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1. Introduction

1.1. The cohomology of arithmetic groups plays a fundamental role in number the-
ory, especially algebraic K-theory and the Langlands program. Many people have worked 
on computing the homology and cohomology of particular arithmetic groups, such as 
SLn(Z) for n � 9, and congruence subgroups of SLn(Z) with small level for n � 4. For 
a sampling of such work, we refer to [17,16,32,33,25,24,29,13].

The dimensions of these cohomology groups are important. However, to extract more 
of the number-theoretic information from the cohomology, and in particular to explore 
the connections between cohomology and Galois representations, it is essential to com-
pute the action of the algebra of Hecke operators on these groups. In this paper, which 
continues the series [2–4], we present the results of such computations for congruence 
subgroups of SL4(Z), using the sharbly complex to compute the cohomology and the 
action of the Hecke operators.

Examples of systems of Hecke eigenvalues that occur in the mod p cohomology of 
a congruence subgroup of SLn(Z), when correlated with Galois representations, shed 
light on generalizations of Serre’s conjecture [1], provide instances of Scholze’s results on 
the mod p cohomology of locally symmetric spaces [30], and when p is a large random 
prime may illustrate the existence of Galois representations attached to the cuspidal 
cohomology in characteristic zero, as proved in the work of Harris, Lan, Taylor and 
Thorne [23].

1.2. We now introduce more notation and state our main result. For any integer 
N � 1, let Γ0(N) ⊂ SL4(Z) be the subgroup of matrices with bottom row congruent to 
(0, 0, 0, ∗) mod N . As mentioned above, this paper is the next step in our series of papers 
devoted to the computation of the cohomology of Γ0(N) together with the action of the 
Hecke operators on the cohomology. In this paper the coefficient modules are twists of a 
finite field by a nebentype character η. By contrast, our previous papers considered only 
constant coefficients, i.e., η = 1. We work with coefficient modules defined over large 
finite fields, instead of the complex numbers, to avoid the inaccuracy of floating point 
arithmetic in linear algebra computations. Given a level N , we say that any prime p
(respectively, finite field Fpr) that we use for level N is a proxy prime (resp., proxy field) 
for that level. That is, the finite field is a proxy for the complex numbers.

A complete account of the results of our computations appears in the tables in Ap-
pendix A.1. Each table lists the level N , and the proxy field F = Fpr used for N , together 
with η, a nebentype character taking values in F with conductor a divisor of N . By Fη

we denote the one-dimensional coefficient system where F is twisted by η. (For details 
about η and Fη, see (2.5)–(2.7).) Let GQ denote the absolute Galois group. With this 
notation, the following theorem summarizes our computational results:

Theorem 1.3. For each prime level N � 41 and each composite N � 28, and for each 
nebentype character η taking values in the proxy field F , the tables in Appendix A.1 give 
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the dimension of H5(Γ0(N), Fη). When there is no table for a pair (N, η), this dimension 
is zero.

Moreover, for each Hecke eigenclass z ∈ H5(Γ0(N), Fη), there exists a Galois repre-
sentation ρ : GQ → GL4(F) such that the characteristic polynomial of ρ(Frob�) equals 
the Hecke polynomial of z at � for all primes � appearing in the tables. This Galois 
representation is unique among the candidates considered by the algorithm described in 
Section 4.3. All these Galois representations are given in the tables, and their corre-
sponding Hecke eigenvalues may be deduced from the equality of the characteristic and 
Hecke polynomials.

1.4. We now make some remarks about our results. First of all, the reason we com-
pute H5 and not some other cohomological degree is that H5 is the most easily accessible 
group that supports cuspidal cohomology (see Section 3 for details). Furthermore, this 
group is susceptible to the computation of Hecke operators using the algorithm in [21]. 
Indeed, our previous papers on SL4(Z) [2–4] also investigate H5 exclusively.

Let us say that a representation ρ of GQ is attached to a Hecke eigenclass z if, for 
almost all primes �, the characteristic polynomial of ρ(Frob�) is equal to the Hecke 
polynomial at � (see Definition 2.8 below). If one verifies this equality computationally 
for a finite number of �, then we say that ρ appears to be attached to z. Theorem 1.3
states that for each Hecke eigenclass we compute, we find an apparently attached Galois 
representation that is uniquely determined by our data.

A recent theorem of Scholze [30] (see Theorem 2.9 below) guarantees that for each 
Hecke eigenclass there is a semisimple Galois representation attached to it, which by the 
Chebotarev Density Theorem is unique up to equivalence. It is very likely that the ρ

given in our tables is indeed this representation. It is possible, but highly unlikely, that 
the truly attached Galois representation is a different one that shares the same character-
istic polynomials of Frob� for the �’s we computed. If one could compute enough Hecke 
operators, then using Scholze’s theorem and the method of Faltings–Serre one could 
prove that the apparently attached Galois representations we find are truly attached. 
This has been done computationally in some settings; see for instance [15] for GL2 over 
an imaginary quadratic field and [20] for GL3/Q. In bad cases, such computations can 
require one to evaluate Hecke eigenvalues for � in the thousands (cf. [15, 6.3]); this is 
far beyond current computational abilities for GL4 (cf. 1.5). However, the existence of 
attached Galois representations helps corroborate the correctness of our computations. 
Indeed, it is unlikely that any connection to a Galois representation could be made if 
our computations of the Hecke eigenvalues were randomly erroneous.

Finally, in all the cases we computed, the apparently attached Galois representation 
ρ is reducible. Thus, as explained in Section 5, our data also raise questions about the 
geometry of the boundary BΓ of the Borel–Serre compactification X/Γ of the locally 
symmetric space for Γ. Namely, which classes in H∗(X/Γ, V ) restrict to nonzero classes 
in H∗(BΓ, V ), and why?
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1.5. We now give some indications of how we carried out the computations, and 
make some remarks about our computational limits.

To search for Galois representations attached to Hecke eigenclasses, we use the Galois 
Finder, a computer program described in Section 4. It looks for Galois representations 
of degree four that appear to be attached to the Hecke eigenclasses we compute. This 
Galois Finder is a modification of the one we used in [7].

The Galois representations in this paper are all reducible, with constituents drawn 
from 1-dimensional representations corresponding to Dirichlet characters, 2-dimensional 
representations coming from classical holomorphic modular forms of weights 2, 3, 
and 4, symmetric squares of some of these 2-dimensional Galois representations, and 
3-dimensional representations attached to cuspidal automorphic representations for con-
gruence subgroups of SL3(Z) which are not symmetric square lifts from GL2. The cusp 
forms we encounter are listed in Appendices A.3 and A.4. We remark that in our previ-
ous papers (except for [7]), classical modular forms of weight 3 did not occur, because 
forms of odd weight can only occur for odd characters η if p is odd.

The scope of the levels N and Hecke primes � we consider is limited by computing 
time and space. The level N is limited because the numbers of rows and columns of 
the boundary matrices in our complex grow like O(N3). The �’s in the Hecke operators 
are limited for two reasons. First, the number of single cosets in T (�, k) grows like �3 for 
k = 1, 3 and like �4 for k = 2. Already for a small prime like � = 37, one needs to compute 
over two million Hecke images for each cell in the support of a cycle, which then must 
be fed into the reduction algorithm [21]. Second, to determine the Hecke action, much 
more data must be computed than for cohomology alone. To compute the dimensions 
of cohomology spaces in our setting, one needs to compute Smith normal forms (SNF) 
of large sparse matrices. There are excellent algorithms and implementations for this; 
for example, one can use Linbox [14], and can use the improvements of parallelization 
[13]. However, to compute the Hecke operators, we must compute the change of basis 
matrices that put a given matrix into SNF. These additional matrices are always dense 
in practice, even if the original matrix was sparse, and it is not known how to make this 
computation parallel. If we had been interested only in the dimensions of the cohomology 
spaces and not in the Hecke operators, we could have gone to much higher levels N .

While we worked to improve the speed of our code, we did not aim for the state of 
the art in speed in this project. The programs for this paper were designed for correct-
ness and, to some extent, efficient memory usage, as in [4]. We used Sage [12], which 
conveniently offers many features that we needed (especially modular forms and reduc-
tion mod P in number fields—see Section 3.4). We did not use parallel programming 
techniques, for the reasons above. We present no timing results. While our code could 
reach higher N and � than we report on, we will use the experience provided by these 
computations to work next with coefficient modules of dimension greater than 1.

1.6. We now give a more detailed overview of the contents of the paper. In Section 2
we define the central objects studied in this paper: the congruence subgroup Γ0(N) ⊂
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SL4(Z) and the coefficient modules Fη. We also recall the definitions of the Steinberg 
module and the sharbly complex, which we use to compute H5(Γ0(N), Fη). We give 
the exact definition of the concept of an attached Galois representation, and we quote 
Scholze’s theorem on the existence of attached Galois representations in a form tailored 
to our purposes.

In Section 3 we describe how we calculate the sharbly homology as a Hecke module, 
with reference to our earlier papers for details, and with the modifications needed to 
deal with Fη-coefficients.

In Section 4 we describe our Galois Finder and how it was modified from [7]. Sec-
tion 5 offers interpretation of our results, including heuristics referring to the Borel–Serre 
boundary of the locally symmetric space for congruence subgroups of SL4(Z).

The Appendix contains our computational results, beginning with an explanation of 
the notation.

1.7. Acknowledgments

We thank Darrin Doud, who verified the existence of the Hecke eigenclass for SL3

at level N = 41 that we describe in Section 4.4. We thank David Rohrlich for helpful 
correspondence. We thank the referee for valuable advice and excellent suggestions for 
the organization and style of the paper.

2. The sharbly complex, Hecke operators, and Galois representations

2.1. Let n � 2. Let Qn denote the space of n-dimensional column vectors.

Definition 2.2. The sharbly complex Sh• is the complex of left ZGLn(Q)-modules defined 
as follows. As an abelian group, Shk is generated by symbols [v1, . . . , vn+k], where the vi
are nonzero vectors in Qn, modulo the submodule generated by the following relations:

(i) [vσ(1), . . . , vσ(n+k)] − (−1)σ[v1, . . . , vn+k] for all permutations σ;
(ii) [v1, . . . , vn+k] if v1, . . . , vn+k do not span all of Qn; and
(iii) [v1, . . . , vn+k] − [av1, v2, . . . , vn+k] for all a ∈ Q×.

The element g ∈ GLn(Q) acts on Sh• by g[v1, . . . , vn+k] = [gv1, . . . , gvn+k]. The bound-
ary map ∂k : Shk → Shk−1 is

∂k([v1, . . . , vn+k]) =
n+k∑
i=1

(−1)i[v1, . . . , v̂i, . . . vn+k],

where as usual v̂i means to omit vi.

All these objects depend on n, which we suppress from the notation, since we will 
later work only with n = 4.
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The sharbly complex

· · · → Shi → Shi−1 → · · · → Sh1 → Sh0

is an exact sequence of GLn(Q)-modules. We may define the Steinberg module St as the 
cokernel of ∂1 : Sh1 → Sh0 (cf. [6, Theorem 5]).

Let Γ be a congruence subgroup of SLn(Z).

Definition 2.3. Let M be a left Γ-module. The sharbly homology of Γ with coefficients in 
M is H∗(Γ, Sh• ⊗Z M), where Γ acts diagonally on the tensor product.

If (Γ, S) is a Hecke pair in GLn(Q) and M is a left S-module, the Hecke algebra 
H(Γ, S) acts on the sharbly homology, since S acts (diagonally) on Sh• ⊗Z M and 
because the sharbly homology is the homology of the complex H0(Γ, Sh• ⊗Z M).

The following theorem is proved in [5].

Theorem 2.4. For any Γ ⊂ GLn(Z) and any coefficient module M in which all the torsion 
primes of Γ are invertible, there is a natural isomorphism of Hecke modules

Hi(Γ, Sh• ⊗Z M) → H(n2)−i(Γ,M)

for all i.

