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Introduction

The main difference between a Lie algebra and a Hom-Lie algebra is the appearance of 
a linear endomorphism in the algebraic condition that plays the role of the Jacobi identity, 
thus generalizing it. This map is called the twist map. If this map is the identity, the 
well known Jacobi identity holds true, and the product in the Hom-Lie algebra is a Lie 
bracket. The problem of classifying Lie algebras is far away to have a solution, and the 
same is true for Hom-Lie algebras. Nevertheless, there are tools to handle and accomplish 
a classification under certain circumstances that restrict but focus the problem. For 
instance, the restrictions may respond to, or may be motivated by, geometric reasons. 
The purpose of this work is precisely to restrict the classification problem of Hom-Lie 
algebras to 3-dimensional settings where geometrical interpretations are more intuitive.

Most of the literature in the subject deals with special bilinear, skew-symmetric prod-
ucts —namely, Lie brackets or deformations of them— and the twist maps used are 
homomorphisms for these special products. For results under these hypotheses we refer 
the reader to [1], [5] or [6]. An interesting classification based on more general grounds 
has been given in [7], where even though the products are Lie brackets for semisimple Lie 
algebras, the authors do not require the twist maps to be product homomorphisms. So 
far, however, not too much has been said for the most general products and twist maps. 
This work fills in this gap, at least when dim g = 3, by dealing with products which 
are not restricted to be Lie brackets and twist maps that are not necessarily product 
homomorphisms.

Convention. We shall consider the classification problem for complex 3-dimensional vec-
tor spaces. However, one can apply essentially the same arguments under the slightly 
more general hypothesis of using any algebraically closed ground field of characteristic 
zero. We have chosen to work with the complex numbers as more familiar choices can 
be made for some of the entries of the canonical forms of the products or the twist maps 
(i.e., one may use i =

√
−1).

A Hom-Lie algebra, or HL-algebra for short, is a triple (g, μ, T ), where g is a vector 
space, μ : g × g → g is a skew-symmetric bilinear map, and T : g → g is a linear 
endomorphism —usually called the twist map— satisfying the HL-Jacobi identity:

μ (T (x), μ(y, z)) + μ (T (y), μ(z, x)) + μ (T (z), μ(x, y)) = 0, (1)

for all x, y, z ∈ g. Let (g, μg, T ) and (h, μh, S) be HL-algebras. An HL-morphism between 
them is a linear map ϕ : g → h satisfying:

(i) ϕ (μg(x, y)) = μh (ϕ(x), ϕ(y)), for all x, y ∈ g, and
(ii) ϕ ◦ T = S ◦ ϕ.
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In order to classify HL-algebras we look first at the GL(g)-orbits in the space of skew-
symmetric bilinear products μ : g × g → g under the left GL(g)-action μ �→ g ·μ, given 
by,

(g ·μ)(x, y) = g
(
μ
(
g−1(x), g−1(y)

))
, g ∈ GL(g), and x, y ∈ g. (2)

Skew-symmetric bilinear products in a 3-dimensional vector space g were partially clas-
sified in [3] for this action. Actually, the authors classified the so called non-degenerate
μ’s (see Proposition 2.1 below). We have worked out the classification of the degenerate
μ’s (see Proposition 3.5), thus ending up with a complete set of representatives for the 
bilinear, skew-symmetric products μ under the given GL(g)-action. Then, for each fixed 
μ, we provide complete lists of canonical forms for the linear maps T : g → g in the 
vector subspace,

HL(μ) =

⎧⎨
⎩T ∈ End g |

∑
cyclic

μ (T (x), μ(y, z)) = 0

⎫⎬
⎭ ,

under the left action T �→ g · T = g ◦ T ◦ g−1 of the corresponding isotropy subgroups 
Gμ = {g ∈ GL(g) | g ·μ = μ }. (See Propositions 4.1, 4.2, 4.3, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6
and 5.7, below).

A word has to be said about the non-triviality of the vector subspace HL(μ) for a 
given skew-symmetric bilinear product μ : g × g → g. That is, one would like to make 
sure that there are non-zero linear maps in HL(μ); at least for the case addressed in 
this work of a complex 3-dimensional space g. This has been proved in [5] for any skew-
symmetric product μ (see Thm. 17 in [5]). Nevertheless, here is an alternative proof: Since 
μ is skew-symmetric, the 4-linear map (x, y, z, T ) �→ μ(T (x), μ(y, z)) +μ(T (y), μ(z, x)) +
μ(T (z), μ(x, y)), is alternating in the arguments (x, y, z). Therefore, there exists a bilinear 
map μ̂ : ∧3g × End(g) → g, such that,

μ̂(x ∧ y ∧ z, T ) =
∑
�

μ(T (x), μ(y, z)). (3)

For a fixed triple (x, y, z) ∈ g × g × g, this yields a linear map End(g) � T �→∑
� μ(T (x), μ(y, z)) ∈ g. By changing the triple (x, y, z) to (x′, y′, z′) through a lin-

ear map g : g → g, the right hand side of (3), now written for (x′, y′, z′), only introduces 
the scalar factor det g. Letting {x, y, z} = {e1, e2, e3} be a basis of g, one obtains a linear 
map End(g) � T �→ μ̂(e1∧e2∧e3, T ) ∈ g whose kernel is precisely HL(μ). Actually, for a 
given μ, the map T defined by T (e1) = μ(e2, e3), T (e2) = μ(e3, e1) and T (e3) = μ(e1, e2), 
lies in HL(μ).
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1. Skew-symmetric bilinear products on a 3-dimensional complex vector space

Let g be a 3-dimensional complex vector space and let μ : g × g → g be a skew-
symmetric bilinear map. We shall call such a μ a product in g. Given a basis {e1, e2, e3}
of g, one obtains a one-to-one correspondence μ ↔ Mμ = (μij) between products in g
and 3 × 3 complex matrices, as follows:

μ(e2, e3) =
3∑

i=1
μi1 ei , μ(e3, e1) =

3∑
i=1

μi2 ei , μ(e1, e2) =
3∑

i=1
μi3 ei .

It is straightforward to see that the GL(g)-action (2) gets transformed into the corre-
sponding GL3(C)-action Mμ �→ g ·Mμ = Mg·μ given by,

Mg·μ = (det g)−1 gMμ g
t , where, g = (gij) ∈ GL3(C), (4)

and the entries gij are taken from g(ej) =
∑3

i=1 gijei for each g ∈ GL(g) as usual. 
At this point we may simplify the notation and write μ for the matrix Mμ itself. The 
classification problem is that of finding canonical forms of 3 × 3 complex matrices μ
under the GL(g) 
 GL3(C) action,

g ·μ = (det g)−1 g μ gt. (5)

It is clear that this action preserves the symmetric and the skew-symmetric components 
of μ. Thus, we may decompose μ in the form,

μ = Sμ + Aμ, with (Sμ)t = Sμ and (Aμ)t = −Aμ . (6)

Since dim g = 3, we have a one-to-one correspondence Aμ ↔ aμ ∈ C3:

Aμ =
( 0 −a3 a2

a3 0 −a1
−a2 a1 0

)
↔ aμ =

(
a1
a2
a3

)
∈ C3, (7)

with,

g ·μ = (det g)−1 (
g Sμ g

t + g Aμ g
t
)

= Sg·μ + Ag·μ. (8)

