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Fully group-matricial
Radical
Congruence
Residually finite

1. Introduction

1.1. Motivation

Boolean inverse semigroups are an abstraction of semigroups of partial transforma-
tions which are closed under finite disjoint unions, originally studied by Tarski’s school 
(cf. [26]). These objects have been for the last decade an active topic of research, see 
for example [13,15–18]. By definition, an inverse semigroup S with zero is Boolean if its 
semilattice of idempotents is (generalized) Boolean and S has finite orthogonal joins. 
(We refer to Section 2 for precise definitions.)

Unlike classes of structures such as groups, inverse semigroups, modules, rings, Lie 
algebras, the class of Boolean inverse semigroups is not defined as a variety of algebras 
in the sense of universal algebra: while the multiplication and the inversion of an inverse 
semigroup are full operations, orthogonal join is only a partial operation. The author 
introduced in [29, § 3.2] two full operations � and � (cf. (2.1) and (2.2) for precise defini-
tions), defined on every Boolean inverse semigroup in terms of multiplication, inversion, 
and the partial operation of orthogonal join, such that the semigroup homomorphisms 
preserving � and � are exactly the additive semigroup homomorphisms; by definition, 
a semigroup homomorphism is additive if it preserves all finite orthogonal joins. More-
over, Boolean inverse semigroups can be characterized via a finite system of identities in 
the similarity type (0, −1, ·, �, �). The models of those identities are called biases. The 
category of biases with bias homomorphisms is isomorphic to the category of Boolean 
inverse semigroups with additive semigroup homomorphisms. The author also proved 
in [29, Theorem 3.4.11] that the variety of all biases is congruence-permutable, which 
makes Boolean inverse semigroups much closer, in spirit, to groups and rings than to 
semigroups.

At the 2016 Workshop on New Directions in Inverse Semigroups in Ottawa, and then 
at the subsequent International Conference on Semigroups and Automata in Lisbon, the 
following programme was suggested by Mark Lawson:

Study varieties of Boolean inverse semigroups.

(By definition, a variety — or equational class — is the class of all structures, of a given 
similarity type, that satisfy a given set of identities.)
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1.2. Method of proof

The main aim of the present paper is fulfilling the programme above by describing 
varieties of biases in terms of varieties of groups. We do this in Theorem 10.10, most of 
which can be paraphrased as follows:

Main Theorem. There is a one-to-one, order-preserving correspondence between proper 
varieties of biases and (possibly empty) finite, descending sequences (Gk | 1 ≤ k ≤ n) of 
varieties of groups such that for all positive integers k, l with kl ≤ n and every G ∈ Gkl, 
the wreath product G �Sk belongs to Gl.

(A variety of biases is proper if it is distinct from the variety Bis of all biases.) While 
the partial reformulation above does not take the full variety Bis into account, the 
complete formulation of Theorem 10.10 does, by assigning to that variety the infinite 
sequence with constant value the variety of all groups. In particular, the lattice of all 
varieties of biases embeds, as a sublattice, into the countable power of the lattice of all 
group varieties enlarged by the empty class.

The sequence of varieties of groups assigned to a variety V of biases arises as follows. 
For any positive integer k, Gk (which we will call the k-th radical of V, see Notation 10.1) 
is the class of all groups G such that the bias M⊕

k

(
G�0) of all generalized rook matrices 

of order k over the Boolean inverse semigroup G�0 = G ∪ {0} (we call such structures 
groups with zero) belongs to V. In particular, Gk is either a variety of groups or the empty 
class. The set of all values of k for which Gk is nonempty is exactly the (possibly empty) 
integer interval {1, 2, . . . , n} (or {1, 2, 3, . . . } if V = Bis). It is thus natural to refer to 
the integer n (or ∞ in case V = Bis) as the index of the variety V (cf. Section 9). The 
index of V is equal to the largest nonnegative integer n such that the symmetric inverse 
semigroup In belongs to V if it exists, ∞ otherwise (cf. Corollary 9.7).

As hinted in the discussion above, the full variety Bis and its proper subvarieties 
require separate treatments. We start with the former, with the main idea of reducing 
statements about free biases to statements about free inverse semigroups. To that end, 
for any inverse semigroup S, we describe the elements of the universal bias Ubis(S) in a 
sufficiently amenable way in terms of the elements of S. We do this in Lemma 3.2, which 
can be paraphrased as follows:

Every element of Ubis(S) is an orthogonal join of products of elements of S with 
elements of the Boolean ring generated by the idempotent elements of S.

By using, in parallel, the embedding of S into a Boolean inverse semigroup provided by 
the Wagner–Preston Theorem, this enables us (cf. Proposition 3.7) to reduce equations 
in Ubis(S) (in the language of biases) to positive quantifier-free formulas in S (in the 
language of inverse semigroups). By appealing to Munn’s Theorem [22] on free inverse 
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semigroups, we thus reach (cf. Theorem 3.8) a complete elucidation of the case of the 

variety of all biases:

Free biases are residually finite; hence, the variety of all biases is generated by the 

finite symmetric biases.

The treatment of proper varieties of biases is quite different and it involves the follow-
ing Boolean inverse semigroups-theoretical tools: generalized rook matrices and the type 

monoid, which are the Boolean inverse semigroup analogues of matrices and nonstable 

K-theory defined on rings, respectively.
Our main idea can be summed up as follows. Since the symmetric inverse biases In

generate the variety of all biases, any proper variety V of biases contains only finitely 

many In. It turns out that the latter property can be expressed in terms of type monoids 
of the members of V, by saying that every element in those monoids has finite index (cf. 
Theorem 6.2). Now V is generated, as a variety, by its subdirectly irreducible members, 
and the type monoid TypS of a subdirectly irreducible bias S is prime, that is, its nonzero 

elements form a downward directed subset (cf. Lemma 5.5). On the other hand, TypS

is always a refinement monoid, and nonzero prime refinement monoids of finite index 

are isomorphic to the additive monoid Z+ of all nonnegative integers (cf. Lemma 6.1). 
This implies that S is isomorphic to M⊕

k

(
G�0) for some integer k and some group G (cf. 

Lemma 4.4) — we say that S is fully group-matricial. We obtain the following result, 
contained in Theorem 6.2:

Every variety of biases is generated by its fully group-matricial members.

The main task that remains is elucidating when a fully group-matricial bias M⊕
n

(
G�0)

belongs to the variety generated by a given collection of fully group-matricial bi-
ases M⊕

ni

(
Gi

�0). A prototype of such a result is stated in Lemma 7.5: for groups G and H, 
if G�0 embeds into M⊕

n

(
H�0) as a bias, then G embeds, as a group, into the group of 

all invertible elements of M⊕
n

(
H�0), which is isomorphic to the wreath product H �Sn. 

The more general result, stated in Lemma 10.3, handles the case where M⊕
n

(
G�0) is 

a homomorphic image of a sub-bias of a product of biases M⊕
ni

(
Gi

�0). The “homo-
morphic image” part raises a technical difficulty, which is handled by establishing, in 

Lemma 8.3, a projectivity statement of fully group-matricial biases within the class of 
all biases with cancellative type monoid. This projectivity statement enables us to re-
duce “homomorphic image of a sub-bias of a product” to “sub-bias of a product” in the 

proof of Lemma 10.3. The remaining part of our road to the Main Theorem is relatively 

straightforward.
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2. Notation, terminology, and basic concepts

An inverse semigroup (cf. [9,14]) is a semigroup S where every x ∈ S has a unique 
inverse, that is, an element x−1 such that x = xx−1x and x−1 = x−1xx−1. Every group, 
or every semilattice, is an inverse semigroup.

We shall denote by IdpS the set of all idempotent elements in a semigroup S. For every 
element x in an inverse semigroup S, the elements d(x) = x−1x and r(x) = xx−1 are 
both idempotent. The natural ordering between elements x and y of S, simply denoted 
by x ≤ y, can be defined, among others, by any of the equivalent statements x = yd(x)
and x = r(x)y. Recall that Green’s relations L , R, and D can be defined on S by

x L y if d(x) = d(y) ;

x R y if r(x) = r(y),

D = L ◦ R = R ◦ L (cf. [9, Proposition II.1.3]). The relation D takes a particularly 
convenient form on the idempotent elements: namely, for all a, b ∈ IdpS, the relation 
a D b holds iff there exists x ∈ S such that a = d(x) and b = r(x).

For a semigroup S, we shall denote by S�0 the semigroup obtained by adding to S a 
new zero element 0 (i.e., 0 · x = x · 0 = 0 for every x). In particular, if S is an inverse 
semigroup, then so is S�0.

Elements x and y in an inverse semigroup with zero are orthogonal, in notation x ⊥ y, 
if x−1y = xy−1 = 0. An inverse semigroup S with zero is Boolean if IdpS is a generalized 
Boolean algebra and any two orthogonal elements x and y in S have a join with respect 
to the natural ordering, then denoted by x ⊕ y.

For any elements x and y in a Boolean inverse semigroup S such that the meet x ∧ y

exists, we denote by x � y the unique element such that x = (x ∧ y) ⊕ (x � y). Observe, 
in particular, that x � y is always defined if x and y are compatible (i.e., x−1y and xy−1

are both idempotent). This encompasses the case where x and y are both idempotent 
and also the one where x and y are comparable (i.e., x ≤ y or y ≤ x).

Important examples of Boolean inverse semigroups are the finite symmetric inverse 
semigroups In, for nonnegative integers n, consisting of all one-to-one partial functions on 
the set [n] =

def
{1, 2, . . . , n} under composition. Also, G�0 is a Boolean inverse semigroup, 

for any group G.
Every commutative monoid M can be endowed with a partial preordering ≤+, defined 

by

x ≤+ y if x + z = y for some z ∈ M.

We say that M is

— conical if x + y = 0 implies that x = y = 0, for all x, y ∈ M ;
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— a refinement monoid if for all a0, a1, b0, b1 ∈ M such that a0 + a1 = b0 + b1, there 
are elements ci,j ∈ M , for i, j ∈ {0, 1} such that each ai = ci,0 + ci,1 and each 
bi = c0,i + c1,i.

A partially ordered abelian group (G, +, 0, ≤) is a dimension group if it is directed (as a 
poset), unperforated (i.e., 0 ≤ mx implies that 0 ≤ x, whenever m is a positive integer 
and x ∈ G), and the positive cone G+ =

def
{x ∈ G | 0 ≤ x} is a refinement monoid.

The commutative monoids we shall be mainly concerned with are the type monoids 
TypS, for Boolean inverse semigroups S. By definition, TypS is the universal monoid of 
the partial monoid IntS of all D-classes of elements of S (which we call the type interval
of S), endowed with the partial addition defined by

x/D + y/D = (x⊕ y)/D , whenever x, y ∈ S are orthogonal.

