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1. Introduction

Toric ideals appear in the intersection of many areas of mathematics, including com-
mutative algebra, algebraic geometry, combinatorics, and have applications to many 
areas, e.g., algebraic statistics [7]. A toric ideal I in a polynomial ring R = K[x1, . . . , xn]
(with K an algebraically closed field of characteristic zero) is a prime ideal generated by 
binomials. For detailed introductions to toric ideals, we refer the readers to [6,8,15,23].

Under some mild assumptions, a toric ideal I ⊆ R is a (multi-)homogeneous ideal, 
and consequently, one can compute its (multi-)graded Betti numbers, that is,

βi,j(I) = dimK TorRi (I,K)j ,

where j ∈ N or j ∈ Nn, depending upon our grading. Betti numbers are examples of 
the homological invariants of I that are encoded into the minimal (multi-)graded free 
resolution of I. It was shown by Campillo and Marijuan [3] and Campillo and Pison [4], 
and independently by Aramova and Herzog [1], that one can compute the multi-graded 
Betti numbers of any multi-homogeneous toric ideal by computing the ranks of reduced 
simplicial homology groups (see [22, Theorem 67.5] and [23, Theorem 12.12]). This result 
is a toric ideal analog of the well-known Hochster’s Formula (e.g., [15, Theorem 3.31]) 
for monomial ideals. Applying these formulas, however, to compute the (multi-)graded 
Betti numbers can be a formidable task.

One current stream of research has been interested in these homological invariants 
under the additional assumption that I = IG is the toric ideal of finite simple graph G. 
Specifically, given a finite simple graph G with vertex set V (G) = {x1, . . . , xn} with edge 
set E(G) = {e1, . . . , eq}, the toric ideal IG is the kernel of the map ϕ : K[e1, . . . , eq] →
K[x1, . . . , xn] given by ϕ(ei) = xi,1xi,2 where ei = {xi,1, xi,2} (see Section 2). One is then 
interested in relating the homological invariants of IG to the graph theoretical invariants 
of G. As examples of this approach, [21,24,26] relate the generators of IG to walks in 
G, [2,5,14] give graph theoretical bounds on the regularity and projective dimension for 
the toric ideals of some families of graphs, [13] investigates the Np-property of the toric 
ideals of bipartite graphs, [17,25] studies when the toric ideal of a bipartite graph has a 
linear resolution, [10,20] compute all the graded Betti numbers of IG for specific families 
of graphs, and [11,16] relate the invariants of depth and multiplicity of R/IG to G.

Given this interest in homological invariants, it is natural to ask when one can compute 
the Betti numbers of toric ideals using recursive or inductive methods. With this goal 
in mind, we investigate when one can “split” the toric ideal into “smaller” toric ideals. 
More precisely, we say a toric ideal I has toric splitting (or I is a splittable toric ideal) 
if there exists toric ideals I1 and I2 such that I = I1 + I2. Our main motivation is to 
identify toric splittings of I so that the graded Betti numbers of I can be computed in 
terms of those of I1 and I2, thus complementing existing approaches to computing these 
invariants. We were also inspired by [9] which considered splittings of monomial ideals 
to compute (or bound) the Betti numbers.
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Fig. 1. Connecting an even cycle C to a graph G to make a graph H.

One immediately encounters the following obstacle: Suppose the toric ideal I =
〈f1, . . . , ft〉 is minimally generated by the binomials V = {f1, . . . , ft}. Given a non-
trivial partition of the generators, say V = W � Y , the ideals I1 = 〈g | g ∈ W 〉 and 
I2 = 〈g | g ∈ Y 〉 are binomial ideals, but these ideals may fail to be prime. Hence, toric 
splittings may not even exist!

The main results of this paper were inspired by the following prototypical example 
of a toric splitting. Given a graph G and cycle C of even length 2d, consider the graph 
H which is formed by identifying any edge of G with an edge of C (see Fig. 1). In this 
case, the toric ideal of H is splittable. Specifically, IH = IG + IC , and furthermore, the 
graded Betti numbers satisfy (Corollary 3.12)

βi,j(R/IH) = βi,j(R/IG) + βi,j−d(R/IG) for all i, j ≥ 0.

We want to determine a more general context where this example becomes a special 
case.

In Section 3 we considered toric ideals in general. A toric ideal can be constructed from 
an n × s integer matrix A (see Section 2). Our first main result (see Lemma 3.4) gives a 
sufficient condition for a toric ideal I to be a splittable toric ideal in terms of the matrix 
A. In fact, under the hypotheses of Lemma 3.4, one of the two ideals in the splitting will 
be a principal ideal. If the toric ideal is also multi-graded, we apply Lemma 3.4 to relate 
the graded Betti numbers of splittable ideal I = I1 + I2 to those of I1 and I2. When we 
specialize our Lemma 3.4 to the toric ideals of graphs, we recover the example described 
above. Of independent interest, our Lemma 3.2 gives an ideal membership criterion for 
a particular binomial to belong to a two-generated binomial ideal.

In Section 4 we restrict to splittings of toric ideals of graphs. The results in this section 
are based upon the observation that the graph H in Fig. 1 is formed by “gluing” an even 
cycle to an edge of a graph. After formally defining “gluing” (and its inverse operation 
of “splitting”), we generalize the above example by showing that if any bipartite graph 
K is glued along an edge of a graph G to form H, then IH = IG + IK is a splitting 
of toric ideals (see Corollary 4.8). Furthermore, Theorem 4.11 relates the graded Betti 
numbers of IG, IK , and IH . Our main result (Theorem 4.5) is more general in that we 
consider a gluing of G and K along a path; in this case IH is the sum of IG and IK up 
to a saturation by a monomial.

Our paper is structured as follows. In Section 2 we recall the relevant definitions and 
results about toric ideals and graph theory. In Section 3 we present our main technical 
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lemma and consequences for the graded Betti numbers of toric ideals. In Section 4 we 
consider splittings of toric ideals of graphs and the consequence of this splitting for the 
graded Betti numbers of such graphs. The last section suggests some future research 
directions.

Acknowledgments. The authors thank Jason Brown and David Cox for answering 
our questions. Our results were inspired by computer calculations using Macaualy2 [12]. 
Favacchio thanks McMaster University for its hospitality and the support of the Univer-
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(GNSAGA-INdAM). Hofscheier is supported by a Nottingham Research Fellowship from 
the University of Nottingham. Van Tuyl acknowledges the support of NSERC RGPIN-
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2. Notation and background

We recall the relevant definitions and background on toric ideals and toric ideals of 
graphs.

2.1. Toric ideals

Fix an integer n ≥ 1, and let e1, . . . , en denote the standard basis vectors of Rn (or 
Zn). The support of a vector α = (a1, . . . , an) in Rn (or Zn) is

supp(α) := {i = 1, . . . , n | ai 	= 0}

Any α ∈ Rn (or Zn) can be decomposed uniquely as α = α+ − α− where

α+ =
∑
ai>0

aiei and α− =
∑
ai<0

(−ai)ei.

Let {α1, . . . , αs} ⊆ Zn, and set A to be the n × s matrix A = [α1 · · · αs]. The matrix 
A induces a map Zs → Zn; in fact, we have an exact sequence

0 → L → Zs → Zn,

where L is the kernel of A. Recall that L is a lattice, i.e., a finitely generated free abelian 
group. In particular, L is isomorphic (as a Z-module) to Zt for some t. The notion of 
saturation is needed for the proof of Theorem 3.7. Let M be a lattice and L ⊂ M a 
sublattice. The lattice L is saturated in M if for any � ∈ M such that some positive 
integer multiple of � is contained in L, then � is already in L. Note that L is saturated 
in M if and only if M/L is torsionfree.
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Definition 2.1. Let A = [α1 · · · αs] be an n ×s matrix as above, and let R = K[x1, . . . , xs]. 
The toric ideal of A is the ideal

IA = 〈xα+ − xα− | α ∈ ker(A)〉 ⊆ R.