2.5. We now define the groups Γ and the Γ-modules used in this paper.
As explained in the Introduction, we use a finite field F = Fpr as a proxy for C. If p > 5

and there is no p-torsion in the Z-cohomology, then the C-Betti numbers will equal the 
dimensions over F of the mod-p cohomology groups. We generally use p with four or five 
decimal digits. Both p and the degree r are chosen to meet certain criteria. We choose p

for a given N so that the exponent of (Z/NZ)× divides p − 1. This makes the group of 
characters (Z/NZ)× → F×

p isomorphic to the group of characters (Z/NZ)× → C×. We 
choose r to ensure that the various Hecke eigenvalues are F -rational (see Section 4).

Definition 2.6. Let Γ0(N) be the subgroup of matrices in SLn(Z) whose bottom row is 
congruent to (0, . . . , 0, ∗) modulo N .

Define SpN to be the subsemigroup of integral matrices in GLn(Q) satisfying the 
same congruence condition as Γ0(N) and having positive determinant relatively prime 
to pN . Let H(pN), the anemic Hecke algebra, be the Z-algebra of double cosets 
Γ0(N)SpNΓ0(N). Then H(pN) is a commutative algebra that acts on the cohomology 
and homology of Γ0(N) with coefficients in any SpN -module. In particular, H(pN) con-
tains all double cosets of the form Γ0(N)D(�, k)Γ0(N), where � is a prime not dividing 
pN , 0 � k � n, and D(�, k) is the diagonal matrix with the first n − k diagonal entries 
equal to 1 and the last k diagonal entries equal to �. These double cosets generate H(pN)



A. Ash et al. / Journal of Algebra 553 (2020) 211–247 217
(cf. [31, Thm. 3.20]). When we consider the double coset generated by D(�, k) as a Hecke 
operator, we call it T (�, k).

Let η : (Z/NZ)× → F× be a character, which we will call the nebentype (even if it is 
trivial).

Definition 2.7. Fη is the SpN -module where a matrix s ∈ SpN acts on F via η(snn), 
where snn is the ∗ in the bottom row congruent to (0, . . . , 0, ∗) mod N .

Definition 2.8. Let V be an F [H(pN)]-module. Suppose that v ∈ V is a simultaneous 
eigenvector for all T (�, k) and that T (�, k)v = a(�, k)v with a(�, k) ∈ F for all prime 
� � pN and 0 � k � n. If

ρ : GQ −→ GLn(F)

is a continuous representation of GQ = Gal(Q/Q) unramified outside pN , and if

n∑
k=0

(−1)k�k(k−1)/2a(�, k)Xk = det(I − ρ(Frob�)X) (1)

for all � � pN , then we say that ρ is attached to v.

Here, Frob� refers to an arithmetic Frobenius element, so that if ε is the cyclotomic 
character, we have ε(Frob�) = �.

The polynomial in (1) is called the Hecke polynomial for v and �.
As mentioned in the introduction, we have the following specialization of a theorem 

of Scholze:

Theorem 2.9. Let N � 1. Let v be a Hecke eigenclass in H5(Γ0(N), Fη). Then there is 
attached to v a continuous Galois representation

ρ : GQ −→ GLn(F).

Echoing Definition 2.8, we say that ρ is apparently attached to v if condition (1)
holds for a finite range of � which we have computed, a range large enough that we are 
confident ρ really is attached to v.

3. Computing homology and the Hecke action

3.1. Recall Definition 2.6 of Γ0(N). It is known that the virtual cohomological di-
mension (vcd) [10, VIII.11] of SL4(Z) is equal to 6. This implies that Hd(Γ0(N), M)
vanishes for d > 6 for any Γ0(N)-module M . Moreover, one knows [28] that the cuspidal 
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cohomology1 can occur only in degrees d = 4, 5, and that the cuspidal parts of H4 and 
H5 are dual to each other and afford the same systems of Hecke eigenvalues.

Thus we focus on degree five. We use an algorithm due to one of us to compute the 
Hecke action [21] on the cohomology of an arithmetic subgroup of GLn in the cohomo-
logical degree one below the vcd; in addition to our prior work on GL4/Q, this algorithm 
has been used to compute with GLn/F for various n and number fields F [18,22,19].

Using Theorem 2.4, we compute the Hecke operators acting on sharbly cycles that 
are supported on Voronoi sharblies. Theorem 13 of [6] guarantees that the packets of 
Hecke eigenvalues we compute do actually occur on eigenclasses in H1(Γ0(N), Sh• ⊗Z

Fη) ∼= H5(Γ, Fη). In the remainder of this section, we define the Voronoi sharblies, recall 
results we need from [5,6], and explain how those results are modified to work with 
Fη-coefficients.

3.2. The sharbly complex is not finitely generated as a ZSLn(Z)-module, which 
makes it difficult to use in practice to compute homology. To get a finite complex to 
compute H1, we use the Voronoi complex. We refer to [6, Section 5] for any unexplained 
notation in what follows.

Let X0
n ⊂ Rn(n+1)/2 be the convex cone of positive-definite real quadratic forms in 

n variables. This has a partial (Satake) compactification (X0
n)∗ obtained by adjoining 

rational boundary components, and the compactification is itself a convex cone. The 
space (X0

n)∗ can be partitioned into cones σ = σ(x1, . . . , xm), called Voronoi cones, where 
the xi are contained in certain subsets of nonzero vectors from Zn. (We write elements 
of Zn as column vectors, as we did in Section 2 for Qn.) The cones are built as follows. 
Each nonzero xi ∈ Zn determines a rank-one quadratic form q(xi) = xix

t
i ∈ (X0

n)∗. Let 
Π be the closed convex hull of the points {q(x) | x ∈ Zn, x �= 0}. Then each of the proper 
faces of Π is a polytope, and the σ are the cones on these polytopes. The indexing sets 
are constructed in the obvious way: if σ is the cone on F ⊂ Π, and F has distinct vertices 
q(x1), . . . , q(xm), then the indexing set is {±x1, . . . , ±xm}. We let Σ denote the set of 
all Voronoi cones.

3.3. Let X∗
n be the quotient of (X0

n)∗ by homotheties. The images of the Voronoi 
cones are cells in X∗

n. Let ZV• be the oriented chain complex on these cells, graded 
by dimension. Let Z∂V• be the subcomplex generated by those cells that do not meet 
the interior of X∗

n. The Voronoi complex is then defined to be V• = ZV•/Z∂V•. For 
our purposes, it is convenient to reindex V• by introducing the complex W•, where 
Wk = Vn+k−1. The results of [5,6] show that, if n � 4, both W• and Sh• give resolutions 
of the Steinberg module. In particular, let Γ = Γ0(N). If M is a ZΓ-module such that 
the order of all torsion elements in Γ is invertible, then H∗(Γ, W•⊗ZM) ∼= H∗(Γ, Sh•⊗Z

1 In other words, the cohomology corresponding to cuspidal automorphic forms; see [26] for a discussion 
of the connection between cohomology of arithmetic groups and automorphic forms.



A. Ash et al. / Journal of Algebra 553 (2020) 211–247 219
M), and furthermore by Borel–Serre duality these are isomorphic (after reindexing) to 
H∗(Γ, M).

These two complexes can be related as follows when n = 4. Every Voronoi cell in X∗
4

of dimension � 5 is a simplex. Thus for 0 � k � 2, we can define a map of ZSL4(Z)-
modules

θk : Wk −→ Shk

that takes the Voronoi cell σ(v1, . . . , vk+4) to θk((v1, . . . , vk+4)) := [v1, . . . , vk+4]. This al-
lows us to realize Voronoi cycles in these degrees in the sharbly complex. The image of θk
is the set of Voronoi sharblies in degree k. Then H1(Γ, W• ⊗Z M) ∼= H1(Γ, Sh• ⊗Z M)
by [6, Corollary 12].

3.4. We now explain concretely how we compute H1(Γ, W•⊗Z Fη). We have a body 
of code in Sage [12] for these computations. The code supports G-modules M , that is, 
representations of G. Here G is a finite group, or a matrix group like Γ0(N) or SpN . 
The module M has finite dimension over its base ring. The base ring is F , Q, or Z in 
this project, though it could be more general. Morphisms of G-modules are supported, 
as are kernel, cokernel, image, direct sum, and tensor products of G-modules. When H

is a subgroup of G of finite index, we support ResGH , IndG
H , and CoindG

H of G-modules, 
functorially.

The program takes as input the values of N , p, and the nebentype η. (The extension 
from Fp to Fpr comes later, in the Galois Finder.) The nebentype is a mod p Dirich-
let character (Z/NZ)× → F×

p . Sage makes it automatic to enumerate the Dirichlet 
characters.

The complex W• has only finitely many classes of Voronoi cells modulo SLn(Z) [34]. 
To compute H1 we only need W0, W1, and W2, so our code truncates away the rest of 
W• for efficiency.

For each class of cells modulo SLn(Z), the code maintains a standard representative 
cell σ as listed in [27]. The stabilizer Gσ of σ in SLn(Z) acts on σ with orientation 
character Zσ. The code stores Gσ and Zσ.

Fix right coset representatives r, r′, . . . for Γ0(N)\SLn(Z) once and for all. Since 
Γ0(N) has finite index in SLn(Z), the complex W• has only finitely many classes of 
cells modulo Γ0(N). For each class modulo Γ0(N), we may choose a representative cell 
σ1 = rσ, where σ is one of the representative cells modulo SLn(Z), and r is one of 
the standard coset representatives. An awkward fact is that, for two different coset 
representatives r, r′, the cells rσ and r′σ may be in the same Γ0(N)-orbit. This occurs 
when r−1r′ is in the stabilizer Gσ ⊂ SLn(Z). For computation, we must choose r or r′, 
not both; say we choose r. A class CellOrbitStructure in our code handles these details. 
σ1 itself may have a non-trivial stabilizer Gσ1 ⊂ Γ0(N); the CellOrbitStructure takes 
care of these stabilizers Gσ1 and how their orientation characters Zσ1 interact with the 
orientation characters Zσ of Gσ.
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Equation (2) below presents a problem we need to solve repeatedly during the homol-
ogy calculation. Suppose we are given a cell τ ∈ W•, with τ = gσ for σ a standard cell 
and for g ∈ SLn(Z). Then g = γ1r

′ for some coset representative r′ and γ1 ∈ Γ0(N). 
Since we chose r instead of r′, we have γr′ = rgσ for some stabilizer element gσ ∈ Gσ

and some γ ∈ Γ0(N). Thus

g = (γ1γ
−1)rgσ. (2)

The problem is, given g and σ, to solve for γ1, γ, r, gσ, and to compute the orientation 
characters. The CellOrbitStructure has a method decompose that solves (2).

Let σ1 run through all the representatives rσ of the classes of cells modulo Γ0(N). 
During the homology computation, we need, for each σ1, to restrict the nebentype η to 
the finite stabilizer group Gσ1 , and to tensor the restriction with the orientation character 
of Gσ1 . This tensor product ησ1 : Gσ1 → F×

p is called the local representation for σ1. The
CellOrbitStructure keeps track of the local representations.

3.5. As we explain in [5,6], H•(Γ, Wk ⊗Z Fη) is computed by a spectral sequence. 
The columns are indexed by k, and the j-th row is the direct sum of the homology 
groups Hj(Gσ1 , ησ1). Since the torsion in Γ0(N) has order prime to p for our large proxy 
primes p, all the homology groups Hj vanish for j > 0. The E1 term has only one row, 
whose entry in the k-th box is the module of co-invariants

E1
k,0 = H0(Γ,Wk ⊗Z Fη) = Wk ⊗ZΓ Fη.

As σ1 runs through representatives of the cells modulo Γ0(N), the co-invariant module 
Wk ⊗ZΓ Fη breaks up as a direct sum:

E1
k,0 =

⊕
σ1 of degree k

H0(Gσ1 , ησ1). (3)

Each summand H0(Gσ1 , ησ1) is the module of co-invariants for the local representation 
ησ1 . It is isomorphic to F if ησ1 is a trivial representation, and is zero otherwise.