Moreover, as in [29], we shall write typS(x), or sometimes simply typ(x), instead of x/D . 
Since the canonical map from IntS to TypS is one-to-one, typ(x) = typ(y) iff x D y, for 
all x, y ∈ S. By [29, Corollary 4.1.4], IntS is a lower interval of TypS, generating TypS

as a monoid, and TypS is a conical refinement monoid.
For a positive integer n and a Boolean inverse semigroup S, a matrix x =

(xi,j)(i,j)∈[n]×[n] with entries in S is a generalized rook matrix of order n (cf. [27, § 4.5], 
[13], also [29, § 3.5]) if the equalities x−1

i,j xi,k = xj,ix
−1
k,i = 0 hold whenever i, j, k ∈ [n]

with j �= k. The generalized rook matrices of order n over a Boolean inverse semigroup S

form a Boolean inverse semigroup, denoted as in [29] by M⊕
n (S). As in [29], we denote 

by x(i,j) the generalized rook matrix with (i, j)th entry equal to x and all other entries 
equal to zero, for every x ∈ S and every (i, j) ∈ [n] × [n].

The following easy result is contained in [29, Proposition 3.5.3].

Proposition 2.1. Let S be a Boolean inverse semigroup and let n be a positive integer. 
Then the idempotent elements of M⊕

n (S) are exactly the diagonal matrices with idempo-
tent entries.

Definition 2.2. A Boolean inverse semigroup S is D-cancellative if the conjunction of 
a ⊕ b = a′ ⊕ b′ and a D a′ implies that b D b′, for all a, b, a′, b′ ∈ IdpS such that a ⊥ b

and a′ ⊥ b′.

Recall that an inverse monoid is factorizable if for every x ∈ S there is an invertible 
element g ∈ S such that x ≤ g.

Proposition 2.3. A Boolean inverse semigroup S is D-cancellative iff its type mon-
oid TypS is cancellative. Furthermore, if S is unital, then this is equivalent to S be 
factorizable.
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Proof. Let TypS be cancellative and let a, b, a′, b′ ∈ IdpS such that a ⊕ b D a′ ⊕ b′

and a D a′. Since typ(a) + typ(b) = typ(a ⊕ b) = typ(a′ ⊕ b′) = typ(a′) + typ(b′) and 
typ(a) = typ(a′), it follows from the cancellativity of TypS that typ(b) = typ(b′), that 
is, b D b′.

Suppose, conversely, that S is D-cancellative. We claim that the type interval IntS
is cancellative. Let a, b, b′ ∈ IntS such that a + b = a + b′ within IntS. By [29, 
Lemma 4.1.6], there are a, a′ ∈ a, b ∈ b, and b′ ∈ b′ such that a ⊕ b = a′ ⊕ b′. Since S

is D-cancellative, it follows that b D b′, that is, b = b′, which completes the proof of our 
claim. Now IntS is a generating lower interval of the conical refinement monoid TypS

(cf. [29, Corollary 4.1.4]), thus, by our claim together with [29, Corollary 2.7.4], TypS
is cancellative.

Now let S be unital. Suppose first that S is D-cancellative and let x ∈ S. Set u =
1 �d(x) and v = 1 � r(x). Then 1 = d(x) ⊕u = r(x) ⊕ v with d(x) D r(x), thus, since S

is D-cancellative, u D v, that is, there exists y ∈ S such that d(y) = u and r(y) = v. 
The element g = x ⊕ y is invertible and x ≤ g, thus completing the proof that S is 
factorizable.

Suppose, conversely, that S is factorizable and let a, b, a′, b′ ∈ IdpS such that a ⊕
b = a′ ⊕ b′ and a D a′. We must prove that b D b′. Setting c = 1 � (a ⊕ b), we get 
(a ⊕ c) ⊕ b = (a′ ⊕ c) ⊕ b′ = 1 with a ⊕ c D a′ ⊕ c, thus reducing the problem to the 
case where a ⊕ b = a′ ⊕ b′ = 1. Let x ∈ S such that a = d(x) and a′ = r(x). Since S is 
factorizable, there is an invertible element g ∈ S such that x ≤ g. From a′ = gag−1 and 
the invertibility of g it follows that b′ = gbg−1, whence, since g is invertible, b D b′. �

Every Boolean inverse semigroup S can be endowed with the skew difference � and 
the skew addition �, respectively defined by

x � y =
def

(
r(x) � r(y)

)
x
(
d(x) � d(y)

)
, (2.1)

x � y =
def

(x � y) ⊕ y, (2.2)

for all x, y ∈ S. The author proved in [29, § 3.2] that the structures (S, 0, −1, ·, �, �) can 
then be axiomatized by a finite number of identities, whose models are called biases. Also, 
for any Boolean inverse semigroups S and T , a homomorphism f : S → T of semigroups 
with zero is a bias homomorphism iff it is additive, that is, f(x ⊕ y) = f(x) ⊕ f(y)
whenever x and y are orthogonal elements in S. (In particular, f(0) = 0.) A nonempty 
subset I of S is an additive ideal of S if IS∪SI ⊆ I and I is closed under finite orthogonal 
joins. In that case, the inclusion map from I into S is an additive semigroup embedding 
and I is a sub-bias of S.

The bias congruences of a Boolean inverse semigroup S are characterized in [29, 
Proposition 3.4.1] as those inverse semigroup congruences θ such that for all x ∈ S and all 
orthogonal idempotents a and b of S, xa ≡θ a and xb ≡θ b implies that x(a ⊕b) ≡θ a ⊕b. 
(Here and elsewhere, x ≡θ y is an equivalent notation for (x, y) ∈ θ.) We denote by ConS
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the (algebraic) lattice of all bias congruences of any Boolean inverse semigroup S. For a 
bias congruence θ of a Boolean inverse semigroup S, we shall usually denote by θ : S �
S/θ the canonical projection.

A similarity type (cf. [20]) is a pair Σ = (F, ν) where F is a set and ν is a map from F

to the nonnegative integers. The elements of F should be thought of as function symbols
and ν(f) should be thought of as the arity of f . For example, the similarity type of 
groups is usually given by F =

{
·,−1}, ν(·) = 2, and ν(−1) = 1. The similarity type of 

biases is given by F =
{
0,−1, ·, �,�

}
, ν(0) = 0, ν(−1) = 1, and ν(·) = ν( �) = ν(�) = 2.

In general, formal compositions of elements of F (taking the arities into account) are 
called the terms of Σ. An identity of Σ is an expression of the form p = q where p and q
are both terms. A Σ-algebra is a nonempty set A, endowed with a map which to each 
f ∈ F, with arity n, associates a map fA : An → A (just an element of A if n = 0).

A variety of Σ-algebras is the class of all Σ-algebras that satisfy a given set of iden-
tities of Σ. Varieties are defined and studied in any textbook of universal algebra such 
as [3,6,20]. A standard reference for varieties of groups is Neumann’s monograph [23]. 
Every variety V on a set X of variables is determined by the set of all identities with 
set of variables X satisfied by V. This set of identities is, in turn, a fully invariant con-
gruence of the algebra of all terms on Σ. This correspondence gives an order-reversing 
bijection between varieties and fully invariant congruences of the term algebra (cf. [3, 
Corollary II.14.10]), and thus it enables us to dispose conveniently of the apparent foun-
dational problem raised by varieties being proper classes. In particular, the lattice of all 
varieties of Σ-algebras can be defined, and it has cardinality at most 2ℵ0+card F. The fully 
invariant congruences of an algebra A form a complete sublattice of the congruences of A
(cf. [3, Exercise II.14.1]), thus the lattice of all subvarieties of a variety V satisfies the 
dual of every lattice identity satisfied by the congruence lattices of all members of V.

Now the variety of all groups, and the variety of all biases, are both congruence-
permutable (see [3, § II.5] and [29, § 3.4], respectively). Since the congruence lattice of 
every congruence-permutable algebra satisfies the modular identity, and in fact the even 
stronger Arguesian identity

(x0 ∨ y0) ∧ (x1 ∨ y1) ∧ (x2 ∨ y2) ≤
(
(z ∨ x1) ∧ x0

)
∨
(
(z ∨ y1) ∧ y0

)
where we set zi,j =

def
(xi ∨ xj) ∧ (yi ∨ yj) and z =

def
z0,1 ∧ (z0,2 ∨ z1,2) (cf. [11] and [7, 

Theorem 410]), and since the Arguesian identity is self-dual (cf. [12]), the lattice ΛGrp

of all varieties of groups and the lattice ΛBis of all varieties of biases are both Arguesian. 
Stronger congruence identities, following from congruence-permutability, were discovered 
by Mark Haiman in [8]. For more on identities satisfied by normal subgroup lattices of 
groups or congruence lattices in algebras from congruence-permutable varieties, we refer 
the reader to [2,5].

On the cardinality side, it is known since Ol’šanskĭı that there are continuum many 
varieties of groups [24].
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We denote by Var(C) the variety of groups generated by a class C of groups, and set 
Var(G) =

def
Var({G}) for any group G.

We set Z+ =
def

{0, 1, 2, 3, . . . } and N =
def

{1, 2, 3, . . . }.

3. Free biases are residually finite

In this section we prove that the satisfaction of any equation, in the universal bias of 
an inverse semigroup S, can be reduced to a positive quantifier-free formula over S in the 
similarity type of inverse semigroups (Proposition 3.7). We deduce from this that every 
free bias is residually finite; in particular, the word problem for finite biases is decidable 
(Theorem 3.8).

The proof of the following lemma is an elementary calculation and we omit it.

Lemma 3.1. Let a, b, c, d be elements in a Boolean ring B. Then (a � b) ∧ (c � d) =
(a ∧ c) � (b ∨ d). Furthermore, a � b ≤ c � d iff a ≤ b ∨ c and a ∧ d ≤ b.

Since every inverse semigroup S has a semigroup embedding into a bias T such that 
0T /∈ S (use the Wagner–Preston Theorem), the canonical map from S to its universal 
bias Ubis(S) is a semigroup embedding with 0 /∈ S, and we shall thus assume that 
this embedding is an inclusion map. Therefore, S is an inverse subsemigroup of Ubis(S)
generating Ubis(S) as a bias, and every semigroup homomorphism from S to a bias T

extends to a (unique) bias homomorphism from Ubis(S) to T .

Lemma 3.2. Let S be an inverse subsemigroup of a Boolean inverse semigroup T . Suppose 
that T is generated by S as a bias. Denote by B the Boolean subring of IdpT generated 
by IdpS. Then B = IdpT and every element x ∈ T can be written in the form

x =
n⊕

i=1
xiai, where n ∈ Z+, a1, . . . , an ∈ B, and x1, . . . , xn ∈ S. (3.1)

Proof. The set of all elements a ∈ IdpT , such that xax−1 ∈ B whenever x ∈ S, con-
tains IdpS and is closed under finite meets, differences, and orthogonal joins; thus it 
contains B. Hence, xBx−1 ⊆ B whenever x ∈ S. Set Δ =

def
{xa | (x, a) ∈ S ×B}. For 

each (x, a) ∈ S × B, ax = axx−1x = xx−1ax = xa′ where a′ = x−1ax ∈ B. This also 
proves that Δ is closed under the inversion operation x �→ x−1. Now for all x, y ∈ S and 
all a, b ∈ B, there is a′ ∈ B such that ay = ya′, thus

(xa)(yb) = xya′b belongs to Δ.