Remark 2.2. A toric ideal is sometimes defined as a binomial ideal (an ideal generated by 
binomials, that is, the difference of two terms) that is a prime ideal. It is clear from our 
definition that IA is a binomial ideal. To see that IA is a prime ideal, consider the polyno-
mial ring R = K[x1, . . . , xs] and the Laurent polynomial ring S = K[t1, t−1

1 , . . . , tn, t−1
n ]. 

Define a homomorphism of semigroups algebras ϕ : R → S by mapping

xi �→ tαi = t
ai,1
1 t

ai,2
2 · · · tai,n

n where αi = (ai,1, . . . , ai,n).

Then an equivalent definition (see [23, Chapter 4]) for the toric ideal of A is IA = kerϕ. 
Because the image of ϕ is a domain, it follows that IA is prime.

Information about R/IA is encoded into the matrix. For example:

Theorem 2.3. [15, Proposition 3.1] With A as above, dim(R/IA) = rank(A).

Toric ideals are not necessarily homogeneous with respect to the standard grading of 
R, i.e., deg(xi) = 1 for i = 1, . . . , s, or even non-standard graded. Because our primary 
interest is the minimal graded free resolution of toric ideals, it is necessary to know 
when IA is a (multi-)homogeneous ideal. The next lemma captures when IA is standard 
graded.

Lemma 2.4. [23, Lemma 4.14] Let A = [α1 · · · αs] be an n × s matrix with αi ∈ Zn. 
Then IA is a homogeneous ideal if and only if there exists a vector c ∈ Qn such that 
αi · c = 1 for all i = 1, . . . , n. Here, αi · c denotes the standard Euclidean inner product.

If L ∩ Ns = {0}, we can induce an Nn-grading on R, IA, and R/IA, by setting 
deg xi = αi for i = 1, . . . , s. For example, if each column of A belongs to Nn, then 
the condition L ∩ Ns = {0} is satisfied. If IA is Nn-graded, then there is a minimal 
multi-graded free resolution of IA, i.e.,

0 →
⊕

α∈Nn

R(−α)βl,α(IA) →
⊕

α∈Nn

R(−α)βl−1,α(IA) → · · ·

→
⊕

α∈Nn

R(−α)β0,α(IA) → IA → 0,

where R(−α) denotes the Nn-grading of R twisted by −α, i.e., R(−α)γ = Rγ−α for all 
γ ∈ Nn. The multi-graded Betti number βi,α(IA) is the number of minimal generators 
of the i-th syzygy module of IA of multidegree α ∈ Nn. Each βi,α(IA) is equal to the 
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rank of a reduced simplicial homology group of a simplicial complex related to α (see 
[23, Theorem 12.12]).

If there exists an integer d > 0 such that every column αi of A satisfies |αi| =∑n
j=1 aij = d, then the standard grading and the Nn-grading of IA are compatible in 

the following sense:

βi,j(IA) =
∑

|α|=d·j
βi,α(IA). (2.1)

The theme of this paper is to understand when IA can be “split” into smaller toric 
ideals. The following result, which is undoubtedly known, describes one case in which IA
is splittable.

Lemma 2.5. Let A1, . . . , Ak be matrices with integer entries of dimensions ni × si (i =
1, . . . , k) and set R = K[x1,1, . . . , x1,s1 , . . . , xk,1, . . . , xk,sk ]. Consider the block matrix

A =
[

A1 0
...

0 Ak

]
∈ Z(n1+···+nk)×(s1+···+sk).

Then

IA = IA1 + · · · + IAk
⊆ R

where IAi
is the toric ideal of Ai, but viewed as an ideal in R.

Proof. For each i = 1, . . . , k, set Ri = K[xi,1, . . . , xi,si ]. Let β ∈ ker(Ai). So xβ+ −xβ− ∈
IAi

⊆ Ri. But then

γ = ( 0, . . . , 0︸ ︷︷ ︸
s1+···+si−1

, β, 0, . . . , 0︸ ︷︷ ︸
si+1+···+sk

) ∈ ker(A).

So xβ+ − xβ− = xγ+ − xγ− ∈ IA. Thus IAi
⊆ IA, if IAi

is viewed as an ideal of R. 
Consequently, IA1 + · · · + IAk

⊆ IA.
For the reverse inclusion, we do induction on k, where our base case is k = 2. Suppose 

that α ∈ ker(A) ⊆ Zs1+s2 . Write α as α = (β, γ) where β ∈ Zs1 and γ ∈ Zs2 . Then

xα+ − xα− = xβ+xγ+ − xβ−xγ− = xγ+(xβ+ − xβ−) + xβ−(xγ+ − xγ−).

But xβ+ − xβ− ∈ IA1 and xγ+ − xγ− ∈ IA2 . So IA ⊆ IA1 + IA2 .
Now suppose that k > 2, and let α ∈ ker(A) ⊆ Zs1+···+sk . Write α as (β, γ) with 

β ∈ Zs1+···+sk−1 and γ ∈ Zsk . As above,

xα+ − xα− = xγ+(xβ+ − xβ−) + xβ−(xγ+ − xγ−).



G. Favacchio et al. / Journal of Algebra 574 (2021) 409–433 415
By induction, xβ+ − xβ− ∈ IA1 + · · · + IAk−1 , while xγ+ − xγ− ∈ IAk
. The result now 

holds. �
Theorem 2.6. With the notation and hypotheses of Lemma 2.5, suppose that in addition 
that the matrix A induces an Nn1+···+nk -grading on R/IA. Then for all i ≥ 0 and 
α ∈ Nn1+···+nk ,

βi,α(R/IA) =
∑

i1+···+ik=i
ij∈N

βi1,α1(R/IA1)βi2,α2(R/IA2) · · ·βik,αk
(R/IAk

)

where

αi = ( 0, . . . , 0︸ ︷︷ ︸
n1+···+ni−1

, ai,1, . . . , ai,ni
, 0, . . . , 0︸ ︷︷ ︸
ni+1+···+nk

) if α = (a1,1, . . . , ak,nk
).

Proof. Let R = K[xi,1, . . . , xk,sk ] and set Ri = K[xi,1, . . . , xi,si ]. We give Ri an 
Nn1+···+nk -grading by using the matrix Ai, but viewing Ai as an (n1+· · ·+nk) ×si matrix 
where the first n1+· · ·+ni−1 rows and the last ni+1+· · ·+nk rows all consist of zeroes. As 
a consequence, if βk,δ(Ri/IAi

) 	= 0, then supp(δ) ⊆ {n1+ · · ·+ni−1+1, . . . , n1+ · · ·+ni}.
If we abuse notation and view IAi

as both an ideal of R and Ri, we have

R/IA = R/(IA1 + · · · + IAk
) ∼= R1/IA1 ⊗K R2/IA2 ⊗K · · · ⊗K Rk/IAk

.

This follows since each IAi
generated by binomials only in the variables {xi,1, . . . , xi,si}. 

The multi-graded minimal free resolution of R/IA is then the tensor product of the 
multi-graded resolutions of the Ri/IAi

’s (see [18, Lemma 2.1] which does the standard 
graded case for k = 2, but the proof extends naturally to the multi-graded case and to 
all k by induction).

