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An integral domain D is said to be of finite t-character if each
nonzero nonunit of D is contained in only finitely many maximal
t-ideals of D . For example, Noetherian domains and Krull domains
are of finite t -character. In this paper, we study several properties
of integral domains of finite t-character. We also show when the
ring D(S) = D + X D S [X] is of finite t-character, where X is an
indeterminate over D and S is a multiplicative subset of D .
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Introduction

An integral domain D is said to be of finite character (resp., finite t-character) if every nonzero
nonunit of D belongs to at most a finite number of maximal ideals (resp., maximal t-ideals). It is well
known that integral domains in which each t-ideal is a v-ideal (e.g., Noetherian, Mori, or Krull do-
mains) are of finite t-character [27, Theorem 1.3]. Also, if D is of finite t-character, then D is a w-LPI
domain (i.e., each nonzero t-locally principal ideal is t-invertible), and hence D is an LPI domain
that is an integral domain in which every nonzero locally principal ideal is invertible. In particular,
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if D is a Prüfer domain (resp., Prüfer v-multiplication domain (PvMD)), then D is of finite character
(resp., finite t-character) if and only if D is an LPI domain (resp., a w-LPI domain) [26, Theorem 10],
[23, Theorem 6.1], [40, Proposition 5]. The properties of LPI domains (resp., w-LPI domains) are fur-
ther studied in [9] (resp., [12]).

Let S be a multiplicative subset of an integral domain D . It is known that if A is a t-ideal of D S ,
then A ∩ D is a t-ideal of D [30, Lemma 3.17]. However, I being a t-ideal of D does not imply that
I D S is a t-ideal of D S . As in [38], we say that D is conditionally well behaved if for each maximal
t-ideal M of D , the prime ideal M D M is a t-ideal. In Section 1 of this paper, we study the finite
t-character property of integral domains. We first show that integral domains of finite t-character are
conditionally well behaved. As a corollary, we have that if D is of finite t-character, then D is t-locally
(resp., locally) a GCD-domain if and only if D is a PvMD (resp., generalized GCD-domain). We shall
also give some examples of situations where the requirements/properties yield the property of being
of finite t-character. In Section 2, we study when the ring D(S) = D + X D S [X] is a PvMD of finite
t-character, where X is an indeterminate over D . Precisely, we show that D(S) is a PvMD of finite
t-character if and only if D is a PvMD of finite t-character, S is a t-splitting set, and |{P ∈ t-Max(D) |
P ∩ S �= ∅}| < ∞. In particular, if D is a Krull domain, then D(S) is of finite t-character if and only
if |{P ∈ t-Max(D) | P ∩ S �= ∅}| < ∞. Finally, in Section 3, we give a kind of Nagata-like theorem. We
then use this result to prove some sufficient conditions for D(S) to be of finite t-character even when
D(S) is not a PvMD.

It is apparent that this paper will be steeped in the so-called star-operations. So let us start with
a set of working definitions. Most of the information given below can be found in [39] and [19]. Let
D denote an integral domain with quotient field K and let F (D) (resp., f (D)) be the set of nonzero
(resp., nonzero finitely generated) fractional ideals of D . A fractional ideal that is contained in D will
be called an integral ideal.

A star operation ∗ on D is a function ∗ : F (D) → F (D) such that for all A, B ∈ F (D) and for all
0 �= x ∈ K

(i) (x)∗ = (x) and (xA)∗ = xA∗ ,
(ii) A ⊆ A∗ and A∗ ⊆ B∗ whenever A ⊆ B ,

(iii) (A∗)∗ = A∗ .