Therefore, Δ is an inverse subsemigroup of T , and therefore so is the closure Δ⊕ of Δ
under finite orthogonal joins.
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Let x be written as in (3.1). The element d(x) =
⊕n

i=1 d(xiai) =
⊕n

i=1 d(xi)ai
belongs to B. It follows that IdpΔ⊕ ⊆ B. On the other hand, for every a ∈ B, there are 
n ∈ Z+ and a0, . . . , an−1 ∈ S such that a ≤

∨
i<n ai. Setting bi = a ∧ (ai �

∨
j<i aj) for 

all i < n, we get

a =
⊕
i<n

bi =
⊕
i<n

aibi ∈ Δ⊕,

thus completing the proof that B ⊆ IdpΔ⊕. Therefore, B = Idp Δ⊕.
Since Δ⊕ is an inverse subsemigroup of T , closed under finite orthogonal joins and 

difference of idempotent elements, it is, by [29, Corollary 3.2.7], a sub-bias of T . Since it 
contains S, it follows that T = Δ⊕. Hence, IdpT = Idp Δ⊕ = B. �
Corollary 3.3. Let S be a finite inverse semigroup. Then the universal bias Ubis(S) is 
finite.

The following is a slight strengthening of Lemma 3.2.

Lemma 3.4. Let S be an inverse subsemigroup of a Boolean inverse semigroup T . Suppose 
that T is generated by S as a bias. Then every element x ∈ T can be written in the form

x =
n⊕

i=1
xi

(
ai �

ni∨
j=1

bi,j

)
,

where all xi ∈ S, all ai, bi,j ∈ IdpS, all bi,j ≤ ai, and all ai ≤ d(xi).

(3.2)

Proof. By virtue of Lemma 3.2, the Boolean ring B = IdpT is generated by IdpS. 
Furthermore, by that lemma, it suffices to prove the existence of the given decomposition 
in case x = xa where x ∈ S and a ∈ B. Since IdpS is closed under finite meets, a is a 
finite orthogonal join of elements of the form ai�

∨ni

j=1 bi,j . Replacing each ai by aid(xi)
and each bi,j by aid(xi)bi,j , we get the desired conclusion. �
Lemma 3.5. Let S be an inverse semigroup, let n ∈ Z+, and let x, x1, . . . , xn ∈ S such 
that the xi are pairwise compatible. Then x ≤

∨n
i=1 xi, within Ubis(S), iff x ≤ xi for 

some i.

Proof. We prove the nontrivial direction. Suppose that x ≤
∨n

i=1 xi within Ubis(S). 
Denote by ρ : (S, ·) → (IS , ◦) the inverse semigroup embedding given by the Wagner–
Preston Theorem, which we will call the Wagner–Preston completion of S: for every 
z ∈ S, ρz is the bijection from d(z)S onto r(z)S given by

ρz(t) = zt whenever t ∈ d(z)S.

def
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From our assumption it follows that the partial function ρx is extended by the union of 
all the ρxi

. Since d(x) belongs to the domain of ρx, it also belongs to the domain of ρxi

for some i, and then x = ρx(d(x)) = ρxi
(d(x)) = xid(x), that is, x ≤ xi. �

Lemma 3.6. Let S be an inverse semigroup, let m, n ∈ Z+, and let x, y, a, a1, . . . , am, 
b1, . . . , bn be elements of S, with a, b, a1, . . . , am, b1, . . . , bn all idempotent. Then 
x
(
a�

∨m
i=1 ai

)
≤ y

(
b�

∨n
j=1 bj

)
within Ubis(S) iff the following statements hold:

there is i ∈ [1,m] such that ad(x) ≤ ai or
(
xa = yd(x)a and ad(x) ≤ bd(y)

)
, (3.3)

for each j ∈ [1, n] there is i ∈ [1,m] such that ad(x)bj ≤ ai. (3.4)

Proof. By replacing a by ad(x) and b by bd(y), we may assume without loss of generality 
that a ≤ d(x) and b ≤ d(y).

Suppose first that the conditions (3.3) and (3.4) both hold. Set u = a �
∨m

i=1 ai and 
v = b �

∨n
j=1 bj . We must prove that xu ≤ yv within Ubis(S).

If a ≤ ai for some i, then u = 0, thus xu = 0 and we are done. Suppose now that 
a � ai for all i. It follows from (3.3) that a ≤ b and xa = ya. An elementary application 
of Lemma 3.1, together with (3.3) and (3.4), then yields u ≤ v. Since xa = ya and u ≤ a, 
it thus follows that xu = yu ≤ yv.

Suppose, conversely, that xu ≤ yv within Ubis(S). Denote again by ρ : (S, ·) → (IS , ◦)
the Wagner–Preston completion of S. By projecting the equation xu ≤ yv onto the 
symmetric inverse semigroup IS , via ρ, we obtain

ρx ◦
(
idaS �

m⋃
i=1

idaiS

)
⊆ ρy ◦

(
idbS �

n⋃
j=1

idbjS

)
, (3.5)

where the containment symbol between partial functions means extension and the union 
symbol, applied to partial functions, means the least common extension. Since a ≤ d(x)
and b ≤ d(y), the left hand side and the right hand side of (3.5) have respective domains

U =
def

aS \
m⋃
i=1

aiS and V =
def

bS \
n⋃

j=1
bjS,

and it follows from (3.5) that U ⊆ V . By applying Lemma 3.1 within the powerset lattice 
of S, the latter containment implies that

aS ⊆
m⋃
i=1

aiS ∪ bS, (3.6)

aS ∩
n⋃

j=1
bjS ⊆

m⋃
i=1

aiS. (3.7)
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Observing that a belongs to the left hand side of (3.6), we obtain that

a ≤ ai for some i ∈ [1,m] or a ≤ b, (3.8)

for each j there exists i such that abj ≤ ai. (3.9)

Furthermore, suppose that a � ai for all i. Then a belongs to U , thus, by (3.5), ρx(a) =
ρy(a), that is, xa = ya. �
Proposition 3.7. Let p(x1, . . . , xn) and q(x1, . . . , xn) be terms in the similarity type of 
biases. Then there is a positive quantifier-free formula r(x1, . . . , xn), in the similar-
ity type of inverse semigroups, such that for every inverse semigroup S and all el-
ements x1, . . . , xn ∈ S, Ubis(S) satisfies p(x1, . . . , xn) = q(x1, . . . , xn) iff S satisfies 
r(x1, . . . , xn).

Proof. Set �x =
def

(x1, . . . , xn). Expressing the equation p(�x) = q(�x) as the conjunction of 
the two inequalities p(�x) ≤ q(�x) and q(�x) ≤ p(�x), we see that it suffices to establish the 
conclusion for the inequality p(�x) ≤ q(�x).

Set Σ =
def

{x1, . . . , xn}. Due to the Wagner–Preston Theorem, every inverse semigroup 

embeds into a bias, thus the canonical map from Finv(Σ) into Fbis(Σ) is one-to-one. 
Applying Lemma 3.4 to the inclusion Finv(Σ) ↪→ Fbis(Σ), we obtain, for every bias 
term u(�x), nonnegative integers mu and nu,i together with elements sui (�x) in Finv(Σ), for 
1 ≤ i ≤ mu, and idempotent elements au

i (�x) and bu
i,j(�x) in Finv(Σ), for 1 ≤ i ≤ mu and 

1 ≤ j ≤ nu,i, such that the relations

bu
i,j(�x) ≤ au

i (�x), (3.10)

au
i (�x) ≤ d(sui (�x)), (3.11)

u(�x) =
mu⊕
i=1

sui (�x)
(
au
i (�x) �

nu,i∨
j=1

bu
i,j(�x)

)
(3.12)

all hold in Fbis(Σ), thus in every bias.
In particular, for every bias S and every finite sequence �x = (x1, . . . , xn) ∈ Sn, the 

inequality p(�x) ≤ q(�x) is equivalent to the conjunction of all inequalities

spi (�x)
(
ap
i (�x) �

np,i∨
j=1

bp
i,j(�x)

)
≤

mq∨
k=1

sqk(�x)
(
aq
k(�x) �

nq,k∨
l=1

bq
k,l(�x)

)
, (3.13)

for 1 ≤ i ≤ mp. By virtue of (3.10) and (3.11), each inequality (3.13) is, in turn, equivalent 
to the conjunction of all the inequalities

ap
i (�x) �

np,i∨
bp
i,j(�x) ≤

mq∨(
aq
k(�x) �

nq,k∨
bq
k,l(�x)

)
, (3.14)
j=1 k=1 l=1
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spi (�x)
(
ap
i (�x) �

np,i∨
j=1

bp
i,j(�x)

)(
aq
i′(�x) �

nq,i′∨
j=1

bq
i′,j(�x)

)
≤ sqi′(�x), (3.15)

where 1 ≤ i ≤ mp and 1 ≤ i′ ≤ mq. By [29, Lemma 5.2.13], the inequality (3.14)
can be expressed by a conjunction of formulas of the form 

∧
k∈X ck ≤

∨
k/∈X ck where 

the ck are parameters, in IdpS, among the ap
i (�x), bp

i,j(�x), aq
i′(�x), bq

i′,j′(�x). Since IdpS is 
closed under finite meets (i.e., products), this reduces to a conjunction of formulas of the 
form c ≤

∨
k ck where c and the ck are idempotent elements in IdpS. By Lemma 3.5, 

every such formula is equivalent to the disjunction of the formulas c ≤ ck. Hence, we 
can express the inequality (3.14) by a positive quantifier-free formula with parameters 
from IdpFinv(Σ). By using Lemmas 3.1 and 3.6, so can the inequality (3.15). �

We are now reaching the main result of this section.

Theorem 3.8. Every free bias is residually finite. In particular, the variety of all biases 
is generated by all finite symmetric biases IN and the word problem for free biases is 
decidable.

Proof. Let Σ be an alphabet and let x and y be elements of the free bias Fbis(Σ) on Σ, 
such that x �= y. We need to find a positive integer N and a bias homomorphism 
ϕ : Fbis(Σ) → IN such that ϕ(x) �= ϕ(y). Write x = p(x1, . . . , xn) and y = q(x1, . . . , xn), 
for bias terms p and q and elements x1, . . . , xn ∈ Σ, and denote by r the positive 
quantifier-free formula associated to (p, q) via Proposition 3.7. Now it follows from Propo-
sition 3.7 that the formula

r(x1, . . . , xn)

does not hold in the free inverse semigroup Finv(Σ). Since, by Munn’s Theorem [22], 
Finv(Σ) is residually finite, there are a finite inverse semigroup T and a homomorphism 
ψ : Finv(Σ) → T such that the formula

r(ψ(x1), . . . , ψ(xn))

does not hold in T . Again by Proposition 3.7 and denoting by ψ : Fbis(Σ) → Ubis(T ) the 
unique extension of ψ to a bias homomorphism, this means that

r(ψ(x1), . . . , ψ(xn))

holds within Ubis(T ); that is, ψ(x) �= ψ(y) within Ubis(T ). Now by Corollary 3.3, Ubis(T )
is a finite bias, thus, by the Lawson–Lenz duality from [17] (see also [29, § 3.3]), there 
are a positive integer N and a bias embedding θ : Ubis(T ) ↪→ IN . Set ϕ = θ ◦ ψ. Then 
ϕ(x) �= ϕ(y), which completes the proof that Fbis(Σ) is residually finite. By McKinsey’s 
classical argument [21], it follows that if Σ is finite, then the word problem for Fbis(Σ)
is decidable. �
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4. Homogeneous sequences and rook matrices

In this section we state an analogue for biases of the block matrix decomposition of 
an endomorphism of a module (Lemma 4.2). We also characterize in Lemma 4.4 the 
Boolean inverse monoids with type monoid Z+, and we describe in Proposition 4.6 the 
Boolean inverse monoids with finite sets of idempotents.