It then follows by the Künneth formula that

βi,α(R/IA) =
∑

i1+···+ik=i
ij∈N

∑
γ1+···+γk=α

γj∈Nn1+···+nk

βi1,γ1(R1/IA1) · · ·βik,γk
(Rk/IAk

).

As noted above, if supp(γ) � {n1+· · ·+ni−1+1, . . . , n1+· · ·+ni}, then βk,γ(Ri/IAi
) = 0. 

So we can assume the support of each index γi is a subset of {n1+ · · ·+ni−1 +1, . . . , n1+
· · ·+ni}. But then the only decomposition γ1 + · · ·+ γk = α that satisfies this condition 
is the decomposition α1 + · · · + αk = α with the αi’s defined as in the statement, and 
thus,

∑
γ1+···+γk=α

n1+···+nk

βi1,γ1(R1/IA1) · · ·βik,γk
(Rk/IAk

) = βi1,α1(R1/IA1) · · ·βik,αk
(Rk/IAk

).
γj∈N
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To complete the proof, note that Ri/IAi
and R/IA will have same graded Betti num-

bers with respect to our multi-grading, so we can replace each βk,γ(Ri/IAi
) with 

βk,γ(R/IAi
). �

2.2. Toric ideals of graphs

Let G = (V (G), E(G)) denote a finite simple graph (a graph with no loops or multiple 
edges) with vertex set V (G) = {x1, . . . , xn} and edge set E(G) = {e1, . . . , eq} where each 
ei is a two-element subset of V . Set R = K[E(G)] = K[e1, . . . , eq] and S = K[V (G)] =
K[x1, . . . , xn], and define the K-algebra homomorphism ϕ : R → S by

ei �→ xi,1xi,2 where ei = {xi,1, xi,2}.

The toric ideal of G is the ideal IG = kerϕ.
The toric ideal of G is the toric ideal of the incidence matrix of G. More precisely, order 

the elements of V (G) and E(G), then the incidence matrix of G is the |V (G)| × |E(G)|
matrix A where Ai,j = 1 if xi ∈ ej and 0 otherwise. Each column of A contains only 
two ones, and the remaining entries are zero. Consequently, IG is both a graded ideal 
(take the vector c =

( 1
2 ,

1
2 , . . . ,

1
2
)

and apply Lemma 2.4) and a multi-graded ideal. In 
particular, by (2.1), we have

βi,j(IG) =
∑

|α|=2j

βi,α(IG). (2.2)

The dimension of R/IG depends upon whether or not G is bipartite. We say that G
is a bipartite graph if there is a partition of the vertices V (G) = V1 � V2 such that every 
e ∈ E(G) has the property that e ∩ V1 	= ∅ and e ∩ V2 	= ∅. This is equivalent to having 
no odd cycles in G, a fact which we will make use of. Furthermore, G is connected if for 
every x, y ∈ V (G) with x 	= y, there exists a sequence of edges e1, . . . , et in E such that 
x ∈ e1, y ∈ et, and ei ∩ ei+1 	= ∅ for i = 1, . . . , t − 1.

Theorem 2.7. [27, Corollary 10.1.21] If G is a finite simple connected graph on n vertices, 
then

dim(R/IG) =
{
n if G is not bipartite
n− 1 if G is bipartite.

Work of Ohsugi-Hibi [21] and Villarreal [26] allows us to describe the minimal gener-
ators of IG in terms of the combinatorics of G. We summarize the relevant results.

Definition 2.8. Let G be a finite simple graph. A walk is a sequence of edges w =
(e1, . . . , ek) such that ei ∩ ei+1 	= ∅ for i = 1, . . . , k. This is equivalent to specifying 
a sequence of vertices (x1, . . . , xk, xk+1) such that G has an edge which is associated to 
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any consecutive xi and xi+1 in the sequence. A walk is an even walk of k is even. A 
closed walk is a walk which has a vertex sequence (x1, . . . , xk+1) such that x1 = xk+1.

In the sequel, we will also require the family of path graphs. The path graph
Pn is the graph with vertex set V (Pn) = {x1, . . . , xn+1} and edge set E(Pn) =
{{x1, x2}, . . . , {xn, xn+1}}.

Closed even walks in G correspond to elements of IG. Indeed, let w = (ei1 , ei2 , . . . , ei2n)
be a closed even walk corresponding to the following sequence of vertices (xj1 , xj2 , . . . ,
xjn+1 = xj1) which are not necessarily distinct. We associate the walk w with the bino-
mial

fw =
∏
2�j

eij −
∏
2|j

eij .

This element belongs to the ideal IG since

φ(fw) = φ(ei1)φ(ei3) · · ·φ(ei2n−1) − φ(ei2)φ(ei4) · · ·φ(ei2n) =
n∏

k=1

xjk −
n∏

k=1

xjk = 0.

The set of all binomials associated with closed even walks forms a generating set of IG. 
Using the following notion, we can further reduce our generating set.

Definition 2.9. Let I be a toric ideal. A binomial xα+ − xα− ∈ I is primitive if there 
exists no binomial xβ+ −xβ− ∈ I such that xβ+ | xα+ and xβ− | xα− . A closed even walk 
w in a graph G is primitive if the corresponding binomial fw is primitive in IG.

Theorem 2.10. [27, Proposition 10.1.10] Let G be a finite simple graph. Then IG is gen-
erated by binomials which correspond to closed even walks that are also primitive.

Remark 2.11. The conclusion of [27, Proposition 10.1.10] is stronger where it is shown 
that the closed even walks that are primitive correspond to a universal Gröbner basis 
of IG.

3. Splitting of toric ideals

Given an n × s matrix A with entries in Z, we give a sufficient condition on A that 
implies that the toric ideal IA is splittable, i.e., IA can be written as the sum of two (or 
more) toric ideals. Although IA need not be (multi-)graded, when A is chosen so that 
IA is also Nn-graded, we can describe the multi-graded Betti numbers in terms of those 
of the Betti numbers of the smaller ideals. This result will be the consequence of the 
following technical lemmas.
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Lemma 3.1. Let α, β ∈ Zs be two linearly independent vectors with positive and negative 
entries such that γ = α + β also has positive and negative entries. Then (xα+ − xα−) �
(xγ+ − xγ−) and (xβ+ − xβ−) � (xγ+ − xγ−).

Proof. We prove only the statement about xα+−xα− since the other statement is similar. 
Suppose that xγ+ − xγ− = f · (xα+ − xα−). If f = f1 + f2 + · · · + fs, where the fi’s are 
the terms of f , then when we expand out the right hand side, we get

f1x
α+ + f2x

α+ + · · · + fsx
α+ − f1x

α− − f2x
α− − · · · − fsx

α− .

If f = f1 was a single monomial term, then we would have f1 = xγ+−α+ and f1 =
xγ−−α− , or in other words, γ = γ+ − γ− = α+ − α− = α, and thus β = 0, contradicting 
our choice of β. So s ≥ 2. Furthermore, the monomial xγ+ appears exactly once in the 
expansion. Indeed, if xγ+ = fix

α+ − fjx
α− for some i 	= j, this means that supp(α+) ∪

supp(α−) ⊆ supp(γ+). But the support of γ− is disjoint from that of γ+. However, the 
support of every term in the expansion contains supp(α+) or supp(α−), which means 
that γ− cannot appear on the right hand side. The same argument now also applies to 
xγ− .