Notation. Write g i ∗ ∈ C3 for the vector obtained from the ith row of the matrix g ∈
GL3(C) (equivalently, the i-th column of gt):

g 1 ∗ =
(
g11
g12

)
, g 2 ∗ =

(
g21
g22

)
, g 3 ∗ =

(
g31
g32

)
. (9)
g13 g23 g33
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It is a straightforward computation to see that the action of g in the skew-symmetric 
component of μ yields the correspondence,

(det g)−1g Aμ g
t = Ag·μ ↔ a g·μ = (det g)−1

⎛
⎝〈aμ × g 2 ∗ , g 3 ∗〉
〈aμ × g 3 ∗ , g 1 ∗〉
〈aμ × g 1 ∗ , g 2 ∗〉

⎞
⎠ , (10)

where, 〈 · , · 〉 : g × g → C denotes the usual scalar product on the 3-dimensional space 
g. Notice in particular that,

det g = 〈 g 1 ∗ × g 2 ∗ , g 3 ∗ 〉 = 〈 g 2 ∗ × g 3 ∗ , g 1 ∗ 〉 = 〈 g 3 ∗ × g 1 ∗ , g 2 ∗ 〉 .

1.1. Corollary. Assume Aμ 
= 0. The choice g i ∗ = aμ, with appropriate completion for 
the matrix g ∈ GL3(C), brings a g·μ into a vector whose i-th component is equal to 1 and 
the others are equal to zero.

In order to produce appropriate canonical forms for μ = Sμ +Aμ under the GL3(C)-
action (5), we shall proceed as follows: First, assume that g is chosen so as to bring Sg·μ
into some canonical form; say S. Then, restrict the action to the isotropy subgroup,

GS = {g ∈ GL3(C) | S = (det g)−1 g S gt },

and look at the GS-orbits, {g · μ = S + (det g)−1 g Aμ g
t, g ∈ GS}. Following [3] the 

product μ is called non-degenerate if Sμ is non-degenerate. Otherwise, μ is called degen-
erate.

1. Remark. There is a nice characterization for 3-dimensional Lie algebras. Fix a basis 
{e1, e2, e3} of g and let {e∗1, e∗2, e∗3} be its dual basis. Fix the isomorphism ∧2g∗ → g given 
by e∗2 ∧ e∗3 �→ e1, e∗3 ∧ e∗1 �→ e2 and e∗1 ∧ e∗2 �→ e3. Any element in ∧2g∗ is decomposable. 
Then, for each x ∈ g, there are a couple of dual vectors ux and vx in g∗ such that 
ux ∧ vx �→ x. The ambiguity in the choice of ux and vx in g∗ is similar to that of the 
cross-product in C3: the 2-dimensional subspace generated by ux and vx can be rotated 
and the vectors can be changed by scale transformations ux �→ λux and vx �→ λ−1vx. 
Now define a bilinear map Bμ : g × g → C as follows:

Bμ(x, y) = μ∗(ux ∧ vx, uy ∧ vy)

:= μ∗(ux, uy)μ∗(vx, vy) − μ∗(ux, vy)μ∗(vx, uy) ,

where, μ∗ : g∗ × g∗ → C is the bilinear form in g∗ defined by,

μ∗(u, v) =
∑

u(μ(e2, e3)) v(e1), ∀u, v ∈ g∗.

�
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Observe in particular that μ∗(e∗i , e∗j ) = μij , for all 1 ≤ i, j ≤ 3 and that the matrix 
of Bμ in the basis {e1, e2, e3}, is the matrix of cofactors of μ. Now, a straightforward 
computation yields,

∑
�

μ (e1, μ(e2, e3)) = −
∑
�

(Bμ(e2, e3) −Bμ(e3, e2)) e1 .

It is now immediate to conclude the following:

1.2. Proposition. Let μ be a skew-symmetric bilinear map on a 3-dimensional vector space 
g. Then (g, μ) is a Lie algebra if, and only if its associated bilinear map Bμ is symmetric. 
In particular, if detμ 
= 0, then (g, μ) is a Lie algebra if and only if the matrix of μ is 
symmetric.

It also follows that:

1.3. Corollary. Let (g, μ) be a 3-dimensional Lie algebra and T ∈ EndC(g). Then, the pair 
(μ, T ) yields an HL algebra structure in g if and only if, for all x, y ∈ g, Bμ(T (x), y) =
Bμ(x, T (y)).

This hints into the geometric role that the twist maps might play when μ is a Lie 
bracket. The best example at hand is g = sl2(C). In this case Bμ is a scalar multiple 
of the Cartan-Killing form and the twist maps must be self adjoint operators for this 
invariant quadratic form (see Remark 5 after Proposition 4.2 below).

2. Non-degenerate products

Write μ = Sμ + Aμ as before and suppose that Sμ is non-degenerate. Fix first the 
canonical form S = 13 (ie, identity 3 × 3 matrix) so that, G13 = SO3(C). Then, g · μ =
13 + gAμg

−1, for all g ∈ G13 . In particular, Aμ and Ag·μ have the same characteristic 
polynomial: det(x 13 − Aμ) = x3 + σ(μ) x. The coefficient σ(μ) is then an invariant in 
the G13-orbit. It is easy to see that, σ(μ) = a2

1 + a2
2 + a2

3 = 〈 aμ , aμ 〉, with Aμ ↔ aμ =(
a1
a2
a3

)
. If σ(μ) 
= 0, we may choose {g 1 ∗, g 2 ∗, g 3 ∗} to be an orthonormal basis with, 

g 1 ∗ = σ(μ)−1/2 aμ, and Ag·μ ↔ ag·μ =
(√

σ(μ)
0
0

)
. Therefore,

g · μ =

⎛
⎝ 1 0 0

0 1
√

σ(μ)
0 −

√
σ(μ) 1

⎞
⎠ .

If σ(μ) = 〈 aμ , aμ 〉 = 0, we cannot make the choice aμ = σ(μ)1/2g i ∗ for any row g i ∗ of a 
given orthogonal matrix g. However, we can still choose g ∈ GL3(C) to bring Sμ into the 
alternative canonical form S = Sg·μ =

(
K 0 ), with K =

( 0 1 ). In fact, choose g 1 ∗ = aμ
0 1 1 0
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and complete a basis of C3 by producing first a hyperbolic plane Π = Span{aμ, b}, and 
then choose a perpendicular vector to it: c = z (aμ × b) (z ∈ C−{0}). Thus, b satisfies, 
〈b, b〉 = 0 and 〈aμ, b〉 
= 0. Therefore, there is a g with row vectors {aμ, b, c} satisfying, 

g gt =
( 0 〈 aμ , b 〉 0

〈 aμ , b 〉 0 0
0 0 〈 c , c 〉

)
, and det g = z−1 〈 c , c 〉. By choosing appropriate values of 

z and det g, we obtain g ∈ GL3(C) with, g · μ =
(

0 1 0
1 0−1
0 1 1

)
. We thus have the following:

2.1. Proposition. There are three different types of isomorphism classes of non-degenerate 
products μ on g, under the left GL(g)-action (2). These are:

μ1;a =
( 1 0 0

0 1 −a
0 a 1

)
, a 
= 0; μ2 = 13; μ3 =

( 0 1 0
1 0 −1
0 1 1

)
.

Moreover, μ1;a is equivalent to μ1;a′ if and only if a = ±a′ 
= 0.

