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1. Introduction
1.1. Motivation

Boolean inverse semigroups are an abstraction of semigroups of partial transforma-
tions which are closed under finite disjoint unions, originally studied by Tarski’s school
(cf. [26]). These objects have been for the last decade an active topic of research, see
for example [13,15-18]. By definition, an inverse semigroup S with zero is Boolean if its
semilattice of idempotents is (generalized) Boolean and S has finite orthogonal joins.
(We refer to Section 2 for precise definitions.)

Unlike classes of structures such as groups, inverse semigroups, modules, rings, Lie
algebras, the class of Boolean inverse semigroups is not defined as a variety of algebras
in the sense of universal algebra: while the multiplication and the inversion of an inverse
semigroup are full operations, orthogonal join is only a partial operation. The author
introduced in [29, § 3.2] two full operations © and Vv (cf. (2.1) and (2.2) for precise defini-
tions), defined on every Boolean inverse semigroup in terms of multiplication, inversion,
and the partial operation of orthogonal join, such that the semigroup homomorphisms
preserving © and V are exactly the additive semigroup homomorphisms; by definition,
a semigroup homomorphism is additive if it preserves all finite orthogonal joins. More-
over, Boolean inverse semigroups can be characterized via a finite system of identities in
the similarity type (0, !,-,®, V). The models of those identities are called biases. The
category of biases with bias homomorphisms is isomorphic to the category of Boolean
inverse semigroups with additive semigroup homomorphisms. The author also proved
in [29, Theorem 3.4.11] that the variety of all biases is congruence-permutable, which
makes Boolean inverse semigroups much closer, in spirit, to groups and rings than to
semigroups.

At the 2016 Workshop on New Directions in Inverse Semigroups in Ottawa, and then
at the subsequent International Conference on Semigroups and Automata in Lisbon, the
following programme was suggested by Mark Lawson:

Study varieties of Boolean inverse semigroups.

(By definition, a variety — or equational class — is the class of all structures, of a given
similarity type, that satisfy a given set of identities.)
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1.2. Method of proof

The main aim of the present paper is fulfilling the programme above by describing
varieties of biases in terms of varieties of groups. We do this in Theorem 10.10, most of
which can be paraphrased as follows:

Main Theorem. There is a one-to-one, order-preserving correspondence between proper
varieties of biases and (possibly empty) finite, descending sequences (S | 1 < k <n) of
varieties of groups such that for all positive integers k, | with kIl < n and every G € Gy,
the wreath product G 1 Sy, belongs to Gj.

(A variety of biases is proper if it is distinct from the variety Bis of all biases.) While
the partial reformulation above does not take the full variety Bis into account, the
complete formulation of Theorem 10.10 does, by assigning to that variety the infinite
sequence with constant value the variety of all groups. In particular, the lattice of all
varieties of biases embeds, as a sublattice, into the countable power of the lattice of all
group varieties enlarged by the empty class.

The sequence of varieties of groups assigned to a variety V of biases arises as follows.
For any positive integer k, Gx (which we will call the k-th radical of 'V, see Notation 10.1)
is the class of all groups G such that the bias M? (Guo) of all generalized rook matrices
of order k over the Boolean inverse semigroup G"° = G U {0} (we call such structures
groups with zero) belongs to V. In particular, Gy, is either a variety of groups or the empty
class. The set of all values of k for which G is nonempty is exactly the (possibly empty)
integer interval {1,2,...,n} (or {1,2,3,...} if V = Bis). It is thus natural to refer to
the integer n (or oo in case V = Bis) as the index of the variety V (cf. Section 9). The
index of V is equal to the largest nonnegative integer n such that the symmetric inverse
semigroup J,, belongs to V if it exists, oo otherwise (cf. Corollary 9.7).

As hinted in the discussion above, the full variety Bis and its proper subvarieties
require separate treatments. We start with the former, with the main idea of reducing
statements about free biases to statements about free inverse semigroups. To that end,
for any inverse semigroup S, we describe the elements of the universal bias Upis(S) in a
sufficiently amenable way in terms of the elements of S. We do this in Lemma 3.2, which
can be paraphrased as follows:

Every element of Uyis(S) is an orthogonal join of products of elements of S with
elements of the Boolean ring generated by the idempotent elements of S.

By using, in parallel, the embedding of S into a Boolean inverse semigroup provided by
the Wagner—Preston Theorem, this enables us (cf. Proposition 3.7) to reduce equations
in Upis(S) (in the language of biases) to positive quantifier-free formulas in S (in the
language of inverse semigroups). By appealing to Munn’s Theorem [22] on free inverse
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semigroups, we thus reach (cf. Theorem 3.8) a complete elucidation of the case of the

variety of all biases:

Free biases are residually finite; hence, the variety of all biases is generated by the

finite symmetric biases.

The treatment of proper varieties of biases is quite different and it involves the follow-
ing Boolean inverse semigroups-theoretical tools: generalized rook matrices and the type
monoid, which are the Boolean inverse semigroup analogues of matrices and nonstable
K-theory defined on rings, respectively.

Our main idea can be summed up as follows. Since the symmetric inverse biases J,
generate the variety of all biases, any proper variety V of biases contains only finitely
many J,. It turns out that the latter property can be expressed in terms of type monoids
of the members of V, by saying that every element in those monoids has finite index (cf.
Theorem 6.2). Now V is generated, as a variety, by its subdirectly irreducible members,
and the type monoid Typ S of a subdirectly irreducible bias .S is prime, that is, its nonzero
elements form a downward directed subset (cf. Lemma 5.5). On the other hand, Typ S
is always a refinement monoid, and nonzero prime refinement monoids of finite index
are isomorphic to the additive monoid Z* of all nonnegative integers (cf. Lemma 6.1).
This implies that S is isomorphic to M,? (G'-’O) for some integer k and some group G (cf.
Lemma 4.4) — we say that S is fully group-matricial. We obtain the following result,

contained in Theorem 6.2:
Every variety of biases is generated by its fully group-matricial members.

The main task that remains is elucidating when a fully group-matricial bias M (G'—'O)
belongs to the variety generated by a given collection of fully group-matricial bi-
ases M?j (Gi"'o). A prototype of such a result is stated in Lemma 7.5: for groups G and H,
if GY° embeds into M& (H'-’O) as a bias, then G embeds, as a group, into the group of
all invertible elements of Mf? (H 'JO)7 which is isomorphic to the wreath product H1 &,,.
The more general result, stated in Lemma 10.3, handles the case where Mf (G'—'O) is
a homomorphic image of a sub-bias of a product of biases Mf?i (Giuo). The “homo-
morphic image” part raises a technical difficulty, which is handled by establishing, in
Lemma 8.3, a projectivity statement of fully group-matricial biases within the class of
all biases with cancellative type monoid. This projectivity statement enables us to re-
duce “homomorphic image of a sub-bias of a product” to “sub-bias of a product” in the
proof of Lemma 10.3. The remaining part of our road to the Main Theorem is relatively

straightforward.
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2. Notation, terminology, and basic concepts

An inverse semigroup (cf. [9,14]) is a semigroup S where every x € S has a unique

Lez~1. Every group,

inverse, that is, an element ! such that v = zz 'z and 27! = 2~
or every semilattice, is an inverse semigroup.
We shall denote by Idp S the set of all idempotent elements in a semigroup S. For every

'z and r(z) = xz~! are

element z in an inverse semigroup S, the elements d(z) = 2~
both idempotent. The natural ordering between elements x and y of .S, simply denoted
by = <y, can be defined, among others, by any of the equivalent statements z = yd(z)

and x = r(x)y. Recall that Green’s relations £, %, and 2 can be defined on S by

x Xy if dz)=d(y);
Xy if r(z)=r(y),

D=L oR=R0L (cf. |9, Proposition I1.1.3]). The relation 2 takes a particularly
convenient form on the idempotent elements: namely, for all a,b € Idp.S, the relation
a 2 b holds iff there exists z € S such that a = d(x) and b = r(z).

For a semigroup S, we shall denote by S“Y the semigroup obtained by adding to S a
new zero element 0 (i.e., 0- 2 = -0 = 0 for every z). In particular, if S is an inverse
semigroup, then so is S“°.

Elements x and y in an inverse semigroup with zero are orthogonal, in notation x L y,

1 = 0. An inverse semigroup S with zero is Boolean if Idp S is a generalized

ife=ly =xy~
Boolean algebra and any two orthogonal elements x and y in S have a join with respect
to the natural ordering, then denoted by x @ y.

For any elements x and y in a Boolean inverse semigroup S such that the meet z Ay
exists, we denote by x \ y the unique element such that z = (z A y) ® (x \ y). Observe,
in particular, that o \ y is always defined if 2 and y are compatible (i.e., 7'y and zy~*
are both idempotent). This encompasses the case where x and y are both idempotent
and also the one where x and y are comparable (i.e., x <y or y < z).

Important examples of Boolean inverse semigroups are the finite symmetric inverse
semigroups J,,, for nonnegative integers n, consisting of all one-to-one partial functions on
the set [n] = {1,2,...,n} under composition. Also, G-° is a Boolean inverse semigroup,
for any group G.

Every commutative monoid M can be endowed with a partial preordering <™, defined

by
r<ty if x 4+ z = y for some z € M.
We say that M is

— conical if £ +y = 0 implies that x =y = 0, for all z,y € M;
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— a refinement monoid if for all ag,aq, by, by € M such that ag + a1 = by + b1, there
are elements ¢;; € M, for 4,5 € {0,1} such that each a; = ¢; 0 + ¢;1 and each
bi = co + 1,

A partially ordered abelian group (G, +,0, <) is a dimension group if it is directed (as a
poset), unperforated (i.e., 0 < ma implies that 0 < z, whenever m is a positive integer
and x € G), and the positive cone G+ = {z € G| 0 < z} is a refinement monoid.