So, without loss of generality, suppose that f1x
α+ = xγ+ and fsxα− = xγ− (note 

that we could have f1x
α+ = xγ− and fsxα− = xγ+ , but our argument will also work 

for this case). So, f1 = xγ+−α+ . The term f1x
α− = xγ+−α++α− must now cancel out 

with some term of the form fixα+ , say f2x
α+ = f1x

α− after relabelling. This means 
that f2 = xγ+−2α++α− . Now f2x

α− must cancel with some term fixα+ , say f3x
α+ . This 

forces f3 = xγ+−3α++2α− . Repeating this argument gives that fi = xγ+−iα++(i−1)α−

for i = 1, . . . , s. Since fsxα− = xγ− , we have γ+ − sα+ + sα− = γ−. Consequently, γ =
α+β = sα, i.e., β = (s −1)α, contradicting our assumption on linearly independence. �

The next lemma can be viewed as giving a criterion for ideal membership in a binomial 
ideal generated by two elements.

Lemma 3.2. Let α, β ∈ Zs be two linearly independent vectors with positive and negative 
entries such that γ = α + β also has positive and negative entries. Then xγ+ − xγ− ∈
〈xα+−xα− , xβ+−xβ−〉 if and only if supp(α+) ∩supp(β−) = ∅ or supp(α−) ∩supp(β+) =
∅.

Proof. We show the implication “⇒” by contradiction, i.e., we assume xγ+ − xγ− is 
contained in 〈xα+ −xα− , xβ+ −xβ−〉 and both supp(α+) ∩ supp(β−) 	= ∅ and supp(α−) ∩
supp(β+) 	= ∅. The binomial xγ+ − xγ− is contained in 〈xα+ − xα− , xβ+ − xβ−〉 if and 
only if

xγ+ − xγ− = f · (xα+ − xα−) + g · (xβ+ − xβ−), (3.1)
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for some non-zero polynomials f, g ∈ K[x1, . . . , xs] by Lemma 3.1. It follows that one of 
the monomials xα+ , xα− , xβ+ , xβ− divides xγ+ , respectively xγ− .

Note that neither xα+ nor xβ+ divide xγ+ . To see why, suppose j ∈ supp(α+) ∩
supp(β−). Then xd

j appears in the monomial xα+ and xe
j appears in the monomial xβ−

for some integers d, e ≥ 1. The j-th coordinate of γ is then d − e. If d − e ≥ 1, then xd−e
j

appears in the monomial xγ+ , and so xα+ cannot divide this monomial. If d −e ≤ 0, then 
no power of xj appears in xγ+ , and so again, xα+ does not divide xγ+ . A similar argument 
holds for xβ+ . So, up to swapping α and β, we may assume that xβ− divides xγ+ .

Since supp(γ+) ⊆ supp(α+) ∪ supp(β+), we obtain supp(β−) ⊆ supp(α+) and 
supp(γ−) ⊆ supp(α−) using the fact that supp(α+) ∩supp(α−) = ∅, and similarly for β+
and β−. We conclude the preparatory observations by noting that neither xα−, xβ− , nor 
xα+ divide xγ− , so that xβ+ must divide xγ− . To summarize, supp(β−) ⊆ supp(γ+) ⊆
supp(α+) and supp(β+) ⊆ supp(γ−) ⊆ supp(α−).

We now claim that γ+ = α+ − β− and γ− = α− − β+. For the first equality, observe 
that there are three ways for γ to have a positive value in the j-th coordinate: (1) the 
j-th coordinates of α and β are both non-negative and at least one coordinate is positive, 
(2) the j-th coordinate of α, say aj , is positive, and the j-th coordinate of β, say bj , is 
negative, but aj + bj > 0, or (3) the j-th coordinate of β, say bj, is positive, and the j-th 
coordinate of α, say aj , is negative, but bj + aj > 0. However, as supp(β+) ⊆ supp(γ−)
and supp(β+) ∩ supp(α+) = ∅, case (1) can only happen if the j-th coordinate of α
is positive and the one of β vanishes. Case (3) is impossible since this implies that 
j ∈ supp(β+) ⊆ supp(γ−) and j ∈ supp(γ+). This leaves case (2), so that we can 
conclude γ+ = α+ − β−. The second equality is proved similarly.

As xα+ and xα− do not divide xγ+ and xγ− respectively, we have xγ+ (resp. xγ−) is a 
multiple of xβ− (resp. xβ+), i.e., g = g′ − xγ+−β− − xγ−−β+ for some g′ ∈ K[x1, . . . , xs], 
so that (3.1) becomes:

−f · (xα+ − xα−) = g′ · (xβ+ − xβ−) + xγ−−β+ · xβ− − xγ+−β− · xβ+ . (3.2)

Note that, xα− � xγ−−β++β− = xγ−−β . If xα+ � xγ−−β , then xγ−−β must be cancelled by 
a multiple of xβ+ , i.e., g′ = g′′ − xγ−−2β++β− for some g′′ ∈ K[x1, . . . , xs]. We obtain:

−f · (xα+ − xα−) = g′′ · (xβ+ − xβ−) + xγ−−2β++2β− − xγ+−β− · xβ+ .

Again, xα− � xγ−−2β++2β− , so that, if xα+ � xγ−−2β++2β− , we can repeat the same 
step again. This process must eventually stop, and we obtain that xα+ | xγ−−kβ++kβ−

for some positive integer k. Then kβ+ ≤ γ− = α− − β+ and α+ ≤ kβ− (where the 
inequalities are meant coordinate-wise).

If we go back to equation (3.2), and repeat the same reasoning for the monomial 
xγ+−β−+β+ , we obtain that xα− | xγ+−�β−+�β+ for some positive integer �, and thus 
�β− ≤ γ+ = α+ − β− and α− ≤ �β+. Summarizing, we obtain:

(k + 1)β+ ≤ α− ≤ �β+ and (� + 1)β− ≤ α+ ≤ kβ−.
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Hence k + 1 ≤ � and � + 1 ≤ k. A contradiction.
For the converse implication “⇐”, assume that supp(α+) ∩ supp(β−) = ∅ (the other 

case works similarly). If δ = β+ − α− ∈ Zs, and thus, δ+ + α− = δ− + β+, then

xα++δ+ − xβ−+δ− = xδ+ · (xα+ − xα−) + xδ− ·
(
xβ+ − xβ−

)
∈ 〈xα+ − xα− , xβ+ − xβ−〉.

It remains to show that the left side of this equation coincides with xγ+ − xγ− . Note 
supp(α+ + δ+) ⊆ supp(α+) ∪ supp(β+) and supp(β− + δ−) ⊆ supp(β−) ∪ supp(α−). As 
supp(α+) ∩ supp(β−) = ∅, the support of α+ is disjoint from supp(β−) ∪ supp(δ−). From 
this it straightforwardly follows that the supports of α+ + δ+ and β− + δ− are disjoint. 
The statement follows by the observation that α+ + δ+ − (β− + δ−) = α + β = γ. �

If in Lemma 3.2 the ideal is replaced by its saturation with respect to the monomial 
x1 · · ·xs, then the assumption on the supports can be dropped.

Example 3.3. Let α = e1 + e2 − e4 − e5 and β = e4 + e5 − e2 − e3 in Z5 such that 
γ = α + β = e1 − e3. Note that the assumption on the supports of Lemma 3.2 is not 
satisfied and that xγ+ − xγ− /∈ I := 〈xα+ − xα− , xβ+ − xβ−〉. However, xγ+ − xγ− is 
contained in the saturation I : (x1 · · ·x5)∞.