2. Remark. By Proposition 1.2, none of the products μ1;a nor μ3 define Lie algebra 
brackets on g. The only Lie algebra product corresponds to μ2, which yields the Lie 
algebra sl2(C).

3. Degenerate products

In this section we consider those products whose symmetric component is degenerate.
We shall make use of the following well known result:

3.1. Lemma. Let S ∈ Mat3×3(C) be a non-zero symmetric matrix with rank(S) < 3. 
There exists g ∈ GL3(C), such that g S gt is equal to:

(1) I1 := diag{1, 0, 0} if and only if rank(S) = 1;
(2) I2 := diag{1, 1, 0} if and only if rank(S) = 2,

Thus, if μ is a degenerate product, we may first assume that, μ = I� + Aμ, where 
1 ≤ � ≤ 2. Then, look at the isotropy subgroups,

G� := {g ∈ GL3(C) | (det g)−1g I� g
t = I�}, � = 1, 2.

It is then a straightforward matter to see that:

3.2. Lemma. The isotropy subgroups G� are given by,

(1) G1 =
{(

a vt

0 B

) ∣∣∣B ∈ GL2(C), detB = a 
= 0, v ∈ C2
}

;
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(2) G2 =
{(

B v
0 ±1

) ∣∣∣B ∈ GL2(C), BBt = ±(detB) 12, v ∈ C2
}

,

where 12 denotes the identity 2 × 2 matrix.

3. Remark. In the proof of Proposition 3.3 below, different choices of canonical forms for 
Sμ will have to be made, as it was done in the case of μ3 in Proposition 2.1, and their 
corresponding isotropy subgroups will have to be changed accordingly.

3.3. Proposition. Let μ be a degenerate product of rank 2 and Aμ ↔ aμ 
= 0. Let π2(aμ)
be the projection of aμ onto the C2 factor of C3 given by its first and second components 
and let 〈 · , · 〉2 be the usual scalar product on C2. Then, there are three non-equivalent 
GL3(C)-orbits, {g · μ | g ∈ GL3(C)}, described by the following conditions:

(1) 〈π2(aμ), π2(aμ)〉2 
= 0,
(2) 〈π2(aμ), π2(aμ)〉2 = 0, with π2(aμ) 
= 0, or,
(3) π2(aμ) = 0.

Proof. Let Aμ =
(

0 −z y
z 0 −x

−y x 0

)
↔

( x
y
z

)
= aμ, with π2(aμ) =

( x
y

)
∈ C2. Notice that 

〈π2(ag·μ), π2(ag·μ)〉2 = ± detB 〈π2(aμ), π2(aμ)〉2. Therefore, either 〈π2(aμ), π2(aμ)〉2 
= 0
or 〈π2(aμ), π2(aμ)〉2 = 0, along the orbits. Suppose first that 〈π2(aμ), π2(aμ)〉2 
= 0. We 

may choose g ∈ G2 in such a way that, g1∗ = aμ, g2∗ =
(

−y
x
w

)
and g3∗ =

(
0
0
1

)
, where 

w ∈ C can be chosen arbitrarily. Then, ag·μ =
(

1
0
0

)
and the canonical form of the 

product μ is, g · μ =
(

1 0 0
0 1−1
0 1 0

)
.

Now, suppose that 〈π2(aμ), π2(aμ)〉2 = 0, with π2(aμ) 
= 0. Then, aμ cannot be em-
bedded as a row of an element g ∈ G2. We may find however another vector b ∈ C3 with 
〈π2(aμ), π2(b)〉2 = 1 and 〈π2(b), π2(b)〉2 = 0 and look for some g ∈ GL3(C) such that,

1
det g g

(
12 0
0 0

)
gt =

(
K 0
0 0

)
, where, K =

(
0 1
1 0

)
. (11)

Take, g1∗ = aμ =
( x

y
z

)
, g2∗ = b =

( y
x
w

)
, g3∗ =

(
0
0
s

)
, where, x2 + y2 = 0. Since 

g =
( x y z

y x w
0 0 s

)
, det g = s(x2 − y2) = 2 s x2. Also, since π2(aμ) 
= 0 and x2 + y2 = 0, it 

follows that y = ±ix 
= 0. So, we may choose s = y/x so as to satisfy (11). Taking this 

g, it also follows from (10) that, (det g)−1g Aμg
t =

(
0 0 0
0 0−1
0 1 0

)
. Therefore, the canonical 

form is, g · μ =
(

0 1 0
1 0−1

)
, whenever, π2(aμ) 
= 0 and 〈π2(aμ), π2(aμ)〉2 = 0.
0 1 0
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Finally, let π2(aμ) = 0, with aμ 
= 0. Thus, aμ =
(

0
0
z

)
, and z 
= 0. We may choose 

g3∗ = z−1aμ, and complete g1∗ and g2∗ so as to have g =
(

12 v
0 ±1

)
∈ G2. In particular, 

ag·μ =
(

0
0
1

)
and the canonical form of the product is in this case, g · μ =

(
1−1 0
1 1 0
0 0 0

)
.

We finally observe that the products represented by the matrices, 
(

0 1 0
1 0−1
0 1 0

)
and (

1−1 0
1 1 0
0 0 0

)
, cannot be isomorphic. If they were equivalent, there would be an element 

g ∈ G2 such that g ·
( 1 −z y

z 1 −x
−y x 0

)
=

(
1−1 0
1 1 0
0 0 0

)
, thus implying that (x, y) = 0, which is a 

contradiction. �
We shall now deal with the degenerate products of rank 1.

3.4. Proposition. Let μ = I1 + Aμ be a degenerate product of rank 1 and Aμ ↔ aμ 
= 0. 
Let π1(aμ) be the projection of aμ onto its first component in C. Then, there are two 
non-equivalent G1-orbits described by the following conditions: either,

(1) π1(aμ) 
= 0, or else,
(2) π1(aμ) = 0.

Proof. Let Aμ =
( 0 −z y

z 0 −x
−y x 0

)
↔

( x
y
z

)
= aμ, with π1(aμ) = x ∈ C. Take g =

(
a vt

0 B

)
∈ G1, 

so that det g = a detB. Then, π1(ag·μ) = (det g)−1〈 aμ × g 2 ∗ , g 3 ∗ 〉 = a−1π1(aμ). 
Whence, either the first component in the orbit is zero, or it is different from zero. 

Assume first that x = π1(aμ) 
= 0. Let g ∈ G1 be given by, g1∗ = aμ, g2∗ =
(

0√
x

0

)
, and 

g3∗ =
( 0

0√
x

)
, where, x 
= 0. Then, ag·μ =

(
1
0
0

)
, and the canonical form of the product 

is, g · μ =
(

1 0 0
0 0−1
0 1 0

)
. On the other hand, if x = 0, but aμ 
= 0, the vector aμ can be 

embedded into a row of some g ∈ G1; either as g2∗ = aμ, or else, as g3∗ = aμ. It is clear 
that any of these choices will not change the orbit. Thus, choose g2∗ = aμ, and complete 
g1∗ and g3∗ so as to get g ∈ G1. It is a straightforward matter to see that in this case, 

g ·μ =
(

1 0 1
0 0 0

−1 0 0

)
. Observe that the two representatives thus found cannot be equivalent, 

as the latter is non-invertible, whereas the former is. �
We may now summarize our findings for degenerate products μ with non-zero sym-

metric component Sμ.