The terminology of the following definition is inspired by von Neumann’s work on 
regular rings.

Definition 4.1. Let S be a Boolean inverse semigroup. A finite sequence (e1, . . . , en) of 
idempotent elements of S is homogeneous if eiej = 0 and ei D ej , whenever i, j ∈ [1, n]
with i �= j.

Lemma 4.2. Let n be a positive integer, let S and T be Boolean inverse semigroups 
with S an additive ideal of T , and let (e1, . . . , en) be a homogeneous sequence in T . Set 
e =

def

⊕n
i=1 ei. Then eSe ∼= M⊕

n (e1Se1).

Proof. For each i ∈ [1, n], we pick ci ∈ T such that d(ci) = e1 and r(ci) = ei. We may 
assume that c1 = e1. Let ϕ : eSe → M⊕

n (e1Se1) and ψ : M⊕
n (e1Se1) → eSe be the maps 

given by

ϕ(x) =
def

⎛
⎜⎜⎜⎝
c−1
1 xc1 c−1

1 xc2 . . . c−1
1 xcn

c−1
2 xc1 c−1

2 xc2 . . . c−1
2 xcn

...
...

. . .
...

c−1
n xc1 c−1

n xc2 . . . c−1
n xcn

⎞
⎟⎟⎟⎠ , for each x ∈ eSe,

and

ψ
(
(xi,j)(i,j)∈[n]×[n]

)
=
def

⊕
(i,j)∈[n]×[n]

cixi,jc
−1
j , for each (xi,j)(i,j)∈[n]×[n] ∈ M⊕

n (e1Se1) .

The verification that the maps ϕ and ψ are well defined and mutually inverse semigroup 
isomorphisms is straightforward, if not a bit tedious. �

The Boolean unitization of a Boolean inverse semigroup S, introduced in [29, Ch. 6], 
is the unique (up to isomorphism) Boolean inverse monoid S̃ in which every element has 
the form (1 � e) ⊕ x where e ∈ IdpS and x ∈ S, and such that S̃ = S if S is unital. In 
particular (cf. [29, Proposition 6.6.5]), S is an additive ideal of S̃ and if S is not unital, 
then S̃/S is the two-element inverse semigroup.

Lemma 4.3. Let S be a Boolean inverse semigroup and let m and n be positive integers. 
Then M⊕

mn (S) ∼= M⊕
n

(
M⊕

m (S)
)
.
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Proof. Observe, first, that M⊕
mn (S) is an additive ideal of M⊕

mn

(
S̃
)
. Whenever 

1 ≤ i ≤ mn, we denote by ai the diagonal matrix in M⊕
mn

(
S̃
)

with unique nonzero 

entry at (i, i) equal to 1. Setting ek =
⊕km

i=1+(k−1)m ai, the finite sequence (e1, . . . , en)

is homogeneous in M⊕
mn

(
S̃
)

and e1 M⊕
mn (S) e1 consists of all generalized rook matrices 

over S all whose entries outside [m] × [m] are zero; thus it is isomorphic to M⊕
m (S). 

Apply Lemma 4.2. �
Lemma 4.4. Let S be a Boolean inverse monoid and let m be a positive integer. Then 
(TypS, typS(1)) ∼= (Z+, m) iff S ∼= M⊕

m

(
G�0) for some group G.

Proof. We start with the case where m = 1. Since G�0 has exactly one nontrivial idem-
potent, we get the isomorphism (TypG�0, typG�0(1)) ∼= (Z+, 1). Suppose, conversely, 
that (TypS, typS(1)) ∼= (Z+, 1). For any a ∈ IdpS, 1 = typS(1) = typS(a) +typS(1 −a), 
thus either typS(a) = 0 or typS(1 − a) = 0, that is, either a = 0 or a = 1. It follows that 
G =

def
S \ {0} is a group and S ∼= G�0.

Now we deal with the general case. Since the idempotent elements of M⊕
m

(
G�0) form a 

Boolean algebra with m atoms, all pairwise D-equivalent (cf. Proposition 2.1), we get the 
isomorphism 

(
Typ M⊕

m

(
G�0) , typ(1)

) ∼= (Z+, m). Let, conversely, S be a Boolean inverse 
monoid such that (TypS, typ(1)) ∼= (Z+, m). It follows from [29, Lemma 4.1.6] that there 
is a decomposition 1 = e1 ⊕ · · · ⊕ em with each typ(ei) = 1. In particular, (e1, . . . , em) is 
a homogeneous sequence in S. By Lemma 4.2, it follows that S ∼= M⊕

m (e1Se1). By [29, 
Corollary 4.2.8], the following isomorphism holds:

(
Typ(e1Se1), type1Se1(e1)

) ∼= (
Z+, 1

)
. (4.1)

By the first part of the present proof, it follows that e1Se1 ∼= G�0 for some group G. 
Therefore, S ∼= M⊕

m (e1Se1) ∼= M⊕
m

(
G�0). �

The structures M⊕
n

(
G�0) seem to have been first considered in [19, § 6].

In [16, Theorem 4.18], Mark Lawson describes finite Boolean inverse monoids in terms 
of groupoids. The methods of the present section yield the following Artin–Wedderburn 
type description of those monoids, and, more generally, of the Boolean inverse monoids 
with finite sets of idempotents, in terms of groups. Although we will not need this result 
in the rest of the paper, we found it worth recording here.

Definition 4.5. A Boolean inverse monoid is fully group-matricial if it is isomorphic to 
M⊕

n

(
G�0), for some positive integer n and some group G.

Proposition 4.6. Let S be a Boolean inverse monoid. Then S has finitely many idempotent 
elements iff it is isomorphic to a finite product of fully group-matricial Boolean inverse 
semigroups.
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We propose two different proofs of Proposition 4.6. In both cases it suffices to establish 
the nontrivial direction. Assume that the Boolean algebra B of all idempotent elements 
of S is finite and denote by A the set of all its atoms.

First proof of Proposition 4.6. Denote by θ the restriction of Green’s equivalence rela-
tion D to A. The elements ea =

∨
a, for a ∈ A/θ, are all idempotent, and they satisfy 

the relation

1 =
⊕

(ea | a ∈ A/θ) within S. (4.2)

We claim that ea belongs to the center of S, for every a ∈ P/θ. Indeed, let x ∈ S. Then 
for every p ∈ a, the element xpx−1 is either zero or θ-equivalent to p, thus it belongs to 
a∪{0}, and thus it lies below ea. It follows that the element xeax−1 =

⊕(
xpx−1 | p ∈ a

)
lies below ea. Hence,

xea = xx−1xea = xeax
−1x ≤ eax.

The proof that eax ≤ xea is symmetric. This completes the proof of our claim.
By virtue of (4.2), this yields a direct decomposition S ∼=

∏
a∈P/θ eaS, thus reducing 

the problem to the case where θ has exactly one equivalence class. Thus, denoting by e1, 
. . . , en the distinct atoms of B, the finite sequence (e1, . . . , en) is homogeneous. By 
Lemma 4.2, S ∼= M⊕

n (e1Se1). Since e1 is the only nontrivial idempotent in e1Se1, we get 
e1Se1 ∼= G�0 for some group G. �

The proof below was suggested to the author by the referee. While more direct, it 
involves the duality theorem contained (for example) in [17, Theorem 3.25].

Second proof of Proposition 4.6. The set G of all atoms of S forms a groupoid with set 
of identities A. Since A is finite, S is isomorphic to the inverse semigroup of all bisections 
of G. Denoting by G1, . . . , Gk the connected components of G, we get S ∼=

∏k
i=1 Si where 

each Si is the Boolean inverse semigroup of all bisections of Gi. Setting Ai = A ∩ Gi

and letting Gi be any vertex group of Gi, Gi is isomorphic to Ai × Gi × Ai where the 
composition is defined by the rule (a, x, b) · (b, y, c) = (a, xy, c). Setting ni = cardAi, this 
yields Si

∼= M⊕
ni

(
Gi

�0). �
5. Type monoids of finitely subdirectly irreducible biases

The main aim of this section is to establish Lemma 5.5, which states that the type 
monoid of every (finitely) subdirectly irreducible bias is prime (cf. Definition 5.3).

Denote by θI the congruence generated by I×{0}, for an additive ideal I of a Boolean 
inverse semigroup S (cf. [29, Proposition 3.4.6]; θI is denoted there by ≡I). Recall that 
this congruence can also be defined by

(x, y) ∈ θI ⇔ (∃z)
(
z ≤ x and z ≤ y and {x� z, y � z} ⊆ I

)
, for all x, y ∈ S. (5.1)
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Lemma 5.1. θI ∩ θJ = θI∩J , for all additive ideals I and J of S.

Proof. It is sufficient to prove that θI ∩ θJ ⊆ θI∩J . Let (x, y) ∈ θI ∩ θJ . By definition 
(cf. (5.1)), there are u, v ≤ x, y such that both containments {x� u, y � u} ⊆ I and 
{x� v, y � v} ⊆ J hold. Since u, v ≤ x, the elements u and v are compatible, thus 
they have a join w, and w ≤ x. From u, v ≤ y it follows that w ≤ y. From x � u =
(x �w) ⊕ (w� u) it follows that x �w ≤ x � u, thus, since x � u ∈ I, we get x �w ∈ I. 
Likewise, x � w ∈ J , so x � w ∈ I ∩ J . Likewise, y � w ∈ I ∩ J , so w witnesses that 
(x, y) ∈ θI∩J . �

If S is a Boolean inverse meet-semigroup, that is, x ∧y exists for all x, y ∈ S, then the 
satisfaction of (5.1) needs to be checked only on the element z = x ∧ y, which implies 
immediately that Lemma 5.1 can be extended to arbitrary infinite collections of additive 
ideals. However, the following example shows that this observation does not extend to 
the case where S is not an inverse meet-semigroup. Recall that an inverse semigroup is 
a Clifford inverse semigroup if it satisfies the identity d(x) = r(x) (i.e., x−1x = xx−1).

Example 5.2. A Clifford Boolean inverse monoid S, with an infinite descending sequence 
(In | n ∈ Z+) of additive ideals such that 

⋂
n∈Z+ In = {0} yet 

⋂
n∈Z+ θIn is not the 

identity congruence.