The commutative monoids we shall be mainly concerned with are the type monoids
Typ S, for Boolean inverse semigroups S. By definition, Typ S is the universal monoid of
the partial monoid Int S of all Z-classes of elements of S (which we call the type interval
of S), endowed with the partial addition defined by

/D +y/P = (x®y)/P, whenever z,y € S are orthogonal.

Moreover, as in [29], we shall write typg(z), or sometimes simply typ(z), instead of 2/ 2.
Since the canonical map from Int S to Typ S is one-to-one, typ(z) = typ(y) iff z 2y, for
all z,y € S. By [29, Corollary 4.1.4], Int S is a lower interval of Typ S, generating Typ S
as a monoid, and Typ .S is a conical refinement monoid.

For a positive integer n and a Boolean inverse semigroup S, a matrix =z =
(%i5)(i,j)em) x[n] With entries in S is a generalized rook matriz of order n (cf. [27, § 4.5],
[13], also [29, § 3.5]) if the equalities x;jlxw = x“x;i = 0 hold whenever %, j,k € [n]
with j # k. The generalized rook matrices of order n over a Boolean inverse semigroup S
form a Boolean inverse semigroup, denoted as in [29] by M (S). As in [29], we denote
by x(; ;) the generalized rook matrix with (7, j)th entry equal to = and all other entries
equal to zero, for every « € S and every (4,7) € [n] x [n].

The following easy result is contained in [29, Proposition 3.5.3].

Proposition 2.1. Let S be a Boolean inverse semigroup and let n be a positive integer.
Then the idempotent elements of M (S) are exactly the diagonal matrices with idempo-
tent entries.

Definition 2.2. A Boolean inverse semigroup S is Z-cancellative if the conjunction of
a®b=a ®V and a Z a’ implies that b 2V, for all a,b,a’,b’" € Idp S such that a L b
and o' L V.

Recall that an inverse monoid is factorizable if for every x € S there is an invertible
element g € S such that z < g.

Proposition 2.3. A Boolean inverse semigroup S is P-cancellative iff its type mon-
oid Typ S is cancellative. Furthermore, if S is unital, then this is equivalent to S be
factorizable.
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Proof. Let Typ S be cancellative and let a,b,a’,’ € IdpS such that a @b Z o’ GV
and a 2 d'. Since typ(a) + typ(b) = typ(a @ b) = typ(a’ ® V') = typ(a’) + typ(V') and
typ(a) = typ(a’), it follows from the cancellativity of Typ S that typ(b) = typ(d’), that
is, bV.

Suppose, conversely, that S is Z-cancellative. We claim that the type interval Int .S
is cancellative. Let a,b,b’ € IntS such that @ + b = a + b’ within IntS. By [29,
Lemma 4.1.6], there are a,a’ € a, b € b, and b’ € b’ such that a @b = o’ © b'. Since S
is @-cancellative, it follows that b 2, that is, b = b’, which completes the proof of our
claim. Now Int S is a generating lower interval of the conical refinement monoid Typ S
(cf. [29, Corollary 4.1.4]), thus, by our claim together with [29, Corollary 2.7.4], Typ S
is cancellative.

Now let S be unital. Suppose first that S is Z-cancellative and let z € S. Set u =
INd(z) and v =1~r(z). Then 1 =d(z) Du = r(z) ®v with d(z) Z r(x), thus, since S
is @-cancellative, u 2 v, that is, there exists y € S such that d(y) = v and r(y) = v.
The element g = = @ y is invertible and = < g, thus completing the proof that S is
factorizable.

Suppose, conversely, that S is factorizable and let a,b,a’,b’ € Idp S such that a @
b=2d @b and a Z o'. We must prove that b Z V. Setting ¢ = 1 \ (a ® b), we get
(a@c)®db=(d®c)dV =1 with a ® ¢ 2 o’ @ ¢, thus reducing the problem to the
case where a @b =da' @b = 1. Let x € S such that a = d(x) and ¢’ = r(x). Since S is

1

factorizable, there is an invertible element g € S such that < g. From o’ = gag~! and

1 whence, since g is invertible, b 2. O

the invertibility of g it follows that o' = gbg™
Every Boolean inverse semigroup S can be endowed with the skew difference © and
the skew addition V, respectively defined by

Oy = (r(a:) ~ r(y))x(d(x) ~ d(y)), (2.1)

zVy = (z0y) Dy, (2.2)

for all z,y € S. The author proved in [29, § 3.2] that the structures (S,0, 7%, -, ©, V) can
then be axiomatized by a finite number of identities, whose models are called biases. Also,
for any Boolean inverse semigroups S and 7', a homomorphism f: S — T of semigroups
with zero is a bias homomorphism iff it is additive, that is, f(z @ y) = f(z) @ f(y)
whenever x and y are orthogonal elements in S. (In particular, f(0) = 0.) A nonempty
subset I of S is an additive ideal of S if ISUST C I and I is closed under finite orthogonal
joins. In that case, the inclusion map from I into S is an additive semigroup embedding
and [ is a sub-bias of S.

The bias congruences of a Boolean inverse semigroup S are characterized in [29,
Proposition 3.4.1] as those inverse semigroup congruences 0 such that for all z € S and all
orthogonal idempotents a and b of S, xa =g a and 2b =¢ b implies that x(a®b) =g a®b.
(Here and elsewhere, x =g y is an equivalent notation for (z,y) € 6.) We denote by Con S



F. Wehrung / Journal of Algebra 511 (2018) 114—147 121

the (algebraic) lattice of all bias congruences of any Boolean inverse semigroup S. For a
bias congruence 6 of a Boolean inverse semigroup .S, we shall usually denote by 6: S —
S/6 the canonical projection.

A similarity type (cf. [20]) is a pair ¥ = (F,v) where F is a set and v is a map from F
to the nonnegative integers. The elements of F should be thought of as function symbols
and v(f) should be thought of as the arity of f. For example, the similarity type of
groups is usually given by F = {-, 7'}, v(:) = 2, and v(~') = 1. The similarity type of
biases is given by = {0, 7%,-,0, v}, v(0) = 0, v(7') =1, and v(-) = v(©) = (V) = 2.

In general, formal compositions of elements of F (taking the arities into account) are
called the terms of X. An identity of X is an expression of the form p = q where p and q
are both terms. A Y-algebra is a nonempty set A, endowed with a map which to each
f € F, with arity n, associates a map f4: A™ — A (just an element of A if n = 0).

A wvariety of X-algebras is the class of all Y-algebras that satisfy a given set of iden-
tities of 3. Varieties are defined and studied in any textbook of universal algebra such
as [3,6,20]. A standard reference for varieties of groups is Neumann’s monograph [23].
Every variety V on a set X of variables is determined by the set of all identities with
set of variables X satisfied by V. This set of identities is, in turn, a fully invariant con-
gruence of the algebra of all terms on Y. This correspondence gives an order-reversing
bijection between varieties and fully invariant congruences of the term algebra (cf. [3,
Corollary 11.14.10]), and thus it enables us to dispose conveniently of the apparent foun-
dational problem raised by varieties being proper classes. In particular, the lattice of all
varieties of ¥-algebras can be defined, and it has cardinality at most 280+<ardJ The fully
invariant congruences of an algebra A form a complete sublattice of the congruences of A
(cf. [3, Exercise I1.14.1]), thus the lattice of all subvarieties of a variety V satisfies the
dual of every lattice identity satisfied by the congruence lattices of all members of V.

Now the variety of all groups, and the variety of all biases, are both congruence-
permutable (see [3, § IL.5] and [29, § 3.4], respectively). Since the congruence lattice of
every congruence-permutable algebra satisfies the modular identity, and in fact the even
stronger Arquesian identity

(xo Vyo)A(x1 Vy1) A (x2 Vya) < ((z Vx1) /\xo) vV ((z Vi) /\yo)

where we set z; ; = (% V%) A (y; Vy;) and z = 201 A (zo2 V z1,2) (cf. [11] and [7,
Theorem 410]), and since the Arguesian identity is self-dual (cf. [12]), the lattice Agrp
of all varieties of groups and the lattice Ap;s of all varieties of biases are both Arguesian.
Stronger congruence identities, following from congruence-permutability, were discovered
by Mark Haiman in [8]. For more on identities satisfied by normal subgroup lattices of
groups or congruence lattices in algebras from congruence-permutable varieties, we refer
the reader to [2,5].

On the cardinality side, it is known since Ol’'Sanskii that there are continuum many
varieties of groups [24].
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We denote by Var(€) the variety of groups generated by a class € of groups, and set
Var(G) = Var({G}) for any group G.
We set ZT = {0,1,2,3,...} and N = {1,2,3,...}.
def def

3. Free biases are residually finite

In this section we prove that the satisfaction of any equation, in the universal bias of
an inverse semigroup S, can be reduced to a positive quantifier-free formula over S in the
similarity type of inverse semigroups (Proposition 3.7). We deduce from this that every
free bias is residually finite; in particular, the word problem for finite biases is decidable
(Theorem 3.8).

The proof of the following lemma is an elementary calculation and we omit it.

Lemma 3.1. Let a, b, ¢, d be elements in a Boolean ring B. Then (a ~b) A (¢ \ d) =
(aAc)~ (bVd). Furthermore, a~b<c~diffa<bVcandaNd<b.

Since every inverse semigroup S has a semigroup embedding into a bias T" such that
07 ¢ S (use the Wagner—Preston Theorem), the canonical map from S to its universal
bias Upis(S) is a semigroup embedding with 0 ¢ S, and we shall thus assume that
this embedding is an inclusion map. Therefore, S is an inverse subsemigroup of Up;s(.S)
generating Uy;s(S) as a bias, and every semigroup homomorphism from S to a bias T
extends to a (unique) bias homomorphism from Uyis(S) to 7.