3.5. Proposition. Let μ� be a degenerate product on g with non-zero symmetric component 
Sμ and � = rkSμ. Also write � = ′′ for rank 2, and � = ′ for rank 1.
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(1) If rkSμ = 2, there are four non-equivalent products:

μ′′
1 :=

(1 0 0
0 1 −1
0 1 0

)
, μ′′

2 :=
(1 0 0

0 1 0
0 0 0

)
, μ′′

3 :=
(0 1 0

1 0 −1
0 1 0

)
,

μ′′
4 :=

( 1 1 0
−1 1 0
0 0 0

)
.

(2) If rkSμ = 1, there are three non-equivalent products:

μ′
1 :=

(1 0 0
0 0 1
0 −1 0

)
, μ′

2 :=
(1 0 0

0 0 0
0 0 0

)
, μ′

3 :=
( 1 0 1

0 0 0
−1 0 0

)
.

(3) If rkSμ = 0 and μ 
= 0, then the product representative is:

μ0 =
(0 0 0

0 0 −1
0 1 0

)
.

4. Remark. Once again, Proposition 1.2 implies that neither μ′′
1 nor μ′

1, can be repre-
sentatives of Lie algebra brackets on g. When the matrix μ is singular, one must verify 
directly whether μ defines or not a Lie algebra bracket. It can be checked that μ′′

4 , μ′′
2 , μ′

2
and μ0 are Lie brackets, whereas μ′′

3 and μ′
3 are not. Moreover, the Lie algebras (g, μ′′

4), 
(g, μ′′

2) and (g, μ0) are non-nilpotent and solvable, whereas (g, μ′
2) is the Heisenberg Lie 

algebra.

In the following two sections we shall determine the Gμ-orbits in HL(μ), under the 
left action T �→ g · T = g T g−1, where,

Gμ = {g ∈ GL(g) | g (μ (g−1(x), g−1(y))) = μ(x, y), ∀x, y ∈ g},

is the isotropy subgroup at the given representative μ; i.e., the automorphism group of 
the canonical form μ.

4. Hom-Lie algebras associated to non-degenerate products

We shall start with the three different isomorphism classes of non-degenerate products 
in a 3-dimensional vector space g given by Proposition 2.1.
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4.1. The one-parameter family μ1;a

Let {e1, e2, e3} be a basis of g for which the matrix associated to μ1;a is, 
(

1 0 0
0 1 −a
0 a 1

)
, 

where a 
= 0. Clearly, detμ1;a = 1 + a2. Thus, the cases a = ±i must be considered 
separately. Let {H ′, E′, F ′} be the basis defined by,

H ′ = −2ie1 , E′ = e2 − ie3 , F ′ = −e2 − ie3,

so that, μ1;a(H ′, E′) = 2(1 + ia) E′, μ1;a(H ′, F ′) = −2(1 − ia) F ′ and μ1;a(E′, F ′) = H ′. 

In this basis, μ1;a ↔
( 1 0 0

0 0 2(1+ia)
0 2(1−ia) 0

)
. Clearly, if a 
= ±i, then μ1;a(g, g) = g and the 

product is perfect. However, μ1;±i(g, g) 
= g.

4.1. Proposition. Let μ1;a : g ×g → g, a ∈ C−{0}, be the non-degenerate product defined 
on the basis {e1, e2, e3} by,

μ1;a(e1, e2) = −ae2 + e3, μ1;a(e2, e3) = e1, μ1;a(e3, e1) = e2 + ae3.

A. If a 
= ±i, the HL algebra (g, μ1;a, T ) is perfect and T = (Tij) ∈ HL(μ1;a) is equivalent 
to one and only one of the following canonical forms:

(1) If T 2
12 + T 2

13 
= 0, then,

T 

(
T ′

11 1 0
1 T ′

22 T ′
23

a a(T ′
22 + T ′

33) + T ′
23 T ′

33

)
,

(2) If T 2
12 + T 2

13 = 0 and (T12, T13) 
= (0, 0), then,

T 

(

T ′
11 1 i

1 − ai T ′
22 0

i(1 − ai) a(T ′
22 + T ′

33) T ′
33

)
,

(3) If (T12, T13) = (0, 0), then,

T 

(
T ′

11 0 0
0 T ′

22 0
0 a(T ′

22 + T ′
33) T ′

33

)
.

B. If a = ±i, the products μ1;i and μ1;−i are equivalent and there is a basis of g in terms 
of which their corresponding matrices are equivalent to:

μ1;±i :=
(1 0 0

0 0 1
)
.

0 0 0
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In this case, the HL algebra (g, μ1;±i, T ) is not perfect and T = (Tij) ∈ HL(μ1;±i) if and 
only if in this basis the matrix entries of T satisfy, T21 = T13 and T33 = 0. Moreover, 
any g ∈ Gμ1;±i

is of the form g = diag(1, λ, λ−1), with λ 
= 0, and,

T ′ = g T g−1 =

⎛
⎝ T11 λ−1T12 λT13

λT13 T22 λ2T23
λ−1T31 λ−2T32 0

⎞
⎠ .

Proof. A. For a 
= ±i, we shall work in the basis {e1, e2, e3}. Any g ∈ Gμ1;a in this basis 

has the form 
( 1 0 0

0 x y
0−y x

)
, with x2 + y2 = 1. First observe that, T ∈ HL(μ1;a), if and only 

if its matrix has the form:

T =
(

T11 T12 T13
T12 − aT13 T22 T23
aT12 + T13 a(T22 + T33) + T23 T33

)
.

Write T ′ = ( T ′
ij) for the matrix defined by T ′ = g T g−1 with g ∈ Gμ1;a . It is easy to see 

that,

T ′
11 =T11

T ′
12 =T12x + T13y,

T ′
13 = − T12y + T13x,

T ′
22 =T22x

2 + (a(T22 + T33) + 2T23)xy + T33y
2,

T ′
23 =T23x

2 − (a(T22 + T33) + T23)y2 + (T33 − T22)xy,

T ′
33 =T33x

2 − (a(T22 + T33) + 2T23)xy + T22y
2.

It follows that T ′
12

2 +T ′
13

2 = T12
2 +T13

2. Suppose (T12, T13) 
= (0, 0). If T12
2 +T13

2 
= 0, 
we may choose x and y in such a way that T becomes equivalent to the canonical form,

T ′ =
(
T ′

11 1 0
1 T ′

22 T ′
23

a a(T ′
22 + T ′

33) + T ′
23 T ′

33

)
,

(T12, T13) 
= (0, 0),
and

T12
2 + T13

2 
= 0.

On the other hand, if (T12, T13) 
= (0, 0), but T12
2 + T13

2 = 0, we may assume that 
T13 = iT12 
= 0 and appropriate choices of x and y in g bring T ′ = g T g−1, to the 
following canonical form:

T ′ =
(

T ′
11 1 i

1 − ai T ′
22 0

i(1 − ai) a(T ′
22 + T ′

33) T ′
33

)
.

Finally, for the case T12 = T13 = 0, there is a g ∈ Gμ1;a such that T ′ = g T g−1, is 
brought to the following canonical form:
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(
T11 0 0
0 T22 0
0 a(T22 + T33) T33

)
.