Proof. The example in question is the one of [29, Example 3.3.5]. Let us recall its con-
struction. Denote by B the Boolean algebra of all subsets of N that are either finite 
or cofinite, and pick any nontrivial group G. For every x ∈ B, we set Nx =

def
G if x is 

finite, and Nx =
def

{1} if x is cofinite. For g, h ∈ G and x ∈ B, let g ≡x h hold if g ≡ h

(mod Nx). We define an equivalence relation ∼ on B ×G by setting

(x, g) ∼ (y, h) if (x = y and g ≡x h), for all x, y ∈ B and all g, h ∈ G,

and we denote by [x, g] the ∼-equivalence class of (x, g). Then ∼ is a semigroup con-
gruence on B ×G and the quotient S = (B ×G)/∼ is a Boolean inverse monoid where 
d[x, g] = r[x, g] = [x, 1] whenever (x, g) ∈ B ×G.

For the rest of the proof, we pick any element g ∈ G \ {1}, and we set

an =
def

[N \ [n], g],

en =
def

[N \ [n], 1],

for every n ∈ Z+. The set In =
def

{[x, h] ∈ S | x ∩ [n] = ∅} is an additive ideal of S, for 
every n ∈ Z+. Obviously, 

⋂
n∈Z+ In = {0}. On the other hand, for every n ∈ Z+, both 

elements a0 � [[n], 1] = an and e0 � [[n], 1] = en belong to In, thus the pair (a0, b0)
belongs to the intersection of all θIn while a0 �= b0. �
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Definition 5.3. A conical commutative monoid M is prime if M \ {0} is downward di-
rected.

Lemma 5.4 (folklore). Let two elements x and y in a conical refinement monoid M be
orthogonal, in notation x ⊥ y, if there is no nonzero z ∈ M such that z ≤+ x and 
z ≤+ y. Then the following statements hold:

(i) x ⊥ z and y ⊥ z implies that x + y ⊥ z, for all x, y, z ∈ M .
(ii) x ⊥ y implies that nx ⊥ ny, for all x, y ∈ M and every positive integer n.

A bias S is subdirectly irreducible (resp., finitely subdirectly irreducible) if it has a 
smallest nonzero congruence (resp., if any two nonzero congruences of S have nonzero in-
tersection). Trivially, every subdirectly irreducible bias is finitely subdirectly irreducible. 
By using the results of [29, § 5.1], it is easy to construct finitely subdirectly irreducible 
Boolean inverse monoids that are not subdirectly irreducible.

Lemma 5.5. Let S be a finitely subdirectly irreducible bias. Then the type monoid TypS

is prime.

Proof. It suffices to prove that for any nonzero idempotent elements a and b of S, 
there exists a nonzero element of TypS below typS(a) and typS(b). Denote by I(x)
the additive ideal of S generated by {x}, for any x ∈ S. Then θI(a) and θI(b) are both 
nonzero congruences of S, thus, since S is finitely subdirectly irreducible, the intersection 
θI(a) ∩ θI(b) is a nonzero congruence of S. By Lemma 5.1, we get I(a) ∩ I(b) �= {0}. The 
subsets

Ia =
def

{
x ∈ TypS | (∃n ∈ N)(x ≤+ n · typS(a))

}
,

Ib =
def

{
x ∈ TypS | (∃n ∈ N)(x ≤+ n · typS(b))

}
of TypS are both o-ideals of TypS. By [29, Proposition 4.2.4], the subsets

J(a) =
def

{x ∈ S | typS(x) ∈ Ia} ,

J(b) =
def

{x ∈ S | typS(x) ∈ Ib}

are both additive ideals of S. Since a ∈ J(a) and b ∈ J(b), it follows that I(a) ⊆ J(a)
and I(b) ⊆ J(b). (Actually, with a small additional effort, it is not hard to see that 
I(a) = J(a) and I(b) = J(b).) Hence J(a) ∩ J(b) �= {0}, and hence there are a positive 
integer n and c ∈ (TypS) \ {0} such that c ≤+ n typS(a), n typS(b). Since TypS is a 
conical refinement monoid, it has, by Lemma 5.4, a nonzero element below typS(a) and 
typS(b). �
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6. Generators for varieties of biases

The main aim of this section is to prove that every proper variety of biases is generated 
by biases of generalized rook matrices of finite order over groups with zero (Theorem 6.2).

Recall (see, for example, [29]) that the index of an element e in a conical commutative 
monoid M is the least nonnegative integer n, if it exists, such that (n +1)x ≤+ e implies 
that x = 0 whenever x ∈ M , and ∞ otherwise.

Lemma 6.1. Let M be a nonzero conical refinement monoid. If M is prime and every 
element of M has finite index, then M ∼= Z+.

Proof. We claim that every element of M \{0} is above an atom of M . Suppose otherwise 
and let a ∈ M without any atom below a. Let x ∈ (0, a]. Since there is no atom below x, 
x is not an atom, thus, since x �= 0, there are x0, x1 ∈ M \ {0} such that x = x0 + x1. 
Since M is prime, there is y �= 0 such that y ≤+ x0 and y ≤+ x1. It follows that 2y ≤+ x. 
Arguing inductively, we find n ∈ Z+ and z ∈ (0, a] such that 2n is greater than the index 
of a and 2nz ≤+ a, in contradiction with the definition of the index. This completes the 
proof of our claim.

In particular, there is at least one atom p in M . Since M is prime, p is the only atom 
in M . By the claim above, every element of M \ {0} is larger than or equal to p.

Now let a ∈ M . Since p ≤+ x whenever x ∈ (0, a], the index m of a is the largest 
integer such that mp ≤+ a. Let b such that mp + b = a. If b �= 0, then p ≤+ b, thus 
(m + 1)p ≤+ mp + b = a, in contradiction with the definition of the index. Therefore, 
mp = a, thus completing the proof that M = Z+p. Since M is a conical refinement 
monoid and p is an atom, it follows that the map (Z+ → M , n �→ np) is one-to-one. 
Therefore, M ∼= Z+. �

Recall that a partially ordered Abelian group G is Archimedean if for all a, b ∈ G, if 
na ≤ b for every n ∈ Z+, then a ≤ 0.

Theorem 6.2. Let V be a proper variety of biases.

(1) There is a largest nonnegative integer h such that Ih ∈ V. Furthermore, h is the 
largest possible value of the index of typS(e) within TypS, for S ∈ V and e ∈ IdpS.

(2) For any S ∈ V, every element of the type monoid TypS has finite index. In partic-
ular, TypS is the positive cone of an Archimedean dimension group.

(3) The variety V is generated by the collection of all its fully group-matricial members.

Proof. Ad (1), (2). If In ∈ V for all n ∈ Z+, then, by Theorem 3.8, V = Bis, which 
contradicts our assumption. Hence there is a largest nonnegative integer h such that 
Ih ∈ V. Moreover, either h = 0 and TypIh = {0}, or h > 0 and (TypIh, typIh

(1)) ∼=
(Z+, h). It follows that the index of typI (1) in TypIh is exactly h.
h
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Let S ∈ V. We shall prove that for every e ∈ IdpS, the index of e =
def

typS(e) is 
less than or equal to h. Suppose otherwise. By the definition of the index and by [29, 
Lemma 4.1.6], there are nonzero pairwise orthogonal idempotents e0, . . . , eh ≤ e such 
that typS(e0) = typS(ei) whenever 0 ≤ i ≤ h. By definition, (e0, . . . , eh) is a homo-
geneous sequence of S. Set e′ =

⊕h
i=0 ei. By Lemma 4.2, M⊕

h+1 (e0Se0) is isomorphic 
to e′Se′, hence it embeds into S. Since Ih+1 embeds into M⊕

h+1 (e0Se0), it also belongs 
to V, a contradiction.

Since every element of the type interval IntS of S has finite index in TypS, and 
since IntS generates the refinement monoid TypS, it follows from [28, Corollary 3.12]
that every element of TypS has finite index. By [28, Proposition 3.13], it follows 
that TypS is the positive cone of an Archimedean dimension group.

Ad (3). Denote by K the class of all fully group-matricial members of V. Every mem-
ber S of V is the directed union of all unital biases eSe where e ∈ IdpS; thus the unital 
members of V generate V. Further, every unital member S of V is a subdirect product 
of subdirectly irreducible members of V, which are all homomorphic images of S, thus 
they are all unital. Hence, V is generated by the class of its unital subdirectly irreducible 
members, so it suffices to prove that every unital subdirectly irreducible member S of V
belongs to K.

By Lemma 5.5, TypS is a prime conical refinement monoid. Further, by (2) above, 
every element of TypS has finite index in TypS. By Lemma 6.1, it follows that TypS ∼=
Z+. Identifying TypS with Z+ and setting n = typS(1), it follows from Lemma 4.4 that 
S ∼= M⊕

n

(
G�0) for some group G. �

Note. By Theorem 3.8, the variety Bis of all biases is generated by all finite symmetric 
inverse biases In. Since all In with n > 0 are fully group-matricial, it follows that 
Theorem 6.2(3) extends to Bis; thus it is valid for any variety of biases.

7. Generalized rook matrices and wreath products of groups

The main aim of this section is to relate embedding properties of fully group-matricial 
biases and embedding properties of the corresponding groups (Lemma 7.6). Owing to 
Lemma 7.4, the latter will be stated in terms of wreath products by finite symmetric 
groups.

The proof of the following lemma is a straightforward application of [29, § 3.5] together 
with the equivalence between bias homomorphism and additive semigroup homomor-
phism, and we leave it to the reader.

Lemma 7.1. Let S and T be Boolean inverse semigroups and let n be a positive
integer. Then for every bias homomorphism f : S → T , the assignment M⊕

n (f) :
(xi,j)(i,j)∈[n]×[n] �→

(
f(xi,j)

)
(i,j)∈[n]×[n] defines a bias homomorphism M⊕

n (f) :
M⊕

n (S) → M⊕
n (T ). Furthermore, M⊕

n (f) is one-to-one (resp., surjective) iff f is one-
to-one (resp., surjective).
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Lemma 7.2. Let S be a Boolean inverse semigroup and let n be a positive integer. Then 
every additive congruence α of S gives rise to a unique additive congruence M⊕

n (α)
of M⊕

n (S) such that

(xi,j)(i,j)∈[n]×[n] ≡M⊕
n (α) (yi,j)(i,j)∈[n]×[n] ⇔

(
xi,j ≡α yi,j for all (i, j) ∈ [n] × [n]

)
,

(7.1)

for all (xi,j)(i,j)∈[n]×[n], (yi,j)(i,j)∈[n]×[n] ∈ M⊕
n (S). Furthermore, the canonical surjective 

homomorphism M⊕
n (α) : M⊕

n (S) � M⊕
n (S/α) factors through a unique isomorphism 

M⊕
n (S) /M⊕

n (α) → M⊕
n (S/α). Conversely, every additive congruence of M⊕

n (S) has the 
form M⊕

n (α) for a unique additive congruence α of S.
In particular, the assignment α �→ M⊕

n (α) defines an isomorphism from ConS onto 
Con M⊕

n (S).