Lemma 3.2. Let S be an inverse subsemigroup of a Boolean inverse semigroup T'. Suppose
that T is generated by S as a bias. Denote by B the Boolean subring of IdpT generated
by IdpS. Then B =1dpT and every element € T can be written in the form

n
w:@xiai, where n € ZV, ay,...,a, € B, and x1,...,x, € S. (3.1)
i=1

Proof. The set of all elements a € Idp 7, such that zaz~! € B whenever z € S, con-

tains Idp .S and is closed under finite meets, differences, and orthogonal joins; thus it

contains B. Hence, xtBx~! C B whenever x € S. Set A = {za | (z,a) € S x B}. For
€

1 1

each (z,a) € S x B, ar = axr 'z = ro~laxr = xa’ where ' = 2 'ax € B. This also
proves that A is closed under the inversion operation z — z~'. Now for all z,y € S and

all a,b € B, there is a’ € B such that ay = ya’, thus
xa = zya elongs to A.
(za)(yb) = xya’b belongs to A

Therefore, A is an inverse subsemigroup of T, and therefore so is the closure A® of A
under finite orthogonal joins.
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Let & be written as in (3.1). The element d(z) = @, d(z;a;) = D, d(z;)a;
belongs to B. It follows that Idp A® C B. On the other hand, for every a € B, there are
n € Z" and ag,...,a,—1 € S such that a <'\/
all ¢ <n, we get

i<n @i- Setting b; = a A (a; NV, ay) for

a:@bi:@aibi € A®,

<n <n

thus completing the proof that B C Idp A®. Therefore, B = Idp A®.

Since A® is an inverse subsemigroup of T, closed under finite orthogonal joins and
difference of idempotent elements, it is, by [29, Corollary 3.2.7], a sub-bias of T'. Since it
contains S, it follows that T = A®. Hence, IdpT = IdpA® = B. O

Corollary 3.3. Let S be a finite inverse semigroup. Then the universal bias Uyis(S) is
finite.

The following is a slight strengthening of Lemma 3.2.

Lemma 3.4. Let S be an inverse subsemigroup of a Boolean inverse semigroup T'. Suppose
that T is generated by S as a bias. Then every element x € T can be written in the form

n

= @ x; (ai ~ j\_71 bm')v (3.2)

i=1

where all z; € S, all a;,b;; € Idp S, all b; ; < a;, and all a; < d(x;).
Proof. By virtue of Lemma 3.2, the Boolean ring B = IdpT is generated by Idp S.
Furthermore, by that lemma, it suffices to prove the existence of the given decomposition
in case * = xa where x € S and a € B. Since Idp S is closed under finite meets, a is a
finite orthogonal join of elements of the form a; \ \/;;1 b; ;. Replacing each a; by a;d(z;)
and each b; ; by a;d(x;)b; ;, we get the desired conclusion. O

Lemma 3.5. Let S be an inverse semigroup, let n € Z%, and let x,x1,...,2, € S such
that the x; are pairwise compatible. Then x < \/?=1 x;, within Upis(S), iff x < x; for
some 1.

Proof. We prove the nontrivial direction. Suppose that x < V!, z; within Up(S).
Denote by p: (S,) = (Jg,0) the inverse semigroup embedding given by the Wagner—
Preston Theorem, which we will call the Wagner—Preston completion of S: for every
z € S, p, is the bijection from d(z)S onto r(z)S given by

p=(t) = zt whenever t € d(z)S.
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From our assumption it follows that the partial function p, is extended by the union of
all the p,,. Since d(z) belongs to the domain of p;, it also belongs to the domain of p,,
for some 7, and then = = p,(d(z)) = ps, (d(x)) = 2;d(x), that is, z < z;. O

Lemma 3.6. Let S be an inverse semigroup, let m,n € Z*, and let z, y, a, a1, ..., Gm,
b1, ..., by be elements of S, with a, b, a1, ..., am, b1, ..., by all idempotent. Then
z(a~ Vit ai) <y(b~ Vi, bj) within Upis(S) iff the following statements hold:

there is i € [1,m] such that ad(z) < a; or (za = yd(z)a and ad(z) < bd(y)), (3.3)
for each j € [1,n] there is i € [1,m] such that ad(z)b; < a;. (3.4)

Proof. By replacing a by ad(z) and b by bd(y), we may assume without loss of generality
that ¢ < d(z) and b < d(y).

Suppose first that the conditions (3.3) and (3.4) both hold. Set u = a \ /|-, a; and
v=>b\ \/;L:1 b;. We must prove that xu < yv within Upis(.S).

If a < a; for some i, then v = 0, thus zu = 0 and we are done. Suppose now that
a % a; for all 4. It follows from (3.3) that a < b and za = ya. An elementary application
of Lemma 3.1, together with (3.3) and (3.4), then yields u < v. Since za = ya and u < a,
it thus follows that zu = yu < yv.

Suppose, conversely, that zu < yv within Ups(.S). Denote again by p: (S,-) = (Jg,0)
the Wagner—Preston completion of S. By projecting the equation xu < yv onto the
symmetric inverse semigroup Jg, via p, we obtain

m n

P o (idag ~U idais) Cpyo (idbs “U idb]g), (3.5)
i=1 j=1

where the containment symbol between partial functions means extension and the union
symbol, applied to partial functions, means the least common extension. Since a < d(z)
and b < d(y), the left hand side and the right hand side of (3.5) have respective domains

U =aS\|Ja:S and vV = 05\ [ J 15,

i=1 =1

and it follows from (3.5) that U C V. By applying Lemma 3.1 within the powerset lattice
of S, the latter containment implies that

aS C | JaiSubs, (3.6)
i=1

j=1 i=1
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Observing that a belongs to the left hand side of (3.6), we obtain that

a < a; for some i € [1,m] or a < b, (3.8)

for each j there exists ¢ such that ab; < a;. (3.9)

Furthermore, suppose that a & a; for all i. Then a belongs to U, thus, by (3.5), p,(a) =
py(a), that is, za = ya. O

Proposition 3.7. Let p(xq,...,%,) and q(x1,...,%x,) be terms in the similarity type of
biases. Then there is a positive quantifier-free formula r(xi,...,x,), in the similar-
ity type of inverse semigroups, such that for every inverse semigroup S and all el-
ements 1,...,T, € S, Upis(S) satisfies p(x1,...,2,) = q(x1,...,2,) iff S satisfies

r(x1,...,Tn).

Proof. Set X = (X1,...,%,). Expressing the equation p(X) = q(X) as the conjunction of
€

the two inequalities p(X) < q(X) and q(X) < p(X), we see that it suffices to establish the

conclusion for the inequality p(X) < q(X).

Set X = {X1,...,%Xn}. Due to the Wagner—Preston Theorem, every inverse semigroup
€

embeds into a bias, thus the canonical map from Fi,,(¥) into Fpis(X) is one-to-one.
Applying Lemma 3.4 to the inclusion Fiy(X) < Fpis(X), we obtain, for every bias
term u(X), nonnegative integers m, and n, ; together with elements s} (X) in Fi,,(X), for
1 <4 < my, and idempotent elements a}(X) and by ; (X) in Fiuw(X), for 1 <4 < m, and
1 < j < ny4, such that the relations

bi ; (%) < a{ (%), 3.10)
aj(x) < d(s{(x)), (3.11)
%) = Pt ) (a4~ \/ b, 9) (3.12)

all hold in Fy;5(X), thus in every bias.
In particular, for every bias S and every finite sequence & = (z1,...,2,) € S™, the
inequality p(Z) < q(Z) is equivalent to the conjunction of all inequalities

Mp,i Nq,k

#@@m\vwmws@$@@@\Vme (3.13)
j=1 k=1 1=1

for 1 < ¢ < m,. By virtue of (3.10) and (3.11), each inequality (3.13) is, in turn, equivalent
to the conjunction of all the inequalities

Mp,i Mg N,k

2@~ \/ 02,(@) < \/ (al@ ~ \/ b, (@), (3.14)
j=1 =1

k=1
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Mp,i Nq,i!

$£(7) (a8~ V025 (2~ V 3,(0) = s0(@) (3.15)

where 1 < ¢ < mp and 1 < 7' < mq. By [29, Lemma 5.2.13], the inequality (3.14)
can be expressed by a conjunction of formulas of the form A,y cx < \/k¢X ¢ where
the ¢y are parameters, in Idp S, among the af (Z), b} ;(7), af (¥), bj ;, (). Since Idp S is
closed under finite meets (i.e., products), this reduces to a conjunction of formulas of the
form ¢ < \/, ¢, where ¢ and the ¢ are idempotent elements in Idp S. By Lemma 3.5,
every such formula is equivalent to the disjunction of the formulas ¢ < c¢;. Hence, we
can express the inequality (3.14) by a positive quantifier-free formula with parameters

from Idp Fi,(2). By using Lemmas 3.1 and 3.6, so can the inequality (3.15). O
We are now reaching the main result of this section.

Theorem 3.8. Every free bias is residually finite. In particular, the variety of all biases

is generated by all finite symmetric biases Ty and the word problem for free biases is
decidable.