The E2
k,0 of the spectral sequence is isomorphic to Hk(W• ⊗ZΓ Fη). This is computed 

using the differential ∂̄k that is the tensor product with η of the differential ∂k on sharblies 
in Section 2.2. ∂̄k is constructed in Sage as a sparse matrix of size dimE1

k,0×dimE1
k−1,0. 

As before, we are computing H1, so we only compute ∂̄2 and ∂̄1.
We illustrate the sizes of these matrices with the example of N = 41, p = 21881, 

and trivial nebentype. Here ∂̄2 is 24590 × 7100, and ∂̄1 is 7100 × 746. (This is small 
compared to [4], where, for N = 211 and trivial nebentype, ∂̄2 was about four million 
by one million. We did not compute the Hecke operators in [4].)

We write the matrices ∂̄2 and ∂̄1 to disk, partly as insurance in case of a computer 
crash during a long run. The next step is to choose a basis {xi} of the homology, 
ker(∂̄1)/ im(∂̄2). We choose the basis using Sheafhom, a package written by one of us 



A. Ash et al. / Journal of Algebra 553 (2020) 211–247 221
(MM) in Common Lisp and described in [4]. Sheafhom performs homology calculations 
by row- and column-reducing large sparse matrices while saving the change-of-basis ma-
trices to disk. It works with base rings Fp as well as Z. If y is a cycle in the homology, 
Sheafhom can express it as a linear combination of the homology basis, y =

∑
cixi, 

using only a small amount of RAM.

3.6. To compute the Hecke operators, we use the basis {xi} we found for the 
homology group H1(W• ⊗ZΓ Fη). We identify the xi with elements yi = θ1,∗(xi) ∈
H1(Sh• ⊗ZΓ Fη). Let T be a Hecke operator. Using the algorithm mentioned above, we 
compute each Hecke translate Tyi and then find a sharbly cycle zi such that zi = Tyi
in H1(Sh• ⊗ZΓ Fη) and such that zi is in the image of the map θ1,∗. The inverse images 
θ−1
1,∗(zi) can be written as linear combinations 

∑
cixi as in the previous paragraph. This 

gives a matrix representing the action of T . From this matrix we can find eigenclasses 
and eigenvalues.

4. Finding attached Galois representations

4.1. By now we have set n = 4. We describe how we find Galois representations 
that are apparently attached to Hecke eigenclasses in the homology. Our Galois Finder 
program is part of our Sage code.

As in Section 3.6, we compute the action on V = H1(Γ0(N), W• ⊗Z Fη) of the Hecke 
operators T (�, k) for k = 1, 2, 3 and for � ranging through a set

L =
{
�
∣∣ � prime, � � �0, � � pN

}
.

Here the upper bound �0 depends on the level N and the nebentype η, and in this 
paper 5 � �0 � 17. Two additional Hecke operators contribute to the Hecke polynomial, 
namely T (�, 0) and T (�, 4). Both act as scalars, the former with eigenvalue 1 and the 
latter with eigenvalue η(�). We remark that to check our work, we always verify that our 
Hecke operators pairwise commute. We also note that the Hecke operators we compute 
are semisimple.

One new idea in this paper is that, for the larger �’s, we sometimes compute T (�, 1)
but not T (�, 2) or T (�, 3). This lets us avoid the O(�4) part of the computation, while 
still allowing us to eliminate some candidate Galois representations.

As mentioned in the introduction, in the range of our computations all the Galois 
representations that occur are reducible. (For larger N , irreducible Galois representations 
would occur.) In this paper it was sufficient for our Galois Finder to work with possible 
constituents of dimensions 1, 2, and 3:

(1) 1-dimensional constituents come from Dirichlet characters mod N taking values in 
the cyclotomic field K0 generated by ζN a primitive N -th root of unity.
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(2) 2-dimensional constituents come from newforms of level dividing N and weights 2, 
3, or 4.

(3) 3-dimensional constituents come either from symmetric squares of 2-dimensional 
representations or from GL3-homology classes which are not symmetric squares.

Consider the fields of definition K1, K2, . . . of a list of newforms, together with K0. 
The Galois Finder will be computing, not in Fp, but in the residue class fields for the 
primes P over p in the different Ki. We define r to be the smallest integer so that all 
these residue class fields embed in F = Fpr . We choose p to make r as small as possible, 
given the constraint p < 231 (which is helpful for speed). The field F is recorded at the 
top of each table.

Let E denote a simultaneous eigenspace of our computed Hecke operators on V =
H1(Γ0(N), W• ⊗Z Fη) ∼= H5(Γ0(N), Fη), where F = Fpr . We define two notions of 
multiplicity for E, namely Hecke and Galois multiplicity.

Definition 4.2. The Hecke multiplicity of E equals dimF E.

We will define the Galois multiplicity of E below in Definition 4.7.
To a simultaneous eigenspace E we attach a family of polynomials. The polynomial 

system F(E) is the mapping that sends � ∈ L to the Hecke polynomial with eigenvalues 
a(�, k) defined in (1), or to a partial Hecke polynomial which we now explain. For small �, 
we can compute the Hecke eigenvalues a(�, k) for all k = 0, . . . , 4, so we know the whole 
Hecke polynomial (1); call this a full Hecke polynomial. For larger �, we compute only 
T (�, 1), and we only know that the Hecke polynomial is 1 − a(�, 1)X + O(X2), where 
O(X2) means some undetermined linear combination of X2, X3, and X4. We call the 
latter a partial Hecke polynomial. A partial Hecke polynomial is implemented in Sage

as an element of the quotient ring F [X]/(X2). As a whole, F(E) contains one or more 
full polynomials, all of degree 4, and zero or more partial polynomials, whose degree is 
undefined. We say degF(E) = 4.

4.3. The Galois finder uses known Galois representations ρ unramified outside pN , 
taking values in GLm(F) for m = 1 or 2. These come from Dirichlet characters and 
newforms as described in Section 4.5 below. We also use the symmetric squares of the ρ

coming from newforms; these take values in GLm(F) for m = 3. The characteristic 
polynomial of Frobenius for each of these representations is known and is of degree m

for each � � pN . Define the polynomial system F(ρ) to be the mapping that sends � ∈ L

to the characteristic polynomial of Frobenius for ρ at �, and define degF(ρ) = m.
Define F(ρ1 ⊕ · · · ⊕ ρt) =

∏t
i=1 F(ρi), a product of polynomial systems. We also 

define quotients, but we must be careful about the partial Hecke polynomials. Let F1

and F2 be two polynomial systems with the same L. Say that F1 divides F2 if, for 
each � ∈ L, the polynomial at � for F1 divides the polynomial at � for F2. Implicit in 
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this definition is that degF1 � degF2. When one polynomial system divides another, 
define the quotient system in the obvious way. The degree of the quotient system is 
degF2−degF1. For some � we will be dividing a partial Hecke polynomial by a full Hecke 
polynomial, but we never use a partial polynomial as a divisor. Dividing a partial Hecke 
polynomial f1(x) (mod X2) by a full Hecke polynomial f2(x) is well defined because 
f2(x) always has constant term 1, hence f2(x) projects via F [X] → F [X]/(X2) to a unit 
of F [X]/(X2). We stop dividing by F1 as soon as the full polynomials of the quotient 
reach degree 0.

For a given E, we make a list R of all the ρ for which F(ρ) divides F(E). Then 
we run through all possible finite subsets of R, say {ρ1, . . . , ρt}, and we make a list 
R′ of all the direct sums ρ1 ⊕ · · · ⊕ ρt for which F(ρ1 ⊕ · · · ⊕ ρt) = F(E). As stated in 
Theorem 1.3, after computing enough Hecke operators, we obtain a unique representation 
(up to isomorphism) in R′.

4.4. There are a few exceptions to the statement that R′ has exactly one element. 
In two cases in the tables, N = 24, η = χ24,0χ24,1χ24,2, σ24,2c, and N = 28, η =
χ28,0χ

3
28,1, σ28,2c, we find that a representation with a symmetric square in it coincides 

with a representation without a symmetric square. In these cases, the three-dimensional 
representation is the symmetric square of a dihedral Galois representation, and therefore 
is reducible. So although R′ has two elements in these cases, they are isomorphic.

The other exceptions occurred at level N = 41 and the nebentype η = χ10
41 whose 

image has order 4. Here dimV = 8, splitting into eight E’s of dimension 1, and R′

was empty for two out of the eight E. Darrin Doud, upon our request, using computer 
programs he developed, found an autochthonous2 form for GL3 at level 41. Specifically, 
he found a three-dimensional Galois representation δ attached to a cohomology class z
for a congruence subgroup of SL3(Z) and with coefficients in Fη, such that in the two 
cases where R′ is empty, the attached Galois representations proved to be 1 ⊕ εδ and 
ε3 ⊕ δ, respectively. The eigenvalues of the class δ are given in Section A.4.

4.5. We now describe in detail the list of Galois representations ρ which our Galois 
Finder was programmed to use.

First are the Dirichlet characters χ with values in F , which we identify with one-
dimensional Galois representations as usual. We take all the characters of conductor 
N1 for all N1 | N . Sage’s class DirichletGroup enumerates the χ automatically. The 
characteristic polynomial of Frobenius at � for χ is 1 + χ(�)X, for all � � pN .

Another one-dimensional character is the cyclotomic character ε. We look at εw for 
w = 0, 1, 2, 3, because these are the powers predicted by the generalizations of Serre’s 
conjecture for mod p Galois representations [8,1]. The list L1 of one-dimensional char-
acters is now χ ⊗ εw, for all the χ just described and for w = 0, 1, 2, 3.

2 Autochthonous means this form appears on GL3 and is not a functorial lift from a smaller rank group.
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Next are the two-dimensional Galois representations ρ coming from newforms for 
certain congruence subgroups of SL2(Z), reduced modulo a prime above p.

Let N1 | N and ζN1 be a primitive N1-th root of unity. Let ψ be a Dirichlet character 
of conductor N1 taking values in C×. Let f be a newform of weight 2, 3, or 4 for Γ1(N1)
with nebentype character ψ. The Galois group Gal(Q(ζN1)/Q) acts on the ψ’s by acting 
on their values; we use only one ψ from each Galois orbit, since the others give Galois-
conjugate newforms.

The coefficients of the q-expansion of f generate a number field Kf , with ring of 
integers OKf

. Let P be a prime of Kf over p. We choose F so that there is an embedding 
αP : OKf

/P → F . Then (f, P) gives rise to a Galois representation ρ into GL2(F), by 
reduction mod P composed with αP. For any � � pN , the characteristic polynomial 
of Frobenius is 1 − αP(a�)X + X2, where a� is the �-th coefficient in the q-expansion 
of f . If we chose a different prime P, we would get a Galois-conjugate representation. 
Computing αP is a large problem in its own right; Sage provides most of the solution.

We make a list L0
2 containing the representation ρ for (f, P), for all N1 | N and all 

newforms f of weight 2, 3, or 4 for Γ1(N1) and all nebentypes ψ. Sage’s class CuspForms, 
with its method newforms, makes this automatic.

We take all the ρ in L0
2, and tensor them in all possible ways with the one-dimensional 

representations from the list L1 of Dirichlet characters and cyclotomic character powers. 
This list of tensor products is our final list L2 of two-dimensional Galois representations.

Our list of three-dimensional Galois representations is the list of symmetric squares 
of ρ ∈ L0

2, tensored in all possible ways with L1.
We define the Hodge–Tate (HT) numbers for ρ as follows. For an element χ ⊗εw ∈ L1, 

there is a list of one number, [w]. If ρ is a representation coming from a newform of 
weight k, the list of HT numbers is [0, k−1]. For χ ⊗εw⊗ρ, the list is [w, w+k−1]. The 
three-dimensional representation δ has HT numbers [0, 1, 2], and, when δ is tensored by 
εw, these numbers each have w added to them. For direct sums of representations, the 
lists are concatenated. For each four-dimensional Galois representation we find to fit our 
data, we always observe that the list is [0, 1, 2, 3] after sorting. This is compatible with 
the Serre-type conjectures and gives us a check on our computations.