The next lemma gives us a criterion for when a toric ideal IA is splittable.

Lemma 3.4. Let A1, . . . , Ak be matrices with integer entries of dimensions ni × si (i =
1, . . . , k) and let c1, . . . , cl ∈ ZN with N ≥ n1 + · · · + nk. Consider the matrix

A =

⎡
⎣A1 . . . c1 ... cl

Ak
0

⎤
⎦ ∈ ZN×(s1+···+sk+l).

Let Ui be the set of indices of the columns in which Ai is located in the matrix A. Suppose 
ker(A) = ker(A1) ⊕ . . .⊕ker(Ak) ⊕Zτ for some τ ∈ Zs1+···+sk+l. If for all i ∈ {1, . . . , k}, 
the set Ui is disjoint from either supp(τ+) or supp(τ−), then

IA = IA1 + · · · + IAk
+ 〈xτ+ − xτ−〉.

Proof. As IA = 〈xγ+ −xγ− | γ ∈ ker(A)〉, the inclusion “⊇” is clear. To prove the reverse 
inclusion, let γ = β1 + · · · + βk + cτ ∈ ker(A) where βi ∈ ker(Ai) and c ∈ Z.

We do induction on k. The base case k = 0 is straightforward. If k > 0, then we set 
β := β1 + . . .+ βk−1 + cτ . Note that our assumptions imply that supp(β+) or supp(β−)
is disjoint from supp(βk). By Lemma 3.2, xγ+ − xγ− ∈ 〈xβ+ − xβ− , xβk

+ − xβk
−〉 and we 

conclude the proof by the induction hypothesis, that is, xβ+ −xβ− ∈ IA1 + · · ·+ IAk−1 +
〈xτ+ − xτ−〉. �
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Note that in order to apply Lemma 3.4, it might be necessary to choose a suitable basis, 
so that the matrix A ∈ Zn×s has the appropriate shape. However, when we restrict to 
toric ideals of graphs, Lemma 3.4 holds for some graph constructions (see Theorem 3.7).

When a matrix A that satisfies conditions of Lemma 3.4 also induces a multi-grading, 
Lemma 3.4 has implications for the multi-graded Betti numbers.

Theorem 3.5. With the notation and hypotheses of Lemma 3.4, suppose that in addition 
the matrix A induces an NN -grading on R/IA. Then for all i ≥ 0 and α ∈ NN ,

βi,α(R/IA) = βi,α(R/J) + βi−1,α−μ(R/J)

where J = IA1 + · · · + IAk
and μ = deg (xτ+ − xτ−) ∈ NN .

Proof. By Lemma 3.4, we have IA = J + 〈xτ+ − xτ−〉, and furthermore, this ideal is 
Ns-graded. Set F = xτ+ − xτ− . We then have a multi-graded short exact sequence of 
R-modules

0 −→ (R/(J : 〈F 〉)) (−μ) ×F−−→ R/J −→ R/(J + 〈F 〉) = R/IA −→ 0.

The ideal J is a toric ideal by Lemma 2.5, and consequently, it is prime. Since F /∈ J , it 
then follows that J : 〈F 〉 = J . So we can rewrite the short exact sequence above as

0 −→ (R/J)(−μ) ×F−−→ R/J −→ R/IA −→ 0. (3.3)

Let (H, d) denote the multi-graded minimal free resolution of R/J . Then the multi-
graded minimal free resolution (G, d′) of (R/J)(−μ) is the same except all the free 
R-modules in H will have their grading twisted by μ. Hence the map ×F : (R/J)(−μ) →
R/J lifts to a map of complexes φ : (G, d′) → (H, d) where φi : Gi → Hi is the map φi

that takes each basis element of Gi and multiplies it by F .
The mapping cone construction applied to (3.3), gives a minimal multi-graded free 

resolution of R/IA. Indeed, the resolution produced by the mapping cone construction 
is minimal if all maps φi can be represented by matrices where none of the non-zero 
entries of the matrices are constants. In our case, all the non-zero entries are F . The 
multi-graded Betti numbers in the statement now follow from our minimal multi-graded 
free resolution. �
Remark 3.6. The multi-graded Betti numbers of R/J can be computed by Theorem 2.6. 
Hence, under the hypotheses Theorem 3.5, the multi-graded Betti numbers of IA only 
depend on the Betti numbers of the ideals in the splitting of IA.

If we specialize our results to toric ideals of graphs, Lemma 3.4 allows us to find 
splittings of IG in terms of graph theoretic constructions. In particular, the technical 
hypotheses of Lemma 3.4 correspond to a graph theoretic construction of taking a large 
even cycle, and joining (mostly bipartite) graphs in a prescribed manner to this cycle.
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Fig. 2. Connecting graphs G1, . . . , Gk along k edges of an even cycle C.

Theorem 3.7. Let G1, . . . , Gk be finite simple connected graphs with at most one Gi not 
being bipartite. Let C be an even cycle with at least k edges. For each i, identify an edge 
of Gi with a distinct edge of C (see Fig. 2). Then the toric ideal I of the resulting graph 
is given by

I = IG1 + · · · + IGk
+ 〈f〉,

where IGi
is the toric ideal of Gi and f is the binomial corresponding to the even cycle C.

Proof. Let Ai be the incidence matrix of Gi, i.e., Ai is an ni × si matrix where ni =
|V (Gi)| and si = |E(Gi)|. Note that rank(Ai) ∈ {ni, ni − 1} with at most one matrix 
having rank ni (if Gi is not bipartite) by Theorem 2.7. Let l be the number of additional 
edges, so that the resulting graph has n1+ · · ·+nk+l−k vertices and s := s1+ · · ·+sk+l

edges. Let B be the (n1+· · ·+nk+l−k) ×(s1+· · ·+sk+l) incidence matrix of the resulting 
graph G whose shape coincides with the shape of the matrix in Lemma 3.4 where the 
block-diagonal part is built from the matrices Ai and the additional l columns correspond 
to the additional edges. It is straightforward to verify that the even cycle C induces an 
element τ in the kernel of B, so that L := ker(A1) ⊕ . . .⊕ ker(Ak) ⊕ Zτ ⊆ ker(B).

Next, we determine the rank of ker(B). We distinguish two cases: If all Gi are bipartite, 
then G is also bipartite, and thus by Theorem 2.7

rank(ker(B)) = s− rank(B) = s1 + · · · + sk + l − (n1 + · · · + nk + l − k − 1)

= (s1 − (n1 − 1)) + · · · + (sk − (nk − 1)) + 1.

Similarly, if say G1 is not bipartite, then G is not bipartite, and thus by Theorem 2.7

rank(ker(B)) = s− rank(B) = s1 + · · · + sk + l − (n1 + · · · + nk + l − k)

= (s1 − n1) + (s2 − (n2 − 1)) + · · · + (sk − (nk − 1)) + 1.

We conclude that in either case rank(ker(B)) = rank(ker(A1)) + . . .+rank(ker(Ak)) +1. 
However, to show the equality L = ker(B), it remains to show that L is saturated in 
ker(B). If α ∈ ker(B) such that kα ∈ L for some integer k, then kα = β + uτ for some 
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β ∈ ker(A1) ⊕ . . .⊕ker(Ak) =: L′ and some integer u. As L′ ⊆ Zs1+...+sk ×{0}l and τ has 
an entry “±1” in its last l coordinates, we can conclude that k divides u, say u = ku′, 
so that β = k(α − u′τ). As L′ is the kernel of the matrix obtained from B by replacing 
the last l columns by 0-columns, it follows that L′ is saturated in Zs1+...+sk+l, and thus 
β′ := α− u′τ ∈ L′. Hence α = β′ + u′τ is contained in L which concludes the proof that 
L is saturated in ker(B), and therefore the two lattices coincide. If Ui is as in Lemma 3.4, 
then, since | supp(τ) ∩ Ui| = 1, the result follows by Lemma 3.4. �
Remark 3.8. Note that Theorem 3.7 is independent of the edge we pick in each Gi.