B. For a = ±i, we shall work in the basis {H ′, E′, F ′}. If a = i, the matrix of the product 

in this basis takes the form, 
(

1 0 0
0 0 0
0 4 0

)
. On the other hand, if a = −i, the matrix of the 

product has the form, 
(

1 0 0
0 0 4
0 0 0

)
. These two matrices are equivalent to 

(
1 0 0
0 0 1
0 0 0

)
. Thus, 

there is a basis {e′′1 , e′′2 , e′′3} of g for which,

μ1:±i(e′′1 , e′′2) = e′′3 , μ1;±i(e′′2 , e′′3) = e′′1 , μ1;±i(e′′3 , e′′1) = 0.

It is easy to see that its isotropy subgroup is given as in the statement. It is also easy to 
verify that (Tij) = T ∈ HL(μ1;±i) if and only if T21 = T13 and T33 = 0. Then, for any 
g ∈ Gμ1;±i

the matrix T ′ = g T g−1, takes the form:

T ′ =

⎛
⎝ T11 λ−1T12 λT13

λT13 T22 λ2T23
λ−1T31 λ−2T32 0

⎞
⎠ .

Observe that no further simplification can be made, except for rescaling some entries; 
say, if T13 
= 0, we may choose λ so that T13 = 1, but then this choice fixes the scaling 
of all the other off-diagonal entries. �
4.2. HL-algebras for the Lie product of sl2(C)

Let μ2 be the Lie bracket of g = sl2(C). We shall use the basis {H, E, F} for which, 
μ2(H, E) = 2E, μ2(E, F ) = H and μ2(H, F ) = −2F . The isotropy group Gμ2 = {g ∈
GL(sl2(C)) | g ·μ2 = μ2} coincides with Aut sl2(C) and its structure is well known (see 
for example, [4]). It is a straightforward matter to see that any T ∈ HL(μ2) in the basis 
{H, E, F} can be written in the form,

⎛
⎜⎜⎜⎜⎝

2(T11 − T22)
3 T12 T13

2T13 −T11 − T22

3 T23

2T12 T32 −T11 − T22

3

⎞
⎟⎟⎟⎟⎠+ 1

3(T11 + 2T22) Idsl2(C) .

This suggests to decompose HL(μ2) as SHL(μ2) ⊕ C Idsl2(C), where, SHL(μ2) := {T ∈
HL(sl2(C)) | Tr(T ) = 0}. Write any T ∈ HL(μ2) in the form T = T0 + λ Idsl2(C), with 
T0 ∈ SHL(μ2). If T ′ = T ′

0 + λ′ Idsl2(C), then T is equivalent to T ′ under the Gμ2-action 
T �→ T ′ = g T g−1 if and only if T0 is equivalent to T ′

0 and λ = λ′. Therefore, this leads us 
to determine first the Gμ2-orbits in the subspace SHL(μ2). It has been proved in [2] that 
SHL(μ2) = Der(−1,1,1)(sl2(C)), the latter being the space of generalized derivations of 
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type (−1, 1, 1). This means that any T ∈ SHL(μ2) satisfies the following form of Leibniz’s 
rule:

−T (μ2(x, y)) = μ2(T (x), y) + μ2(x, T (y)), ∀x, y ∈ sl2(C).

The Gμ2-orbits in Der(−1,1,1)(sl2(C)) have been determined in [2] and using the canonical 
forms given there (Thm. 3.6 in [2]), one may easily prove the following:

4.2. Proposition. Let μ2 be the Lie bracket on g = sl2(C) and let Gμ2 = {g ∈ GL(sl2(C)) |
g · μ2 = μ2} = Aut sl2(C) be its isotropy group. Let T0 = T − 1/3 Tr(T ) Idsl2 , for each 
T ∈ HL(μ2). Then, the Gμ2-action T �→ T ′ = g T g−1 decomposes HL(μ2) into different 
orbits whose representatives (canonical forms) are given by:

If T0 = 0 ⇒ T ∼
(
T ′

11 0 0
0 T ′

11 0
0 0 T ′

11

)
, with T ′

11 ∈ C,

If rank(T0) = 1 ⇒ T ∼
(
T ′

11 0 0
0 T ′

11 1
0 0 T ′

11

)
, with T ′

11 ∈ C,

If rank(T0) = 2 ⇒ T ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
T ′

11 0 1
2 T ′

11 0
0 0 T ′

11

)
, with T ′

11 ∈ C,

(
T ′

11 1 T ′
13

2T ′
13 T ′

11 0
2 0 T ′

11

)
, with

T ′
11 ∈ C,

T ′
13 
= 0

If rank(T0) = 3 ⇒ T ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
T ′

11 1 0
0 T ′

11 T ′
23

2 0 T ′
11

)
, with

T ′
11 ∈ C,

T ′
23 
= 0;

(
T ′

11 1 T ′
13

2T ′
13 T ′

11 T ′
23

2 0 T ′
11

)
, with

T ′
11 ∈ C,

T ′
13T

′
23 
= 0;

5. Remark. It is proved from first principles in [2] that sl2(C) is the only simple Lie 
algebra that admits non-trivial HL-structures. A previous software-assisted proof of this 
fact was given in [7] where HL structures on sl2(C) were first studied.

6. Remark. Since μ2 is a Lie bracket, Corollary 1.3 applies, and the bilinear form Bμ

there is actually a scalar multiple of the Cartan-Killing form in sl2(C). Using the latter, 
it is a straightforward matter to show that self-adjoint operators T fit precisely into the 
canonical forms for the twist maps T given in Proposition 4.2.
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4.3. HL-algebras for the product μ3

We have proved that there is a basis of g for which the product μ3 has the matrix, (
0 1 0
1 0−1
0 1 1

)
. It can be decomposed into its symmetric and skew-symmetric components 

as, μ3 = Sμ3 + Aμ3 . It is not difficult to see that g ∈ GL(g) satisfies g · Sμ3 = Sμ3 and 
g · Aμ3 = Aμ3 if and only if g = 13; that is, the isotropy subgroup Gμ3 consists only of 
the identity map. It is also easy to see that there is a basis {e′1, e′2, e′3}, satisfying,

μ3(e′1, e′2) = −e′1 + e′3, μ3(e′2, e′3) = e′2 + e′3, μ3(e′3, e′1) = e′1.

Now let H ′′ = 2e′3, E′′ = 4e′1 and F ′′ = 1
2 (e′2 + e′3). Were not for its (2, 1)-entry, the 

matrix of μ3 in the basis {H ′′, E′′, F ′′} looks almost like the matrix used for μ2 above. 
In fact,

μ3 =
( 1 0 0
−1 0 2
0 2 0

)
. (12)

A straightforward argument now proves the following:

4.3. Proposition. Fix the basis of g so that the non-degenerate product μ3 takes the form 
(12). Then, T ∈ HL(μ3) if and only if, its matrix has the form:

T =
(

T11 T12 T13
2T13 − T11 − 3T12 T22 T23

2T12 T32 T22 − T12

)
.

5. Hom-Lie algebras associated to degenerate products

5.1. HL-algebras for degenerate products of rank 2

5.1.1. HL-algebras for μ′′
1

Let {e1, e2, e3} be the basis for which μ′′
1 =

(
1 0 0
0 1−1
0 1 0

)
. The isotropy subgroup Gμ′′

1
is 

given by:

Gμ′′
1

=
{(

1 0
0 Λ±

) ∣∣∣∣∣ Λ± =
(
±1 a
0 ±1

)
, a ∈ C

}
.