Another check on our computations comes from considering the relationship between 
the nebentype character and the determinant of the attached representation. For exam-
ple, consider a Galois representation ρ = εa ⊕ χεb ⊕ σ apparently attached to a Hecke 
eigenclass, where σ is attached to a cusp form of weight k with nebentype character ψ. 
Then the determinant of ρ is εa+b+k−1χψ and by the definition of attachment this must 
equal ε6η.

4.6. The Galois groups Gal(Q(ζN )/Q) acts on the lists L1 and L0
2.

Definition 4.7. If a cohomology group contains Hecke eigenspaces E(1), . . . , E(g) which 
are attached to Galois representations ρ(1), . . . , ρ(g), where ρ(1), . . . , ρ(g) form an orbit 
under the Galois action, the Galois multiplicity of each of E(1), . . . , E(g) equals g.
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In the tables in the Appendix, we only list one of the E(i), and we indicate the Galois 
multiplicity in the first column.

5. Observed regularities in the data

5.1. This section details the regularities we observed in the tables in the Appendix. 
When we have a reasonable heuristic explanation of a regularity, we give it. Converting 
any of these heuristics to theorems would require a finer analysis of the Borel–Serre 
boundary than is presently available and a greater expertise with Eisenstein series than 
we possess.

In this section, we let Γ0(a, b) denote the subgroup of GLa(Z) where the bottom 
row is congruent to (0, . . . , 0, ∗) modulo b. Thus Γ0(N) = Γ0(4, N) ∩ SL4(Z) in our 
notation. Recall that the nebentype character is denoted η and the cyclotomic character 
is denoted ε.

We shall refer to a Hecke eigenclass in H5(Γ0(N), Fη) by the letter z and to its attached 
Galois representation by ρ.

5.2. The determinant of ρ

We always observe that the determinant of ρ equals ε6η. That this should be true is 
a tautology from the definition of attachment.

5.3. The parity of ρ

The parity of ρ is always odd. In other words, the eigenvalues of ρ(c) are 
+1, −1, +1, −1, where c denotes complex conjugation. That this must be the case follows 
from a theorem of Caraiani and LeHung [11].

5.4. Powers of ε

Another observed pattern has to do with the powers of the cyclotomic character 
that appear in ρ. We defined the HT (Hodge–Tate) numbers above in Section 4.5. A 
folklore conjecture in the theory of arithmetic cohomology implies that for p sufficiently 
large a Galois representation attached to a Hecke eigenclass in H5(Γ, Fη) should have 
HT numbers 0, 1, 2, 3. This is observed in all of our data and as noted in Section 4 is 
compatible with the Serre-type conjectures.

5.5. Hecke multiplicity 3

We defined Hecke multiplicity in Section 4.1. In every case of our data, the Hecke 
multiplicity of the eigenspace for a system of Hecke eigenvalues equals either 1 or 3. (As 
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mentioned in Section 4, the Hecke operators we computed are always observed to be 
semisimple.)

Hecke multiplicity greater than 1 occurs in our data only when N is composite and 
the components of ρ have conductors strictly dividing N . We don’t have a good expla-
nation for this, except it seems to be related to the existence of old forms when N is 
composite.

5.6. There are a number of patterns involving the weights, nebentypes and levels 
of the newforms and Eisenstein series whose attached Galois representations appear as 
constituents of our observed Galois representations.

Since all observed Galois representations in this paper are reducible, it is reason-
able to assume that the corresponding cohomology classes “come from” the Borel–Serre 
boundary BΓ of the locally symmetric space for Γ, in the following sense.

Let Γ = Γ0(N). Let BΓ be the Borel–Serre boundary of the locally symmetric space 
XΓ = Γ\SL4(R)/SO(4). Then the Borel–Serre boundary BΓ is the union of faces F (P ), 
where P runs over a set of representatives of Γ-orbits of parabolic subgroups P of 
GL4(Q).

When comparing Hecke eigenclasses on BΓ and on XΓ, it is simpler to discuss homol-
ogy rather than cohomology. The systems of Hecke eigenvalues and hence the attached 
Galois representations are the same for homology and cohomology.

The injection BΓ → XΓ∪BΓ induces a map on homology, for any coefficient system M :

H5(BΓ,M) −→ H5(XΓ ∪BΓ,M) = H5(Γ,M).

The boundary homology is the image of this map. In this paper, every Hecke eigenclass 
we computed has Hecke eigenvalues compatible with what would be expected of a Hecke 
eigenclass in H5(BΓ, Fη).

For each parabolic subgroup P , let P = LU , where L is a Levi component of P and 
U is the unipotent radical of P . Let π : P → P/U be the projection. The image of π
is isomorphic to L and is a product of GLni

’s, where 
∑

ni = 4. If the block sizes are 
(n1, . . . , nk+2), we call this tuple the “type” of P . The nonnegative integer k equals the 
codimension of F (P ) in BΓ.

Set PΓ = P ∩ Γ, UΓ = U ∩ Γ, and LΓ = π(PΓ). Let XL denote the symmetric space 
of L(R). The face F (P ) is a fibration with base XL/LΓ and fiber U(R)/UΓ. The Serre 
spectral sequence of this fibration degenerates at E2 (at least if p is sufficiently large). 
Therefore, if we put a homology class on each block of XL, whose degrees i1, . . . , ik+2

add to i, with coefficients in Hj(U(R)/UΓ, M), we obtain a class in Hi+j(F (P ), M).
This class may or may not give rise to a nonzero class Hi+j+k(BΓ, M), depending 

on how it behaves in the Leray spectral sequence for the covering of BΓ by its faces. 
(The complete computation of this Leray spectral sequence has not been performed for 
GLn/Q except when n ≤ 3; it is a difficult problem.) Finally, if there is a nonzero 
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Fig. 1. Schematics of homology classes on faces of the Borel–Serre boundary.

class in Hi+j+k(BΓ, M) obtained this way, it may or may not map to a nonzero class in 
H5(Γ, M), another difficult problem that has not been studied in general.

All of this behaves Hecke-equivariantly. It gives a heuristic for predicting what kind of 
constituents will occur in the reducible Galois representation attached to a cohomology 
class that comes from BΓ, with components corresponding to the homology classes on 
the blocks of L. In our observations, we always have i + j + k = 5 because we computed 
H5(Γ, Fη).

For each type of boundary homology class we can make a schematic picture of the pa-
rameters, as in Fig. 1. Each diagram represents a standard parabolic subgroup conjugate 
to a P that gives rise to some kind of boundary homology.

A general remark on Dirichlet and nebentype characters: different Γ-orbits of the 
same type of parabolic subgroups may result in different levels of the components of 
LΓ. Therefore if N is composite, various characters can occur in the constituent Galois 
representations, but they will all have conductor dividing N .

A block of size 1 may support a homology class with attached Galois representation 
equal to a Dirichlet character times a power of the cyclotomic character. These Dirichlet 
characters will all have conductor dividing N .

For a 2 × 2 block L′ of L, we use the Eichler–Shimura theorem to interpret the 
homology of a congruence subgroup Γ0(2, N) of L′ with coefficients in Symg(F2) ⊗ χ in 
terms of classical modular forms of weight g+2 and nebentype χ. Therefore in this case, 
the corresponding component of ρ will be attached to such a modular form. Thus a block 
of size 2 may support a holomorphic cuspform with level dividing N , or an Eisenstein 
series corresponding to the sum of two characters each with conductors dividing N .

A block L′ of size 3 may support a homology class of a congruence subgroup of L′

with an irreducible 3-dimensional Galois representation attached.
We now use this heuristic method to motivate the various kinds of Galois represen-

tations that occur in our data in the tables in the Appendix. When using the method, 
remember that the HT numbers must always be 0, 1, 2, 3.

5.7. GL3 classes

In this case (Fig. 1(a)), P is a (1, 3)-parabolic subgroup; i1 = 0, i2 = 2, j = 3. Then 
H3(UΓ, Fη) is a one-dimensional L′-module. We place a cuspidal homology class w from 
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H2(Γ0(3, N), Fη) on the second block. This class w can be the symmetric square of a 
classical cusp form, or a class that is not a symmetric square. The latter occurs in our 
data only at level 41.

When w is a symmetric square of the cusp form s, the level of s equals N , the 
nebentype of s equals the nebentype η, and η is the quadratic character. This nebentype 
is the only one allowing the symmetric square of a cusp form of prime level N to have 
the same level N as the cusp form.

Writing the symmetric square of the Galois representation attached to w as τ , it 
always appears twice in our data, as ρ = ε0 ⊕ ετ and ρ = ε3 ⊕ τ . This is because there 
will be two relevant Γ-orbits of P , corresponding to block sizes (1, 3) and (3, 1) down the 
diagonal.

5.8. Holomorphic cusp forms of weight 2

In this case (Fig. 1(b)), P is a (2, 2)-parabolic subgroup; i1 = 0, i2 = 1, j = 4. Then 
H4(UΓ, Fη) is a one-dimensional L′-module. We place a cusp form v of weight 2 on one 
of the two blocks. The other block supports an H0, so there is no choice for it—we just 
put 1 on it. We observe that v always has level N .

In our data, σ always appears twice: once in ε0⊕ε1⊕ε2χσ and once in ε2⊕ε3⊕ε0χσ, 
for some character χ. This is because there will be two relevant Γ-orbits of P , both 
corresponding to block sizes (2, 2); but in the second orbit, v gets placed on the first 
block instead of the second block. The character χ is the same in both expressions. We 
can and do always choose the ideal P so that χ = 1.

Sometimes these Galois representations appear with multiplicity 1, and sometimes 
with higher multiplicity. We do not have a heuristic explanation for this variability.

5.9. Holomorphic cusp forms of weight 3

Cusp forms of odd weight can appear only if p = 2, as in [7], or if odd nebentypes are 
available, as in the current paper.

In this case (Fig. 1(c)), P is a (2, 2)-parabolic subgroup; i1 = 1, i2 = 1, j = 3. Note 
that H3(UΓ, Fη) restricted to either of the 2 × 2 blocks is a sum of two copies of the 
standard 2-dimensional GL2-representation. We place a cusp form v of weight 3 on one 
of the two blocks and an Eisenstein series u on the other block.

Let σ be the Galois representation attached to v. We observe that v always has level 
strictly dividing N and always appears in our data four times as follows, each with the 
same character ψ:

• ρ = ψε0 ⊕ ε2 ⊕ εσ

• ρ = ε0 ⊕ ψε2 ⊕ εσ

• ρ = ψε1 ⊕ ε3 ⊕ σ
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• ρ = ε1 ⊕ ψε3 ⊕ σ

We have three examples of this phenomenon, at levels N = 24, 27 and 28. It doesn’t 
always occur even when N is composite and there is an appropriate v available. For 
example, there is a weight 3 cusp form of level 7 that contributes to N = 28 but it does 
not contribute when N = 14. We have no conjecture to offer as to when a weight 3 
cusp form appears for a given (N, η), but it may be related to the special value of some 
L-function.

5.10. Holomorphic cusp forms of weight 4

In this case (Fig. 1(d)), P is a (1, 2, 1)-parabolic subgroup; i1 = 0, i2 = 1, i3 = 0, j = 3. 
Note that H3(UΓ, Fη) contains an L′-submodule isomorphic to Sym2 of the standard 
representation. We place a cusp form v of weight 4 on the second block.

Let σ be the Galois representation attached to v. We observe that ρ = ε1 ⊕ ε2 ⊕ σ

occurs only once in our data, if at all. We observe that in our data, it occurs if and only 
if the special value L(v, 1/2) of the L-function is 0. For the levels we have computed, 
this occurs only when η = 1. The level of v always divides N but need not equal N . This 
type of homology class on the boundary consists of ghost classes.

