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Let S be an unramified regular local ring of mixed charac-
teristic two and R the integral closure of S in a biquadratic 
extension of its quotient field obtained by adjoining roots of 
sufficiently general square free elements f, g ∈ S. Let S2 de-
note the subring of S obtained by lifting to S the image of the 
Frobenius map on S/2S. When at least one of f, g ∈ S2, we 
characterize the Cohen-Macaulayness of R and show that R
admits a birational small Cohen-Macaulay module. It is noted 
that R is not automatically Cohen-Macaulay in case f, g ∈ S2

or if f, g /∈ S2.
© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Small Cohen-Macaulay (CM) modules or maximal Cohen-Macaulay modules (see 2.1) 
are very classical objects that have been studied extensively in the literature. However, 
their existence over local rings that are not Cohen-Macaulay is far from clear. There are 
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examples of non existence over local rings that are not catenary, but one may view this 
as pathological. In fact, a domain that admits a small CM module has to be universally 
catenary, see [5]. Hochster conjectured that every complete local domain admits a small 
CM module, but a positive answer to this question is known only in very few cases. Note 
that the conjecture reduces to the integral closure of a complete regular local ring in a 
finite normal extension of its fraction field. So it is natural to first look at the case of 
extensions of the fraction field of a regular local ring with a “nice” Galois group.
Let S be an unramified regular local ring and L its quotient field. Let K be a finite 
extension of L and R the integral closure of S in K. In [12], Roberts showed that if 
K/L is Abelian and [K : L] is not divisible by the characteristic of the residue field 
of S, then R is Cohen-Macaulay. In particular, this applies to the equi-characteristic 
zero case. In the mixed characteristic p scenario, the conclusion fails as shown in [9] and 
[7]. The examples in these articles were obtained by considering extensions adjoining a 
p-th root of a single element that is not square free. However, in case we adjoin a p-th 
root of a single square free element, the integral closure is Cohen-Macaulay and this 
fact is relatively easy to show. In contrast, as we shall see, the integral closure need 
not be Cohen-Macaulay in a finite square free tower of p-th roots. In fact, it fails to be 
Cohen-Macaulay even if we adjoin p-th roots of two square free elements.

Now assume additionally that S has mixed characteristic p > 0. As discussed above, 
radical extensions of L obtained by adjoining n-th roots of elements of S with the prop-
erty that p divides n are prime examples of the failure of Roberts’s theorem in mixed 
characteristic. Moreover, the importance of radical extensions stem from Kummer theory, 
which says that Abelian extensions are repeated radical extensions under the presence 
of “suitable roots of unity”. In this paper and [13], we investigate such extensions to 
understand the obstructions one faces when p divides n, with a focus on the question 
of existence of birational small CM modules over the integral closure R. Note that if 
p � n or if it were the case that S contained the rational numbers, the integral closure in 
repeated radical extensions is Cohen-Macaulay, see 2.4.

In [7] it is shown that the integral closure of S in an extension of its quotient field 
obtained by adjoining the p-th root of an arbitrary element of S admits a birational small 
CM module. In [8], under certain circumstances R is known to admit a birational small 
CM module in extensions obtained by adjoining the pn-th root of a single element. In 
this article, we investigate the question of existence of small Cohen-Macaulay modules 
over the integral closure R of S in an extension K/L of degree p2 obtained by adjoining 
p-th roots of sufficiently general square free elements f, g ∈ S. Roughly speaking, one 
may think of this as the case where Gal(K/L) = Zp × Zp.

To this end, we can reduce to the case f, g ∈ Sp when S is complete with perfect 
residue field, where Sp is the subring of S obtained by lifting the Frobenius map on 
S/pS to S, see [10]. However, this does not mean R is Cohen-Macaulay when f, g /∈ Sp

as we show in 2.12. But we note that the example admits a small CM algebra (2.1) in 
3.2. Finally, the square free condition on the elements is natural since such an extension 
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corresponding to arbitrary f, g ∈ S can be embedded in a sufficiently large finite tower 
obtained by adjoining square free p-th roots.

In the preliminary section, we prove some results in mixed characteristic that are 
independent of the choice of prime integer p. In Sections 3 and 4, we work in mixed 
characteristic two. In Theorem 4.10, when f, g ∈ S2, we characterize when R is Cohen-
Macaulay and show that in case R itself is not Cohen-Macaulay, R admits a birational 
small Cohen-Macaulay module. For a similar discussion that is independent of mixed 
characteristic, see [13]. However, the results there are not as complete as in the mixed 
characteristic two case.

More precisely, let f, g ∈ S be relatively prime elements that are either units but not 
squares in S or squarefree non-units. Let ω2 = f and μ2 = g. For n, k ≥ 1 integers, let 
Spk∧pn ⊂ S be the multiplicative subset of S consisting of elements expressible in the 
form xpk + y · pn for some x, y ∈ S. The main result of this paper is

Theorem. 4.10. Let S be an unramified regular local ring of mixed characteristic two and 
f, g ∈ S2.

1. R is Cohen-Macaulay if and only if one of the following happens

(a) At least one of S[ω], S[μ] is not integrally closed.
(b) S[ω], S[μ] are both integrally closed and fg /∈ S2∧4.
(c) S[ω], S[μ] are both integrally closed, fg ∈ S2∧4 and I := (2, f, g) ⊂ S is a two 

generated ideal or all of R.

2. If R is not Cohen-Macaulay, R admits a birational small CM module.

Sections 3 and 4 are essentially one long proof of 4.10. In section 3 we prove the 
sufficiency of conditions (a) and (b) in 3.1 and 3.3 respectively. Then in section 4, we 
complete the proof. Surprisingly, the non Cohen-Macaulay cases occur only when the 
hypersurfaces S[ω] and S[μ] are both integrally closed.

For a ring A and an A-module M , let M∗ denote the dual module HomA(M, A). The 
strategy for proving 4.10 is to choose suitable ideals J, I ⊆ A := S[ω, μ] such that R = J∗

and I∗ is a J∗ module that is S-free. We do not require in general the full strength of an 
unramified regular local ring S for our results. In fact, many of the conclusions hold if 
we only assume that S is a Noetherian integrally closed domain, p ∈ S is prime and/or 
S/pS is integrally closed.