Proof. The canonical projection α : S � S/α is a bias homomorphism, which, by 
Lemma 7.1, induces a bias homomorphism M⊕

n (α) : M⊕
n (S) � M⊕

n (S/α). The ker-
nel M⊕

n (α) of that homomorphism is an additive congruence of M⊕
n (S), and it is given 

by (7.1). Observe that

x(i′,j′) = a(i′,i)x(i,j)a(j,j′),

for all i, i′, j, j′ ∈ [n] and all x, a ∈ S with a idempotent and d(x) ∨ r(x) ≤ a.
Now let θ be an additive congruence of M⊕

n (S). The equivalence relation α on S

defined by

x ≡α y ⇔ x(1,1) ≡θ y(1,1), for all x, y ∈ S,

is an additive congruence of S, and it follows from the above that

x ≡α y ⇔ x(i,j) ≡θ y(i,j), for all x, y ∈ S and all i, j ∈ [n]. (7.2)

We claim that θ = M⊕
n (α). Let x = (xi,j)(i,j)∈[n]×[n] and y = (yi,j)(i,j)∈[n]×[n] in M⊕

n (S).
Suppose first that x ≡M⊕

n (α) y. For all (i, j) ∈ [n] × [n], the relation xi,j ≡α

yi,j holds, that is, by definition and by (7.2), (xi,j)(i,j) ≡θ (yi,j)(i,j). Since x =⊕
(i,j)∈[n]×[n](xi,j)(i,j) and similarly for y, it follows that x ≡θ y.
Suppose, conversely, that x ≡θ y and let e be an idempotent element of S such 

that 
∨

i,j d(xi,j) ∨
∨

i,j r(xi,j) ≤ e. Let i, j ∈ [n]. From x ≡θ y it follows that 
e(i,i)xe(j,j) ≡θ e(i,i)ye(j,j), that is, (xi,j)(i,j) ≡θ (yi,j)(i,j), thus, by (7.2), xi,j ≡α yi,j . 
Therefore, x ≡M⊕

n (α) y, thus completing the proof of our claim.
Finally, since the map α �→ M⊕

n (α) is clearly one-to-one, it defines an isomorphism 
from ConS onto Con M⊕

n (S). �
Taking S = G�0 for a group G, we get two types of congruences in S:
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(1) The congruences of the form θ�0 = θ ∪ {(0, 0)}, for a congruence θ of the group G;
(2) The full congruence 1G = G�0 ×G�0.

In turn, the congruences of the group G are in one-to-one correspondence with the 
normal subgroups of G. Denoting by NSubG the lattice of all normal subgroups of G, 
we thus obtain the following corollary to Lemma 7.2.

Corollary 7.3. Let G be a group and let n be a positive integer. Then Con M⊕
n

(
G�0)

and ConG�0 are both isomorphic to the lattice obtained by adding a new top element 
to NSubG.

Our next lemma is, essentially, contained in [19, § 6]. We include a proof for conve-
nience.

Lemma 7.4. Let G be a group and let n be a positive integer. Then the group of all 
invertible elements of M⊕

n

(
G�0) is isomorphic to the wreath product G �Sn.

The wreath product involved here is identical to the one considered in [19, § 6]: namely, 
G �Sn is the set Gn ×Sn endowed with the multiplication defined by

(g1, . . . , gn;α) · (h1, . . . , hn;β) = (g1hα−1(1), . . . , gnhα−1(n);αβ),

for all g1, . . . , gn, h1, . . . , hn ∈ G and all α, β ∈ Sn.

Proof. The group homomorphism G → {1} extends to an additive semigroup homomor-
phism, that is, a bias homomorphism, G�0 → {0, 1}, which, by Lemma 7.1, extends to 
a bias homomorphism π from M⊕

n

(
G�0) to In ∼= M⊕

n ({0, 1}). Let x = (xi,j)(i,j)∈[n]×[n]
in M⊕

n

(
G�0). If x is invertible in M⊕

n

(
G�0), then π(x) is invertible in In, thus it is a 

permutation matrix, that is, denoting by Sn the group of all permutations of [n],

π(x) = (δi,σ(j))(i,j)∈[n]×[n], for some σ ∈ Sn,

where δ denotes Kronecker’s symbol. It follows that there is a finite sequence 
(g1, . . . , gn) ∈ Gn such that

x = (δi,σ(j)gi)(i,j)∈[n]×[n]. (7.3)

Denoting by [g1, . . . , gn; σ] the right hand side of (7.3), the product of two such elements 
is given by

[g1, . . . , gn;α] · [h1, . . . , hn;β] = [g1hα−1(1), . . . , gnhα−1(n);αβ],

so the elements of the form [g1, . . . , gn; σ] form a subgroup of the monoid M⊕
n

(
G�0), 

isomorphic to the wreath product G � Sn. By the above, this subgroup contains all 
invertibles of M⊕

n

(
G�0), thus it consists exactly of all invertibles of M⊕

n

(
G�0). �
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Our next series of lemmas will focus on bias homomorphisms between fully group-
matricial biases.

Lemma 7.5. Let G and H be groups and let n be a positive integer. Then G�0 embeds, 
as a bias, into M⊕

n

(
H�0) iff G embeds, as a group, into the wreath product H �Sn.

Proof. By Lemma 7.4, any group embedding of G into H � Sn gives rise to a group 
embedding of G into the group of all invertible elements of M⊕

n

(
H�0), which in turn 

extends to a bias embedding from G�0 into M⊕
n

(
H�0).

Let, conversely, ϕ : G�0 ↪→ M⊕
n

(
H�0) be a bias embedding. Since ϕ(1) is an idempo-

tent element of M⊕
n

(
H�0), it is, by Proposition 2.1, a diagonal matrix with entries in 

{0, 1}. Denote by Ω the set of all indices i ∈ [n] such that the (i, i)th entry of ϕ(1) is 1. For 
every g ∈ G, the element ϕ(g) = ϕ(1)ϕ(g)ϕ(1) belongs to ϕ(1) M⊕

n

(
H�0)ϕ(1), which 

consists of all generalized rook matrices all whose entries outside Ω ×Ω are zero. Hence, 
setting m = cardΩ, the map ϕ induces a unital bias embedding ψ : G�0 ↪→ M⊕

m

(
H�0). 

Since ψ sends the unit to the unit, it sends every invertible element to an invertible 
element. By Lemma 7.4, G embeds, as a group, into H �Sm. The latter embeds, in turn, 
into H �Sn via the assignment [h1, . . . , hm; σ] �→ [h1, . . . , hm, 1, . . . , 1; σ] where σ stands 
for the extension of σ by the identity map on [n] \ [m]. �

Denote by �x� the largest integer less than or equal to x, for any rational number x. 
The following lemma strengthens Lemma 7.5 to bias embeddings between fully group-
matricial biases.

Lemma 7.6. Let G and H be groups, let m and n be positive integers. Then M⊕
m

(
G�0)

embeds, as a bias, into M⊕
n

(
H�0) iff m ≤ n and G embeds, as a group, into the wreath 

product H �S�n/m	.

Proof. Suppose, first, that m ≤ n and that G embeds, as a group, into H � S�n/m	. 
By Lemma 7.5, G�0 embeds, as a bias, into M⊕

�n/m	
(
H�0). It follows that M⊕

m

(
G�0)

embeds, as a bias, into M⊕
m

(
M⊕

�n/m	
(
H�0)), thus, by Lemma 4.3, into M⊕

m�n/m	
(
H�0). 

Since m�n/m� ≤ n, it follows that M⊕
m

(
G�0) embeds, as a bias, into M⊕

n

(
H�0).

Let, conversely, ϕ : M⊕
m

(
G�0) ↪→ M⊕

n

(
H�0) be a bias embedding. Whenever 1 ≤

i ≤ m, denote by ai the generalized rook matrix of order m with (i, i)th entry 1 and 
all others 0. Similarly, for X ⊆ [n], denote by bX the diagonal generalized rook matrix 
of order n with (j, j)th entry 1 if j ∈ X, 0 otherwise. Then each ϕ(ai) is a nonzero 
idempotent element of M⊕

n

(
H�0), so, by Proposition 2.1, ϕ(ai) = bXi

for some nonempty 
Xi ⊆ [n]. Since (a1, . . . , am) is a homogeneous sequence in M⊕

m

(
G�0), (bX1 , . . . , bXm

) is a 
homogeneous sequence in M⊕

n

(
H�0), thus the Xi are pairwise disjoint and they all have 

the same cardinality, say d. Hence, md ≤ n. Moreover, ϕ embeds a1 M⊕
m

(
G�0) a1, which 

is isomorphic to G�0, into bX1 M⊕
n

(
H�0) bX1 , which is isomorphic to M⊕

d

(
H�0). By 

Lemma 7.5, G embeds into H �Sd. Since d ≤ �n/m�, the desired conclusion follows. �
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8. A projectivity property of fully group-matricial biases

The main aim of this section is the projectivity property of fully group-matricial 
biases, within the class of all D-cancellative biases, stated in Lemma 8.3. Our first lemma 
is an analogue, for biases, of the lattice-theoretical result stating the projectivity of 
von Neumann frames (cf. [4,10]).

Lemma 8.1. The symmetric inverse monoid In is a projective bias, for every positive 
integer n; that is, for every Boolean inverse semigroup S, every surjective bias homo-
morphism ϕ : S � In has a right inverse bias embedding.

Proof. The kernel ϕ of ϕ is an additive congruence of S. Denote by ei,j the unique 
function from {j} to {i}, whenever i, j ∈ [n]. Since ϕ is a surjective homomorphism of 
inverse semigroups, for every i ∈ [n] there exists a1,i ∈ S such that ϕ(a1,i) = e1,i. 
Since e1,1 is idempotent, we may take a1,1 idempotent. By replacing each a1,i by 
a1,i

(
d(a1,i) �

∨
1≤j<i d(a1,j)

)
, we may assume that d(a1,i)d(a1,j) = 0, that is,

a1,ia
−1
1,j = 0 for all distinct i, j ∈ [n]. (8.1)

Now set

b1,1 =
def

n∧
j=1

r(a1,j),

bi,i =
def

a−1
1,i b1,1a1,i,

b1,i =
def

b1,1a1,i,

for each i ∈ [n]. This causes no conflict of notation, because b1,1 ≤ a1,1. All elements bi,i
are idempotent; moreover, by (8.1), they are pairwise orthogonal. Furthermore, for ev-
ery i ∈ [n], it is easy to verify that ϕ(bi,i) = ei,i, ϕ(b1,i) = e1,i, d(b1,i) = bi,i, and 
r(b1,i) = b1,1. Since b1,i ≤ a1,i and by (8.1), we get

b1,ib
−1
1,j = 0 for all distinct i, j ∈ [n].

We set bi,j =
def

b−1
1,i b1,j whenever i, j ∈ [n]. Then ϕ(bi,j) = e−1

1,i e1,j = ei,1e1,j = ei,j . 
Furthermore, by using the above, it is not hard to verify that the bi,j form a system of 
matrix units in S, that is, bi,jbk,l = δj,kbi,l, whenever i, j, k, l ∈ [n]. The map ψ : In → S, 
x �→

⊕
i∈dom(x) bx(i),i is an additive semigroup homomorphism, and ϕ ◦ ψ = idIn

. �
In order to establish an analogue of Lemma 8.1 for fully group-matricial biases, we 

will need to add to our assumptions a statement of D-cancellativity. We first establish a 
crucial preparatory lemma.
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M⊕
n

(
G

�0
) M⊕

n

(
ψ�0)

η

M⊕
n

(
G�0)

S

ϕ

Fig. 8.1. A commutative triangle of biases.