5.11. Sums of 4 characters

See Fig. 1(e). Here, as in (5.8), P is a (2, 2)-parabolic subgroup; i1 = 0, i2 = 1, j = 4. 
We place an Eisenstein series e on one of the two blocks. The two characters ψ and χ
associated with e have conductors dividing N and the level e divides N .

If η factors nontrivially as η = ψχ then either all three of the following or none of the 
following occur:

• ρ = ψε0 ⊕ χε1 ⊕ ε2 ⊕ ε3

• ρ = ψε0 ⊕ ε1 ⊕ ε2 ⊕ χε3

• ρ = ε0 ⊕ ε1 ⊕ ψε2 ⊕ χε3

For example, when N = 9 all three forms occur, and when N = 13 none of the three 
occur. The powers of ε which are not multiplied by a nontrivial Dirichlet character are 
always consecutive. We do not have an explanation as to why just these patterns occur, 
nor for which N they should occur, nor for why the unadorned powers of ε are always 
consecutive. Answers to these questions, and to the similar questions raised above, would 
require a very fine analysis of the boundary homology as Hecke module, which is not 
available to us.

Note that ψ and χ can trade places to get another triple, giving 6 such ρ’s in total, 
for example, when n = 15.
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Factoring of η seems to be important here. For example, when η = 1 we never get 
ρ = ε0 ⊕ ε1 ⊕ ε2 ⊕ ε3. (It is known that for GLn with n larger than 4, the sum of 
consecutive powers of ε may be attached to a homology class, for example in the case of 
a Borel stable class [9, (4.2)]. But we do not know if this can happen for n = 4.)

Appendix A

A.1. The tables in this appendix present the results of our computations.
The topmost box in each table gives the level N , the nebentype η, and the field Fpr

that was our proxy for C. We write GF (pr) instead of Fpr for readability. We only include 
one representative for each Galois orbit of nebentype characters.

Next we list the Hecke operators we computed. T� means we computed T�,1, T�,2, and 
T�,3. Listing T�,1 means we computed only that part of T�.

After the T ’s, in the right margin, we give Dim, the total dimension of H5(Γ, Fη).
The succeeding rows in each table give the Galois multiplicity (Definition 4.7), the 

Hecke multiplicity (Definition 4.2), and the Galois representation itself that is found 
by the Galois Finder to be apparently attached to the given Hecke eigenclass in the 
cohomology H5(Γ0(N), Fη).

The characters χN or χN,i are a basis for the mod p Dirichlet characters (Z/NZ)× →
Fp. They are listed in a separate table in Appendix A.2. The cyclotomic character is 
denoted ε.

The σN,k are classical cuspidal homomorphic newforms of level N and weight k. They 
are listed in a separate table in Appendix A.3. We use the same symbol σN,k to stand 
for the two-dimensional Galois representation attached to the cusp form of that name. 
When we have more than one cusp form for the same N and k, we give them names like 
σ17,2a and σ17,2b. The symmetric square of σ is denoted Sym2(σ).

The GL3 representation δ corresponds to the eigenclass described in Section 4.4; the 
Hecke eigenvalues of δ are shown in Section A.4.

Level N = 9. Nebentype η = 1. Field F = GF (12379).
Computed T2, T5, T7. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ χ3

9ε
2 ⊕ χ3

9ε
3

1 1 χ3
9ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ3
9ε

3

1 1 χ3
9ε

0 ⊕ χ3
9ε

1 ⊕ ε2 ⊕ ε3

Level N = 11. Nebentype η = 1. Field F = GF (40012).
Computed T2, T3, T5, T7. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ11,2

1 1 ε2 ⊕ ε3 ⊕ ε0σ
11,2
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Level N = 12. Nebentype η = χ12,0χ12,1. Field F = GF (54132).
Computed T5, T7. Dim 6.
1 1 ε0 ⊕ ε1 ⊕ χ12,0ε

2 ⊕ χ12,1ε
3

1 1 ε0 ⊕ ε1 ⊕ χ12,1ε
2 ⊕ χ12,0ε

3

1 1 χ12,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ12,1ε

3

1 1 χ12,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ12,0ε

3

1 1 χ12,0ε
0 ⊕ χ12,1ε

1 ⊕ ε2 ⊕ ε3

1 1 χ12,1ε
0 ⊕ χ12,0ε

1 ⊕ ε2 ⊕ ε3

Level N = 13. Nebentype η = 1. Field F = GF (12037).
Computed T2, T3, T5, T7. Dim 1.
1 1 ε1 ⊕ ε2 ⊕ ε0σ13,4

Level N = 13. Nebentype η = χ2
13. Field F = GF (12037).

Computed T2, T3, T5, T7. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ13,2

1 1 ε2 ⊕ ε3 ⊕ ε0σ13,2

Level N = 14. Nebentype η = 1. Field F = GF (123792).
Computed T3, T5. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ14,2

1 1 ε2 ⊕ ε3 ⊕ ε0σ14,2

Level N = 15. Nebentype η = 1. Field F = GF (120372).
Computed T2, T7, T11,1. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ15,2

1 1 ε2 ⊕ ε3 ⊕ ε0σ15,2

Level N = 15. Nebentype η = χ15,0χ15,1. Field F = GF (120372).
Computed T2, T7. Dim 6.
1 1 ε0 ⊕ ε1 ⊕ χ15,0ε

2 ⊕ χ15,1ε
3

1 1 ε0 ⊕ ε1 ⊕ χ15,1ε
2 ⊕ χ15,0ε

3

1 1 χ15,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ15,1ε

3

1 1 χ15,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ15,0ε

3

1 1 χ15,0ε
0 ⊕ χ15,1ε

1 ⊕ ε2 ⊕ ε3

1 1 χ ε0 ⊕ χ ε1 ⊕ ε2 ⊕ ε3

15,1 15,0
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Level N = 16. Nebentype η = 1. Field F = GF (40016).
Computed T3, T5, T7. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ χ16,0ε

2 ⊕ χ16,0ε
3

1 1 χ16,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ16,0ε

3

1 1 χ16,0ε
0 ⊕ χ16,0ε

1 ⊕ ε2 ⊕ ε3

Level N = 16. Nebentype η = χ16,1. Field F = GF (40016).
Computed T3, T5, T7. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ16,2

1 1 ε2 ⊕ ε3 ⊕ ε0σ16,2

Level N = 17. Nebentype η = 1. Field F = GF (160012).
Computed T2, T3, T5, T7. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ ε2σ17,2a

1 1 ε2 ⊕ ε3 ⊕ ε0σ17,2a

1 1 ε1 ⊕ ε2 ⊕ ε0σ17,4

Level N = 17. Nebentype η = χ2
17. Field F = GF (160012).

Computed T2, T3, T5, T7. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ17,2b

1 1 ε2 ⊕ ε3 ⊕ ε0σ17,2b

Level N = 18. Nebentype η = 1. Field F = GF (36372).
Computed T5, T7. Dim 9.
1 3 ε0 ⊕ ε1 ⊕ χ3

18ε
2 ⊕ χ3

18ε
3

1 3 χ3
18ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ3
18ε

3

1 3 χ3
18ε

0 ⊕ χ3
18ε

1 ⊕ ε2 ⊕ ε3

Level N = 18. Nebentype η = χ2
18. Field F = GF (36372).

Computed T5, T7, T11,1. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ18,2

1 1 ε2 ⊕ ε3 ⊕ ε0σ18,2

Level N = 19. Nebentype η = 1. Field F = GF (36376).
Computed T2, T3, T5, T7. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ ε2σ19,2a

1 1 ε2 ⊕ ε3 ⊕ ε0σ19,2a

1 1 ε1 ⊕ ε2 ⊕ ε0σ
19,4
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Level N = 19. Nebentype η = χ2
19. Field F = GF (36376).

Computed T2, T3, T5, T7. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ19,2b

1 1 ε2 ⊕ ε3 ⊕ ε0σ19,2b

Level N = 20. Nebentype η = 1. Field F = GF (1203712).
Computed T3, T7, T11,1, T13,1. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ20,2a

1 1 ε2 ⊕ ε3 ⊕ ε0σ20,2a

Level N = 20. Nebentype η = χ20,0χ20,1. Field F = GF (1203712).
Computed T3, T7, T11,1, T13,1. Dim 8.
1 1 ε0 ⊕ ε1 ⊕ χ20,0ε

2 ⊕ χ20,1ε
3

1 1 ε0 ⊕ ε1 ⊕ χ20,1ε
2 ⊕ χ20,0ε

3

1 1 χ20,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ20,1ε

3

1 1 χ20,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ20,0ε

3

1 1 χ20,0ε
0 ⊕ χ20,1ε

1 ⊕ ε2 ⊕ ε3

1 1 χ20,1ε
0 ⊕ χ20,0ε

1 ⊕ ε2 ⊕ ε3

1 1 ε0 ⊕ ε1 ⊕ ε2σ20,2b

1 1 ε2 ⊕ ε3 ⊕ ε0σ20,2b

Level N = 21. Nebentype η = 1. Field F = GF (120376).
Computed T2, T5. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ ε2σ21,2a

1 1 ε2 ⊕ ε3 ⊕ ε0σ21,2a

1 1 ε1 ⊕ ε2 ⊕ ε0σ21,4

Level N = 21. Nebentype η = χ2
21,1. Field F = GF (120376).

Computed T2, T5. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ21,2b

1 1 ε2 ⊕ ε3 ⊕ ε0σ21,2b
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Level N = 21. Nebentype η = χ21,0χ21,1. Field F = GF (120376).
Computed T2, T5, T11,1, T13,1. Dim 8.
1 1 ε0 ⊕ ε1 ⊕ χ21,0ε

2 ⊕ χ21,1ε
3

1 1 ε0 ⊕ ε1 ⊕ χ21,1ε
2 ⊕ χ21,0ε

3

1 1 χ21,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ21,1ε

3

1 1 χ21,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ21,0ε

3

1 1 χ21,0ε
0 ⊕ χ21,1ε

1 ⊕ ε2 ⊕ ε3

1 1 χ21,1ε
0 ⊕ χ21,0ε

1 ⊕ ε2 ⊕ ε3

1 1 ε0 ⊕ ε1 ⊕ ε2σ21,2c

1 1 ε2 ⊕ ε3 ⊕ ε0σ21,2c

Level N = 21. Nebentype η = χ21,0χ
3
21,1. Field F = GF (120376).

Computed T2, T5. Dim 10.
1 1 ε0 ⊕ ε1 ⊕ χ21,0ε

2 ⊕ χ3
21,1ε

3

1 1 ε0 ⊕ ε1 ⊕ χ3
21,1ε

2 ⊕ χ21,0ε
3

1 1 χ21,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ3

21,1ε
3

1 1 χ3
21,1ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ21,0ε
3

1 1 χ21,0ε
0 ⊕ χ3

21,1ε
1 ⊕ ε2 ⊕ ε3

1 1 χ3
21,1ε

0 ⊕ χ21,0ε
1 ⊕ ε2 ⊕ ε3

1 1 ε0 ⊕ χ21,0ε
2 ⊕ ε1σ7,3

1 1 ε1 ⊕ χ21,0ε
3 ⊕ ε0σ7,3

1 1 χ21,0ε
0 ⊕ ε2 ⊕ ε1σ7,3

1 1 χ21,0ε
1 ⊕ ε3 ⊕ ε0σ7,3

Level N = 22. Nebentype η = 1. Field F = GF (160012).
Computed T3, T5, T7. Dim 7.
1 3 ε0 ⊕ ε1 ⊕ ε2σ11,2

1 3 ε2 ⊕ ε3 ⊕ ε0σ11,2

1 1 ε1 ⊕ ε2 ⊕ ε0σ22,4

Level N = 22. Nebentype η = χ2
22. Field F = GF (160012).