2. Preliminaries

In this section we fix notation and record some observations that will be used subse-
quently. Throughout this paper all rings considered are commutative and Noetherian.
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Convention 2.1.
• Let (R, m) be a local ring of dimension d. A nonzero R-module M is a small CM 

module if it is finitely generated and every system of parameters of R (equivalently 
some system of parameters) is a regular sequence on M . If R is an arbitrary Noetherian 
ring, then an R-module M is a small CM module if for all maximal ideals m ⊆ R, 
Mm is a small CM module over Rm.

• A Noetherian ring R admits a small CM algebra S if there is an injective, module 
finite map of rings R → S such that S is Cohen-Macaulay.

• For R any commutative ring and M an R-module, we will denote by M∗
R, the dual 

module HomR(M, R). If R is clear from the context, we will simply denote it by M∗. 
In particular, if R is a domain with field of fractions K and M ⊆ K, we use M∗ to 
also denote (R :K M) (see [6, 2.4.2] for example).

• For a Noetherian ring R of dimension at least one, we use the notation

NNL1(R) := {P ∈ Spec(R) | height(P ) = 1, RP is not a DVR}

• Suppose S is a ring and let p ∈ Z be a prime such that p ∈ S is a non-unit. Let 
F : S/pS → S/pS be the Frobenius map. Let Sp denote the subring of S obtained by 
lifting the image of F to S. Define Spk∧pn for k, n ≥ 1 to be the multiplicative subset 
of S of elements expressible in the form xpk + y · pn for some x, y ∈ S. In particular, 
Sp∧p = Sp.

• For a Noetherian local ring R and M a finite R-module, denote by SyziR(M) the i-th 
syzygy of M in a minimal free resolution of M over R.

Remark 2.2. Suppose that R → T is a module finite extension of domains with R in-
tegrally closed. Set d := [Frac(T ) : Frac(R)] and suppose d ∈ R is a unit. Then if T
is Cohen-Macaulay, so is R. To see this, note that the trace map of their corresponding 
fraction fields gives an R-linear retraction d−1Tr : T → R. This ensures that for every 
ideal I ⊆ R, IT ∩R = I. Hence if R is not Cohen-Macaulay, T is not Cohen-Macaulay.

Remark 2.3. Recall the general fact: Let R be a domain with field of fractions L and let 
K be a finite field extension of L. Then if the monic minimal polynomial f(X) of γ ∈ K

over L is such that f(X) ∈ R[X], then R[γ] � R[X]/(f(X)).

Proposition 2.4. Let S be a regular local ring and L its fraction field.
Let K := L( n1

√
a1, . . . , nk

√
ak) with ai ∈ S and the ni positive integers that are units in 

S for 1 ≤ i ≤ k. Then the integral closure of S in K is Cohen-Macaulay. In particular

1. If S contains the rational numbers, the above conclusion holds for arbitrary integers 
ni.

2. If S has mixed characteristic p > 0, the above conclusion holds for integers ni with 
the property that p � | ni for all 1 ≤ i ≤ k.
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Proof. First assume that the ai ∈ S are square free, mutually coprime and n = ni for all 
1 ≤ i ≤ k. Then, from [3, Prop 5.3], R = S[ n

√
a1, . . . , n

√
ak] is integrally closed. Moreover, 

R is Cohen-Macaulay from 2.3. So the conclusion holds in this case.
Suppose the ai and ni are arbitrary. Set n :=

∏k
i=1 ni. Since S is a UFD, there 

exist b1, . . . , bm ∈ S square free and mutually coprime such that K ↪→ K :=
L( n

√
b1, . . . , n

√
bm). But the integral closure of S in K is Cohen-Macaulay as observed 

above. By 2.2, the integral closure of S in K is Cohen-Macaulay.
(1) and (2) now follow immediately. �
Convention 2.5. We will use the following notation for the remainder of the paper. Let S
denote a Noetherian integrally closed domain of dimension d and L its field of fractions. 
Assume Char(L) = 0. Let p ∈ Z be a prime such that p ∈ S is a principal prime 
and S/pS is integrally closed. An unramified regular local ring of mixed characteristic p
satisfies the above hypothesis, though not all results in this paper require this specific 
setting. The assumptions stated above will stand throughout the paper unless otherwise 
specified.

An element x ∈ S is said to be square free if for all height one primes Q ⊂ S containing 
x, QSQ = (x)SQ. Say that a subset W ⊂ S satisfies A1 if for all distinct x, y ∈ W , there 
exists no height one prime Q ⊂ S such that x, y ∈ Q.

Fix f, g ∈ S such that they are not p-th powers in S, are square free and satisfy 
A1. Let W, U be indeterminates over S. We have the monic irreducible polynomials 
F (W ) := W p − f ∈ S[W ] and G(U) := Up − g ∈ S[U ]. Let K := L(ω, μ) where ω and 
μ are roots of F (W ) and G(U) respectively and assume that G(U) is irreducible over 
L(ω), so that [K : L] = p2. Denote by R the integral closure of S in K. That is, R is the 
integral closure of A := S[ω, μ].

We make the following preliminary observations:

Remark 2.6. It follows from 2.3 that A � S[W, U ]/(F (W ), G(U)), S[ω] � S[W ]/(F (W ))
and S[μ] � S[U ]/(G(U)).

Remark 2.7. We make use of the following observation later ([14, Theorem 2.4]): Let 
S ⊆ C ⊆ D be an extension of Noetherian domains such that S is integrally closed, D
is module finite over S and D is birational to C. Then if C satisfies Serre’s condition 
R1, so does D. To see this, assume C satisfies R1. Let P ⊆ D be any height one prime. 
Since going down holds for the extension S ⊆ D, Q := P ∩ C is a height one prime in 
C. Since CQ ⊆ DP is a birational extension and CQ is a DVR, we have CQ = DP . Thus 
D satisfies R1.