Proof. Let X be an alphabet and let « and y be elements of the free bias Fpi(X) on X,
such that = # y. We need to find a positive integer N and a bias homomorphism
¢: Fpis(2) — Iy such that p(z) # ¢(y). Write x = p(z1,...,2z,) and y = q(z1, ..., Tn),
for bias terms p and q and elements z1,...,x, € X, and denote by r the positive
quantifier-free formula associated to (p, q) via Proposition 3.7. Now it follows from Propo-
sition 3.7 that the formula

r(xy, ..., Tn)

does not hold in the free inverse semigroup Fin,(X). Since, by Munn’s Theorem [22],
Finv(X) is residually finite, there are a finite inverse semigroup 7" and a homomorphism
¥: Finy(X) = T such that the formula

I’(’(/)(Qil), ce ﬂ/J(iUn))

does not hold in 7. Again by Proposition 3.7 and denoting by 1: Fpis(X) — Upis(T) the
unique extension of 1 to a bias homomorphism, this means that

r(a(xl)v ce ,E({En))

holds within Up(T); that is, ¥(z) # 1(y) within Ups(T). Now by Corollary 3.3, Ups(T)
is a finite bias, thus, by the Lawson-Lenz duality from [17] (see also [29, § 3.3]), there
are a positive integer N and a bias embedding 6: Upis(T) = Jn. Set ¢ = 6 0 p. Then
o(x) # p(y), which completes the proof that Fi;s(X) is residually finite. By McKinsey’s
classical argument [21], it follows that if ¥ is finite, then the word problem for Fy;s(X)
is decidable. O
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4. Homogeneous sequences and rook matrices

In this section we state an analogue for biases of the block matrix decomposition of
an endomorphism of a module (Lemma 4.2). We also characterize in Lemma 4.4 the
Boolean inverse monoids with type monoid ZT, and we describe in Proposition 4.6 the
Boolean inverse monoids with finite sets of idempotents.

The terminology of the following definition is inspired by von Neumann’s work on
regular rings.

Definition 4.1. Let S be a Boolean inverse semigroup. A finite sequence (eq,...,e,) of
idempotent elements of S is homogeneous if e;e; = 0 and e; Z e;, whenever i,j € [1,n]
with ¢ #£ j.

Lemma 4.2. Let n be a positive integer, let S and T be Boolean inverse semigroups
with S an additive ideal of T, and let (e1,...,ey,) be a homogeneous sequence in T'. Set
e= @D, e;. Then eSe = M? (e1Seq).

Proof. For each i € [1,n], we pick ¢; € T such that d(¢;) = e; and r(¢;) = e;. We may
assume that ¢; = ey. Let ¢: eSe — Mf? (e1.Seq) and 9: Mﬁ? (e1Se1) — eSe be the maps
given by

cflxcl C;GCQ e cflxcn
cflxcl CiGCQ - cflxcn
2 2 2
o(x) = . . . , for each x € eSe,
def . . . .
-1 -1 -1
C, xTC1 €, xC2 ... C, TCp

and

V((Tig)@.5)em)xn]) = B cmije;t for each (i) j)yepmixin) € My (e1Se1).
(1,3)€n]x[n]

The verification that the maps ¢ and i are well defined and mutually inverse semigroup
isomorphisms is straightforward, if not a bit tedious. O

The Boolean unitization of a Boolean inverse semigroup S, introduced in [29, Ch. 6],
is the unique (up to isomorphism) Boolean inverse monoid S in which every element has
the form (1 \ e) @ « where e € Idp S and = € S, and such that S =S if S is unital. In
particular (cf. [29, Proposition 6.6.5]), S is an additive ideal of S and if S is not unital,
then S /S is the two-element inverse semigroup.

Lemma 4.3. Let S be a Boolean inverse semigroup and let m and n be positive integers.
Then ME,, (5) = ME (M5, (5)).



128 F. Wehrung / Journal of Algebra 511 (2018) 114—147

Proof. Observe, first, that M (S) is an additive ideal of M% (§> Whenever
@

1 < i < mn, we denote by a; the diagonal matrix in M, .

(5) with unique nonzero
entry at (i,7) equal to 1. Setting e;, = @fj“;ﬂkfl)m a;, the finite sequence (e, ..., ey,)
is homogeneous in M& (§> and e; M2 (S)e; consists of all generalized rook matrices

over S all whose entries outside [m] x [m] are zero; thus it is isomorphic to MZ ().
Apply Lemma 4.2. O

Lemma 4.4. Let S be a Boolean inverse monoid and let m be a positive integer. Then
(Typ S, typg(1)) = (Z*,m) iff S = Mg (GH°) for some group G.

Proof. We start with the case where m = 1. Since G-° has exactly one nontrivial idem-
potent, we get the isomorphism (Typ GYY typsue(1)) = (ZF,1). Suppose, conversely,
that (Typ S, typg(1)) = (Z*,1). For any a € Idp S, 1 = typg(1) = typg(a) +typs(1—a),
thus either typg(a) = 0 or typg(1 —a) = 0, that is, either a = 0 or a = 1. It follows that
G = S\ {0} is a group and S = G°.

Now we deal with the general case. Since the idempotent elements of M (G'—'O) form a
Boolean algebra with m atoms, all pairwise Z-equivalent (cf. Proposition 2.1), we get the
isomorphism (Typ Mj‘i (Guo) ,typ(l)) = (Z*,m). Let, conversely, S be a Boolean inverse
monoid such that (Typ S, typ(1)) = (Z*, m). It follows from [29, Lemma 4.1.6] that there
is a decomposition 1 =e; @ - - - B e, with each typ(e;) = 1. In particular, (e1,...,e.,) is
a homogeneous sequence in S. By Lemma 4.2, it follows that S = M® (e;Se;). By [29,
Corollary 4.2.8], the following isomorphism holds:

(Typ(e1Ser), type, s, (€1)) = (ZF,1). (4.1)

By the first part of the present proof, it follows that e;Se; = G° for some group G.
Therefore, S = M (e1Se1) = M (G°). O

The structures MY (G“°) seem to have been first considered in [19, § 6].

In [16, Theorem 4.18], Mark Lawson describes finite Boolean inverse monoids in terms
of groupoids. The methods of the present section yield the following Artin—Wedderburn
type description of those monoids, and, more generally, of the Boolean inverse monoids
with finite sets of idempotents, in terms of groups. Although we will not need this result
in the rest of the paper, we found it worth recording here.

Definition 4.5. A Boolean inverse monoid is fully group-matricial if it is isomorphic to
M® (GUO)7 for some positive integer n and some group G.

Proposition 4.6. Let S be a Boolean inverse monoid. Then S has finitely many idempotent
elements iff it is isomorphic to a finite product of fully group-matricial Boolean inverse
Semigroups.
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We propose two different proofs of Proposition 4.6. In both cases it suffices to establish
the nontrivial direction. Assume that the Boolean algebra B of all idempotent elements
of S is finite and denote by A the set of all its atoms.

First proof of Proposition 4.6. Denote by 8 the restriction of Green’s equivalence rela-
tion 2 to A. The elements e, = \/ a, for a € A/, are all idempotent, and they satisfy
the relation

1=EP (ca|ac A/O) within S. (4.2)

We claim that e, belongs to the center of S, for every a € P/6. Indeed, let x € S. Then
for every p € a, the element xpz ! is either zero or #-equivalent to p, thus it belongs to
aU{0}, and thus it lies below eq. It follows that the element zeqz ' = @ (zpz~! | p € a)
lies below e,. Hence,

Teqg = xm_lxea = xeam_lx < eq.

The proof that ez < xeq is symmetric. This completes the proof of our claim.
By virtue of (4.2), this yields a direct decomposition S = HaeP/e €qS, thus reducing
the problem to the case where @ has exactly one equivalence class. Thus, denoting by e;,
.., €, the distinct atoms of B, the finite sequence (eq,...,e,) is homogeneous. By
Lemma 4.2, § & Mf? (e1.Seq). Since ey is the only nontrivial idempotent in e;.Se;y, we get
e1Se; = G0 for some group G. O

The proof below was suggested to the author by the referee. While more direct, it
involves the duality theorem contained (for example) in [17, Theorem 3.25].

Second proof of Proposition 4.6. The set G of all atoms of S forms a groupoid with set
of identities A. Since A is finite, S is isomorphic to the inverse semigroup of all bisections
of G. Denoting by 91, ..., G the connected components of G, we get S = Hle S; where
each S; is the Boolean inverse semigroup of all bisections of G;. Setting A, = AN G;
and letting G; be any vertex group of G;, §; is isomorphic to A; x G; x A; where the
composition is defined by the rule (a,x,b)- (b, y, c) = (a,zy, ¢). Setting n; = card A4, this
yields $; 2 M% (G;"°). O

5. Type monoids of finitely subdirectly irreducible biases

The main aim of this section is to establish Lemma 5.5, which states that the type
monoid of every (finitely) subdirectly irreducible bias is prime (cf. Definition 5.3).

Denote by 6 the congruence generated by I x {0}, for an additive ideal I of a Boolean
inverse semigroup S (cf. [29, Proposition 3.4.6]; 8; is denoted there by =;). Recall that
this congruence can also be defined by

(z,y) €0 < (Fz)(¢2<wand z<yand {z~z,y~2z} CI), forallz,yeS. (51)
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Lemma 5.1. 8; N 07 = O;~;, for all additive ideals I and J of S.

Proof. It is sufficient to prove that 8; N@; C O;n;. Let (x,y) € 6; N O ;. By definition
(cf. (5.1)), there are u,v < z,y such that both containments {z \ u,y ~u} C I and
{z ~v,y~v} C J hold. Since u,v < z, the elements u and v are compatible, thus
they have a join w, and w < z. From u,v < y it follows that w < y. From = \ u =
(x N w) @ (w~u) it follows that  \ w < z \ u, thus, since z ~u € I, we get x ~w € I.
Likewise, z ~w € J, so x ~w € I N J. Likewise, y ~ w € I N J, so w witnesses that
(x,y) € 01ny. O

If S is a Boolean inverse meet-semigroup, that is, x Ay exists for all z,y € S, then the
satisfaction of (5.1) needs to be checked only on the element z = x A y, which implies
immediately that Lemma 5.1 can be extended to arbitrary infinite collections of additive
ideals. However, the following example shows that this observation does not extend to
the case where S is not an inverse meet-semigroup. Recall that an inverse semigroup is

Iy = xx71).

a Clifford inverse semigroup if it satisfies the identity d(x) = r(x) (i.e., x~
Example 5.2. A Clifford Boolean inverse monoid S, with an infinite descending sequence
(In | n € ZT) of additive ideals such that (), oz« In = {0} yet N,cz+ 01, is not the
identity congruence.