A fractional ideal A ∈ F (D) is called a ∗-ideal if A = A∗ and a ∗-ideal of finite type if A = B∗ for some
B ∈ f (D). A star operation ∗ is said to be of finite character if A∗ = ⋃{B∗ | B ⊆ A and B ∈ f (D)}. For
A ∈ F (D), define A−1 = {x ∈ K | xA ⊆ D} and call A ∈ F (D) ∗-invertible if (A A−1)∗ = D . Clearly, every
invertible ideal is ∗-invertible for every star operation ∗. If ∗ is of finite character and A is ∗-invertible,
then A∗ is of finite type. The most well known examples of star operations are: the v-operation
defined by A 
→ Av = (A−1)−1, the t-operation defined by A 
→ At = ⋃{B v | B ∈ f (D) and B ⊆ A},
the w-operation defined by A 
→ Aw = {x ∈ K | x J ⊆ A for some J ∈ f (D) with J−1 = D}, and the
d-operation that is the identity function of F (D) onto itself. Given two star operations ∗1 and ∗2, we
say that ∗1 � ∗2 if A∗1 ⊆ A∗2 for all A ∈ F (D). Note that ∗1 � ∗2 if and only if (A∗1 )∗2 = (A∗2 )∗1 = A∗2 .
For any star operation ∗, we have ∗ � v . For A ∈ F (D), A−1 is a v-ideal. If {Dα} is a family of overrings
of D such that D = ⋂

Dα , then the operation ∗ defined on F (D) by A 
→ ⋂
ADα is a star operation

induced by {Dα}. Thus if ∗ is a star operation induced by {Dα}, then A−1 = (A−1)∗ = ⋂
A−1 Dα . By

definition t is of finite character, t � v while ∗ � t for every star operation ∗ of finite character. If ∗
is a star operation of finite character, then using Zorn’s lemma we can show that an integral ideal
maximal among proper integral ∗-ideals is a prime ideal and that every integral ∗-ideal is contained
in a maximal ∗-ideal. Let us denote the set of all maximal ∗-ideals by ∗-Max(D). It can also be easily
established that if ∗ is a star operation of finite character on D , then D = ⋂

M∈∗-Max(D) D M , and an

A ∈ F (D) is ∗-invertible if and only if A A−1 � P for any maximal ∗-ideal P of D .
A v-ideal A of finite type is t-invertible if and only if A is t-locally principal, i.e., for every M ∈

t-Max(D), we have that AD M is principal. We say that an ideal A is t-locally t-invertible if AD M is
t-invertible for every maximal t-ideal M . Recall from [5, Corollary 2.17] that t-Max(D) = w-Max(D);
so A ∈ F (D) is t-locally principal (resp., t-invertible) if and only if A is w-locally principal (resp.,
w-invertible). An integral domain D is called a Prüfer v-multiplication domain (PvMD) if every nonzero
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finitely generated ideal of D is t-invertible. It is well known that D is a PvMD if and only if D M is a
valuation domain for each M ∈ t-Max(D) [21, Theorem 5]. An integral domain D is called an essential
domain if D = ⋂

D P where P ranges over prime ideals of D such that D P is a valuation domain. By
definition, PvMDs are essential. Any pair of elements a,b ∈ D is said to be v-coprime if (a,b)v = D .
Obviously, two elements a,b in D are v-coprime if and only if a,b do not share a maximal t-ideal.
Let T (D) be the group of t-invertible fractional t-ideals of D under the t-multiplication I ∗ J = (I J )t
and let Prin(D) be its subgroup of principal fractional ideals. Then Cl(D) = T (D)/Prin(D), called the
(t-)class group of D , is an abelian group. Clearly, Cl(D) = (0) means that every t-invertible fractional
t-ideal of D is principal. It is well know that D is a GCD-domain if and only if D is a PvMD and
Cl(D) = (0).

Let F be a family of prime ideals of D . Then F is called a defining family for D if D = ⋂
P∈F D P .

For example, t-Max(D) and Max(D) are defining families for D , where Max(D) represents the set
of maximal ideals of D . If F is a defining family for D , then we denote by ∗F the star operation
on D induced by {D P | P ∈ F}. We call F independent if no two distinct members of F contain a
nonzero prime ideal. An integral domain D is called an h-local domain (resp., weakly Matlis domain
or WM-domain) if D is of finite character (resp., finite t-character) and Max(D) (resp., t-Max(D)) is
independent. Clearly, a weakly Matlis domain is a t-operation version of the h-local domains. The
h-local domains were introduced and studied by Eben Matlis (see [8]). Recall that D is an h-local
domain (resp. WM-domain) if and only if for every maximal ideal (resp., maximal t-ideal) M and for
every nonzero x ∈ M , the ideal xDM ∩ D is invertible (resp., t-invertible) [8, Corollaries 3.4 and 4.4].