We include the following result from [7] for convenience.
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Proposition 2.8. With notation as specified above, S[ω] is integrally closed if and only 
if f /∈ Sp∧p2 . Further, if S[ω] is not integrally closed, write f = hp + a · p2 for some 
a, h ∈ S, h �= 0. Then

(a) S[ω] = P ∗
S[ω] = S[ω, τ ] where τ = p−1 ·(ωp−1+hωp−2+· · ·+hp−1) and P := (p, ω−h)

is the unique height one prime in S[ω] containing p.
(b) If p ≥ 3, there are exactly two height one primes in S[ω] containing p, Q1 and Q2

satisfying Q1Q1
= (ω−h)Q1 and Q2Q2

= (p)Q. If p = 2, 2 ∈ S[ω, τ ] = S[τ ] is square 
free.

(c) If p ≥ 3, τ satisfies l(T ) := T 2 − cT − a · (ω− h)p−2 over S[ω] for some c ∈ S[ω]. If 
p = 2, τ satisfies l(T ) := T 2 − hT − a over S.

(d) S[ω] is S-free with a basis given by the set {1, ω, . . . , ωp−2, τ}.

The next proposition characterizes when A is integrally closed.

Proposition 2.9. With established notation, the following hold:

1. There exists a unique height one prime P ⊆ A containing p.
2. The ring A is integrally closed if and only if AP is a DVR.
3. The ring A is integrally closed if and only if f /∈ Sp, g /∈ S[ω]p∧p2

(p) (or vice versa).

Proof. For (1), let φ : B := S[W, U ] → A be the natural projection map. Height one 
primes in A pull back to height three primes in B containing Ker(φ) = (F (W ), G(U))B. 
First assume that f, g ∈ Sp. Write f = hp

1+a ·p and g = hp
2+b ·p for some h1, h2, a, b ∈ S. 

It is then clear that the only height three prime in B containing Ker(φ) and p is P̃ ⊂ B, 
given by P̃ := (p, W − h1, U − h2)B. Therefore P := (p, ω − h1, μ − h2)A is the unique 
height one prime in A containing p in this case.

Now let f = hp
1 + a · p and g /∈ Sp. From 2.8, S[μ] is integrally closed. Since S/pS is 

integrally closed and g /∈ Sp, p ∈ S[μ] is a principal prime. Since A � S[μ][W ]/(F (W )), 
it is now clear that P := (p, ω − h1)A is the unique height one prime in A containing p.

Now assume that f, g /∈ Sp. As noted above, p is a principal prime in the integrally 
closed rings S[ω] and S[μ]. We need to show that there exists a unique height three 
prime ideal of B minimal over (p, F (W ), G(U))B or equivalently a unique height one 
prime minimal in C[U ] over (G(U))C where C := S[ω]/(pS[ω]) is a domain. Let Q
be the fraction field of C. If G(U) is irreducible over Q, then from 2.3 we get C[μ] �
C[U ]/(G(U)) so that p is a principal prime in A. If G(U) is reducible over Q, then 
G(U) = (U − r)p in Q[U ] for some r ∈ Q, so that (U − r)Q[U ] is the unique minimal 
prime over G(U)Q[U ]. Since every prime T ⊆ C[U ] minimal over G(U)C[U ] intersects 
trivially with C, there is a unique height one prime P ⊆ A containing p.

For (2), observe that A satisfies S2 since it is S-free. To show the reverse implication, 
we see from part (1) that it suffices to show that A[1/p] is integrally closed. Applying 
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[3, Proposition 5.3] to the ring S[1/p], we see that A[1/p] is indeed integrally closed. This 
completes the proof of the backward direction of (2). The forward direction is obvious.

For the backward direction of (3), assume that f /∈ Sp and g /∈ S[ω]p∧p2

(p) . As noted 
in the proof of part (1), p ∈ S[ω] is a prime. Suppose g /∈ S[ω]p(p). Then PAP = pAP

and (2) implies that A is integrally closed. Next, suppose that g − hp ∈ pS[ω](p) for 
some h ∈ S[ω](p). Since AP � S[ω][U ](p,U−h)/(G(U)), AP is a DVR if and only if 
G(U) /∈ (p, U − h)2S[ω][U ](p,U−h). Since

Up−1 + · · · + hp−1 ∈ (p, U − h)S[ω][U ] (1)

we see from our hypothesis that G(U) /∈ (p, U − h)2S[ω][U ](p,U−h). Thus AP is a DVR 
and the conclusion follows from part (2).

For the forward direction of (3), we prove the contrapositive. As a first case, suppose 
f, g ∈ Sp and f = hp

1 + ap, g = hp
2 + bp with h1, h2, a, b ∈ S. For any 1 ≤ i ≤ p − 1, 

notice that the element ηi := p−1(ω − h1)i(μ − h2)p−i ∈ K satisfies ηpi ∈ A since 
(ω−h1)p, (μ −h2)p ∈ pA. But ηi /∈ A since A is S-free with basis {ωiμj | 0 ≤ i, j ≤ p −1}. 
Thus A is not integrally closed.

Now suppose that f /∈ Sp and g ∈ S[ω]p∧p2

(p) . Let g−hp ∈ pS[ω](p) for some h ∈ S[ω](p). 
We have AP � S[ω][U ](p,U−h)/(G(U)) since p ∈ S[ω] is prime. From our assumption and 
(1), it now follows that AP is not a DVR and hence A is not integrally closed. This finishes 
the proof of the forward implication of (3). �

We first note a natural extension of [7, 3.2]:

Proposition 2.10. With established notation, R is S-free if f /∈ Sp and g ∈ S[ω]p. In 
particular, if S is Cohen-Macaulay, then R is Cohen-Macaulay.