Proof. The example in question is the one of [29, Example 3.3.5]. Let us recall its con-
struction. Denote by B the Boolean algebra of all subsets of N that are either finite
or cofinite, and pick any nontrivial group G. For every =z € B, we set N, = G if z is
finite, and N, = {1} if z is cofinite. For g,h € G and x € B, let g =, h hold if g = h

(mod N,). We define an equivalence relation ~ on B x G by setting
(x,9) ~ (y,h) if (z=yandg=,h), forallz,y€ B andall g,hea,

and we denote by [z, g] the ~-equivalence class of (x,g). Then ~ is a semigroup con-
gruence on B x G and the quotient S = (B x G)/~ is a Boolean inverse monoid where
d[z, g] = r[z, g] = [z, 1] whenever (z,g) € B x G.
For the rest of the proof, we pick any element g € G \ {1}, and we set
an = [N\ [n].g].
= 1

en = [N\ [n. 1],
for every n € Z*. The set I, = {[z,h] € S| xN[n] =@} is an additive ideal of S, for
€
every n € Z*. Obviously, (,,cz+ In = {0}. On the other hand, for every n € Z*, both
elements ag \ [[n],1] = a, and ey \ [[n],1] = e, belong to I,, thus the pair (ag,bo)
belongs to the intersection of all 85, while ag # by. O
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Definition 5.3. A conical commutative monoid M is prime if M \ {0} is downward di-
rected.

Lemma 5.4 (folklore). Let two elements x and y in a conical refinement monoid M be
orthogonal, in notation x L y, if there is no nonzero z € M such that z <* z and
2z <t y. Then the following statements hold:

(i) * L z and y L z implies that x +y L z, for all x,y,z € M.
(ii) = L y implies that nx L ny, for all x,y € M and every positive integer n.

A bias S is subdirectly irreducible (resp., finitely subdirectly irreducible) if it has a
smallest nonzero congruence (resp., if any two nonzero congruences of S have nonzero in-
tersection). Trivially, every subdirectly irreducible bias is finitely subdirectly irreducible.
By using the results of [29, § 5.1], it is easy to construct finitely subdirectly irreducible
Boolean inverse monoids that are not subdirectly irreducible.

Lemma 5.5. Let S be a finitely subdirectly irreducible bias. Then the type monoid Typ S
8 prime.

Proof. It suffices to prove that for any nonzero idempotent elements a and b of S,
there exists a nonzero element of Typ S below typg(a) and typg(b). Denote by I(z)
the additive ideal of S generated by {x}, for any = € S. Then 0;(,) and 0 are both
nonzero congruences of S, thus, since S is finitely subdirectly irreducible, the intersection
01(a) N1 is a nonzero congruence of S. By Lemma 5.1, we get I(a) N 1(b) # {0}. The
subsets

1, = {x € TypS | (@neN)(x <" n-typg(a))},

I, = {a: € TypS | (Bn e N)(z <" n- typs(b))}
of Typ S are both o-ideals of Typ S. By [29, Proposition 4.2.4], the subsets

J(a) = {z € S| typg(z) € I,},

J(b) = {z €5 [typs(x) € I}

are both additive ideals of S. Since a € J(a) and b € J(b), it follows that I(a) C J(a)
and I(b) C J(b). (Actually, with a small additional effort, it is not hard to see that
I(a) = J(a) and I(b) = J(b).) Hence J(a) N J(b) # {0}, and hence there are a positive
integer n and ¢ € (Typ S) \ {0} such that ¢ <™ ntypg(a), ntypg(b). Since Typ S is a
conical refinement monoid, it has, by Lemma 5.4, a nonzero element below typg(a) and

typg(b). DO
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6. Generators for varieties of biases

The main aim of this section is to prove that every proper variety of biases is generated
by biases of generalized rook matrices of finite order over groups with zero (Theorem 6.2).

Recall (see, for example, [29]) that the indez of an element e in a conical commutative
monoid M is the least nonnegative integer n, if it exists, such that (n+ 1)z <* e implies
that £ = 0 whenever x € M, and oo otherwise.

Lemma 6.1. Let M be a nonzero conical refinement monoid. If M is prime and every
element of M has finite index, then M = Z7T.

Proof. We claim that every element of M\ {0} is above an atom of M. Suppose otherwise
and let @ € M without any atom below a. Let x € (0, a]. Since there is no atom below z,
x is not an atom, thus, since xz # 0, there are xo,x1 € M \ {0} such that © = x¢ + 2.
Since M is prime, there is y # 0 such that y <* zg and y <™ z;. It follows that 2y <% .
Arguing inductively, we find n € ZT and z € (0, a] such that 2" is greater than the index
of a and 2"z <t q, in contradiction with the definition of the index. This completes the
proof of our claim.

In particular, there is at least one atom p in M. Since M is prime, p is the only atom
in M. By the claim above, every element of M \ {0} is larger than or equal to p.

Now let a € M. Since p <* x whenever z € (0,a], the index m of a is the largest
integer such that mp <% a. Let b such that mp +b = a. If b # 0, then p <t b, thus
(m+1)p <T mp+ b = a, in contradiction with the definition of the index. Therefore,
mp = a, thus completing the proof that M = ZTp. Since M is a conical refinement
monoid and p is an atom, it follows that the map (Z* — M, n + np) is one-to-one.
Therefore, M =2 Z+. O

Recall that a partially ordered Abelian group G is Archimedean if for all a,b € G, if
na < b for every n € ZT, then a < 0.

Theorem 6.2. Let V be a proper variety of biases.

(1) There is a largest nonnegative integer h such that Jp, € V. Furthermore, h is the
largest possible value of the index of typg(e) within Typ S, for S €V ande € Idp S.

(2) For any S €V, every element of the type monoid Typ S has finite index. In partic-
ular, Typ S is the positive cone of an Archimedean dimension group.

(3) The variety V is generated by the collection of all its fully group-matricial members.

Proof. Ad (1), (2). If 3,, € V for all n € ZT, then, by Theorem 3.8, V = Bis, which
contradicts our assumption. Hence there is a largest nonnegative integer h such that
Jn € V. Moreover, either h = 0 and TypJ, = {0}, or A > 0 and (TypJs, typs, (1)) =
(Z*,h). It follows that the index of typy, (1) in TypJj, is exactly h.



F. Wehrung / Journal of Algebra 511 (2018) 114—147 133

Let S € V. We shall prove that for every e € Idp .S, the index of e = typg(e) is

less than or equal to h. Suppose otherwise. By the definition of the index and by [29,
Lemma 4.1.6], there are nonzero pairwise orthogonal idempotents eg,...,en, < e such
that typg(eo) = typg(e;) whenever 0 < i < h. By definition, (eg,...,ep) is a homo-
geneous sequence of S. Set ¢ = @?:0 e;. By Lemma 4.2, M%l (epSep) is isomorphic
to €’Se’, hence it embeds into S. Since Jj,11 embeds into M%l (epSep), it also belongs
to V, a contradiction.

Since every element of the type interval Int .S of S has finite index in Typ S, and
since Int S generates the refinement monoid Typ .S, it follows from [28, Corollary 3.12]
that every element of TypS has finite index. By [28, Proposition 3.13], it follows
that Typ S is the positive cone of an Archimedean dimension group.

Ad (3). Denote by X the class of all fully group-matricial members of V. Every mem-
ber S of V is the directed union of all unital biases eSe where e € Idp S; thus the unital
members of V generate V. Further, every unital member S of V is a subdirect product
of subdirectly irreducible members of V, which are all homomorphic images of S, thus
they are all unital. Hence, V is generated by the class of its unital subdirectly irreducible
members, so it suffices to prove that every unital subdirectly irreducible member S of V
belongs to X.

By Lemma 5.5, Typ S is a prime conical refinement monoid. Further, by (2) above,
every element of Typ S has finite index in Typ S. By Lemma 6.1, it follows that Typ S =
Z*. Identifying Typ S with ZT and setting n = typg(1), it follows from Lemma 4.4 that
S =MP (G™) for some group G. O

Note. By Theorem 3.8, the variety Bis of all biases is generated by all finite symmetric
inverse biases J,,. Since all J,, with n > 0 are fully group-matricial, it follows that
Theorem 6.2(3) extends to Bis; thus it is valid for any variety of biases.

7. Generalized rook matrices and wreath products of groups

The main aim of this section is to relate embedding properties of fully group-matricial
biases and embedding properties of the corresponding groups (Lemma 7.6). Owing to
Lemma 7.4, the latter will be stated in terms of wreath products by finite symmetric
groups.

The proof of the following lemma is a straightforward application of [29, § 3.5] together
with the equivalence between bias homomorphism and additive semigroup homomor-
phism, and we leave it to the reader.

Lemma 7.1. Let S and T be Boolean inverse semigroups and let m be a positive
integer. Then for every bias homomorphism f: S — T, the assignment MY (f):

. . (&) .
(l"z',j)(i,j)e[n]x[n} — (f(xi_’j))(m)e[n]x[n] defines a bias homomorphism M, (f):
MP (S) — MP (T). Furthermore, MY (f) is one-to-one (resp., surjective) iff f is one-
to-one (resp., surjective).
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Lemma 7.2. Let S be a Boolean inverse semigroup and let n be a positive integer. Then
every additive congruence o of S gives rise to a unique additive congruence Mff (o)
of M® (S) such that

(i) (i5)en) x ] =M () Wig)i)emixin] < (Tij =a iy for all (i,5) € [n] x [n]),
(7.1)

for all (i) i, jyem)xn)» (Mirg) (i.5)em]x[n] € MP (S). Furthermore, the canonical surjective
homomorphism MY (a) : M® (S) — MY (S/a) factors through a unique isomorphism
M () /MZ () = M (S/ax). Conversely, every additive congruence of MY (S) has the
form M& (a) for a unique additive congruence o of S.