Then T ∈ HL(μ′′
1), if and only if it has the matrix form, T =

(
T11 wt

Pw Θ

)
, where w =

(
T12
T13

)
, 

Θ =
(

T22 T23
−(T22+T33) T33

)
, and P =

( 1 1
0 1

)
. Now, upon conjugation by g± ∈ Gμ′′

1
, we get:

g±T g−1
± =

(
T11 wtΛ−1

±
−1

)
,
Λ±Pw Λ±ΘΛ±
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where,

Λ±ΘΛ−1
± =

(
T22 ∓ a Tr(Θ) a2 Tr(Θ) ∓ a (Tr(Θ) − 2T33) + T23

−Tr(Θ) T33 ± a Tr(Θ))

)
.

If Tr(Θ) 
= 0 or Tr(Θ) 
= 2T33, we may choose a ∈ C in such a way that, a2 Tr(Θ) ∓
a (Tr(Θ) −2T33) +T23 = 0, thus bringing Λ±ΘΛ−1

± into a lower triangular form. Therefore, 
we have the following:

5.1. Proposition. Let {e1, e2, e3} be the basis of g with respect to which the degenerate 
product μ′′

1 is given by:

μ′′
1(e1, e2) = e2, μ′′

1(e2, e3) = e1, μ′′
1(e3, e1) = e2 − e3.

Then, T = (Tij) ∈ HL(μ′′
1) is equivalent to one and only one of the following canonical 

forms:

(1) If T22 
= T33 or T22 
= −T33, then

T 

(

T ′
11 T ′

12 T ′
13

T ′
12 + T ′

13 T ′
22 0

T ′
13 −(T ′

22 + T ′
33) T ′

33

)
, with T ′

22 
= T ′
33 or T ′

22 
= −T ′
33.

(2) If T22 = T33 = 0, then

T 

(

T ′
11 T ′

12 T ′
13

T ′
12 + T ′

13 0 T ′
23

T ′
13 0 0

)
.

5.1.2. HL-algebras for the product μ′′
2

Let {e1, e2, e3} be the basis of g with respect to which μ′′
2 =

(
1 0 0
0 1 0
0 0 0

)
. It is a straight-

forward matter to show that the isotropy subgroup Gμ′′
2

is given by,

Gμ′′
2

=
{
g =

(
Λ u
0 ±1

) ∣∣∣u ∈ C2, and Λ ∈ G

}
,

where, G =
{(

a −b
b a

) ∣∣∣ a2 + b2 
= 0
}
∪
{(

a b
b −a

) ∣∣∣ a2 + b2 
= 0
}
.

Clearly, G 
 (C − {0}) ×O2(C). On the other hand, it is also a straightforward matter 
to verify that T ∈ HL(μ′′

2) if and only if its matrix (Tij) satisfies T13 = T23 = 0. Thus,

T =
(

Θ v
0 T33

)
, Θ =

(
T11 T12
T21 T22

)
, v =

(
T13
T23

)
. (13)

Conjugation of T by an element g ∈ Gμ′′ produces an equivalent T ′, given by,

2
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T ′ =
(

Θ′ v′

0 T33

)
, where Θ′ = Λ Θ Λ−1 =

(
T ′

11 T ′
12

T ′
21 T ′

22

)
, Λ ∈ G,

and v′ = ± 
(
−( Λ Θ Λ−1 − T33112 )u + Λv

)
. In looking for simplified canonical forms for 

T we shall first search for conditions under which Θ′ can be brought to upper triangular 
form. It is not difficult to prove that this can be done if and only if T11 
= T22 or 
T21 
= −T12.

Observe that Θ =
(

T11 T12
T21 T22

)
satisfies T11 = T22 and T12 = −T21 if and only if there 

is some Λ =
(
a −b
b a

)
∈ G with b 
= 0, such that, Λ Θ Λ−1 = Θ. Let g =

(±12 u
0 1

)
with 

u =
( c
d

)
∈ C2. Then,

g T g−1 =
(

Θ ∓( Θ − T3312 )u + v
0 T33

)
, v =

(
T13
T23

)
.

If det(Θ − T3312) 
= 0 then the linear map Θ − T3312 is invertible. So, given v ∈ C2, 
there exists u ∈ C2, such that ∓(Θ − T3312)u + v = 0.

We may now proceed to give a complete list of canonical forms for the linear maps 
T ∈ HL(μ′′

2). They come out divided into two non-isomorphic families; those for which 
Θ can be brought to upper triangular form and those for which it cannot.

5.2. Proposition. Let {e1, e2, e3} be the basis of g with respect to which the degenerate 
product μ′′

2 is given by:

μ′′
2(e1, e2) = 0, μ′′

2(e2, e3) = e1, μ′′
2(e3, e1) = e2.

Each T ∈ HL(μ′′
2) as in (13) is equivalent to one and only one of the following canonical 

forms:

(1) If det(Θ − T3312) 
= 0, and either T11 
= T22 or T12 
= −T21, then

T 

(
T ′

11 T ′
12 0

0 T ′
22 0

0 0 T ′
33

)
, with T ′

11 
= T ′
22 or T ′

12 
= 0.

(2) If det(Θ − T3312) = 0, and either T11 
= T22 or T12 
= −T21, then

T 

(
T ′

33 T ′
12 T ′

13
0 T ′

22 T ′
23

0 0 T ′
33

)
, with T ′

11 
= T ′
22 or T ′

12 
= 0.

or T 

(
T ′

11 T ′
12 T ′

13
0 T ′

33 T ′
23

0 0 T ′
33

)
, with T ′

11 
= T ′
22 or T ′

12 
= 0,

and these two are themselves equivalent if and only if T ′
12 = 0.
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(3) If det(Θ − T3312) 
= 0, T11 = T22 and T12 = −T21, then

T 

(
T ′

11 −T ′
12 0

T ′
12 T ′

11 0
0 0 T ′

33

)
.

(4) If det(Θ − T3312) = 0, T11 = T22 and T12 = −T21, then

T 

(
T ′

11 −T ′
12 T ′

13
T ′

12 T ′
11 T ′

23
0 0 T ′

11 + iT ′
12

)
, or T 


(
T ′

11 −T ′
12 T ′

13
T ′

12 T ′
11 T ′

23
0 0 T ′

11 − iT ′
12

)
,

and these two are equivalent.

5.1.3. HL-algebras for the product μ′′
3

Choose the basis of g so that μ′′
3 =

(
0 1 0
1 0−1
0 1 0

)
. It is not difficult to prove that the 

isotropy subgroup Gμ′′
3

consists only of the identity map. However, we may use a different 
basis to simplify a bit further the matrix form of μ′′

3 . Namely, there is a basis {e′1, e′2, e′3}
such that

μ′′
3(e′1, e′2) = −e′1, μ′′

3(e′2, e′3) = e′2 + e′3, μ′′
3(e′3, e′1) = e′1.

Let e′′1 = e′3, e′′2 = e′1 and e′′3 = e′2 + e′3. In this basis, μ′′
3 takes the form:

μ′′
3 =

( 0 0 0
−2 0 1
0 1 0

)
. (14)

A straightforward argument now proves the following:

5.3. Proposition. Let g be a complex 3-dimensional vector space and fix the basis so that 
the degenerate product μ′′

3 takes the form (14). Then, T ∈ HL(μ′′
3) if and only if its matrix 

has the form:
(
T11 0 T13
T21 T22 T23
T31 T32 T33

)
, 2 Tr(T ) = T13 − 4T31.