Proof. Since f /∈ Sp, S[ω] is integrally closed by 2.8 and p ∈ S[ω] is a principal prime. 
Moreover, 2.9(3) allows us to assume that g ∈ S[ω]p∧p2

(p) . Write g = hp + pb, with h, b ∈
S[ω]. Note that g ∈ S[ω]p∧p2

(p) implies that b ∈ pS[ω](p)∩S = pS[ω]. That is g ∈ S[ω]p∧p2 . 
In this case, the proof of [7, Lemma 3.2] goes through, so that R is S[ω]-free and hence 
S-free. Thus the proof is complete. �

We need the following proposition for 2.12. The form given here is a bit more general 
than we actually need.

Proposition 2.11. Let T be any Gorenstein local domain such that its integral closure T ′

is a finite T -module. Let J denote the conductor ideal of T . Then T ′ is Cohen-Macaulay 
if and only if T/J is Cohen-Macaulay.

Proof. Let E denote the field of fractions of T . Since End(J) := (J :E J) is a ring, we 
have T ′ ⊆ J∗ = End(J) ⊆ T ′, so that J∗ = T ′. For any 0 �= x ∈ J , set J ′ := (x :T J). 
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Note that J is height one unmixed (see for example [7, Proposition 2.1(2)]). Also, J is 
principal if and only if T is integrally closed, so we may assume J is not principal. Since 
T is Gorenstein, T/J is Cohen-Macaulay if and only if T/J ′ is Cohen-Macaulay (see [4, 
Proposition 2.5] for example). From the depth lemma, T/J ′ is a Cohen-Macaulay ring if 
and only if J ′ � T ′ is a Cohen-Macaulay T -module. This completes the proof since T ′

is a Cohen-Macaulay ring if and only if it is a Cohen-Macaulay T -module. �
When f, g /∈ Sp, R is not necessarily Cohen-Macaulay, as shown in the following 

example.

Example 2.12. Set S := Z[X, Y, V ](2,X,Y,V ). Let f = XV 2+4 and g = XY 2+4. Then f, g
are square free, form a regular sequence in S and do not lie in S2. Note that 2 ∈ S[ω] is a 
prime. Set C := S[ω]/(2) � (S/2S)[γ] where γ =

√
xv2 and x, y, v denote the respective 

images in S/2S. Since g = XY 2 + 4 = (V −1Y ω)2 + 4(1 − V −2Y 2), from 2.9(3), A is 
not integrally closed. Moreover from [7, Lemma 3.2], (P ∗)P = RP . From 2.9(2), for all 
height one primes Q ⊆ A, Q �= P , (P ∗)Q = RQ = AQ. Since P ∗ and R are birational 
S2 A-modules, P ∗ = R. From 2.9(2), the conductor of A is contained in P and hence is 
equal to P . We now show that A/P is not Cohen-Macaulay, so that by 2.11, R is not 
Cohen-Macaulay.

Let Q ⊆ C[U ] denote the unique height one prime minimal over the image of G(U). 
Set ε := v−1yγ. Then Q = (U−ε)Frac(C)[U ] ∩C[U ] is the kernel of the natural surjection 
C[U ] → C[ε]. Thus A/P � D := C[ε].

Since D is module finite over the regular local ring S/2S, it is Cohen-Macaulay if and 
only if it is S/2S-free. Certainly D is generated over S/2S by the set {1, γ, ε, γε}. Since 
ε · γ = xyv ∈ S/2S, we can trim this set to G := {1, γ, ε}. But p.d.S/2S(D) = 1, since D
admits the minimal free resolution

0 �� S/2S
ψT

�� (S/2S)3
φ �� D �� 0

where φ is the natural projection corresponding to the ordered set G and ψ = [0 y − v]. 
Thus A/P is not Cohen-Macaulay and hence R is not Cohen-Macaulay. �

We will see in 3.2 that if R is as in 2.12, then it admits a small CM algebra. In general 
if f, g /∈ Sp, we have not been able to construct a birational small CM module. However 
when S is complete with perfect residue field, we can “reduce” to the case f, g ∈ Sp if 
we relax the birationality constraint, see [10]. Motivated by this, we focus on the case 
f, g ∈ Sp for the remainder of the paper.

3. Sufficient conditions for R to be Cohen-Macaulay

In this section, we begin our proof of Theorem 4.10. We shall demonstrate that condi-
tions (a) and (b) are sufficient to give R the Cohen-Macaulay property. In fact, we shall 
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show that the sufficiency holds without the full hypothesis on S. To do this, we maintain 
the notation established in 2.5 and make the additional assumptions that p = 2 and 
f, g ∈ S2.
Write f = h2

1 + 2 · a and g = h2
2 + 2 · b with h1, h2, a, b ∈ S. Note that under these 

assumptions, if f ∈ 2S, f = 2 · a for some a /∈ 2S. This is because f ∈ S is square free. 
So in this case S[ω] is necessarily integrally closed by 2.8.

Proposition 3.1. R is S-free if at least one of the rings S[ω], S[μ] is not integrally closed.

Proof. First assume that both S[ω] and S[μ] are not integrally closed. We have that S[τ1]
is integrally closed from 2.8, for τ1 := 2−1(ω + h1). Further τ1 satisfies l1(T ) := T 2 −
h1T−a′ ∈ S[T ] where a = 2a′ for some a′ ∈ S and T is an indeterminate over S. Further, 
2 ∈ S[τ1] is square free since l1(T ) and l′1(T ) are relatively prime over the quotient field 
of S/2S. Writing b = 2b′ for some b′ ∈ S, we also have that l2(T ) := T 2 − h2T − b′ and 
l′2(T ) are relatively prime over the quotient field of S[τ1]/Q for all height one primes 
Q ⊆ S[τ1] containing 2. Therefore 2 ∈ E = S[τ1, τ2] is square free as well. Applying [3, 
Proposition 5.3] to the ring S[1/2], we see that R[1/2] = A[1/2] ⊆ E[1/2] ⊆ R[1/2]. 
Therefore NNL1(E) ⊆ V (2). Since 2 ∈ E is square free, E is regular in codimension 
one. Clearly E is generated over S by {1, τ1, τ2, τ1τ2} and hence E is S-free of rank four. 
Thus E satisfies Serre’s criterion S2 and is integrally closed, that is E = R.