In particular, the assignment o — M (a) defines an isomorphism from Con S onto
Con M? (9).

Proof. The canonical projection a: S — S/« is a bias homomorphism, which, by
Lemma 7.1, induces a bias homomorphism MZ (o) : MZ (S) — M? (S/a). The ker-
nel MY (a) of that homomorphism is an additive congruence of M (S), and it is given
by (7.1). Observe that

Tir,gr) = A1) (6,5) A(5,4") 5

for all 4,7/, 7,5 € [n] and all z,a € S with a idempotent and d(z) V r(z) < a.
Now let @ be an additive congruence of MY (S). The equivalence relation o on S
defined by

T=a Y S T =6 Y1), for all x,y € 5,
is an additive congruence of S, and it follows from the above that
T=a Y S Tay) =0 Yiy) for all z,y € S and all ¢,j € [n]. (7.2)

We claim that 8 = M% (a) Let z = ('Ii,j)(i,j)e[n]x[n] and Yy = (yi,j)(i7j)6[n]><[n] in Mf (S)

Suppose first that z =ye() y. For all (i,j) € [n] x [n], the relation z;; =q
yi,; holds, that is, by definition and by (7.2), (vi;)u;) =Ze (¥ij)aj)- Since x =
Ga(i,j)e[n]x[n] (i) (,5) and similarly for y, it follows that = =g y.

Suppose, conversely, that + =¢ y and let e be an idempotent element of S such
that \/, ;d(wi;) vV V,;r(zi;) < e Let 4,5 € [n]. From = = y it follows that
€6, Te () =6 €3i,)Ye(j,j) that is, (i ;)i =6 (Yij)a, ), thus, by (7.2), 2 ; =« v ;-
Therefore, =M@ (a) Y, thus completing the proof of our claim.

Finally, since the map o — Mff () is clearly one-to-one, it defines an isomorphism
from Con S onto Con MY (S). O

Taking S = G0 for a group G, we get two types of congruences in S:
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(1) The congruences of the form 8“° = 8 U {(0,0)}, for a congruence @ of the group G;
(2) The full congruence 1g = GY° x G“°.

In turn, the congruences of the group G are in one-to-one correspondence with the
normal subgroups of G. Denoting by NSub G the lattice of all normal subgroups of G,
we thus obtain the following corollary to Lemma 7.2.

Corollary 7.3. Let G be a group and let n be a positive integer. Then Con MY (G"’o)
and Con GY° are both isomorphic to the lattice obtained by adding a new top element
to NSubG.

Our next lemma is, essentially, contained in [19, § 6]. We include a proof for conve-
nience.

Lemma 7.4. Let G be a group and let n be a positive integer. Then the group of all
invertible elements of Mi‘? (Gu()) is isomorphic to the wreath product G1G,,.

The wreath product involved here is identical to the one considered in [19, § 6]: namely,
GG, is the set G™ x G,, endowed with the multiplication defined by

(917 s ,gn;Oé) ’ (h17' : ’hnvﬂ) = (glhocfl(l)a' .- 7gnho¢*1(n);aﬂ)a
for all ¢1,...,9n,h1,...,hy € Gand all a, 8 € G,,.

Proof. The group homomorphism G — {1} extends to an additive semigroup homomor-
phism, that is, a bias homomorphism, G“° — {0, 1}, which, by Lemma 7.1, extends to
a bias homomorphism 7 from MY (G°) to J,, & MY ({0,1}). Let = = (Ti5) (i.5)€ln] x[n]
in MY (GY°). If z is invertible in MY (G"?), then () is invertible in J,, thus it is a
permutation matrix, that is, denoting by &,, the group of all permutations of [n],

71'(1’) - (6i70(j))(i7.j)6[n]x[n]a for some o € 6n7

where ¢ denotes Kronecker’s symbol. It follows that there is a finite sequence
(91,--.,9n) € G™ such that

T = (03,0(;)9) (i.j)€[n] x [n]- (7.3)
Denoting by [g1, . . ., gn; o] the right hand side of (7.3), the product of two such elements
is given by
[917 <oy 89n; Oé] : [hlv EE) hrmﬂ] = [glha_1(1)7 s 7gnho¢_1(n); O‘ﬁ]7
so the elements of the form [g1,...,gn; 0] form a subgroup of the monoid MY (GW),

isomorphic to the wreath product G ! &,. By the above, this subgroup contains all
invertibles of M (GHY), thus it consists exactly of all invertibles of M (G). o



136 F. Wehrung / Journal of Algebra 511 (2018) 114—147

Our next series of lemmas will focus on bias homomorphisms between fully group-
matricial biases.

Lemma 7.5. Let G and H be groups and let n be a positive integer. Then G-° embeds,
as a bias, into Mf? (H'—'O) iff G embeds, as a group, into the wreath product H1 S, .

Proof. By Lemma 7.4, any group embedding of G into H ! &,, gives rise to a group
embedding of G into the group of all invertible elements of MY (H"°), which in turn
extends to a bias embedding from G™° into M;, (H?).

Let, conversely, ¢: G0 — MY (H") be a bias embedding. Since ¢(1) is an idempo-
tent element of Mg’ (H '-'0), it is, by Proposition 2.1, a diagonal matrix with entries in
{0,1}. Denote by €2 the set of all indices ¢ € [n] such that the (¢,4)th entry of (1) is 1. For
every g € G, the element ¢(g) = ¢(1)¢(g)¢(1) belongs to ¢(1) MY (HY) (1), which
consists of all generalized rook matrices all whose entries outside €2 x § are zero. Hence,
setting m = card 2, the map ¢ induces a unital bias embedding 1: G-° — M?Z (Huo).
Since 1 sends the unit to the unit, it sends every invertible element to an invertible
element. By Lemma 7.4, G embeds, as a group, into H{&,,. The latter embeds, in turn,
into H1&,, via the assignment [h1,...,hy;0] = [h1, ..., hm,1,...,1;5] where 7 stands
for the extension of o by the identity map on [n]\ [m]. O

Denote by |z] the largest integer less than or equal to z, for any rational number z.
The following lemma strengthens Lemma 7.5 to bias embeddings between fully group-
matricial biases.

Lemma 7.6. Let G and H be groups, let m and n be positive integers. Then Mgz (G"'O)
embeds, as a bias, into Mf (H"'O) iff m < n and G embeds, as a group, into the wreath
product H1S |y /-

Proof. Suppose, first, that m < n and that G embeds, as a group, into H 1 &, /m-
By Lemma 7.5, G-° embeds, as a bias, into Mafn/m] (HY9). It follows that M (GY°)

embeds, as a bias, into M (M?n/mj (Hu0)>, thus, by Lemma 4.3, into Mf?LI_n/mJ (H-0).
Since m|n/m] < n, it follows that MY (G"°) embeds, as a bias, into MY (H"9).

Let, conversely, ¢: M (GY) — M® (H"°) be a bias embedding. Whenever 1 <
i < m, denote by a; the generalized rook matrix of order m with (¢,47)th entry 1 and
all others 0. Similarly, for X C [n], denote by bx the diagonal generalized rook matrix
of order n with (4,j)th entry 1 if j € X, 0 otherwise. Then each ¢(a;) is a nonzero
idempotent element of MY (H"?), so, by Proposition 2.1, ¢(a;) = bx, for some nonempty
X; C [n]. Since (a1, . . ., an) is a homogeneous sequence in M$, (G2), (bx,,...,bx,,) isa
homogeneous sequence in Mff (H u0)7 thus the X; are pairwise disjoint and they all have
the same cardinality, say d. Hence, md < n. Moreover, ¢ embeds a; Mfi (G'-'O) a1, which
is isomorphic to GY°, into bx, MY (H"?) by,, which is isomorphic to M§ (H"). By
Lemma 7.5, G embeds into H1&,. Since d < |n/m], the desired conclusion follows. 0O
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8. A projectivity property of fully group-matricial biases

The main aim of this section is the projectivity property of fully group-matricial
biases, within the class of all Z-cancellative biases, stated in Lemma 8.3. Our first lemma
is an analogue, for biases, of the lattice-theoretical result stating the projectivity of
von Neumann frames (cf. [4,10]).

Lemma 8.1. The symmetric inverse monoid J,, is a projective bias, for every positive
integer n; that is, for every Boolean inverse semigroup S, every surjective bias homo-
morphism p: S — T, has a right inverse bias embedding.

Proof. The kernel ¢ of ¢ is an additive congruence of S. Denote by e;; the unique
function from {j} to {i}, whenever 4,j € [n]. Since ¢ is a surjective homomorphism of
inverse semigroups, for every ¢ € [n] there exists a1; € S such that ¢(ai,;) = e .
Since e;; is idempotent, we may take a;; idempotent. By replacing each a;; by
ari(d(a1,i) N Vi< o;d(a1,5)), we may assume that d(as,;)d(a1,;) = 0, that is,

al,iai; =0 for all distinct 4,j € [n]. (8.1)

Now set

n
by = N\ rlary),

Jj=1

-1
bii = a -b1 141 4
1, def 1,2Y4, 2

bi; = biiai,
tdet 0

for each ¢ € [n]. This causes no conflict of notation, because b1 1 < aq,1. All elements b; ;
are idempotent; moreover, by (8.1), they are pairwise orthogonal. Furthermore, for ev-
ery i € [n], it is easy to verify that ¢(b;;) = e;q, @(b1;) = e1,;, d(b1;) = b, and
r(b1,;) = b11. Since by ; < a1,; and by (8.1), we get

bl,ibi} =0 for all distinct 4, j € [n].