We end this section by recording some consequences for the graphs of Theorem 3.7.

Theorem 3.9. Let G1, . . . , Gk be finite simple connected graphs with at most one Gi not 
being bipartite. Let G be the graph constructed as in Theorem 3.7. If the even cycle C
has size 2d, then

βi,j(R/IG) = βi,j(R/J) + βi−1,j−d(R/J) for all i, j ≥ 0

where J = IG1 + · · · + IGk
with each IGi

viewed as an ideal of R.

Proof. The standard grading of R/IG is compatible with the multi-grading of R/IG
given by the incidence matrix of G. Now combine Theorem 3.5 with equation (2.2), after 
noting that the generator f of Theorem 3.7 has deg(f) = d (in the standard grading). �
Remark 3.10. By applying Theorem 2.6, we also have a formula for the graded Betti 
numbers of R/J in Theorem 3.9. In particular, if J = IG1 + · · · + IGk

, we have

βi,j(R/J) =
∑

i1+···+ik=i
i≥0

∑
j1+···+jk=j

j≥0

βi1,j1(R/IG1) · · ·βik,jk(R/IGk
).

We record some consequences for the homological invariants. Let I be a homogeneous 
ideal in the standard graded polynomial ring S = K[x1, . . . , xn]. The Hilbert series of a 
standard graded K-algebra S/I is the formal power series

HSS/I(t) =
∑
i≥0

[dimK(S/I)i] ti.

By the Hilbert-Serre Theorem (e.g., [27, Theorem 5.1.4]) there is an hS/I(t) ∈ Z[t] such 
that

HSS/I(t) =
hS/I(t)

(1 − t)dim(R/I) with hS/I(1) 	= 0.

The polynomial hS/I(t) is the h-polynomial of S/I. The (Castelnuovo-Mumford) regu-
larity is
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reg(S/I) = max{j − i | βi,j(S/I) 	= 0}.

The projective dimension of S/I is the length of the graded minimal free resolution, that 
is

pdim(S/I) = max{i | βi,j(S/I) 	= 0}.

We now have:

Corollary 3.11. Let G1, . . . , Gk be finite simple connected graphs with at most one Gi not 
being bipartite. Let G be the graph constructed as in Theorem 3.7. If the even cycle C
has size 2d, then

(i) hR/IG(t) = (1−td)
(1−t) ·

∏k
i=1 hRi/IGi

(t) where Ri = K[E(Gi)];
(ii) reg(R/IG) = reg(R/IG1) + · · · + reg(R/IGk

) + (d − 1);
(iii) pdim(R/IG) = pdim(R/IG1) + · · · + pdim(R/IGk

) + 1.

Proof. Set Ri = K[E(Gi)]. Let J = IG1 + · · ·+ IGk
, where we view each IGi

as an ideal 
of S = K[E(G1) ∪ · · · ∪E(Gk)]. Then

S/J ∼= R1/IG1 ⊗K R2/IG2 ⊗K · · · ⊗K Rk/IGk
.

By tensoring the resolutions of each Ri/IGi
to construct a resolution of S/J we get:

hS/J(t) =
k∏

i=1
hRi/IGi

(t), reg(S/J) =
k∑

i=1
reg(Ri/IGi

), and

pdim(S/J) =
k∑

i=1
pdim(Ri/IGi

).

Now view J as an ideal of R = K[E(G)]. That is, R is obtained by adjoining the 
variables to S that correspond to the edges of C that do not appear in G1, . . . , Gk. As 
shown in the proof of Theorem 3.5, we have a short exact sequence

0 → (R/J)(−d) ×f−−→ R/J → R/IG → 0,

where f is the degree d binomial that corresponds to the even cycle C. For state-
ment (i), the Hilbert series are additive on short exact sequences. So HSR/IG(t) =
HSR/J(t) − tdHSR/J(t) = (1 − td)HSR/J(t). Since hR/J(t) = hS/J(t), the numerator 
of the reduced Hilbert series for R/IG is (1−td)

(1−t) ·
∏k

i=1 hRi/IGi
(t). Statements (ii) and 

(iii) are consequences of the fact that the mapping cone construction on this short exact 
sequence produces a minimal graded free resolution, and the fact that the regularity and 
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the projective dimension of IGi
and IG remain the same when we view them as ideals in 

the ring R. �
We end with a special case of Theorem 3.9 which justifies the example in the intro-

duction.

Corollary 3.12. Let G be any finite simple graph. Fix an edge e in G, and connect a new 
even cycle of length 2d ≥ 4 along e (see Fig. 1). If H is the resulting graph, then

βi,j(R/IH) = βi,j(R/IG) + βi,j−d(R/IG) for all i, j ≥ 0.

4. Other splittings for toric ideals of graphs

In this section we give another splitting of a toric ideal of a graph. The starting point 
of our approach is the observation that Corollary 3.12 implies that if we “glue” an even 
cycle onto the edge of a graph to make a new graph G, then IG is the sum of the toric 
ideals of “glued” graphs, that is, IG is splittable. The notion of a “gluing” also appears 
in [15, Proposition 7.49 and Theorem 7.50] where the authors show how some properties 
of the toric ideals of graphs are preserved for a certain class of graphs after “gluing” the 
graphs at one vertex.

We formalize the notion of gluing, and a corresponding inverse operation, which we 
call a splitting. Note that variations of this construction have appeared in the literature 
(e.g., Koh and Teo [19] describes a gluing along a complete graph); other examples 
undoubtedly exist. For our constructions we require induced subgraphs. Given a graph 
G = (V (G), E(G)) and W ⊆ V (G), the induced subgraph of G on W is the graph H
with V (H) = W and E(H) = {e ∈ E(G) | e ⊆ W}.

Construction 4.1. Let G1, G2 be two graphs and suppose that H1 ⊆ G1, H2 ⊆ G2 are 
two induced subgraphs which are isomorphic with respect to some graph isomorphism 
ϕ : H1 → H2. We define the glued graph G1 ∪ϕ G2 of G1 and G2 along ϕ as the disjoint 
union of G1 and G2, and then using ϕ to identify associated vertices and edges. At 
times, we may be more informal and say that G1 and G2 is glued along H if the induced 
subgraphs H ∼= H1 and H ∼= H2 and isomorphism ϕ are clear.

Construction 4.2. Let G = (V (G), E(G)) be a finite simple graph. Suppose there are 
two subsets W1, W2 ⊆ V (G) whose union gives V (G), and denote the induced subgraph 
with vertex set Wi by Gi for i = 1, 2. Let Y = W1 ∩W2 and denote the corresponding 
induced subgraph by H. We say that G1 and G2 form a splitting of G along H if the 
graph obtained by removing the vertices Y from G yields two disconnected pieces.

The two constructions given above are inverses of each other in the following sense. 
If G is the glued graph of G1 and G2 along ϕ, then G1 and G2 form a splitting of G
along H where we identify Gi with the corresponding induced subgraph in G and where 
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Fig. 3. The graph from Example 4.4.

Fig. 4. Different ways to glue graphs along one edge.