Computed T3, T5, T7. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ22,2

1 1 ε2 ⊕ ε3 ⊕ ε0σ22,2

Level N = 23. Nebentype η = 1. Field F = GF (2206760).
Computed T2, T3, T5, T7. Dim 5.
2 1 ε0 ⊕ ε1 ⊕ ε2σ23,2a

2 1 ε2 ⊕ ε3 ⊕ ε0σ23,2a

1 1 ε1 ⊕ ε2 ⊕ ε0σ
23,4
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Level N = 23. Nebentype η = χ2
23. Field F = GF (2206760).

Computed T2, T3, T5, T7. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ23,2b

1 1 ε2 ⊕ ε3 ⊕ ε0σ23,2b

Level N = 24. Nebentype η = 1. Field F = GF (123792).
Computed T5, T7,1, T11,1, T13,1. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ24,2a

1 1 ε2 ⊕ ε3 ⊕ ε0σ24,2a

Level N = 24. Nebentype η = χ24,1. Field F = GF (123792).
Computed T5, T7,1, T11,1, T13,1. Dim 4.
2 1 ε0 ⊕ ε1 ⊕ ε2σ24,2b

2 1 ε2 ⊕ ε3 ⊕ ε0σ24,2b

Level N = 24. Nebentype η = χ24,0χ24,2. Field F = GF (123792).
Computed T5, T7,1, T11,1, T13,1. Dim 18.
1 3 ε0 ⊕ ε1 ⊕ χ24,0ε

2 ⊕ χ24,2ε
3

1 3 ε0 ⊕ ε1 ⊕ χ24,2ε
2 ⊕ χ24,0ε

3

1 3 χ24,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ24,2ε

3

1 3 χ24,2ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ24,0ε

3

1 3 χ24,0ε
0 ⊕ χ24,2ε

1 ⊕ ε2 ⊕ ε3

1 3 χ24,2ε
0 ⊕ χ24,0ε

1 ⊕ ε2 ⊕ ε3

Level N = 24. Nebentype η = χ24,0χ24,1χ24,2. Field F = GF (123792).
Computed T5, T7,1, T11,1, T13,1, T17,1. Dim 14.
1 1 ε0 ⊕ ε1 ⊕ χ24,0χ24,1ε

2 ⊕ χ24,2ε
3

1 1 ε0 ⊕ ε1 ⊕ χ24,2ε
2 ⊕ χ24,0χ24,1ε

3

1 1 χ24,0χ24,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ24,2ε

3

1 1 χ24,2ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ24,0χ24,1ε

3

1 1 χ24,0χ24,1ε
0 ⊕ χ24,2ε

1 ⊕ ε2 ⊕ ε3

1 1 χ24,2ε
0 ⊕ χ24,0χ24,1ε

1 ⊕ ε2 ⊕ ε3

2 1 ε0 ⊕ ε1 ⊕ ε2σ24,2c

2 1 ε2 ⊕ ε3 ⊕ ε0σ24,2c

1 1 ε0 ⊕ χ24,2ε
2 ⊕ ε1σ8,3

1 1 ε1 ⊕ χ24,2ε
3 ⊕ ε0σ8,3

1 1 χ24,2ε
0 ⊕ ε2 ⊕ ε1σ8,3

1 1 χ ε1 ⊕ ε3 ⊕ ε0σ
24,2 8,3
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Level N = 25. Nebentype η = 1. Field F = GF (1600160).
Computed T2, T3. Dim 7.
1 1 ε0 ⊕ ε1 ⊕ χ15

25ε
2 ⊕ χ5

25ε
3

1 1 ε0 ⊕ ε1 ⊕ χ5
25ε

2 ⊕ χ15
25ε

3

1 1 χ15
25ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ5
25ε

3

1 1 χ5
25ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ15
25ε

3

1 1 χ15
25ε

0 ⊕ χ5
25ε

1 ⊕ ε2 ⊕ ε3

1 1 χ5
25ε

0 ⊕ χ15
25ε

1 ⊕ ε2 ⊕ ε3

1 1 ε1 ⊕ ε2 ⊕ ε0σ25,4

Level N = 25. Nebentype η = χ2
25. Field F = GF (1600160).

Computed T2, T3. Dim 4.
2 1 ε0 ⊕ ε1 ⊕ ε2σ25,2a

2 1 ε2 ⊕ ε3 ⊕ ε0σ25,2a

Level N = 25. Nebentype η = χ4
25. Field F = GF (1600160).

Computed T2, T3. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ25,2b

1 1 ε2 ⊕ ε3 ⊕ ε0σ25,2b

Level N = 25. Nebentype η = χ10
25. Field F = GF (1600160).

Computed T2, T3. Dim 6.
1 1 ε0 ⊕ ε1 ⊕ χ15

25ε
2 ⊕ χ15

25ε
3

1 1 ε0 ⊕ ε1 ⊕ χ5
25ε

2 ⊕ χ5
25ε

3

1 1 χ15
25ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ15
25ε

3

1 1 χ5
25ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ5
25ε

3

1 1 χ15
25ε

0 ⊕ χ15
25ε

1 ⊕ ε2 ⊕ ε3

1 1 χ5
25ε

0 ⊕ χ5
25ε

1 ⊕ ε2 ⊕ ε3

Level N = 26. Nebentype η = 1. Field F = GF (120372).
Computed T3, T5. Dim 7.
1 1 ε0 ⊕ ε1 ⊕ ε2σ26,2a

1 1 ε2 ⊕ ε3 ⊕ ε0σ26,2a

1 1 ε0 ⊕ ε1 ⊕ ε2σ26,2b

1 1 ε2 ⊕ ε3 ⊕ ε0σ26,2b

1 3 ε1 ⊕ ε2 ⊕ ε0σ13,4

Level N = 26. Nebentype η = χ2
26. Field F = GF (120372).

Computed T3, T5. Dim 6.
1 3 ε0 ⊕ ε1 ⊕ ε2σ13,2

1 3 ε2 ⊕ ε3 ⊕ ε0σ
13,2
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Level N = 26. Nebentype η = χ4
26. Field F = GF (120372).

Computed T3, T5. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ26,2c

1 1 ε2 ⊕ ε3 ⊕ ε0σ26,2c

Level N = 26. Nebentype η = χ6
26. Field F = GF (120372).

Computed T3, T5. Dim 4.
2 1 ε0 ⊕ ε1 ⊕ ε2σ26,2d

2 1 ε2 ⊕ ε3 ⊕ ε0σ26,2d

Level N = 27. Nebentype η = 1. Field F = GF (118636).
Computed T2, T5, T7,1. Dim 12.
1 3 ε0 ⊕ ε1 ⊕ χ9

27ε
2 ⊕ χ9

27ε
3

1 3 χ9
27ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ9
27ε

3

1 3 χ9
27ε

0 ⊕ χ9
27ε

1 ⊕ ε2 ⊕ ε3

1 1 ε0 ⊕ ε1 ⊕ ε2σ27,2a

1 1 ε2 ⊕ ε3 ⊕ ε0σ27,2a

1 1 ε1 ⊕ ε2 ⊕ ε0σ27,4

Level N = 27. Nebentype η = χ2
27. Field F = GF (118636).

Computed T2, T5. Dim 4.
2 1 ε0 ⊕ ε1 ⊕ ε2σ27,2b

2 1 ε2 ⊕ ε3 ⊕ ε0σ27,2b

Level N = 27. Nebentype η = χ6
27. Field F = GF (118636).

Computed T2, T5, T7,1. Dim 10.
1 1 ε0 ⊕ ε1 ⊕ χ15

27ε
2 ⊕ χ9

27ε
3

1 1 ε0 ⊕ ε1 ⊕ χ9
27ε

2 ⊕ χ15
27ε

3

1 1 χ15
27ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ9
27ε

3

1 1 χ9
27ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ15
27ε

3

1 1 χ15
27ε

0 ⊕ χ9
27ε

1 ⊕ ε2 ⊕ ε3

1 1 χ9
27ε

0 ⊕ χ15
27ε

1 ⊕ ε2 ⊕ ε3

1 1 ε0 ⊕ χ9
27ε

2 ⊕ ε1σ9,3

1 1 ε1 ⊕ χ9
27ε

3 ⊕ ε0σ9,3

1 1 χ9
27ε

0 ⊕ ε2 ⊕ ε1σ9,3

1 1 χ9 ε1 ⊕ ε3 ⊕ ε0σ
27 9,3
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Level N = 28. Nebentype η = 1. Field F = GF (1237912).
Computed T3, T5, T11,1, T13,1. Dim 7.
1 3 ε0 ⊕ ε1 ⊕ ε2σ14,2

1 3 ε2 ⊕ ε3 ⊕ ε0σ14,2

1 1 ε1 ⊕ ε2 ⊕ ε0σ28,4

Level N = 28. Nebentype η = χ2
28,1. Field F = GF (1237912).

Computed T3, T5. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ28,2a

1 1 ε2 ⊕ ε3 ⊕ ε0σ28,2a

Level N = 28. Nebentype η = χ28,0χ28,1. Field F = GF (1237912).
Computed T3, T5. Dim 10.
1 1 ε0 ⊕ ε1 ⊕ χ28,0ε

2 ⊕ χ28,1ε
3

1 1 ε0 ⊕ ε1 ⊕ χ28,1ε
2 ⊕ χ28,0ε

3

1 1 χ28,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ28,1ε

3

1 1 χ28,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ28,0ε

3

1 1 χ28,0ε
0 ⊕ χ28,1ε

1 ⊕ ε2 ⊕ ε3

1 1 χ28,1ε
0 ⊕ χ28,0ε

1 ⊕ ε2 ⊕ ε3

2 1 ε0 ⊕ ε1 ⊕ ε2σ28,2b

2 1 ε2 ⊕ ε3 ⊕ ε0σ28,2b

Level N = 28. Nebentype η = χ28,0χ
3
28,1. Field F = GF (1237912).

Computed T3, T5, T11,1, T13,1. Dim 14.
1 1 ε0 ⊕ ε1 ⊕ χ28,0ε

2 ⊕ χ3
28,1ε

3

1 1 ε0 ⊕ ε1 ⊕ χ3
28,1ε

2 ⊕ χ28,0ε
3

1 1 χ28,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ3

28,1ε
3

1 1 χ3
28,1ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ28,0ε
3

1 1 χ28,0ε
0 ⊕ χ3

28,1ε
1 ⊕ ε2 ⊕ ε3

1 1 χ3
28,1ε

0 ⊕ χ28,0ε
1 ⊕ ε2 ⊕ ε3

2 1 ε0 ⊕ ε1 ⊕ ε2σ28,2c

2 1 ε2 ⊕ ε3 ⊕ ε0σ28,2c

1 1 ε0 ⊕ χ28,0ε
2 ⊕ ε1σ7,3

1 1 ε1 ⊕ χ28,0ε
3 ⊕ ε0σ7,3

1 1 χ28,0ε
0 ⊕ ε2 ⊕ ε1σ7,3

1 1 χ ε1 ⊕ ε3 ⊕ ε0σ
28,0 7,3
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Level N = 29. Nebentype η = 1. Field F = GF (22976).
Computed T2, T3, T5. Dim 6.
2 1 ε0 ⊕ ε1 ⊕ ε2σ29,2a

2 1 ε2 ⊕ ε3 ⊕ ε0σ29,2a

2 1 ε1 ⊕ ε2 ⊕ ε0σ29,4

Level N = 29. Nebentype η = χ2
29. Field F = GF (22976).

Computed T2, T3, T5. Dim 4.
2 1 ε0 ⊕ ε1 ⊕ ε2σ29,2b

2 1 ε2 ⊕ ε3 ⊕ ε0σ29,2b

Level N = 29. Nebentype η = χ4
29. Field F = GF (22976).

Computed T2, T3, T5. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ29,2c

1 1 ε2 ⊕ ε3 ⊕ ε0σ29,2c

Level N = 29. Nebentype η = χ14
29. Field F = GF (22976).