Next, without loss of generality assume S[μ] is integrally closed and S[ω] is not. From
2.8, we have S[τ1] is integrally closed for τ1 := 2−1(ω + h1) and that 2 ∈ S[τ1] is square 
free. Since E := S[τ1, μ] � S[τ1][U ]/(G(U)), height one primes in E containing 2 are of 
the form (Q, μ − h2)E where Q ⊆ S[τ1] is a height one prime containing 2. By 2.9(2) 
and 2.7, NNL1(E) ⊆ V (2). But for any height one prime P := (Q, μ − h2) ⊆ E

containing 2, PP = (μ − h2)P . This is because going down holds for the extension 
S ⊆ S[μ] ⊆ E, so P contracts back to the height one prime P := (2, μ − h2) ⊆ S[μ]. 
Since (μ − h2)(μ + h2) = 2b and b /∈ P by 2.8, we have PS[μ]P = (μ − h2)P . Thus, 
PP = (μ − h2)P and E is regular in codimension one. Clearly E is generated over S
by {1, μ, τ1, μτ1}. Thus E is S-free of rank four and hence satisfies Serre’s criterion S2. 
So E = R and this completes the proof. �

From 2.2, we see that a non Cohen-Macaulay normal domain containing the rationals 
does not admit a small CM algebra. In equal characteristic p > 0, examples of non 
existence of small CM algebras are known, see [2]. As an immediate consequence of 3.1, 
we record an example of the failure of this non-existence of small CM algebras in mixed 
characteristic.

Example 3.2. We assume notation as in 2.12, so that R is a non Cohen-Macaulay normal 
domain of mixed characteristic 2. Set K ′ := L(

√
X) and T := S[

√
X]. Note that T is 

an unramified regular local ring of mixed characteristic 2 and f, g ∈ T 2∧4. We claim 
that f, g ∈ T are square free. To show this, we can assume that 2 ∈ S is a unit since 
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f, g /∈ 2S. Then, by [3, Proposition 5.2] f, g ∈ T are square free. Clearly, f, g ∈ T

satisfy A1. Therefore by 3.1, the integral closure of T in K := K ′(ω, μ), say R, is 
Cohen-Macaulay. Therefore, R is a small CM algebra over R.

S T K ′

R R

K K

Proposition 3.3. With established notation, R is S-free if S[ω] and S[μ] are integrally 
closed and fg /∈ S2∧4. Further, in this case P ∗

A = R so that P is the conductor of R to 
A, where P is the unique height one prime in A containing 2.

Proof. Since S[ω] and S[μ] are integrally closed, we have from 2.8 that f, g /∈ S2∧4. Write 
f = h2

1 + 2 · a and g = h2
2 + 2 · b with a, b /∈ 2S. The condition fg /∈ S2∧4 is equivalent 

to the condition (ah2
2 + bh2

1) /∈ 2S. This follows since

fg = (h2
1 + 2a)(h2

2 + 2b)

= (h1h2)2 + (ah2
2 + bh2

1) · 2 + 4ab
(2)

Note that the above is equivalent to requiring that S[ωμ] be integrally closed. This is 
because, since f, g ∈ S satisfy A1, fg ∈ S is square free. Following this, S[ωμ] is integrally 
closed if and only if fg /∈ S2∧4 by 2.8.

Let τ = 2−1(μ − h2)(ω − h1) ∈ K. We see that τ satisfies

l(T ) := T 2 − k1k2 ∈ A[T ]

where k1 := 2−1(ω − h1)2 = h2
1 + a − ωh1, k2 := 2−1(μ − h2)2 = h2

2 + b − μh2 and T is 
an indeterminate over A. Note that

2 = k−1
1 (ω − h1)2 = k−1

2 (μ− h2)2 (3)

and k1, k2 /∈ P . We claim that C := S[ω, μ, τ ] is integrally closed under the given 
hypothesis. The unique height one prime P ⊆ A containing 2 is P := (2, ω− h1, μ −h2). 
Now

l(T ) ≡ T 2 − ab ∈ (A/P )[T ] � (S/2S)[T ]
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There exists a unique height one prime containing 2 in C and since S/2S is integrally 
closed, the only possible forms for this unique height one prime are Q1 := PC or Q2 :=
(2, ω − h1, μ − h2, τ − m)C for some m ∈ S satisfying m2 − ab ∈ 2S. In the first case, 
Q1Q1

is principal due to (3) and

(μ− h2)τ = k2(ω − h1) (4)

Now let Q2 ⊆ C be the unique height one prime in question. We will show that Q2Q2
=

(τ −m)Q2 . First from (3) and (4), we have Q2Q2
= (τ −m, μ − h2)Q2 . By definition, we 

have in CQ2

(τ −m)2 ≡ (k1k2 + ab) mod(2)

≡ (ah2(μ− h2) + bh1(ω − h1) + h1h2(ω − h1)(μ− h2)) mod(2)

≡ (μ− h2)(ah2 + bh1k
−1
2 τ + h1h2(ω − h1)) mod(2)

(5)

where the last equivalence follows from (4). We claim that ah2 + bh1k
−1
2 τ is a unit in 

CQ2 . If the claim holds, it follows from (3) that Q2Q2
= (τ −m)Q2 . To show the claim, 

assume on the contrary that ah2 + bh1k
−1
2 τ ∈ Q2Q2

. Then

k2(a2h2
2 + b2h2

1k
−2
2 τ2) = k2a

2h2
2 + b2h2

1k1 ∈ Q2Q2

By definition of k1, k2 we get (ah2
2 + bh2

1)ab ∈ Q2Q2
and hence (ah2

2 + bh2
1) ∈ Q2Q2

∩S =
2S. This contradicts our hypothesis. Thus the claim is true and Q2Q2

is principal. From
2.9(2) and 2.7, C is regular in codimension one. Let D denote the S-module generated 
by G := {1, ω, μ, τ}. Note that D is in fact a ring and is S-free of rank four. Then 
D ⊆ C ⊆ D. Thus C = D satisfies S2 and hence C = R is S-free.

