesis that R/J is normal guarantees that R/J is reduced; and there-
fore, R0 is reduced. The localization (R/J)x1,2 is also normal. Recall from (5.3.3) that 
(R/J)x1,2 is equal to T [x−1

1,2] where T is the polynomial ring R0[x1,2 , S1] and S1 is the 
list of indeterminates given in (5.3.2). Apply Lemma 5.4, with y = x1,2, to conclude that 
T is normal. Now a standard argument yields that R0 is also normal.

(f) Avramov’s proof [3] that R/ Pf2t(X) is a unique factorization domain may be applied 
without change. In other words, there are isomorphisms of the following divisor class 
groups:

Cl(R/J) α Cl((R/J)x1,2)
β

Cl(R0[S1 , x−1
1,2])

γ
Cl(R0[S1])

δ Cl(R0).

The element x1,2 generates a prime ideal in R/J by (d); so the isomorphism α is Nagata’s 
Lemma [11, Cor. 7.3]. We proved in (5.3.3) that (R/J)x1,2 is equal to the polynomial ring 
R0[S1 , x−1

1,2], where S1 is the list of indeterminates given in (5.3.2); so the isomorphism 
β is the identity map. The isomorphism γ is again Nagata’s Lemma and the isomorphism 
δ is Gauss’ Lemma [11, Thm. 8.1]. �

We have used the following normality criterion which appears as [6, Lemma 16.24]. 
The result follows quickly from Serre’s normality criterion.

Lemma 5.4. Let T be a Noetherian ring, and y be a regular element of T such that T/Ty
is reduced and T [y−1] is a normal ring. Then T is a normal ring.

Now that we know that J is a perfect ideal, we are able to improve some of the results 
that we used in order to prove that J is perfect. Notice that there are no hypotheses on 
the ring R0.

Proposition 5.5. Adopt the language of 2.12, 2.13 and 2.14. Let R0 be an arbitrary 
commutative Noetherian ring.

(a) The maps and modules of (4.3.1) form an exact sequence.
(b) The maps and modules of (3.3.1) form an exact sequence.
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(c) The ideal JAx1,2 is generated by the regular sequence (tX)1, (tX)2.
(d) The element x1,2 of R is regular on both A and N and Nx1,2

∼= Ax1,2 ⊕Ax1,2 .

Proof. (a) Let A, N, R, and J be the relevant modules built over R0 and AZ, NZ, RZ, 
and JZ be the relevant modules built over Z. We have shown in Proposition 4.3 that

0 → AZ

τ−→ NZ

τ(ξ)−−−→ AZ → RZ/JZ → 0 (5.5.1)

is an exact sequence. We know from Corollary 3.13 and Theorem 4.8 that AZ, NZ, and 
RZ/JZ are generically perfect Z[X]-modules in the sense of [6, Prop. 3.2 and Thm. 3.3]; 
and so, in particular, these modules are flat Z-modules. Apply R0⊗Z− to the constituent 
short exact sequences of (5.5.1) in order to learn that TorZ1 (R0, JZAZ) = 0 and

R0 ⊗Z (5.5.1),

which is isomorphic to (4.3.1), is exact.

(b) The proof from (a) also works for (b) because the Z[X]-modules A and A′, built 
over Z, are also generically perfect, see Lemma 3.7.

(c) The proof of Corollary 5.3.b shows that Ax1,2 is equal to the polynomial ring

R0[x1,2 , x−1
1,2][S1 , (tX)1 , (tX)2],

where S1 is the list of indeterminates given in (5.3.2); furthermore, JAx1,2 is generated 
by the two variables (tX)1 and (tX)2.

(d) We saw in Corollary 3.10 that x1,2 is regular on A. Recall from Lemmas 3.1 and 3.7
that the ring A and the A-module N are perfect R-modules, and their annihilators (as 
R-modules) have the same grade. It follows that AssN ⊆ AssA and that x1,2 is also 
regular on N . The final assertion is obtained by localizing (3.3.1), which is exact by (b), 
at x1,2. �
6. Remarks and questions

The definition of N , as given in Notation 2.13.aiv, is that

N = R
I ⊗R coker(d1 :

∧3
F ∗ → F ∗).

However, if 2 is a unit in R0, then the next result shows that it is not necessary to apply 
the functor RI ⊗R −.

Observation 6.1. Adopt the language of 2.12.a, 2.13.a and (2.15.1). If 2 is a unit in R0, 
then
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coker(d1 :
∧3

F ∗ → F ∗)

is an R/I module; so, in particular N = coker(d1 :
∧3

F ∗ → F ∗).

Proof. If φ4 ∈
∧4

F ∗ and φ1 ∈ F ∗, then

ξ(2)(φ4) · φ1 = [φ1(ξ(2))](φ4) + ξ(2)(φ1 ∧ φ4) Proposition 2.9

= [φ1(ξ) ∧ ξ](φ4) + 1
2ξ(ξ(φ1 ∧ φ4)) (2.8.1)

= ξ
(
[φ1(ξ)](φ4) + 1

2ξ(φ1 ∧ φ4)
)
,

which represents 0 in N . �
Remarks 6.2. Adopt the language of 2.12 and 2.13.

(a) The hypothesis “2 is a unit in R0” is essential in Observation 6.1. For example, if 
R0 is the field Z/(2), then

[0 0 0 0 x1,2x3,4 − x1,3x2,4 + x1,4x2,3 ]T

is zero in N , but is not in image of d1. So, in particular, if R0 is a field, then the 
first Betti number of N , as a module over R, depends on the characteristic of R0, 
even when f = 5. We recall that the first Betti number of A, as a module, over R
depends on the characteristic R0, but not until f = 8; see, for example, [19,20,13].

(b) Assume R0 is a field. Suppose that F : . . . → Fi → . . . and G : . . . → Gi → . . .

are minimal homogeneous resolutions of A and N by free R-modules with Fi =⊕
R(−j)βi,j and Gi =

⊕
R(−j)γi,j . Then the proof of Theorem 4.8 shows that the 

minimal bi-homogeneous resolution of R/J by free R-modules is L : . . . → Li → . . ., 
with

Li =
⊕

R(−j − 1,−2)βi−2,j ⊕
⊕

R(−j − 1,−1)γi−1,j ⊕
⊕

R(−j, 0)βi,j .

Indeed, the iterated mapping cone associated to

R(−1,−2) ⊗R F[−2] R(−1,−2) ⊗R A

τ

R(−1,−1) ⊗R G[−1] R(−1,−1) ⊗R N

τ(ξ)

R⊗R F R⊗R A

R/J
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is a bi-homogeneous resolution of R/J and consideration of the t-degree shows that 
this resolution is minimal.

(c) Retain the language of (b). If the characteristic of R0 is zero, then the resolution 
F is given in Theorem 6.4.1 and Exercises 31–33 on page 222 in [32]. Can the geo-
metric method of [32] also be used to obtain the minimal homogeneous equivariant 
resolution of N by free R-modules?

(d) One consequence of (b) is that the minimal homogeneous resolution G of N by free 
R-modules is self-dual. Is this fact obvious for some other reason?

(e) Is the resolution X of N by free A-modules from Observation 3.14.e a linear complex?

Added in proof. We have learned that an alternate approach to some of the ideas in this 
paper may be found in [17].
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