Computed T2, T3, T5. Dim 6.
2 1 ε0 ⊕ ε1 ⊕ ε2σ29,2d

2 1 ε2 ⊕ ε3 ⊕ ε0σ29,2d

2 1 ε0 ⊕ ε1Sym2(σ29,2d)

Level N = 31. Nebentype η = 1. Field F = GF (420160).
Computed T2, T3, T5. Dim 6.
2 1 ε0 ⊕ ε1 ⊕ ε2σ31,2a

2 1 ε2 ⊕ ε3 ⊕ ε0σ31,2a

2 1 ε1 ⊕ ε2 ⊕ ε0σ31,4

Level N = 31. Nebentype η = χ2
31. Field F = GF (420160).

Computed T2, T3, T5. Dim 4.
2 1 ε0 ⊕ ε1 ⊕ ε2σ31,2b

2 1 ε2 ⊕ ε3 ⊕ ε0σ31,2b

Level N = 31. Nebentype η = χ6
31. Field F = GF (420160).

Computed T2, T3, T5. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ31,2c

1 1 ε2 ⊕ ε3 ⊕ ε0σ
31,2c
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Level N = 31. Nebentype η = χ10
31. Field F = GF (420160).

Computed T2, T3, T5. Dim 4.
2 1 ε0 ⊕ ε1 ⊕ ε2σ31,2d

2 1 ε2 ⊕ ε3 ⊕ ε0σ31,2d

Level N = 37. Nebentype η = 1. Field F = GF (388924).
Computed T2, T3, T5, T7,1, T13,1. Dim 8.
1 1 ε0 ⊕ ε1 ⊕ ε2σ37,2a

1 1 ε2 ⊕ ε3 ⊕ ε0σ37,2a

1 1 ε0 ⊕ ε1 ⊕ ε2σ37,2b

1 1 ε2 ⊕ ε3 ⊕ ε0σ37,2b

4 1 ε1 ⊕ ε2 ⊕ ε0σ37,4

Level N = 37. Nebentype η = χ2
37. Field F = GF (388924).

Computed T2, T3, T5. Dim 6.
3 1 ε0 ⊕ ε1 ⊕ ε2σ37,2c

3 1 ε2 ⊕ ε3 ⊕ ε0σ37,2c

Level N = 37. Nebentype η = χ4
37. Field F = GF (388924).

Computed T2, T3, T5. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ ε2σ37,2d

1 1 ε2 ⊕ ε3 ⊕ ε0σ37,2d

1 1 ε0 ⊕ ε1 ⊕ ε2σ37,2e

1 1 ε2 ⊕ ε3 ⊕ ε0σ37,2e

Level N = 37. Nebentype η = χ6
37. Field F = GF (388924).

Computed T2, T3, T5. Dim 4.
2 1 ε0 ⊕ ε1 ⊕ ε2σ37,2f

2 1 ε2 ⊕ ε3 ⊕ ε0σ37,2f

Level N = 37. Nebentype η = χ12
37. Field F = GF (388924).

Computed T2, T3, T5. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ37,2g

1 1 ε2 ⊕ ε3 ⊕ ε0σ37,2g

Level N = 37. Nebentype η = χ18,2
37 . Field F = GF (388924).

Computed T2, T3, T5. Dim 6.
2 1 ε0 ⊕ ε1 ⊕ ε2σ37,2h

2 1 ε2 ⊕ ε3 ⊕ ε0σ37,2h

2 1 ε0 ⊕ ε1Sym2(σ )
37,2h
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Level N = 41. Nebentype η = 1. Field F = GF (2188160).
Computed T2, T3, T5. Dim 9.
3 1 ε0 ⊕ ε1 ⊕ ε2σ41,2a

3 1 ε2 ⊕ ε3 ⊕ ε0σ41,2a

3 1 ε1 ⊕ ε2 ⊕ ε0σ41,4

Level N = 41. Nebentype η = χ2
41. Field F = GF (2188160).

Computed T2, T3, T5. Dim 6.
3 1 ε0 ⊕ ε1 ⊕ ε2σ41,2b

3 1 ε2 ⊕ ε3 ⊕ ε0σ41,2b

Level N = 41. Nebentype η = χ4
41. Field F = GF (2188160).

Computed T2, T3, T5. Dim 4.
2 1 ε0 ⊕ ε1 ⊕ ε2σ41,2c

2 1 ε2 ⊕ ε3 ⊕ ε0σ41,2c

Level N = 41. Nebentype η = χ8
41. Field F = GF (2188160).

Computed T2, T3, T5. Dim 4.
2 1 ε0 ⊕ ε1 ⊕ ε2σ41,2d

2 1 ε2 ⊕ ε3 ⊕ ε0σ41,2d

Level N = 41. Nebentype η = χ10
41. Field F = GF (2188160).

Computed T2, T3, T5. Dim 8.
3 1 ε0 ⊕ ε1 ⊕ ε2σ41,2e

3 1 ε2 ⊕ ε3 ⊕ ε0σ41,2e

1 1 ε0 ⊕ ε1δ

1 1 ε3 ⊕ ε0δ

Level N = 41. Nebentype η = χ20
41. Field F = GF (2188160).

Computed T2, T3, T5. Dim 6.
2 1 ε0 ⊕ ε1 ⊕ ε2σ41,2f

2 1 ε2 ⊕ ε3 ⊕ ε0σ41,2f

2 1 ε0 ⊕ ε1Sym2(σ41,2f )

A.2. For each N , the next table specifies the basis that Sage chooses for the group 
of characters (Z/NZ)× → Fp. If there is one basis element, it is denoted χN . If there 
is more than one, they are denoted χN,0, χN,1, etc. The order of χ is the smallest 
positive n so that χn is trivial on (Z/NZ)×. The parity is even if χ(−1) = +1 and odd 
if χ(−1) = −1.
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χN,i p order parity definition
χ7 12037 6 odd 3 
→ −1293
χ9 12379 6 odd 2 
→ 5770

χ12,0 5413 2 odd 7 
→ −1, 5 
→ 1
χ12,1 5413 2 odd 7 
→ 1, 5 
→ −1
χ13 12037 12 odd 2 
→ 4019
χ15,0 12037 2 odd 11 
→ −1, 7 
→ 1
χ15,1 12037 4 odd 11 
→ 1, 7 
→ 3417
χ16,0 4001 2 odd 15 
→ −1, 5 
→ 1
χ16,1 4001 4 even 15 
→ 1, 5 
→ −899
χ17 16001 16 odd 3 
→ 83
χ18 3637 6 odd 11 
→ −695
χ19 3637 18 odd 2 
→ −31
χ20,0 12037 2 odd 11 
→ −1, 17 
→ 1
χ20,1 12037 4 odd 11 
→ 1, 17 
→ 3417
χ21,0 12037 2 odd 8 
→ −1, 10 
→ 1
χ21,1 12037 6 odd 8 
→ 1, 10 
→ −1293
χ22 16001 10 odd 13 
→ 3018
χ23 22067 22 odd 5 
→ 7863
χ24,0 12379 2 odd 7 
→ −1, 13 
→ 1, 17 
→ 1
χ24,1 12379 2 even 7 
→ 1, 13 
→ −1, 17 
→ 1
χ24,2 12379 2 odd 7 
→ 1, 13 
→ 1, 17 
→ −1
χ25 16001 20 odd 2 
→ 7734
χ26 12037 12 odd 15 
→ 4019
χ27 11863 18 odd 2 
→ 5034
χ28,0 12379 2 odd 15 
→ −1, 17 
→ 1
χ28,1 12379 6 odd 15 
→ 1, 17 
→ 5770
χ29 2297 28 odd 2 
→ 1108
χ31 4201 30 odd 3 
→ −1970
χ37 3889 36 odd 2 
→ −1338
χ41 21881 40 odd 6 
→ −10354

A.3. In the following table we give the q-expansions of the holomorphic cusp forms 
whose attached Galois representations are referred to in the tables of Appendix A.1. 
Sk(N, χ) denotes the space of weight k cusp forms on Γ0(N) with character χ. The 
notation σN,k for individual cusp forms makes manifest the level N and weight k. The 
q-expansions were computed using Sage [12].

The field of definition of a cusp form, if not specified, is the field generated by the 
coefficients we display. For instance, q+2iq2 +55q3 + · · · has coefficients in Q(i). By ζm
we mean a primitive m-th root of unity. When we must specify the field, it is in the line 
beginning with “over”.
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σ7,3 = q − 3q2 + 5q4 − 7q7 + O(q8) in S3(7, χ3
7)

σ8,3 = q − 2q2 − 2q3 + 4q4 + 4q6 − 8q8 − 5q9 + 14q11 − 8q12 + O(q16) in S3(8, χ24,0χ24,1)
σ9,3 = q + (−ζ6 − 1) q2 + (3ζ6 − 3) q3 − ζ6q

4 + O(q5) in S3(9, χ15
27)

σ11,2 = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + O(q8) in S2(11, 1)
σ13,2 = q + (−ζ6 − 1) q2 + (2ζ6 − 2) q3 + ζ6q

4 + O(q5) in S2(13, χ2
13)

σ13,4 = q − 5q2 − 7q3 + 17q4 − 7q5 + 35q6 − 13q7 + O(q8) in S4(13, 1)
σ14,2 = q − q2 − 2q3 + q4 + 2q6 + q7 + O(q8) in S2(14, 1)
σ15,2 = q − q2 − q3 − q4 + q5 + q6 + O(q8) in S2(15, 1)
σ16,2 = q + (−i− 1) q2 + (i− 1) q3 + 2iq4 + O(q5) in S2(16, χ16,1)
σ17,2a = q − q2 − q4 − 2q5 + 4q7 + O(q8) in S2(17, 1)
σ17,2b = q +

(
−ζ3

8 + ζ2
8 − 1

)
q2 +

(
ζ3
8 − ζ2

8 − ζ8 − 1
)
q3 + O(q4) in S2(17, χ2

17)
σ17,4 = q − 3q2 − 8q3 + q4 + 6q5 + 24q6 − 28q7 + O(q8) in S4(17, 1)
σ18,2 = q − ζ6q

2 + (ζ6 − 2) q3 + (ζ6 − 1) q4 + O(q6) in S2(18, χ2
18)

σ19,2a = q − 2q3 − 2q4 + 3q5 − q7 + O(q8) in S2(19, 1)
σ19,2b = q +

(
−ζ2

18,2 + ζ18,2 − 1
)
q2 + O(q3) in S2(19, χ2

19)
σ19,4 = q − 3q2 − 5q3 + q4 − 12q5 + 15q6 + 11q7 + O(q8) in S4(19, 1)
σ20,2a = q − 2q3 − q5 + 2q7 + q9 + 2q13 + O(q14) in S2(20, 1)
σ20,2b = q + (−i− 1) q2 + 2iq4 + (i− 2) q5 + O(q8) in S2(20, χ20,0χ20,1)
σ21,2a = q − q2 + q3 − q4 − 2q5 − q6 − q7 + O(q8) in S2(21, 1)
σ21,2b = q + (2ζ6 − 2) q2 − ζ6q

3 − 2ζ6q4 + (−2ζ6 + 2) q5 + O(q6) in S2(21, χ2
21,1)

σ21,2c = q + (−ζ6 − 1) q3 + (2ζ6 − 2) q4 + O(q7) in S2(21, χ21,0χ21,1)
σ21,4 = q − 3q2 − 3q3 + q4 − 18q5 + 9q6 + 7q7 + O(q8) in S4(21, 1)
σ22,2 = q − ζ10q

2 +
(
−ζ3

10 + ζ10 − 1
)
q3 + ζ2

10q
4 + O(q5) in S2(22, χ2

22)
σ22,4 = q − 2q2 − 7q3 + 4q4 − 19q5 + 14q6 + 14q7 + O(q8) in S4(22, 1)
σ23,2a = q + b0q

2 + (−2b0 − 1) q3 + (−b0 − 1) q4 + 2b0q5 + O(q6) in S2(23, 1)
over Q[b0]/(b20 + b0 − 1)
σ23,2b = q +