Lemma 8.2. Let θ be an additive congruence of a D-cancellative Boolean inverse semi-
group S, let a, b ∈ IdpS such that a DS b, and let x ∈ S/θ such that d(x) = a/θ and 
r(x) = b/θ. Then there exists x ∈ x such that d(x) = a and r(x) = b.

Proof. Pick y ∈ x. It follows from our assumptions that d(y) ≡θ a and r(y) ≡θ b. Set 
u =

def
d(y) and v =

def
r(y). The elements u′ =

def
uay−1by and v′ =

def
yu′y−1 are idempotent, 

with u′ ≤ ua, v′ ≤ vb, u′ ≡θ u ≡θ a, and v′ ≡θ v ≡θ b. Setting y′ =
def

yu′, we get

d(y′) = u′d(y) = u′,

r(y′) = yu′y−1 = v′,

so u′ DS v′. Since a DS b, u′ ≤ a, and v′ ≤ b, and since S is D-cancellative, it follows that 
a � u′ DS b � v′, that is, there is s ∈ S such that d(s) = a � u′ and r(s) = b � v′. From 
u′ ≡θ a it follows that s ≡θ 0. Set x = y′⊕s. Then x ≡θ y′ ≡θ y, so x ∈ x. Furthermore, 
d(x) = a and r(x) = b. �

We can now state the promised projectivity statement for fully group-matricial biases.

Lemma 8.3. Let S be a D-cancellative Boolean inverse semigroup, let n be a positive 
integer, let G be a group, and let ϕ : S � M⊕

n

(
G�0) be a surjective bias homomorphism. 

Then there are a group G, a surjective group homomorphism ψ : G � G, and a bias 
embedding η : M⊕

n

(
G

�0)
↪→ S such that M⊕

n

(
ψ�0) = ϕ ◦ η.

The situation is illustrated on Fig. 8.1.

Proof. For all (i, j) ∈ [n] × [n], denote by ei,j the element of M⊕
n

(
G�0) with (i, j)th 

entry equal to 1 and all other entries equal to 0. By Lemma 8.1, there is a system 
(ai,j)(i,j)∈[n]×[n] of matrix units in S such that each ϕ(ai,j) = ei,j . The subset

G =
def

{x ∈ S | d(x) = r(x) = a1,1}

is a subgroup of the monoid a1,1Sa1,1. For each x ∈ G, d(ϕ(x)) = r(ϕ(x)) = e1,1, thus 
ϕ(x) = ψ(x)(1,1) for a unique ψ(x) ∈ G. Clearly, ψ is a group homomorphism from G

onto G.
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We claim that ψ is surjective. Observe first that the kernel ϕ of ϕ is an additive 
congruence of S. Let g ∈ G. Since ϕ is surjective, there exists y ∈ S such that ϕ(y) =
g(1,1). Set x = y/ϕ. Since

ϕ(d(y)) = d(ϕ(y)) = d(g(1,1)) = e1,1 = ϕ(a1,1),

we get d(y) ≡ϕ a1,1, and similarly, r(y) ≡ϕ a1,1. Hence, d(x) = r(x) = a1,1/ϕ. By 
Lemma 8.2, there exists x ∈ x such that d(x) = r(x) = a1,1; so x ∈ G. Moreover,

ϕ(x) = ϕ(y) (because x belongs to x = y/ϕ)

= g(1,1),

that is, ψ(x) = g, thus proving our claim.
For every x ∈ M⊕

n

(
G

�0), it is not hard to verify that the elements ai,1xi,ja1,j , for 
(i, j) ∈ [n] × [n], are pairwise orthogonal. This enables us to set

η(x) =
def

⊕
(i,j)∈[n]×[n]

ai,1xi,ja1,j .

Elementary calculations show that η is an additive semigroup homomorphism, that is, a 
bias homomorphism, from M⊕

n

(
G

�0) to S. Furthermore, for every x ∈ G
�0, η(x(1,1)) =

a1,1xa1,1 = x, thus the restriction of η to the upper left corner of M⊕
n

(
G

�0) is one-to-one. 
By Lemma 7.2, it follows that η is one-to-one.

Finally, for every x ∈ M⊕
n

(
G

�0),

(ϕ ◦ η)(x) =
⊕

(i,j)∈[n]×[n]

ϕ(ai,1xi,ja1,j)

=
⊕

(i,j)∈[n]×[n]

ei,1ψ(xi,j)(1,1)e1,j

=
⊕

(i,j)∈[n]×[n]

ψ(xi,j)(i,j)

= ψ

( ⊕
(i,j)∈[n]×[n]

(xi,j)(i,j)
)

= ψ(x),

so ϕ ◦ η = ψ. �
9. Boolean inverse semigroups with bounded index

The main result of this section, Lemma 9.3, relates the monoid-theoretical concept of 
index, evaluated on elements of the type monoid of a Boolean inverse semigroup S, to 
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the satisfaction of a certain inverse semigroup-theoretical identity, evaluated on elements 
of S.

Lemma 9.1. Let S be an inverse semigroup, let n be a positive integer, and let x ∈ S. 
Then d(xn) = r(xn) iff d(xn) = d(xn+1) and r(xn) = r(xn+1).

Proof. (G. Kudryavtseva) If d(xn) = r(xn), then

d(x2n) = x−nx−nxnxn = x−nxnx−nxn = (d(xn))2 = d(xn),

whence d(xn) = d(xn+1). The proof that r(xn) = r(xn+1) is similar.
Suppose, conversely, that d(xn) = d(xn+1) and r(xn) = r(xn+1). For any positive 

integer k, if d(xk) = d(xk+1), then

d(xk+1) = x−1d(xk)x = x−1d(xk+1)x = d(xk+2).

Hence, our assumption implies that d(xn) = d(xk) for every k ≥ n. In particular,

d(xn) = d(x2n). (9.1)

Now

x−nxn = x−nxnx−nxn (that is, d(xn) is idempotent)

= x−nx2nx−2nxn (use (9.1))

= x−nxnxnx−nx−nxn

= x−nxnxnx−n (the idempotents x−nxn and xnx−n commute)

≤ xnx−n.

The proof that xnx−n ≤ x−nxn is symmetric. �
Recall the notation x〈y〉 = xyx−1, used in [29].

Lemma 9.2. Let S be a Boolean inverse semigroup and let x, e ∈ S with e idempotent. 
Then typS(x〈e〉) ≤+ typS(e) within TypS.

Proof. d(xe) = d(x)e ≤ e, while r(xe) = x〈e〉, so typS(x〈e〉) = typS(r(xe)) =
typS(d(xe)) ≤+ typS(e). �

The identity d(xn) = r(xn), the earliest appearance of which we are aware of being 
Reilly’s paper [25, Theorem 3.4], plays a crucial role in the following lemma. It was 
suggested to the author by Ganna Kudryavtseva, together with a sketch of a proof of 
Corollary 9.4. Our argument here is different.
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Lemma 9.3. The following are equivalent, for any Boolean inverse semigroup S and every 
positive integer n:

(i) typS(e) has index at most n in TypS, for every e ∈ IdpS;
(ii) d(xn) = r(xn) for every x ∈ S.

Proof. (i)⇒(ii). Set e =
def

d(x) ∨ r(x) and b = e � r(x). Then e = b ⊕ r(x) = b ⊕ x〈e〉, 
thus r(x) = x〈e〉 = x〈b〉 ⊕x2〈e〉, so e = b ⊕x〈b〉 ⊕x2〈e〉, and so on. By an easy induction 
argument, we thus get

e = b⊕ x〈b〉 ⊕ · · · ⊕ xk〈b〉 ⊕ r(xk+1) for every k ∈ Z+. (9.2)

By Lemma 9.2, it follows that (k + 1) · typS(xk〈b〉) + typS(r(xk+1)) ≤+ typS(e). Hence, 
taking k = n and by assumption on the index of typS(e), we get xn〈b〉 = 0. By apply-
ing (9.2) to k = n and k = n + 1, we thus get

e = b⊕ x〈b〉 ⊕ · · · ⊕ xn−1〈b〉 ⊕ r(xn)

= b⊕ x〈b〉 ⊕ · · · ⊕ xn−1〈b〉 ⊕ r(xn+1),

whence r(xn) = r(xn+1). By applying that result to x−1, we get d(xn) = d(xn+1). By 
Lemma 9.1, it follows that d(xn) = r(xn).

(ii)⇒(i). Suppose that typS(e) has index greater than n, where e ∈ IdpS. By the 
definition of the index and by [29, Lemma 4.1.6], there are nonzero pairwise orthogonal 
idempotents e0, . . . , en such that typS(e0) = typS(ei) whenever 0 ≤ i ≤ n. For 0 ≤ i < n, 
there exists xi ∈ S such that d(xi) = ei+1 and r(xi) = ei. Observe that xixj �= 0 iff 
j = i + 1, whenever 0 ≤ i, j < n. Set x = x0 ⊕ · · · ⊕ xn−1. Then xn = x0 · · ·xn−1 with 
d(xn) = en distinct from r(xn) = e0. �

Corollary 9.4 (G. Kudryavtseva). Let G be a group and let n and k be positive integers. 
Then M⊕

k

(
G�0) satisfies the identity d(xn) = r(xn) iff k ≤ n.

Proof. The idempotents of M⊕
k

(
G�0) form a finite Boolean lattice with k pairwise 

D-equivalent atoms. Hence (TypM⊕
k

(
G�0) , typ(1)) ∼= (Z+, k). Apply Lemma 9.3. �
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Definition 9.5. Let S be a Boolean inverse semigroup.

• Define the index of an element x of S as 0 if x = 0, the least positive integer n such 
that d(xn) = r(xn) if it exists and x �= 0, and ∞ in all other cases (i.e., x �= 0 and 
d(xn) �= r(xn) for every positive integer n).

• Define the index of S as the supremum of all indexes of all elements of S.

Moreover, define the index of a class C of Boolean inverse semigroups as the supremum 
of all indexes of all members of C.

Now the following is a reformulation of Lemma 9.3.

Corollary 9.6. Let S be a Boolean inverse semigroup. Then the index of S is equal to 
the supremum of the indexes, within the type monoid TypS, of all elements of the type 
interval IntS.

Corollary 9.7. Let V be a variety of biases. Then the index of V is equal to the largest 
nonnegative integer n such that In ∈ V if it exists, ∞ otherwise.

In particular, we emphasize that every variety of biases, distinct from the variety Bis
of all biases, has finite index (this follows from Theorem 6.2). Furthermore, for every 
positive integer n, the class Bisn of all biases with index ≤ n is a variety, defined by 
Reilly’s identity d(xn) = r(xn). All its subdirectly irreducible members have the form 
M⊕

k

(
G�0) where 0 < k ≤ n and G is a group. In that sense, the identity d(xn) = r(xn)

is an analogue, for biases, of the Amitsur–Levitzki Theorem [1] for matrix rings.

10. The variety order on fully group-matricial biases

In this section we finally reach the main result of the paper, Theorem 10.10, which 
states an isomorphism between proper varieties of biases and certain finite descending 
finite sequences of varieties of groups.

Notation 10.1. For a positive integer n, the n-th radical Radn (C) of a class C of biases 
is defined as the class of all groups G such that M⊕

n

(
G�0) ∈ C.