We set b; ; = bi%bm whenever 4,5 € [n]. Then ¢(b; ;) = 6177361,3‘ = ej1€1,; = € ;.
Furthermore, by using the above, it is not hard to verify that the b; ; form a system of
matrix units in S, that is, b; ;bx; = 0, xb; 1, whenever ¢, j,k,l € [n]. The map ¢: 3, = S,
T @iedom(w) be(i),i is an additive semigroup homomorphism, and p oy =id;,. O

In order to establish an analogue of Lemma 8.1 for fully group-matricial biases, we
will need to add to our assumptions a statement of Z-cancellativity. We first establish a
crucial preparatory lemma.
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Fig. 8.1. A commutative triangle of biases.

Lemma 8.2. Let 0 be an additive congruence of a P-cancellative Boolean inverse semi-

group S, let a,b € Idp S such that a Ps b, and let x € S/0 such that d(x) = a/0 and
r(x) =b/0. Then there exists x € x such that d(z) = a and r(z) = b.

Proof. Pick y € z. It follows from our assumptions that d(y) =¢ a and r(y) =¢ b. Set
u = d(y) and v = r(y). The elements v’ = uay~'by and v = yu'y~! are idempotent,
def def def def

with v’ < ua, v' < vb, v =¢ u =g a, and v/ =¢ v =¢ b. Setting 7/’ = yu', we get
e

d(y') = u'd(y) =/,

r(y) =yu'y 't =7,
sou' s v'. Since a Zg b, v’ < a, and v’ < b, and since S is Z-cancellative, it follows that
a~u' Pg b~ v, that is, there is s € S such that d(s) = a ~ v/ and r(s) = b~ v'. From

u’ =g a it follows that s =¢ 0. Set x = v’ & s. Then z =g 3y’ =¢ y, so x € x. Furthermore,
d(zr) =cand r(z) =b. O

We can now state the promised projectivity statement for fully group-matricial biases.

Lemma 8.3. Let S be a Z-cancellative Boolean inverse semigroup, let n be a positive
integer, let G be a group, and let ¢: S — MY (GUO) be a surjective bias homomorphism.
Then there are a group G, a surjective group homomorphism v: G — G, and a bias
embedding n: M (auo) = S such that MY (“°) = pon.

The situation is illustrated on Fig. 8.1.

Proof. For all (i,j) € [n] x [n], denote by e;; the element of M{ (G“°) with (i,j)th
entry equal to 1 and all other entries equal to 0. By Lemma 8.1, there is a system
(@i,5)(i,5)€[n) x [n) Of matrix units in S such that each ¢(a; ;) = e; ;. The subset

@;f {reS|d(z)=r(z)=a1}

is a subgroup of the monoid a;,1Sa;,1. For each z € G, d(¢(x)) = r(p(z)) = e1,1, thus
@(x) = (x)(1,1) for a unique ¢(x) € G. Clearly, ¢ is a group homomorphism from G
onto G.
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We claim that 9 is surjective. Observe first that the kernel ¢ of ¢ is an additive
congruence of S. Let g € G. Since ¢ is surjective, there exists y € S such that p(y) =
g(i,1)- Set & = y /. Since

p(d(y)) = d(e(y)) = d(g(1,1)) =e€1,1 = <P(a1,1),

we get d(y) =, a1,1, and similarly, r(y) =, ai,1. Hence, d(x) = r(x) = ai,1/¢. By
Lemma 8.2, there exists # € = such that d(z) = r(z) = a1 1; so z € G. Moreover,

o(z) = ¢(y) (because x belongs to © = y/¢)
=9(1,1),

that is, ¥(z) = g, thus proving our claim.
For every x € M? 6”0 , it is not hard to verify that the elements a; x; a1 ;, for
(i,7) € [n] x [n], are pairwise orthogonal. This enables us to set

n@) = P aawijan.

def
(4,5)€[n]x[n]

Elementary calculations show that 7 is an additive semigroup homomorphism, that is, a
—110 — L0
bias homomorphism, from M (Gu to S. Furthermore, for every x € G- s n(za) =

—L0\ .
a1,17a1,1 = T, thus the restriction of 7 to the upper left corner of Mff (Gu ) is one-to-one.

By Lemma 7.2, it follows that n is one-to-one.
Finally, for every z € M® (@uo),

(pom)(@) = @  elairwijar,)

(4,9)€[n]x[n]

= P ervianer;

(i,3)€[n]x[n]
= P d@iiey

(i,7)€[n]x[n]

= ¢< @ (xi,j)(i,j)>
(i,5)€[n]x[n]
=(x),
so pon=1. O

9. Boolean inverse semigroups with bounded index

The main result of this section, Lemma 9.3, relates the monoid-theoretical concept of
index, evaluated on elements of the type monoid of a Boolean inverse semigroup S, to
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the satisfaction of a certain inverse semigroup-theoretical identity, evaluated on elements

of S.

Lemma 9.1. Let S be an inverse semigroup, let n be a positive integer, and let x € S.
Then d(z™) = r(z") iff d(2™) = d(z"*!) and r(2™) = r(z"*).

Proof. (G. Kudryavtseva) If d(z™) = r(z™), then
d(z®") = z 7"z """ = 2 """ = (d(2"))? = d(z"),
whence d(z") = d(z""1). The proof that r(z") = r(z"*!) is similar.
Suppose, conversely, that d(z™) = d(z"™!) and r(z") = r(2"!). For any positive
integer k, if d(z*) = d(z¥*1), then

d(ajk'H) = x_ld(xk)ac = x_ld(xk+1)x = d(:ck+2).

Hence, our assumption implies that d(z") = d(z*) for every k > n. In particular,

d(z") = d(z*"). (9.1)
Now
a7t = """ (that is, d(«™) is idempotent)
=g "pPry TN (use (9.1))
=z "z (the idempotents ™ "z" and z"z~" commute)

< z"x7"™.
The proof that ™x~" <z~ ™2™ is symmetric. O
Recall the notation z(y) = zyz !, used in [29)].

Lemma 9.2. Let S be a Boolean inverse semigroup and let x,e € S with e idempotent.
Then typg(z(e)) <* typg(e) within Typ S.

Proof. d(ze) = d(x)e < e, while r(ze) = z(e), so typg(z(e)) = typg(r(ze)) =
typs(d(ze)) <* typg(e). O

The identity d(x™) = r(x™), the earliest appearance of which we are aware of being
Reilly’s paper [25, Theorem 3.4], plays a crucial role in the following lemma. It was
suggested to the author by Ganna Kudryavtseva, together with a sketch of a proof of
Corollary 9.4. Our argument here is different.
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Lemma 9.3. The following are equivalent, for any Boolean inverse semigroup S and every
positive integer n:

(i) typg(e) has index at most n in Typ S, for every e € Idp S;
(ii) d(z™) = r(z™) for every x € S.

Proof. (i)=(ii). Set e = d(z) Vr(z) and b =e~r(z). Then e = b r(z) = b P z(e),
thus r(z) = z(e) = z(b) D x%(e), so e = bd x(b) ® x%(e), and so on. By an easy induction

argument, we thus get

e=boz(d)®--- @) ®r(z*t) for every k € Z7T. (9.2)

By Lemma 9.2, it follows that (k4 1) - typg(z¥ (b)) + typg(r(z¥*1)) <* typg(e). Hence,
taking k = n and by assumption on the index of typg(e), we get 2™(b) = 0. By apply-
ing (9.2) to k =n and k =n + 1, we thus get

e=b@zd)®- - ®a" b ®r(z")

=b@xd)®---@a2" b ®r(z"th),

whence r(z") = r(z"*!). By applying that result to 27!, we get d(2™) = d(z"*!). By
Lemma 9.1, it follows that d(z™) = r(z™).

(ii)=-(i). Suppose that typg(e) has index greater than n, where e € IdpS. By the
definition of the index and by [29, Lemma 4.1.6], there are nonzero pairwise orthogonal
idempotents ey, ..., e, such that typg(eg) = typg(e;) whenever 0 < ¢ < n.For0 < i < n,
there exists z; € S such that d(z;) = e;41 and r(z;) = e;. Observe that z;x; # 0 iff
j=1+1, whenever 0 <i,j <n.Setxz=x0® - Dxy_1. Then 2" = xg---x,_1 with
d(2") = e, distinct from r(z™) =ep. O

Corollary 9.4 (G. Kudryavtseva). Let G be a group and let n and k be positive integers.
Then My (G9°) satisfies the identity d(x") = r(x") iff k < n.

Proof. The idempotents of M,? (G'—'O) form a finite Boolean lattice with k£ pairwise
P-equivalent atoms. Hence (Typ M,? (G'-'O) ,typ(1)) = (Z*1, k). Apply Lemma 9.3. O
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Definition 9.5. Let S be a Boolean inverse semigroup.

e Define the index of an element x of S as 0 if x = 0, the least positive integer n such
that d(2™) = r(z™) if it exists and x # 0, and oo in all other cases (i.e., z # 0 and
d(z™) # r(z™) for every positive integer n).

e Define the indezx of S as the supremum of all indexes of all elements of S.

Moreover, define the indez of a class C of Boolean inverse semigroups as the supremum
of all indexes of all members of C.

Now the following is a reformulation of Lemma 9.3.

Corollary 9.6. Let S be a Boolean inverse semigroup. Then the index of S is equal to
the supremum of the indexes, within the type monoid Typ S, of all elements of the type
interval Int S.

Corollary 9.7. Let V be a variety of biases. Then the index of V is equal to the largest
nonnegative integer n such that 3, € V if it exists, oo otherwise.

In particular, we emphasize that every variety of biases, distinct from the variety Bis
of all biases, has finite index (this follows from Theorem 6.2). Furthermore, for every
positive integer n, the class Bis,, of all biases with index < n is a variety, defined by
Reilly’s identity d(x™) = r(x™). All its subdirectly irreducible members have the form
M (G"°) where 0 < k < n and G is a group. In that sense, the identity d(x") = r(x")
is an analogue, for biases, of the Amitsur—Levitzki Theorem [1] for matrix rings.