We now show that P is the conductor of R to A. Since A is not integrally closed, AP

is not a DVR by 2.9(2). Therefore the conductor is contained in P . On the other hand, 
since P · τ ⊆ A and R = A + S · τ , P conducts R into A. Thus P is the conductor of R
to A and the proof is complete. �
4. Existence of birational small CM modules

In this section we identify what it means for R to be Cohen-Macaulay when S is an 
unramified regular local ring of mixed characteristic 2 and f, g ∈ S2. When R is not 
Cohen-Macaulay, we show the existence of a birational small CM module.

Towards this, from 3.1 and 3.3, if we seek a non S-free R, we must have that S[ω]
and S[μ] are integrally closed such that S[ωμ] ∼= S[X]/(X2−fg) is not integrally closed. 
This scenario is very much possible, see 4.8. In this situation, we start by identifying an 
ideal J ⊆ A such that J∗ = R.

Convention 4.1. For this section, we assume notation as specified at the beginning of 
section 3. In case we are in the situation f, g /∈ S2∧4, assume that f, g /∈ 2S. This is 
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justified, since if exactly one of f, g ∈ 2S, then by 3.3, R is S-free. The case f, g ∈ 2S is 
not possible since f, g satisfy A1.

Proposition 4.2. With established notation, let S[ω], S[μ] be integrally closed and fg ∈
S2∧4, so that S[ωμ] is not integrally closed. Then for J := (2, ωμ − h1h2)A, we have 
J∗
A = R.

Proof. Since J∗ and R are birational S2 A-modules, it suffices to show J∗
Q = RQ for all 

height one primes Q ⊆ A. From 2.9(2), J∗
Q = RQ = AQ for all height one primes Q �= P . 

So we may assume (S, 2S) and (A, P ) are one dimensional local rings.
Note that A = S[ω, ωμ] and that {f, fg} satisfy A1 since they are both units. Since 

S[ω] is integrally closed and S[ωμ] is not, the description of R from the proof of 3.1
applies. We have that R is generated over S by the set {1, μ, τ, μτ} where τ = 2−1(ωμ +
h1h2). This immediately implies J conducts R into A.

Let φ : B := S[W, T ] → A be the projection map defined by W �→ ω and T �→ ωμ, 
where W, T are indeterminates over S. Note that Ker(φ) := (W 2 − f, T 2 − fg). Suppose 
l ∈ A conducts R to A. Since AP is not regular, l ∈ P = (2, ω − h1, ωμ − h1h2). Write 
l = x · 2 + y · (ω − h1) + z · (ωμ − h1h2) for some x, y, z ∈ A. Viewing l · τ ∈ A in B and 
denoting lifts by ∼, we get

ỹ · (W − h1)(T − h1h2) ∈ (2, (W − h1)2, (T − h1h2)2) (6)

By a standard regular sequence argument, ỹ ∈ (2, W −h1, T −h1h2) and so y ∈ P . Since 
(ω − h1)2 ∈ 2A, we have l ∈ J . Thus J is the conductor of R to A and the proof is 
complete. �
Lemma 4.3. With established notation, set

I := (2, ωμ− h1h2, h2ω − h1μ)A = (2, ωμ− h1h2, (ω + h1)(μ + h2))A

Then p.d.S(I) ≤ 1. More precisely, I � S2 ⊕S C for some S-module C that admits the 
free resolution

0 �� S
ψT

�� S3 φ �� C �� 0

where φ is given by φ(e1) = 2ω, φ(e2) = 2μ and φ(e3) = h2ω− h1μ and ψ = [−h2 h1 2].

Proof. We claim that I is generated over S by the set G := {2, 2ω, 2μ, ωμ −h1h2, h2ω−
h1μ}. To see this, note that 2ωμ ∈ (ωμ − h1h2) · S + 2 · S. Next ω · (ωμ − h1h2) =
a · 2μ − h1(h2ω − h1μ). A symmetric argument takes care of μ · (ωμ − h1h2). We also 
have ωμ · (ωμ − h1h2) = −h1h2(ωμ − h1h2) + 4 · e for some e ∈ S. Finally, since 
(ω, μ) ⊆ ((2, ωμ − h1h2) :A h2ω − h1μ), the claim holds.
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Now, let φ′ : S5 → I be the projection map defined by the ordered generating set G. If 
[x1 x2 x3 x4 x5]T ∈ Ker(φ), then since A is S-free with a basis given by {1, ω, μ, ωμ}, we 
have that x1 = x4 = 0. Therefore I � S2 ⊕

S C, where C is the S-module generated by 
{2ω, 2μ, h2ω−h1μ}. Now C admits the above resolution for if E := [s1 s2 s3]T ∈ S3, then 
E ∈ Ker(φ) if and only if 2s1 +h2s3 = 0 and 2s2 −h1s3 = 0. Thus, if E ∈ Ker(φ), then 
there exists k ∈ S such that s1 = −h2k, s2 = h1k and s3 = 2k, so that E ∈ Im(ψT ). �
Remark 4.4. We will use the following well known fact in the proposition below: Let 
S ⊆ R be a finite extension of Noetherian local rings such that S is Gorenstein and R
is Cohen-Macaulay. Then for any finite R-module M , HomR(M, ωR) � HomS(M, S) as 
R-modules (and S-modules), where ωR is the canonical module of R. Indeed, we have 
ωR � HomS(R, S), so that by Hom-tensor adjointness, we have what we want.
In our setting, let (S, m) be regular local, so that (A, n) is local where n = (m, ω−h1, μ −
h2). Then for the extension S ⊆ A, since A is Gorenstein, we have HomA(M, A) �
HomS(M, S) as A-modules and S-modules.

Proposition 4.5. Let (S, m) be an unramified regular local ring of mixed characteristic 
two. Let S[ω], S[μ] be integrally closed rings and fg ∈ S2∧4. Then

1. If f, g ∈ m, R � S2 ⊕
S Syz2

S(S/Q) where Q := (2, h1, h2) ⊂ S.
2. p.d.S(R) ≤ 1.
3. R is Cohen-Macaulay if and only if Q is a two generated ideal or all of R.