Lemma 10.2. Let V be a variety of biases. Then Radn (V) is either empty or a variety of 
groups, for every variety V of biases.

Proof. It is clear that Radn (V) is closed under subgroups. If a group H is a homo-
morphic image of a group G, then, by Lemma 7.1, M⊕

n

(
H�0) is a homomorphic image 

of M⊕
n

(
G�0); hence G ∈ Radn (V) implies that H ∈ Radn (V). Finally, if I is a nonempty 

set and (Gi | i ∈ I) is a family of groups, then, setting G =
∏

i∈I Gi, the bias M⊕
n

(
G�0)
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canonically embeds into 
∏

i∈I M⊕
n

(
Gi

�0); hence {Gi | i ∈ I} ⊆ Radn (V) implies that 
G ∈ Radn (V). The desired conclusion follows then from Birkhoff’s HSP Theorem. �

By Corollary 9.7, Radn (V) is nonempty iff n is less than or equal to the index of the 
variety V. Also, observe that trivially, Radn+1 (V) ⊆ Radn (V). The following lemma is 
the main technical result of this section.

Lemma 10.3. Let I be a nonempty set, let (ni | i ∈ I) be a bounded family of positive inte-
gers, let (Gi | i ∈ I) be a family of groups, let n be a positive integer, and let G be a group. 
Then M⊕

n

(
G�0) belongs to the variety V of biases generated by 

{
M⊕

ni

(
Gi

�0) | i ∈ I
}

iff n ≤ no for some o ∈ I and G belongs to the variety G of groups generated by {
Gi �S�ni/n	 | i ∈ I, n ≤ ni

}
.

Proof. Suppose first that n ≤ no for some o ∈ I. We must prove that M⊕
n

(
G�0) belongs 

to V, for each G ∈ G; that is, we must prove that G is contained in Radn (V).
Let i ∈ I with n ≤ ni. It follows from Lemma 7.6 that Gi �S�ni/n	 belongs to Radn (V). 

By Lemma 10.2, it follows that G is contained in Radn (V).
Suppose, conversely, that M⊕

n

(
G�0) belongs to V. By Birkhoff’s HSP Theorem, 

there are a Boolean inverse semigroup S and a surjective bias homomorphism ϕ : S �
M⊕

n

(
G�0) such that S embeds into a product of biases of the form M⊕

ni

(
Gi

�0). Setting 
m = max {ni | i ∈ I}, all biases M⊕

ni

(
Gi

�0) belong to the variety Bism of all biases of 
index at most m, thus so does S. By Lemma 9.3, the index of typ(e) in TypS is at 
most m, for every e ∈ IdpS. By [28, Corollary 3.12] (see also [29, Lemma 1.6.3]), every 
element of TypS has finite index in TypS. By [28, Proposition 3.13] (see also [29, Lemma 
2.3.6]), the monoid TypS is cancellative, thus (cf. Proposition 2.3) S is D-cancellative. 
By Lemma 8.3, there are a group G, a surjective group homomorphism ψ : G � G, and 
a bias embedding η : M⊕

n

(
G

�0)
↪→ S such that M⊕

n

(
ψ�0) = ϕ ◦ η. Since G belongs 

to the variety of groups generated by G, this reduces the problem to the case where 
S = M⊕

n

(
G�0).

By possibly renaming the (ni, Gi), we can reduce the problem to the case where there is 
a bias embedding ψ : M⊕

n

(
G�0) ↪→ ∏

i∈I M⊕
ni

(
Gi

�0). We may assume, in addition, that 
the ith component ψi : M⊕

n

(
G�0) → M⊕

ni

(
Gi

�0) of the map ψ is nonconstant, for every 
i ∈ I. By Corollary 7.3, the kernel ψi of ψi has the form M⊕

n

(
θi

�0) where θi is the congru-
ence of G associated to a normal subgroup Hi of G. Since ψ is one-to-one, the intersection 
of all congruences θi is the diagonal of G, thus the intersection of all normal subgroups Hi

is {1}. Now the bias homomorphisms M⊕
n

(
θi

�0) : M⊕
n

(
G�0) � M⊕

n

(
(G/Hi)�0

)
and 

ψi : M⊕
n

(
G�0) → M⊕

ni

(
Gi

�0) both have kernel M⊕
n

(
θi

�0). Since M⊕
n

(
θi

�0) is sur-
jective, there is a unique bias embedding τi : M⊕

n

(
(G/Hi)�0

)
↪→ M⊕

ni
(Gi) such that 

ψi = τi ◦M⊕
n

(
θi

�0). By Lemma 7.6, it follows that n ≤ ni and G/Hi embeds, as a group, 
into Gi � S�ni/n	. Since G embeds into the product of all G/Hi and each Gi � S�ni/n	
belongs to G, it follows that G ∈ G. �



144 F. Wehrung / Journal of Algebra 511 (2018) 114–147
Our next notation introduces an operator, denoted by Wrn, which sends any class of 
groups to either a variety of groups or the empty class.

Notation 10.4. For a class C of groups and a positive integer n, we denote by Wrn (C)
the variety of groups generated by {G �Sn | G ∈ C} if C �= ∅, the empty class otherwise.

Lemma 10.5. Let C be a nonempty class of groups and let n be a positive integer. Then 
Wrn (C) = Wrn (VarC).

Proof. The class of all groups G such that G �Sn ∈ Wrn (C) contains C, and it is easily 
seen to be closed under subgroups, products, and homomorphic images. By Birkhoff’s 
HSP Theorem, it is thus a variety of groups. Since it contains C, it contains VarC. �
Lemma 10.6. Let I be a nonempty set and let (Gi | i ∈ I) be a family of group varieties. 
Then Wrn

(∨
i∈I Gi

)
=

∨
i∈I Wrn (Gi). (The join is evaluated within the lattice ΛGrp of 

all varieties of groups.)

Proof. Simply observe that 
∨

i∈I Gi = Var
(⋃

i∈I Gi

)
, and then use Lemma 10.5. �

Lemma 10.7. Let V be a variety of biases and let m and n be positive integers. Then 
Wrm (Radmn (V)) is contained in Radn (V).

Proof. If mn is greater than the index of V, then Radmn (V) = ∅ and the result is trivial. 
Suppose from now on that mn is less than or equal to the index of V. This ensures that 
Radmn (V) is nonempty, so, by Lemma 10.2, it is a variety of groups. By Lemma 10.5, 
it thus suffices to prove that G �Sm belongs to Radn (V), for each G ∈ Radmn (V). By 

Lemma 7.6, M⊕
n

(
(G �Sm)�0

)
embeds, as a bias, into M⊕

mn

(
G�0), which, since G ∈

Radmn (V), belongs to V. Hence, G �Sm ∈ Radn (V), as required. �
Notation 10.8. Denote by Λ̃Grp the set of all descending sequences (Gn | n ∈ N) of ele-
ments of ΛGrp∪{∅} such that only finitely Gn are nonempty and Wrm (Gmn) is contained 

in Gn for all positive integers m and n. Moreover, set Λ̃
+
Grp =

def
Λ̃Grp ∪ {1} where 1 de-

notes the constant sequence with value the variety Grp of all groups. We order the set 
Λ̃

+
Grp componentwise: (Gn | n ∈ N) ≤ (Hn | n ∈ N) if Gn ⊆ Hn for all n ∈ N.
For every V ∈ ΛBis, we set

Rad (V) =
def

(Radn (V) | n ∈ N) .

For every variety G of groups, we denote by M⊕
n

(
G�0) the variety of biases generated 

by the class 
{
M⊕

n

(
G�0) | G ∈ Gn

}
. Furthermore, for every sequence �G = (Gn | n ∈ N) in 

Λ̃
+
Grp, we set
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Mat(�G) =
def

∨(
M⊕

n

(
Gn

�0) | n ∈ N, Gn �= ∅
)
,

where the join is evaluated within ΛBis and the empty join is set equal to the trivial 
variety (not ∅). In particular, Mat(�G) is a variety of biases.

A straightforward application of Lemma 10.6 yields the following.

Lemma 10.9. The poset Λ̃
+
Grp is a sublattice of (ΛGrp ∪ {∅})N.

Theorem 10.10. The assignments Rad and Mat define mutually inverse lattice isomor-
phisms between ΛBis and Λ̃

+
Grp. Consequently, ΛBis ∼= Λ̃

+
Grp.

Proof. We first deal with the top elements. Trivially, Rad (Bis) = 1. Moreover, since the 
finite symmetric biases generate the variety Bis (cf. Theorem 3.8), we get Mat(1) = Bis.

Now let V be a proper variety of biases. Denote by h the index of V and set Gn =
def

Radn (V) for every n ∈ N. It follows from the above, together with Lemma 10.7, that the 
sequence Rad (V) = (Gn | n ∈ N) belongs to Λ̃Grp. It follows from the definition of Gn

that M⊕
n

(
Gn

�0) is contained in V for every n ∈ N. Conversely, since, by Theorem 6.2, 
the variety V is generated by its fully group-matricial members, it is contained in the 
join of all M⊕

n

(
Gn

�0). This proves that V = Mat(Rad (V)).
Let, conversely, �G = (Gn | n ∈ N) ∈ Λ̃Grp, and denote by h the largest nonnegative 

integer such that Gn �= ∅ whenever 1 ≤ n ≤ h. (The value h = 0 is possible, in which 
case all Gn = ∅.) The class V =

def
Mat(�G) is, by definition, a variety of biases. Set 

G′
n =

def
Radn (V) for every n ∈ N. By definition, Gn ⊆ G′

n. Let, conversely, G ∈ G′
n; 

that is, M⊕
n

(
G�0) belongs to the variety of biases generated by all M⊕

k

(
H�0) where 

1 ≤ k ≤ h and H ∈ Gk. By Lemma 10.3, G belongs to the variety of groups generated 
by all H �S�k/n	 where n ≤ k ≤ h and H ∈ Gk. Now for each such pair (k, H),

H �S�k/n	 ∈ Wr�k/n	 (Gk) (by the definition of Wr�k/n	 (Gk))

⊆ Wr�k/n	
(
Gn�k/n	

)
(because n�k/n� ≤ k)

⊆ Gn (because �G ∈ Λ̃Grp).

Hence, G ∈ Gn, which completes the proof that Rad
(
Mat(�G)

)
= �G. �

In particular, since ΛGrp is Arguesian (cf. Section 2), so is ΛBis. Similarly, ΛBis satisfies 
the duals of Haiman’s identities from [8]. However, all this is already a consequence 
of congruence-permutability, which we established, for biases, in [29, § 3.4]. Since the 
problem whether every lattice identity, satisfied by all normal subgroup lattices of groups, 
also holds in the congruence lattice of every algebra in a congruence-permutable variety 
(or even in the congruence lattice of any loop), is still open, it is not clear at this point 
whether Theorem 10.10 would yield new identities valid in ΛBis.
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Corollary 10.11. The assignment G �→ M⊕
1
(
G�0) defines an isomorphism from ΛGrp onto 

a convex sublattice of ΛBis, with smallest element the variety of all idempotent biases
(i.e., generalized Boolean algebras).
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