The prime t-ideals have this annoying property that if P is a prime t-ideal of D then P D S may not
be a prime t-ideal for some multiplicative set S disjoint with P . The authors of [31] were led to this
conclusion seeing an example in [25] of an essential domain that is not a PvMD. In any case, in [38],
a prime ideal P in D was called well behaved if P D P is a prime t-ideal of D P . We say that D is well
behaved if every prime t-ideal of D is well behaved. In [38], the last named author characterized well
behaved domains and showed that most of the known domains, including PvMDs, are well behaved.
Clearly, well behaved domains are conditionally well behaved. In [38], there was also an example of
a conditionally well behaved domain that is not well behaved (or see Example 1.4).

1. Integral domains of finite t-character

Let D be an integral domain with quotient field K . We will say that a maximal t-ideal is potent if it
contains a nonzero finitely generated ideal that is not contained in any other maximal t-ideal. Clearly,
if P is finitely generated, the radical of a finitely generated ideal, or a v-ideal of finite type, then P is
automatically potent. Hence Mori domains and Noetherian domains all have potent maximal t-ideals.

Theorem 1.1. Let D be an integral domain.

(1) Let P be a maximal t-ideal of D that is potent, then P is well behaved.
(2) If D is of finite t-character, then every maximal t-ideal of D is potent, and hence D is conditionally well

behaved.

Proof. (1) Let A be a nonzero finitely generated ideal such that A ⊆ P but A � Q for all Q ∈
t-Max(D) with Q �= P . We first show that (AD P )v ⊆ P D P . Deny. Then (AD P )v = D P which gives
(AD P )−1 = D P . Since A is finitely generated, we have A−1 D P = D P [35, Lemma 4]. Next, for any
maximal t-ideal Q of D with Q �= P we have AD Q = D Q and so A−1 D Q = D Q . Thus, A−1 =⋂

M∈t-Max(D) A−1 D M = ⋂
M∈t-Max(D) D M = D . But, this means Av = D , a contradiction to the fact that

A is contained in P a maximal t-ideal of D . Hence our denial of (AD P )v ⊆ P D P is refuted. Now take
any nonzero finitely generated ideal B ⊆ P and note that B + A is contained in P and in no maxi-
mal t-ideal other than P , because of A. By the above, we conclude that ((B + A)D P )v ⊆ P D P . But as
B D P ⊆ (B + A)D P ⊆ P D P we have (B D P )v ⊆ ((B + A)D P )v ⊆ P D P . Thus P D P is a t-ideal of D P .

(2) To prove this, let x be a nonzero element in a maximal t-ideal P of D . If x belongs to no
other maximal t-ideal, we have nothing to prove. So let us assume that x belongs also to other
maximal t-ideals. Since D is of finite t-character, there can be only finitely many maximal t-ideals
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M1, M2, . . . , Mn , in all, besides P . Now construct A = (x, x1, . . . , xn) where xi ∈ P\Mi . Clearly, A ⊆ P
and A is in no other maximal t-ideal. Thus, P is potent, and hence P is well behaved by (1). Now as
P was arbitrary, D is conditionally well behaved. �

The next result is similar to [17, Proposition 2.8 and Corollary 2.8] where it was studied when
t-locally a PvMD or a GCD-domain is of finite t-character.

Corollary 1.2. If D is of finite t-character, then the following are equivalent.

(1) D is t-locally a GCD-domain.
(2) D is t-locally a PvMD.
(3) D is a PvMD.
(4) D is locally a PvMD.