H is the induced subgraph of G corresponding to Hi. Inversely, if G is a finite graph 
and G1, G2 are two induced subgraphs which form a splitting of G along some common 
induced subgraph H ⊆ Gi, then G can be obtained from G1 and G2 as the corresponding 
glued graph.

Remark 4.3. Using the analogy of direct products of groups, note that a gluing of graphs 
is similar to an external direct products of groups in the sense that the glued graph 
is constructed from two given graphs. On the other hand, we can view a splitting of a 
graph as similar to an internal direct product in that we are decomposing the graph in 
terms of subgraphs. Depending upon the context, one point-of-view may be preferable.

Different choices of the isomorphism ϕ can result in non-isomorphic glued graphs.

Example 4.4. Let G1 = G2 be the graph in Fig. 3. Consider the edge H1 = H2 = {x1, x2}. 
The two possible choices of isomorphisms ϕ : H1 → H2 (depending on whether we flip the 
edge or not) yield non-isomorphic glued graphs (see Fig. 4). Indeed, one graph contains 
a vertex of degree five while the degree of any vertex in the other graph is at most four.

Although the gluing of G1 and G2 depends upon the isomorphism ϕ, in some cases 
the toric ideal of the glued graph is independent of ϕ. Specifically, if at least one graph 
is bipartite, and if we glue along a particular type of subgraph, then the toric ideal of 
the glued graph is almost splittable (i.e., splittable up to a saturation with respect to a 
particular element).

Theorem 4.5. Let G1 and G2 be a splitting of a graph G along a path graph Pl
∼= H ⊆ G

such that any vertex of H distinct from the endpoints considered as a vertex inside G
has degree 2. If G1 is bipartite, then we obtain.

IG = (IG1 + IG2) : f∞,
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where f denotes the square-free monomial corresponding to the edges in H with even 
indices.

Proof. The inclusion “⊇” follows by the fact that IGi
is contained in IG, and that IG is 

a prime ideal.
For the reverse inclusion, recall from Theorem 2.10 that IG is generated by binomials 

corresponding to primitive closed even walks p in G. Note that p cannot contain a subpath 
in G1 starting and ending at the same endpoint of H (otherwise, as G1 is bipartite, this 
subpath would be even, and thus p is a concatenation of closed even walks contradicting 
the fact that p was chosen to be primitive). Let us label the edges in H by h1, . . . , hl and 
the remaining edges in G2 by hl+1, . . . , hn. Furthermore, label the edges in G1 which are 
not contained in H by e1, . . . , em. Using this notation, we can write a primitive closed 
even walk p as follows

p = (ei11 , . . . , ei1r1︸ ︷︷ ︸
:=p1

, hj11 , . . . , hj1s1
, ei21 , . . . , ei2r2︸ ︷︷ ︸

:=p2

, hj21 , . . . , hj2s2
, . . . ,

eiu1 , . . . , eiuru︸ ︷︷ ︸
:=pu

, hju1 , . . . , hjusu
). (4.1)

We obtain subpaths p1, p2, . . . , pu that contain edges of E(G1) \E(G2) that begin at one 
of the endpoints of H, and end at the other endpoint.

We conclude the proof by showing that a path p in G that accepts a representation 
as in Equation (4.1) yields a binomial fp contained in (IG1 + IG2) : f∞. The proof is 
done by induction on the number of subpaths p1, p2, . . . , pu. If there are no such paths, 
then p is contained entirely in G1 or G2, and the corresponding binomial belongs to the 
respective binomial ideal.

If there is at least one such path p1, we proceed as follows. To simplify notation, we 
write p1 = (e1, . . . , er) (here r = r1) and p = (e1, . . . , e2m), where er+1, . . . , e2m is an 
edge in either G1 or G2 (p contains an even number of edges since it is a primitive even 
walk). Furthermore, we denote the edges of the path graph H by (h1, . . . , hl) (ordered 
such that they form a path starting at the endpoint of p1). Our goal is to decompose 
the binomial fp into a linear combination of binomials g1 and fp′ corresponding to the 
closed even walks (e1, . . . , er, h1, . . . , hl) and p′ := (er+1, . . . , e2n, hl, . . . , h1) respectively. 
We define

E1 =
∏

1≤k≤r,2|k
ek O1 =

∏
1≤k≤r,2�k

ek F1 =
∏
2�k

hk

E2 =
∏

r+1≤k≤2m,2|k
epk

O2 =
∏

r+1≤k≤2m,2�k

ek F2 =
∏
2|k

hk.

This allows us to write fp = O1O2 −E1E2.
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Fig. 5. Theorem 4.5 is false if none of the graphs are bipartite.

If l is even, we have g1 = O1F1 −E1F2 ∈ IG1 and fp′ = O2F2 −E2F1. Note that since 
l is even, then either f = F1 or f = F2 (i.e., the edges with even indices in (h1, . . . , hl)
will either be {h2, h4, . . . , hl} or {h1, . . . , hl−1}). If f = F1, then

O2 · g1 + E1 · fp′ = F1 · fp.

On the other hand, if f = F2, then

E2 · g1 + O1 · fp′ = F2 · fp.

If l is odd, we have g1 = O1F2 − E1F1 ∈ IG1 , fp′ = E2F2 −O2F1, and f = F2 (since 
the only edges with even indices in (h1, . . . , hl) are {h2, . . . , hl−1}). Furthermore, we have

O2 · g1 −E2 · fp′ = F2 · fp.

Note that p′ in both the odd and even case is a path in G accepting a representation as 
in Equation (4.1) with exactly one less subpath p′1, . . . p

′
u−1. Hence, the statement follows 

by the induction hypothesis. �
Remark 4.6. By exploiting the characterization of primitive even closed walks (see [15, 
Lemma 5.11]), one can replace the saturation of f in Theorem 4.5 with the second 
power, that is, IG = (IG1 + IG2) : f2. For the purposes of this paper we only require the 
saturation, so we have elected not to present the more technical proof.

Example 4.7. Theorem 4.5 is false if we drop the assumption that at least one graph 
is bipartite. Clearly the toric ideal of a triangle is the zero ideal. Suppose we glue two 
triangles along an edge (see Fig. 5). Then the toric ideal of the resulting graph will be 
nontrivial since there is now a four cycle, introducing a nonzero generator. When we 
glue together non-bipartite graphs, we may introduced new primitive even walks, i.e., 
generators.

If the path in Theorem 4.5 has length one, i.e., it is an edge, we get a splitting of IG.

Corollary 4.8. Let G be a graph, and suppose that G1 and G2 form a splitting of G along 
an edge e. If G1 is bipartite, then IG = IG1 + IG2 .

Remark 4.9. If we view G as the glued graph of G1 and G2, then note that Corollary 4.8
does not depend upon the orientation of the gluing, i.e., it is independent of the graph 



G. Favacchio et al. / Journal of Algebra 574 (2021) 409–433 429
Fig. 6. The graph from Example 4.10.

isomorphism ϕ. However, this fact requires that G1 is bipartite. If we glue two non-
bipartite graphs along an edge, then, as noted in Example 4.4, the resulting graphs are 
non-isomorphic. In fact, the toric ideals of the resulting graphs may not be equal. For 
example, the toric ideals of the two graphs in Fig. 4 will have non-equal toric ideals.