(
ζ9
22 − ζ6

22 − ζ4
22 − 1

)
q2 + O(q3) in S2(23, χ2

23)
σ23,4 = q − 2q2 − 5q3 − 4q4 − 6q5 + 10q6 − 8q7 + O(q8) in S4(23, 1)
σ24,2a = q − q3 − 2q5 + q9 + 4q11 − 2q13 + O(q14) in S2(24, 1)
σ24,2b = q + b0q

2 + (b0 + 1) q3 + (−2b0 − 2) q4 + O(q5) in S2(24, χ24,1)
over Q[b0]/(b20 + 2b0 + 2)
σ24,2c = q + b0q

2 + (−b0 − 1) q3 − 2q4 + (−b0 + 2) q6 + O(q8) in S2(24, χ24,0χ24,1χ24,2)
over Q[b0]/(b20 + 2)
σ25,2a = q + b0q

2 +
((
ζ3
10 + ζ10 − 1

)
b0 + ζ2

10 − 1
)
q3 + O(q4) in S2(25, χ2

25)
over (Q(ζ10))[b0]/(b20 + (ζ10 + 1) b0 + ζ2

10 − 2ζ10 + 1)
σ25,2b = q +

(
−ζ3

5 − ζ5 − 1
)
q2 + ζ5q

3 +
(
−ζ2

5 − ζ5 − 1
)
q4 + O(q5) in S2(25, χ4

25)
σ25,4 = q − q2 − 7q3 − 7q4 + 7q6 − 6q7 + O(q8) in S4(25, 1)
σ26,2a = q − q2 + q3 + q4 − 3q5 − q6 − q7 + O(q8) in S2(26, 1)
σ26,2b = q + q2 − 3q3 + q4 − q5 − 3q6 + q7 + O(q8) in S2(26, 1)
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σ26,2c = q + (−ζ3 − 1) q2 + ζ3q
4 − q5 + 4ζ3q7 + O(q8) in S2(26, χ4

26)
σ26,2d = q + b0q

2 − q3 − q4 − 3b0q5 − b0q
6 + 3b0q7 + O(q8) in S2(26, χ6

26)
over Q[b0]/(b20 + 1)
σ27,2a = q − 2q4 − q7 + O(q8) in S2(27, 1)
σ27,2b = q + b0q

2 +
((
ζ5
18,2 − ζ18,2

)
b0 − ζ3

18,2 + ζ2
18,2 − ζ18,2

)
q3 + O(q4) in S2(27, χ2

27)
over (Q(ζ18,2))[b0]/(b20 +

(
ζ2
18,2 − ζ18,2 + 1

)
b0 + ζ4

18,2 − ζ3
18,2 − ζ2

18,2 − ζ18,2 + 1)
σ27,4 = q − 3q2 + q4 − 15q5 − 25q7 + O(q8) in S4(27, 1)
σ28,2a = q − ζ6q

3 + (3ζ6 − 3) q5 + (−2ζ6 − 1) q7 + O(q8) in S2(28, χ2
28,1)

σ28,2b = q + b0q
2 + ((ζ6 − 2) b0 − ζ6 − 1) q3 + O(q4) in S2(28, χ28,0χ28,1)

over (Q(ζ6))[b0]/(b20 + 2ζ6b0 + 2ζ6 − 2)
σ28,2c = q + b0q

2 + (−b0 − 2) q4 + (−2b0 − 1) q7 + O(q8) in S2(28, χ28,0χ
3
28,1)

over Q[b0]/(b20 + b0 + 2)
σ28,4 = q − 10q3 − 8q5 − 7q7 + 73q9 − 40q11 − 12q13 + O(q14) in S4(28, 1)
σ29,2a = q + b0q

2 − b0q
3 + (−2b0 − 1) q4 − q5 + (2b0 − 1) q6 + O(q7) in S2(29, 1)

over Q[b0]/(b20 + 2b0 − 1)
σ29,2b = q + b0q

2 +
((
ζ3
14 + ζ2

14 + ζ14
)
b0 + ζ4

14 + ζ3
14 + ζ2

14 + ζ14
)
q3 + O(q4) in S2(29, χ2

29)
over (Q(ζ14))[b0]/(b20 +

(
−ζ5

14 + ζ3
14 + ζ14 + 1

)
b0 − ζ5

14 + ζ4
14 + ζ2

14 − ζ14 + 1)
σ29,2c = q +

(
−ζ5

7 − ζ4
7 − ζ3

7 − ζ7 − 1
)
q2 +

(
−ζ5

7 − 1
)
q3 + O(q4) in S2(29, χ4

29)
σ29,2d = q + b0q

2 − b0q
3 − 3q4 − 3q5 + 5q6 + 2q7 + O(q8) in S2(29, χ14

29)
over Q[b0]/(b20 + 5)
σ29,4 = q + b0q

2 + (−3b0 − 8) q3 + (−2b0 − 7) q4 + (4b0 − 1) q5 + O(q6) in S4(29, 1)
over Q[b0]/(b20 + 2b0 − 1)
σ31,2a = q + b0q

2 − 2b0q3 + (b0 − 1) q4 + q5 + (−2b0 − 2) q6 + O(q7) in S2(31, 1)
over Q[b0]/(b20 − b0 − 1)
σ31,2b = q + b0q

2 +
((
ζ5
30 − 2ζ3

30 − ζ2
30 + ζ30 + 1

)
b0 + ζ6

30 + ζ5
30 − ζ4

30 − 2ζ3
30 − ζ2

30 + ζ30
)
q3

+O(q4) in S2(31, χ2
31)

over (Q(ζ30))[b0]/(b20 +
(
−ζ3

30 + 1
)
b0 + 2ζ6

30 − ζ4
30 + ζ3

30 − ζ2
30 + 2)

σ31,2c = q +
(
ζ3
5 + ζ2

5 + ζ5
)
q2 − ζ3

5q
3 +

(
ζ3
5 + 1

)
q4 + O(q5) in S2(31, χ6

31)
σ31,2d = q + b0q

2 + ((−ζ3 − 1) b0) q3 + (−2b0 − 1) q4 + O(q5) in S2(31, χ10
31)

over (Q(ζ3))[b0]/(b20 + 2b0 − 1)
σ31,4 = q + b0q

2 + (−2b0 − 6) q3 + (−5b0 − 10) q4 + (3b0 − 5) q5 + O(q6) in S4(31, 1)
over Q[b0]/(b20 + 5b0 + 2)
σ37,2a = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 + 6q9 + 4q10 − 5q11 + O(q12) in S2(37, 1)
σ37,2b = q + q3 − 2q4 − q7 − 2q9 + 3q11 − 2q12 − 4q13 + O(q14) in S2(37, 1)
σ37,2c = q + b0q

2

+
((
ζ4
18,2 + ζ2

18,2
)
b20 +

(
ζ5
18,2 + ζ4

18,2 + ζ3
18,2 + ζ2

18,2
)
b0 − 2ζ5

18,2 + ζ4
18,2 − ζ3

18,2 + ζ2
18,2 − 1

)
q3

+O(q4) in S2(37, χ2
37)

over (Q(ζ18,2))[b0]/(b30 +
(
−ζ4

18,2 + ζ3
18,2 + 2ζ18,2 + 1

)
b20

+
(
−2ζ5

18,2 + 2ζ3
18,2 + 2ζ2

18,2 − 2ζ18,2
)
b0 + ζ5

18,2 − ζ4
18,2 + ζ3

18,2 − 2ζ2
18,2 − ζ18,2 + 1)
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σ37,2d = q + (−ζ9 − 1) q2 +
(
−ζ4

9 + ζ3
9 − ζ2

9 + 1
)
q3 + O(q4) in S2(37, χ4

37)
σ37,2e = q +

(
−ζ5

9 + ζ4
9 − ζ3

9 + ζ9
)
q2 +

(
ζ5
9 + ζ2

9 − 1
)
q3 + O(q4) in S2(37, χ4

37)
σ37,2f = q + b0q

2 + ((−ζ6 − 1) b0 + ζ6) q3 − ζ6q
4 + O(q5) in S2(37, χ6

37)
over (Q(ζ6))[b0]/(b20 − ζ6)
σ37,2g = q + (−ζ3 − 1) q2 − ζ3q

4 + ζ3q
5 + 2ζ3q7 + O(q8) in S2(37, χ12

37)
σ37,2h = q + b0q

2 − q3 − 2q4 − b0q
5 − b0q

6 + 3q7 + O(q8) in S2(37, χ18,2
37 )

over Q[b0]/(b20 + 4)
σ37,4 = q + b0q

2 +
(
− 1

8b
3
0 − 9

8b
2
0 − 13

4 b0 − 11
4
)
q3 +

(
b20 − 8

)
q4 + O(q5) in S4(37, 1)

over Q[b0]/(b40 + 6b30 − b20 − 16b0 + 6)
σ41,2a = q + b0q

2 +
(
− 1

2b
2
0 − b0 + 3

2
)
q3 +

(
b20 − 2

)
q4 + O(q5) in S2(41, 1)

over Q[b0]/(b30 + b20 − 5b0 − 1)
σ41,2b = q + b0q

2

+
((
ζ3
20 − ζ2

20 − ζ20 + 1
)
b20 +

(
−ζ7

20 + ζ6
20 + ζ3

20 − ζ2
20
)
b0

+2ζ5
20 − 2ζ4

20 − ζ3
20 + ζ2

20 + 2ζ20 − 2
)
q3 + O(q4) in S2(41, χ18,2

41 )
over (Q(ζ20))[b0]/(b30 +

(
ζ6
20 + ζ3

20 + 1
)
b20

+
(
ζ7
20 − 3ζ6

20 − ζ5
20 + 2ζ3

20 − ζ2
20 − ζ20 + 1

)
b0 − 2ζ6

20 + ζ5
20 + ζ4

20 − ζ3
20 + 2)

σ41,2c = q + b0q
2 +

(( 2
5ζ

3
10 + 1

5ζ
2
10 − 4

5ζ10 + 2
5
)
b0 + 2

5ζ
3
10 + 6

5ζ
2
10 − 4

5ζ10 + 2
5
)
q3

+O(q4) in S2(41, χ4
41)

over (Q(ζ10))[b0]/(b20 + (−ζ10 + 1) b0 + ζ2
10 + ζ10 + 1)

σ41,2d = q + b0q
2 + ζ2

5b0q
3 +

((
−2ζ3

5 − ζ5 − 1
)
b0 + ζ2

5 − ζ5 + 1
)
q4 + O(q5) in S2(41, χ8

41)
over (Q(ζ5))[b0]/(b20 +

(
2ζ3

5 + ζ5 + 1
)
b0 − ζ2

5 − ζ5 − 1)
σ41,2e = q + b0q

2 +
(( 1

2 i−
1
2
)
b20 + 5

2 i−
5
2
)
q3 + O(q4) in S2(41, χ10

41)
over (Q(i))[b0]/(b30 − ib20 + 5b0 − 3i)
σ41,2f = q − q2 +

(
− 1

2b0 −
1
2
)
q3 − q4 + 2q5 +

( 1
2b0 + 1

2
)
q6 + O(q7) in S2(41, χ20

41)
over Q[b0]/(b20 + 2b0 + 33)
σ41,4 = q + b0q

2 +
(
− 1

2b
2
0 − 3b0 − 5

2
)
q3 +

(
b20 − 8

)
q4 + O(q5) in S4(41, 1)

over Q[b0]/(b30 + 3b20 − 5b0 − 3)

A.4. In this section we give the eigenvalues for the class δ, which were communicated 
to us by Darrin Doud. This is a class in H3(Γ0(3, 41), Fη), the finite field F has order 
21881, and η is the nebentype mapping the primitive root 6 mod 41 to 2408 ∈ F . The 
eigenvalues here are given in F .

Primes � and the eigenvalues of T�,1, T�,2

2 19471, 19475 11 11832, 19459 23 12264, 9647
3 21880, 2408 13 17072, 5027 29 4811, 12038
5 17066, 17064 17 16840, 5241 31 17478, 4393
7 14655, 4819 19 4809, 5027 37 7030, 14881
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