Proof. We have from 4.2 that J∗
A = R, for J := (2, ωμ − h1h2)A. Let I ⊆ A be as in 

4.3 and P := (2, ω − h1, μ − h2) be the unique height one prime containing 2 in A. Now 
IAP = JAP since ω /∈ P and ω · (h2ω − h1μ) ∈ J . Clearly rad(I) = P . Therefore, by 
[7, Prop 2.1], I∗ = J∗ = R. From 4.4, R � HomS(I, S) as S-modules. Now, if f, g ∈ m, 
then it is clear from the free resolution for I over S in 4.3, that (1) holds.

If f were a unit say, then so is h1, so the resolution in 4.3 is not minimal. In this 
case, R is Cohen-Macaulay. Therefore, for the proof of (2) and (3) we may assume that 
f, g ∈ m. Since S/2S is regular local (a UFD), we have Q = (2, zc, ze) for some z /∈ 2S. 
Then S/Q admits the following free S-resolution:

0 S S3 S3 S S/Q 0[−e,c,−2]T Φ ψ

where ψ(e1) = 2, ψ(e2) = zc, ψ(e3) = ze and

Φ =
[
zc ze 0
−2 0 e
0 −2 −c

]

Note that this is indeed a resolution by the Buchsbaum-Eisenbud criterion [1, Cor 1]. 
Thus p.dS(R) = p.d.S(Syz2

S(S/Q)) ≤ 1 and (2) holds. Finally, R is Cohen-Macaulay if 
and only if c or e is a unit. The latter is clearly equivalent to Q being a two generated 
ideal and thus (3) holds. �



P. Sridhar / Journal of Algebra 582 (2021) 100–116 113
Remark 4.6. Let S be an unramified regular local ring of mixed characteristic two. Note 
that the ideal (2, h1, h2) ⊆ S is a two generated ideal or all of R if and only if the same 
holds for (2, f, g) ⊆ S.

Remark 4.7. In the context of 4.5, if Q := (2, h1, h2)S is a complete intersection ideal of 
grade three, then the conductor of R to A is the ideal I in 4.3.

To show this, since the only element of NNL1(A) is P = (2, ω − h1, μ − h2) and 
since the conductor of a ring that satisfies S2 is unmixed, it suffices to show that I is 
P -primary. Let x · y ∈ I such that y ∈ A and x ∈ A \ P . Certainly y ∈ P , so write 
y = 2 · a1 + (ω − h1) · a2 + (μ − h2) · a3 for some ai ∈ A. Since x · y ∈ I if and only if
x · (a2(ω− h1) + a3(μ − h2)) ∈ I, it suffices to show a2(ω− h1) + a3(μ − h2) ∈ I. Lifting 
to B := S[W, U ](m,W−h1,U−h2) and denoting lifts by ∼, we have for some b̃i ∈ B,

ã2·x̃(W−h1)+ã3·x̃(U−h2)+2·b̃1+(WU−h1h2)·b̃2+(W−h1)(U−h2)·b̃3 ∈ (F (W ), G(U))
(7)

Writing WU − h1h2 = (W − h1)(U − h2) + h2(W − h1) + h1(U − h2), we have that 
ã2 · x̃ + b̃2 · h2 ∈ P̃ where P̃ := (2, W − h1, U − h2). Similarly ã3 · x̃+ b̃2 · h1 ∈ P̃ . Hence 
h1ã2x̃ − h2ã3x̃ ∈ P̃ and therefore h1ã2 − h2ã3 ∈ P̃ . Since P̃ + (h1, h2)B is a grade five 
complete intersection ideal, ã2 ≡ h2 · z mod P and ã3 ≡ h1 · z mod P for some z ∈ A. 
We have P ⊆ (I :A (ω − h1, μ − h2)), so

a2(ω − h1) + a3(μ− h2) ≡ [h2(ω − h1) + h1(μ− h2)] · z mod I

Since h2(ω − h1) + h1(μ − h2) ∈ I, we are done. Thus, I is P -primary and hence is the 
conductor of R to A.

Example 4.8. The conditions in 4.5 produce a non-empty class of non Cohen-Macaulay 
integral closures R. In fact they are quite abundant. From 4.5, there are two classes 
of examples, the first one being the case where Q := (2, h1, h2) is grade two with 
p.dS(S/Q) = 3 and the other when Q is grade three perfect. For an example of the 
first kind, set S := Z[X, Y, V ](2,X,Y,V ) where X, Y, V are indeterminates over Z(2) and 
let

f = V 2X2 − 2X2 + 4 = (V X)2 + 2(2 −X2)

g = V 2Y 2 − 2Y 2 + 4 = (V Y )2 + 2(2 − Y 2)

and ω2 = f, μ2 = g. Then f, g are square free elements that form a regular sequence in 
S. It is straightforward to check that [L(ω, μ) : L] = 4. The hypersurface rings S[ω] and 
S[μ] are integrally closed, but the hypersurface ring S[ωμ] is not. Since (2, V X, V Y ) ⊆ S

is a grade two ideal such that p.dS(S/(2, V X, V Y )) = 3, by 4.5, p.d.S(R) = 1.
For an example of the second kind, let S = Z[X, Y ](2,X,Y ), where X, Y are indeter-

minates over Z(2) and take
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f = −X2 + 4 = X2 + 2(2 −X2)

g = −Y 2 + 4 = Y 2 + 2(2 − Y 2) �
We now get to our main theorem showing that R always admits a birational small 

CM module when S is an unramified regular local ring of mixed characteristic two and 
f, g ∈ S2. By [10], if S is complete with perfect residue field, then this would show that 
R always admits a small CM module, when f, g ∈ S are square free and form a regular 
sequence.

Lemma 4.9. With established notation, P ∗
A is generated as an A-module by {1, η}, where 

η := 2−1(ω + h1)(μ + h2) ∈ K.