Note that Corollary 4.8 is false if we split a graph along a path of length > 1:

Example 4.10. Let G be the graph in Fig. 6. Note that the two subsets W1 =
{x1, x2, x3, x4} and W2 = {x1, x2, x3, y4} of V (G) yield two induced subgraphs G1, G2

which intersect along the diagonal H ∼= P2 which form a splitting of G. Since Gi

is isomorphic to a four cycle, its toric ideal IGi
is generated by a single generator, 

i.e., IG1 = 〈e1e3 − e2e4〉 and IG2 = 〈e2e5 − e1e6〉. However, the toric ideal IG of G
has three generators corresponding to three primitive even closed walks of length four, 
namely IG = 〈e1e3 − e2e4, e2e5 − e1e6, e3e5 − e4e6〉. Hence IG 	= IG1 + IG2 . However, 
e2(e3e5 − e4e6) = e6(e1e3 − e2e4) + e3(e2e5 − e1e6), so e3e5 − e4e6 ∈ (IG1 + IG2) : e∞2

The toric splittings of IG in Corollary 4.8 has consequences for the Betti numbers of 
IG.

Theorem 4.11. Let G = (V (G), E(G)) be a graph. Suppose that G1 = (V (G1), E(G1)), 
G2 = (V (G2), E(G2)) are two induced subgraphs which form a splitting of G along an 
edge e. If G1 is bipartite, then

βi,j(K[E(G)]/IG) =
∑

i1+i2=i
j1+j2=j

βi1,j1(K[E(G1)]/IG1)βi2,j2(K[E(G2)]/IG2) for all i, j ≥ 0.

Proof. Splitting and gluing of graphs are inverse operations. To be more precise, G can 
be obtained from the disjoint union of G1 and G2 and then identifying the corresponding 
edge in G1, respectively G2. We translate this graph theoretical construction into algebra.

Let G′
i = (V (G′

i), E(G′
i)) be isomorphic to Gi where we assume that V (G′

1) ∩V (G′
2) =

∅. We define the graph G′ = (V (G′) = V (G′
1) � V (G′

2), E(G′) = E(G′
1) � E(G′

2)). Let 
e′i ∈ E(G′

i) be the edges along which we glue. Algebraically, the process of gluing e′1
along e′2 corresponds to taking the quotient by the principal ideal (e′1 − e′2) ⊆ K[E(G′)]. 
By Corollary 4.8, IG corresponds under the isomorphism K[E(G)] ∼= K[E(G′)]/(e′1 − e′2)
to (IG′ + (e′1 − e′2))/(e′1 − e′2), so that we obtain:
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Fig. 7. G and G′ are a gluing of four 4-cycles at an edge, G′′ is not.

K[E(G)]/IG ∼= K[E(G′)]/(e′1 − e′2)
(IG′ + (e′1 − e′2))/(e′1 − e′2)

∼= K[E(G′)]
IG′ + (e′1 − e′2)

.

The toric ideal of G′ is a prime ideal, so K[E(G′)]/IG′ is a domain. Therefore e′1 − e′2
gives rise to a regular form in K[E(G′)]/IG′ . As a consequence of [22, Corollary 20.4], 
both K[E(G′)]/IG′ and K[E(G′)]/(IG′ +(e′1−e′2)) share the same graded Betti numbers. 
But IG′ = IG′

1
+ IG′

2
⊆ K[E(G′)] where each ideal is in a different set of variables. So 

then

K[E(G′)]/IG′ = K[E(G′
1)]/IG′

1
⊗K K[E(G′

2)]/IG′
2
∼= K[E(G1)]/IG1 ⊗K K[E(G2)]/IG2 .

By taking the tensor product of the resolutions of K[E(G1)]/IG1 and K[E(G2)]/IG2 , we 
have

βi,j(K[E(G)]/IG) = βi,j(K[E(G′)]/(IG′ + (e′1 − e′2))

= βi,j(K[E(G′)]/IG′)

=
∑

i1+i2=i
j1+j2=j

βi1,j1(K[E(G1)]/IG1)βi2,j2(K[E(G2)]/IG2),

as desired. �
Remark 4.12. Given graphs G1, . . . , Gn, where at most one graph is not bipartite, one 
can first glue G1 and G2 along an edge to form G1,2, then glue G3 along an edge of 
G1,2 to form G1,2,3, and so on, to form a new graph G1,2,...,n. By iteratively applying 
the results in this section, we can compute the graded Betti numbers of this new graph. 
Theorem 3.7 can be seen as a special case of what has just been remarked, where the 
first graph is an even cycle C, and then we glue the remaining graphs along edges of C
(see Fig. 2).

Example 4.13. To illustrate some of the ideas of this section, consider the three graphs in 
Fig. 7. The graphs G and G′ are obtaining by gluing in two different ways four copies of 
the four cycle C4 along one edge. Note that it is not possible to construct G′′ by iteratively 
gluing four cycles along one edge at each step. From Theorem 4.11, the ideals IG and IG′

have the same graded Betti numbers, βi,j := βi,j(K[E(G)]/IG) = βi,j(K[E(G′)]/IG′), 
see the following Betti table. One can check, using for instance Macaulay2, that IG′′ has 



G. Favacchio et al. / Journal of Algebra 574 (2021) 409–433 431
Fig. 8. The graph G obtained by gluing G1 and G2 along a K3.

Fig. 9. The graph G obtained by gluing G′
1 and G2 along a K2.

graded Betti numbers β′′
i,j := βi,j(K[E(G′′)]/IG′′) that are different from βi,j as seen in 

the second Betti table.

βi,j :=

0 1 2 3 4
total: 1 4 6 4 1

0: 1 . . . .
1: . 4 . . .
2: . . 6 . .
3: . . . 4 .
4: . . . . 1

β′′
i,j :=

0 1 2 3 4
total: 1 5 10 10 4

0: 1 . . . .
1: . 4 . . .
2: . . 6 . .
3: . 1 4 10 4

5. Future directions

Theorem 3.7 and Corollary 4.8 describe two ways in which the toric ideal of a graph 
can be split. It is natural to ask the following (but possibly difficult) question.

Question 5.1. For what graphs G can we find graphs G1 and G2 so that their respective 
toric ideals satisfy IG = IG1 +IG2? More generally, can we classify when IG is a splittable 
toric ideal in terms of G?

In Theorem 3.7 and Corollary 4.8, our graphs are glued along a single edge. An edge 
can also be viewed as a complete graph. A complete graph on n vertices, denoted Kn, is 
the graph where each vertex is adjacent to every other vertex. Since an edge is a K2, it 
is natural to ask if our main results can be generalized if we glue along a subgraph that 
is a complete graph.

As an example of this behaviour, consider the two graphs G1 and G2 that are glued 
along the triangle (which is a K3) to create the graph G as in Fig. 8. We have highlighted 
the glued edges in G by making the corresponding edges thicker. Using a computer 
algebra system, one can verify that the toric ideal of IG is splittable, and in fact, IG =
IG1 + IG2 .

The graph G actually highlights a subtlety of Question 5.1 since the splitting of IG
also follows from our results. In particular, observe that G can also be constructed by 
gluing the graphs G′

1 and G2 along a single edge as in Fig. 9. Since G′
1 is bipartite, 

Corollary 4.8 gives IG = IG′
1

+ IG2 . Note that IG′
1

= IG1 since the non-bipartite graph 
G1 has only one generator coming from the four cycle. Thus, the two splittings are the 
same.
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Since we are interested in the Betti numbers of IG, we pose a follow up to Question 5.1.

Question 5.2. Suppose that there exists graphs G, G1 and G2 such that IG = IG1 + IG2 . 
How do the graded Betti numbers of IG related to those of IG1 and IG2?

Understanding Questions 5.1 and 5.2 for arbitrary toric ideals would also be of interest.
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