5.1.4. HL-algebras for the product μ′′
4

Choose the basis {e1, e2, e3} of g so that the degenerate product μ′′
4 takes the matrix 

form, μ′′
4 =

(
1 1 0

−1 1 0
0 0 0

)
. Let e′1 = e3, e′2 = ie1 + e2, and e′3 = −ie1 + e2. In the basis 

{e′1, e′2, e′3}, we have,

μ′′
4 =

√
2i

(0 0 0
0 0 1

)



(0 0 0
0 0 1

)
. (15)
0 i 0 0 i 0
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This product is a Lie algebra bracket. Its isotropy subgroup is,

Gμ′′
4

=
{(1 0 0

c a 0
d 0 b

) ∣∣∣∣∣ ab 
= 0; c, d ∈ C

}
.

Also, in terms of the same basis {e′1, e′2, e′3} we have,

HL(μ′′
4) =

{(
T11 0
v Θ

) ∣∣∣∣∣ T11 ∈ C, v ∈ C2, Θ ∈ Mat2×2(C)
}
. (16)

It is easy to see that for any g ∈ Gμ′′
4

and T ∈ HL(μ′′
4),

g T g−1 =
(

T11 0
Λ (T1112 − Θ ) Λ−1u + Λ v Λ Θ Λ−1

)
.

If T11 is not an eigenvalue of Θ, then there exists u ∈ C2, such that (Θ −T1112) u −v = 0. 
Therefore, we have the following:

5.4. Proposition. Let g be a complex 3-dimensional vector space and fix the basis so 
that the non-degenerate product μ′′

4 takes the form (15). Any T ∈ HL(μ′′
4) as in (16) is 

equivalent to a one and only one of the following canonical forms:

(1) If det(Θ − T1112) 
= 0, then

T 

(
T ′

11 0
0 Θ′

)
, with T ′

11 ∈ C, and det(Θ − T1112) 
= 0.

(2) If det(Θ − T1112) = 0, then

T 

(
T ′

11 0
v′ Θ′

)
, with T ′

11 ∈ C, and v′ ∈ C2, det(Θ′ − T ′
1112) = 0.

5.2. HL-algebras for degenerate products of rank 1

5.2.1. HL-algebras for the product μ′
1

5.5. Proposition. Let {e1, e2, e3} be the basis of g with respect to which the degenerate 
product μ′

1 is given by:

μ′
1(e1, e2) = e2, μ′

1(e2, e3) = e1, μ′
1(e3, e1) = −e3.

Its isotropy subgroup is,
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Gμ′
1

=
{
g =

(
1 0
0 Λ

) ∣∣∣∣∣ Λ =
(
a b
c d

)
, detΛ = 1

}
.

Then, T = (Tij) ∈ HL(μ′
1), if and only if:

T =
(
T11 ut

Ju Θ

)
, u =

(
T12
T13

)
, J =

(
0 1
−1 0

)
, Θ =

(
T22 T23
T32 −T22

)
.

Then, T is equivalent to one and only one of the following canonical forms:

(1) If detΘ = 0, T 


⎛
⎝ T ′

11 T ′
12 T ′

13
T ′

13 0 T ′
23

−T ′
12 0 0

⎞
⎠.

(2) If detΘ 
= 0, T 


⎛
⎝ T ′

11 T ′
12 T ′

13
T ′

13 T ′
22 0

−T ′
12 0 −T ′

22

⎞
⎠, with, T ′

22 
= 0.

Proof. Let T = (Tij) ∈ HL(μ′
1) and let g ∈ Gμ′

1
. Then,

g T g−1 =
(

T ′
11 utΛ−1

ΛJu ΛΘΛ−1

)
=

(
T ′

11 u′t

Ju′ Θ′

)
=

⎛
⎝ T ′

11 T ′
12 T ′

13
T ′

13 T ′
22 T ′

23
−T ′

12 T ′
32 −T ′

22

⎞
⎠.

Where, T ′
11 = T11, u′ = (Λ−1)tu and Θ′ = ΛΘΛ−1. We know there exists an invertible 

matrix P ∈ GL2(C) such that PΘP−1 is upper triangular. Letting Λ = (detP )−1/2 P , 
we make detΛ = 1 and ΛΘΛ−1 remains upper triangular. Thus, we may assume that 
T ′

32 = 0. Suppose detΘ′ 
= 0. It is not difficult to see that there exists an automorphism 
g ∈ Gμ′

1
, that brings ΛΘ′Λ−1 into diagonal form. The only other alternative is to have 

det Θ′ = 0, from which the statement follows. �
5.2.2. HL-algebras for the product μ′

2
The product μ′

2 is the Lie bracket of the 3-dimensional Heisenberg Lie algebra. The 
HL-algebras based on μ′

2 have been thoroughly studied in [1], using T ∈ HL(μ′
2) ∩

Aut(g; μ′
2). It turns out, however, that any linear map T : g → g satisfies the HL-Jacobi 

identity for μ′
2; i.e., HL(μ′

2) = EndC(g). Thus, in contrast to the approach in [1], we 
consider here not only Lie algebra automorphisms, but the most general linear maps 
T ∈ EndC(g).

5.6. Proposition. Let μ′
2 be the degenerate product defined on a basis {e1, e2, e3} by,

μ′
2(e1, e2) = μ′

2(e3, e1) = 0, μ′
2(e2, e3) = 1.

Its isotropy subgroup is,
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Gμ′
2

=
{(

α ut

0 Λ

) ∣∣∣∣∣ u ∈ C2, detΛ = α 
= 0
}
.

Then, any T = (Tij) ∈ EndC(g) belongs to HL(μ′
2) and such a T is equivalent to one 

and only one of the following canonical forms:

(1) If (T21, T31) 
= (0, 0), then

T 


⎛
⎝T ′

11 T ′
12 T ′

13
T ′

21 T ′
22 0

T ′
31 0 0

⎞
⎠, with (T ′

21, T
′
31) 
= (0, 0).

(2) If (T12, T13) = (0, 0) and (T22 − T11)(T33 − T11) 
= 0, then

T 


⎛
⎝T ′

11 0 0
0 T ′

22 T ′
23

0 0 T ′
33

⎞
⎠ with (T ′

22 − T ′
11)(T ′

33 − T ′
11) 
= 0.

(3) If (T12, T13) = (0, 0) and (T22 − T11)(T33 − T11) = 0, then

T 


⎛
⎝T ′

11 T ′
12 T ′

13
0 T ′

22 T ′
23

0 0 T ′
33

⎞
⎠, with (T ′

22 − T ′
11)(T ′

33 − T ′
11) = 0.

Proof. Write the matrix of T in the form,

T =
(
T11 wt

v Θ

)
, T11 ∈ C, v =

(
T21
T31

)
, w =

(
T12
T13

)
∈ C2,

Θ =
(
T22 T23
T32 T33

)
∈ Mat2×2(C).

For any g ∈ Gμ′
2
, the matrix g T g−1 is equal to,

(
T11 + α−1utv −(T11 + α−1utv)utΛ−1 + αwtΛ−1 + utΘΛ−1

α−1Λv −α−1ΛvutΛ−1 + ΛΘΛ−1

)
.