Proof. Set P1 := (2, ω − h1) and P2 := (2, μ − h2), so that P ∗ = P ∗
1 ∩ P ∗

2 . Let P̃1 :=
(2, W − h1) ⊆ S[μ][W ]. It is the maximal minors of

M =
[
W − h1

2

]

We have F (W ) ∈ P̃1, F (W ) = a · (−2) + (W + h1)(W − h1). Adjoining the appropriate 
column of coefficients we get

M ′ =
[
W − h1 a

2 W + h1

]

From [11, Lemma 2.5], P ∗
1 is generated as A-module by {M ′

11/δ1, M
′
22/δ2} where M ′

ii and 
δi denote the image in A of the (i, i)-th cofactor of M ′ and the i-th (signed) minor of M
respectively. Therefore, P ∗

1 is generated as a A-module by {1, 2−1(ω + h1)}. Identically, 
P ∗

2 is generated over A by {1, 2−1(μ + h2)}. Now consider y ∈ P ∗ = P ∗
1 ∩ P ∗

2 . Lifting to 
B := S[W, U ] and denoting lifts by ∼

2ỹ ∈ (2,W + h1) ∩ (2, U + h2) + (F (W ), G(U)) = (2, (W + h1)(U + h2), F (W ), G(U))

Thus 2y ∈ (2, (ω + h1)(μ + h2))A and hence this shows P ∗ ⊆ A + A · η. The reverse 
inclusion is clear since η · P ⊆ A. Thus the proof is complete. �
Theorem 4.10. Let S be an unramified regular local ring of mixed characteristic two and 
f, g ∈ S2.

1. R is Cohen-Macaulay if and only if one of the following happens

(a) At least one of S[ω], S[μ] is not integrally closed.
(b) S[ω], S[μ] are both integrally closed and fg /∈ S2∧4.
(c) S[ω], S[μ] are both integrally closed, fg ∈ S2∧4 and I := (2, f, g) ⊂ S is a two 

generated ideal or all of R.



P. Sridhar / Journal of Algebra 582 (2021) 100–116 115
2. If R is not Cohen-Macaulay, R admits a birational small CM module.

Proof. For (1), we have already shown that the conditions in (a) and (b) imply R is 
Cohen-Macaulay in 3.1 and 3.3 respectively. From 4.5 and 4.6, we see that the condi-
tion in 1(c) implies that R is Cohen-Macaulay. For the forward implication of (1), the 
contrapositive follows from 4.6 and 4.5.

For (2), by (1) it only remains to be shown that R admits a birational small CM 
module when S[ω], S[μ] are both integrally closed, fg ∈ S2∧4 and p.d.S(S/Q) > 2. 
Therefore, assume all of these conditions for the remainder of the proof.

We have from 4.2 that for I := (2, ωμ − h1h2)A, I∗ = R. Set M = (IP )∗, where 
P = (2, ω − h1, μ − h2) is the unique height one prime containing 2 in A. Then (IP )∗ is 
an R-module since

(IP )∗ = A :K IP = ((A :K I) : P ) = (R :K P )

We now show that depthS(M) = d. By definition,

(IP )∗A = (2 · P + (ωμ− h1h2) · P )∗A = F1 ∩ F2

where F1 = 2−1P ∗ and F2 = (ωμ − h1h2)−1P ∗. This is because for ideals J, J ′ ⊆ A, 
(A :K J + J ′) = (A :K J) ∩ (A :K J ′) as A-modules.

Now P is S-free since A/P � S/2S as S-modules and by the depth lemma, 
depthS(P ) = d. By 4.4, P ∗

A � P ∗
S as S-modules, so P ∗ is Cohen-Macaulay as well 

and hence F1 and F2 are Cohen-Macaulay. We have the natural short exact sequence of 
S-modules

0 �� F1 ∩ F2 �� F1 ⊕ F2 �� F1 + F2 �� 0

By the depth lemma, it suffices to show depthS(F1+F2) ≥ d −1. Clearly F1+F2 � F ′
1+F ′

2
as A-modules and hence S-modules where F ′

1 = (ωμ −h1h2)P ∗ ⊆ A and F ′
2 = 2P ∗ ⊆ A. 

We claim that F ′
1 + F ′

2 = F ′
2 + (ωμ − h1h2) as ideals of A. By 4.9, we only need to show 

that

v := 2−1(ω + h1)(μ + h2)(ωμ− h1h2) ∈ H := F ′
2 + (ωμ− h1h2)

Writing

(ωμ− h1h2) = (ω − h1)(μ− h2) + h2(ω − h1) + h1(μ− h2),

we have

v ≡ 2−1(ω + h1)(μ + h2)(h2(ω − h1) + h1(μ− h2)) mod(H)

≡ ah (μ + h ) + bh (ω + h ) mod(H)
(8)
2 2 1 1



116 P. Sridhar / Journal of Algebra 582 (2021) 100–116
Since S/2S is regular local, h1 ≡ (zc)mod(2), h2 ≡ (ze)mod(2) for some z /∈ 2S and 
c, e such that (2, c, e) ⊆ S form a regular sequence. From (1) in 3.3, fg ∈ S2∧4 implies 
ah2

2 + bh2
1 ∈ 2S and hence a − qc2 ∈ 2S and b + qe2 ∈ 2S for some q ∈ S. Therefore, (8)

implies

v ≡ qc2h2(μ + h2) − qe2h1(ω + h1) mod(H)

≡ qce(h1(μ + h2) − h2(ω + h1)) mod(H)
(9)

But ωμ − h1h2 − (ω − h1)(μ − h2) = h2(ω − h1) + h1(μ − h2) ∈ H. Since 2 ∈ H, 
h1(μ + h2) − h2(ω + h1) ∈ H and from (9), v ∈ H. Therefore F ′

1 + F ′
2 = H = (2, (ω +

h1)(μ + h2), ωμ − h1h2) by 4.9. From 4.3, p.dS(H) ≤ 1 so that depthS(H) ≥ d − 1. This 
completes the proof, and hence M = (IP )∗ is a small CM module over R. �
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