10. The variety order on fully group-matricial biases

In this section we finally reach the main result of the paper, Theorem 10.10, which
states an isomorphism between proper varieties of biases and certain finite descending
finite sequences of varieties of groups.

Notation 10.1. For a positive integer n, the n-th radical Rad,, (€) of a class C of biases
is defined as the class of all groups G such that MY (G“'O) e C.

Lemma 10.2. Let V be a variety of biases. Then Rad,, (V) is either empty or a variety of
groups, for every variety V of biases.

Proof. Tt is clear that Rad, (V) is closed under subgroups. If a group H is a homo-
morphic image of a group G, then, by Lemma 7.1, Mf? (H '-’0) is a homomorphic image
of MY (G"°); hence G € Rad,, (V) implies that H € Rad,, (V). Finally, if I is a nonempty

set and (G; | i € I) is a family of groups, then, setting G = [],; G;, the bias My (G-°)
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canonically embeds into [,c; MZ (G;"°); hence {G; | i € I} C Rad, (V) implies that
G € Rad,, (V). The desired conclusion follows then from Birkhoff’s HSP Theorem. O

By Corollary 9.7, Rad,, (V) is nonempty iff n is less than or equal to the index of the
variety V. Also, observe that trivially, Rad,+1 (V) C Rad,, (V). The following lemma is
the main technical result of this section.

Lemma 10.3. Let I be a nonempty set, let (n; | i € I) be a bounded family of positive inte-
gers, let (G; | 1 € I) be a family of groups, let n be a positive integer, and let G be a group.
Then MY (G"'O) belongs to the variety V of biases generated by {Mi‘i (Giuo) |ie I}
iff n < n, for some o € I and G belongs to the variety G of groups generated by
{Gl zG\_m/nJ |iel, n< nl}

Proof. Suppose first that n < n, for some o € I. We must prove that M& (G"’O) belongs
to V, for each G € G; that is, we must prove that G is contained in Rad,, (V).

Let i € I with n < n;. It follows from Lemma 7.6 that G;1&),,, /| belongs to Rad,, (V).
By Lemma 10.2, it follows that G is contained in Rad,, (V).

Suppose, conversely, that Mf (Guo) belongs to V. By Birkhoff’s HSP Theorem,
there are a Boolean inverse semigroup S and a surjective bias homomorphism ¢: S —
M (GH9) such that S embeds into a product of biases of the form Mf?i (Giuo). Setting
m = max {n; | i € I}, all biases Mf?i (Giuo) belong to the variety Bis,, of all biases of
index at most m, thus so does S. By Lemma 9.3, the index of typ(e) in Typ S is at
most m, for every e € Idp S. By [28, Corollary 3.12] (see also [29, Lemma 1.6.3]), every
element of Typ S has finite index in Typ S. By [28, Proposition 3.13] (see also [29, Lemma
2.3.6]), the monoid Typ S is cancellative, thus (cf. Proposition 2.3) S is Z-cancellative.
By Lemma 8.3, there are a group G, a surjective group homomorphism v: G — G, and
a bias embedding 7: Mf? (éuo) — S such that Mf (1/)“0) = @ on. Since G belongs

to the variety of groups generated by G, this reduces the problem to the case where
S =My (GH).

By possibly renaming the (n;, G;), we can reduce the problem to the case where there is
a bias embedding : Mf‘f (Guo) < [Lier Mf?i (Giuo). We may assume, in addition, that
the ith component 1);: MY (G'—'O) — M?Z (Gi"'o) of the map v is nonconstant, for every
i € 1. By Corollary 7.3, the kernel 4, of 1; has the form M (Oiuo) where 6; is the congru-
ence of GG associated to a normal subgroup H; of G. Since 1) is one-to-one, the intersection
of all congruences 0, is the diagonal of G, thus the intersection of all normal subgroups H;
is {1}. Now the bias homomorphisms M¥ (6,”°) : MZ (G-°) — M¥ ((G/Hi)uo) and
Vit MY (GH0) —» MY (Giuo) both have kernel M® (01-"’0). Since M¥ (91-"'0) is sur-
jective, there is a unique bias embedding 7;: MY ((G/H,;)uo) — Mﬁi (G;) such that
W = 7,0 MY (GZ-L'O). By Lemma 7.6, it follows that n < n; and G/H; embeds, as a group,
into G; 1 &, /n|- Since G' embeds into the product of all G/H; and each G; 1 &, /n)
belongs to G, it follows that G € §. O
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Our next notation introduces an operator, denoted by Wr,,, which sends any class of
groups to either a variety of groups or the empty class.

Notation 10.4. For a class € of groups and a positive integer n, we denote by Wr,, (€)
the variety of groups generated by {G16,, | G € C} if C # &, the empty class otherwise.

Lemma 10.5. Let C be a nonempty class of groups and let n be a positive integer. Then
Wr, (€) = Wr,, (Var C).

Proof. The class of all groups G such that G1S,, € Wr,, (€) contains €, and it is easily
seen to be closed under subgroups, products, and homomorphic images. By Birkhoff’s
HSP Theorem, it is thus a variety of groups. Since it contains C, it contains Var C. O

Lemma 10.6. Let I be a nonempty set and let (G; | i € I) be a family of group varieties.
Then Wr,, (\/iEI 91) = Vier Wry, (Gi). (The join is evaluated within the lattice Agyp of
all varieties of groups.)

Proof. Simply observe that \/,.; §; = Var(UieI Si), and then use Lemma 10.5. O

Lemma 10.7. Let V be a variety of biases and let m and n be positive integers. Then
Wr,,, (Radny, (V)) is contained in Rad,, (V).

Proof. If mn is greater than the index of V, then Rad,,,, (V) = @ and the result is trivial.
Suppose from now on that mn is less than or equal to the index of V. This ensures that
Radn, (V) is nonempty, so, by Lemma 10.2, it is a variety of groups. By Lemma 10.5,
it thus suffices to prove that G ! &,, belongs to Rad,, (V), for each G € Rad,, (V). By
Lemma 7.6, MY ((GZGm)w) embeds, as a bias, into MY (Guo), which, since G €
Rad,,n, (V), belongs to V. Hence, G S,,, € Rad,, (V), as required. 0O

Notation 10.8. Denote by 1~\Grp the set of all descending sequences (G, | n € N) of ele-
ments of Aq,pU{@} such that only finitely G,, are nonempty and Wr,,, (G,.») is contained
in G, for all positive integers m and n. Moreover, set fxgm = Kgrp U {1} where 1 de-
notes the constant sequence with value the variety Grp of all groups. We order the set
Kgrp componentwise: (G, |n € N) < (H,, |neN)if G, C K, for all n € N.

For every V € Ag;s, we set

Rad (V) = (Rad, (V) |n € N).

def

For every variety G of groups, we denote by Mi‘? (9"’0) the variety of biases generated
by the class {My (G"°) | G € G,,}. Furthermore, for every sequence § = (G,, | n € N) in

~+
AGyp, We set
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Mat(§) = \/ (M7 (9:™) | n €N, S, # 2),

where the join is evaluated within Ap;s and the empty join is set equal to the trivial
variety (not @). In particular, Mat(9G) is a variety of biases.

A straightforward application of Lemma 10.6 yields the following.
Lemma 10.9. The poset Kgrp is a sublattice of (Agrp U {@})N.

Theorem 10.10. The asszgnments Rad and Mat define mutually inverse lattice isomor-

phisms between Apis and AGrp Consequently, Apis = AGrp

Proof. We first deal with the top elements. Trivially, Rad (Bis) = 1. Moreover, since the
finite symmetric biases generate the variety Bis (cf. Theorem 3.8), we get Mat(1) = Bis.
Now let V be a proper variety of biases. Denote by h the index of V and set §G,, =

def

Rad,, (V) for every n € N. It follows from the above, together with Lemma 10.7, that the
sequence Rad (V) = (G, | n € N) belongs to Agyp. It follows from the definition of G,
that M® (Snuo) is contained in V for every n € N. Conversely, since, by Theorem 6.2,
the variety V is generated by its fully group-matricial members, it is contained in the
join of all MY (Sn"'(D. This proves that V = Mat(Rad (V)).

Let, conversely, § = (G, | n € N) € Agp, and denote by h the largest nonnegative
integer such that G,, # @ whenever 1 < n < h. (The value h = 0 is possible, in which
case all G, = @.) The class V = Mat(S) is, by definition, a variety of biases. Set
g, = Rad,, (V) for every n € N. By definition, §,, C §G/,. Let, conversely, G € G,;

that is, Mi‘? (G'-’O) belongs to the variety of biases generated by all M,? (H uO) where
1<k <hand H € G;. By Lemma 10.3, G belongs to the variety of groups generated
by all H & |i/n) where n <k < h and H € Gi. Now for each such pair (k, H),

H 16 k/n) € Wr|/n) (k) (by the definition of Wr | /n) (S))
C Wr /) (Snlk/n)) (because n|k/n| < k)
C S, (because G € Aqyp).

—

Hence, G € G,,, which completes the proof that Rad (Mat(g)) =G 0O

In particular, since Ag,p is Arguesian (cf. Section 2), so is Ap;s. Similarly, Ap;s satisfies
the duals of Haiman’s identities from [8]. However, all this is already a consequence
of congruence-permutability, which we established, for biases, in [29, § 3.4]. Since the
problem whether every lattice identity, satisfied by all normal subgroup lattices of groups,
also holds in the congruence lattice of every algebra in a congruence-permutable variety
(or even in the congruence lattice of any loop), is still open, it is not clear at this point
whether Theorem 10.10 would yield new identities valid in Apis.
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Corollary 10.11. The assignment G +— MY (9'—'0) defines an isomorphism from Agrp, onto
a convex sublattice of Apis, with smallest element the variety of all idempotent biases
(i.e., generalized Boolean algebras).
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