We denote by adj(Θ) the unique matrix that satisfies Θ adj(Θ) = adj(Θ) Θ = (detΘ) 12. 
Let, Θ′ = Λ 

(
Θ − α−1v ut

)
Λ−1. If v 
= 0, u can be chosen so that T is equivalent to (

T ′
11 w′t

v′ Θ′

)
, with detΘ′ = 0. Thus, we may always assume that Θ is singular whenever 

v 
= 0. In particular, the characteristic polynomial of Θ is x(x − Tr(Θ)). We claim that 
there exists g ∈ Gμ′

2
, such that g T g−1 =

(
T ′
11 w′t

v′ diag{T ′
22,0}

)
. We proceed by considering 

two cases: either Tr(Θ) 
= 0, or Tr(Θ) = 0.
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If Tr(Θ) 
= 0, then Θ is diagonalizable. If Tr(Θ) = 0 we may take g =
(

1 ut

0 12

)
, to 

obtain T ′ = g T g−1 =
(

T ′
11 w′t

v′ Θ′

)
, where:

det Θ′ = −〈u, adj(Θ)(v)〉, and Tr(Θ′) = −〈u, v〉,

for any u ∈ C2. Since detΘ = 0, by considering Θt(u) instead of u, we see that, detΘ′ = 0
and Tr(Θ′) = −〈u, Θ(v)〉, where u is any element in C2−{0}. Thus, if Θ(v) 
= 0, we may 
choose u ∈ C2, such that 〈u, Θ(v)〉 
= 0; implying, Tr(Θ′) 
= 0. Now, suppose Θ(v) = 0. 
If adj(Θ)(v) = 0, then any u ∈ C2 with 〈u, v〉 
= 0, satisfies detΘ′ = 〈u, adj(Θ)(v)〉 = 0
and Tr(Θ′) = 〈u, v〉 
= 0, bringing us back again to the same canonical form.

On the other hand, assume v′ = adj(Θ)(v) 
= 0. Since det Θ = 0, it follows that 
Θ(v′) = 0, which in turn implies that v and v′ both belong to Ker(Θ). Since Θ 
= 0, then 
v and v′ are linearly dependent, therefore there exists ζ ∈ C−{0} such that v′ = ζv. This 
means that adj(Θ)(v) = ζv, and since Θ is singular, this in turn leads us to Tr(Θ) 
= 0, 
in contradiction with our hypotheses. Therefore, adj(Θ)(v) = 0. In summary, we have 

proved that if T =
(

T11 wt

v Θ

)
, with v 
= 0, then there is a g ∈ Gμ′

2
, such that,

T ′ = g T g−1 =
(
T ′

11 T ′
12 T ′

13
T ′

21 T ′
22 0

T ′
31 0 0

)
.

Now consider the case v = 0, so that the linear map T ∈ HL(μ′
2) has the form 

T =
(

T11 wt

0 Θ

)
. We may assume with no loss of generality that Θ is upper triangular. 

Conjugation by g =
(

1 ut

0 12

)
∈ Gμ′

2
, yields,

T ′ = g T g−1 =
(
T11 ut(Θ − T1112) + wt

0 Θ

)
.

Further simplification of T ′ to obtain the canonical forms now depends on whether or 
not T11 is an eigenvalue of Θ and the argument goes as in previous cases. �
5.2.3. HL-algebras for the product μ′

3

5.7. Proposition. Let {e1, e2, e3} be a basis of g for which the degenerate product μ′
3 is 

given by,

μ′
3(e1, e2) = e1, μ′

3(e2, e3) = e1 − e3, μ′
3(e3, e1) = 0,

and its isotropy subgroup is,

Gμ′
3

=
{(

a b c
0 1 0

)∣∣∣∣∣ a 
= 0, b, c, d ∈ C

}
.

0 d a
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Then, each T ∈ HL(μ′
3) is equivalent to one and only one of the following canonical 

forms:

(1) If T31 = 0, then T 


⎛
⎝T ′

11 T ′
12 T ′

13
0 T ′

22 0
0 T ′

32 T ′
33

⎞
⎠.

(2) If T31 
= 0, then T 


⎛
⎝T ′

11 T ′
12 T ′

13
0 T ′

22 0
T ′

31 0 0

⎞
⎠, with, T ′

31 
= 0.

Proof. Observe that T ∈ HL(μ′
3) if and only if its matrix T = (Tij) in the given basis, 

satisfies T21 = 0 = T23. Then, for g ∈ Gμ′
3
, we have, T ′ = g T g−1, where,

T ′
31 =T31,

T ′
32 =(a−1cd− b)T31 + aT32 + d(T22 − T33),

T ′
33 = − a−1c T31 + T33.

If T31 
= 0, we may choose a, b, c, d ∈ C, so that T ′
32 = T ′

33 = 0. Thus, there are two 
non-isomorphic canonical forms, depending on whether T31 is equal to zero or not, as 
claimed. �
5.3. HL-algebras for the product μ0

5.8. Proposition. Let {e1, e2, e3} be a basis of g for which the degenerate product μ0 is 
given by,

μ0(e1, e2) = e2, μ0(e2, e3) = 0, μ0(e3, e1) = −e3,

and its isotropy subgroup is,

Gμ0 =
{(

1 0
u A

) ∣∣∣∣∣ u =
(
g21
g31

)
and Λ =

(
g22 g23
g32 g33

)
∈ GL2(C)

}
.

The product μ0 corresponds to a Lie bracket. In fact (g, μ0) is a 3-dimensional non-
nilpotent solvable Lie algebra. Moreover, T ∈ HL(μ0) if and only if, its matrix has the 

form 
(
T11 0
v B

)
, where v =

(
T21
T31

)
, and B ∈ Mat2×2(C). Then, T is equivalent to one and 

only one of the following canonical forms:

(1) If det(T11 12 −B) 
= 0, either,

T 

(
T ′

11 0 0
0 T ′

22 0
′

)
, with (T ′

11 − T ′
22)(T ′

11 − T ′
33) 
= 0,
0 0 T33
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or, T 

(
T ′

11 0 0
0 T ′

22 0
0 1 T ′

22

)
, with T ′

11 
= T ′
22.

(2) If det(T11 12 −B) = 0, either,

T 

(
T ′

11 0 0
T ′

21 T ′
22 0

T ′
31 0 T ′

33

)
, with (T ′

11 − T ′
22)(T ′

11 − T ′
33) = 0.

or, T 

(
T ′

11 0 0
T ′

21 T ′
11 0

T ′
31 1 T ′

11

)
.

Proof. It is a straightforward matter to verify that (g, μ0) is a 3-dimensional non-
nilpotent solvable Lie algebra. A direct computation also shows that T ∈ HL(μ0) if 
and only if it has the matrix form given in the statement. For such a T and g ∈ Gμ0 , we 
obtain,

g T g−1 =
(

T11 0
Λ((T11 12 −B)Λ−1u + w) ΛBΛ−1

)
. (17)

We can choose Λ ∈ GL2(C) to bring ΛBΛ−1 to its Jordan form. On the other hand, if 
det(T11 12 − B) 
= 0, we can find u ∈ C2, such that (T11 12 − B)(u) = −w. Otherwise, 
one of the entries in the diagonal of the Jordan form of B must be equal to T11. �
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