Proof. (1) ⇒ (2) Clear. (2) ⇒ (3) Let M be a maximal t-ideal of D . Then D M is a PvMD, and since
M D M is a t-ideal by Theorem 1.1(2), DM = (D M)M DM is a valuation domain. Thus D is a PvMD.
(3) ⇒ (1) and (4) Clear. (4) ⇒ (3) Let P be a maximal t-ideal of D . Then P D P is a t-ideal of D P
by Theorem 1.1(2), and so if M is a maximal ideal of D containing P , then P D M is a t-ideal of D M
because P D P ∩ D M = P D M . Thus, by (4), D P = (D M)P DM is a valuation domain. �

An integral domain D is called a generalized GCD-domain (GGCD-domain) if the intersection of two
invertible ideals of D is invertible. It is known that D is a GGCD-domain if and only if I v is invertible
for each nonzero finitely generated ideal I of D , if and only if aD ∩bD is invertible for all 0 �= a,b ∈ D
[2, Theorem 1].

Corollary 1.3. If D is of finite t-character, then D is locally a GCD-domain if and only if D is a GGCD-domain.

Proof. (⇒) Note that locally a GCD-domain is t-locally a GCD-domain; so D is a PvMD by Corol-
lary 1.2. Hence if 0 �= a,b ∈ D , then aD ∩ bD is of finite type because aD ∩ bD is t-invertible. Also,
(aD ∩ bD)M = aD M ∩ bDM is principal for all maximal ideals M of D by assumption. Thus aD ∩ bD is
invertible.

(⇐) This is well known, but we give the proof. Let 0 �= x, y ∈ D . Then xD ∩ yD is invertible by
assumption, and hence xD M ∩ yDM = (xD ∩ yD)M is invertible (so principal) for all maximal ideals M
of D . �

We next give an example of integral domains of finite t-character that is not well-behaved.

Example 1.4. Let R = R[[X, Y , Z ]] be the power series ring over the field R of real numbers,
M = (X, Y , Z)R[[X, Y , Z ]], and D = Q + M , where Q is the field of rational numbers. Then R is a
3-dimensional local Noetherian Krull domain with maximal ideal M , and D is a quasi-local domain
with maximal ideal M such that Spec(R) = Spec(D) and M is a v-ideal of D . Hence D is of finite
t-character. But, if P is a prime ideal of D with htP = 2, then P is a prime ideal of R such that
D P = R P . Clearly, R P is a 2-dimensional Krull domain and htP R P = 2, and thus P D P = P R P is not a
t-ideal. Thus D is not well-behaved.

Theorem 1.1(2) shows that if D is of finite t-character, then every maximal t-ideal of D is po-
tent. However, if D = Z + XQ[[X]], then every maximal t-ideal of D is potent, but D is not of finite
t-character. It may be noted that while a domain with potent maximal t-ideals is conditionally well
behaved by Theorem 1.1(1), even a well behaved domain may not have potent maximal t-ideals.

Example 1.5. Let S = {Xα | α ∈ Q+} where Q+ denotes the set of nonnegative rational numbers and
let K be an algebraically closed field with characteristic zero. Also, let R be the semigroup ring K [S] =
{∑ ci Xαi | ci ∈ K and αi ∈ Q+}.
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(1) R is a one-dimensional Bezout domain, and hence a well-behaved domain.
(2) No maximal ideal containing (X − 1)R is potent.

Proof. (1) Note that R can be regarded as an ascending union of the PIDs Rn! = K [X
1
n! ] where n!

denotes the factorial of the natural number n. That is, R = ⋃
Rn! , where obviously Rn! ⊆ R(n+1)! for

all natural numbers n. Being an ascending union of PIDs, R is a one-dimensional Bezout domain.
(2) Note that every finitely generated ideal of R is principal by (1), and so every nonzero ideal is a

t-ideal. Now by [6, Theorem 1], R is an antimatter domain, i.e., every nonzero nonunit element of R is
expressible as a product of at least two nonunits. Since R is a Bezout domain, a maximal ideal P of R
is potent if and only if there is an element r ∈ P such that r belongs to no other maximal ideal. Now
it is easy to show that in a Bezout domain R , a nonzero element r belongs to a unique maximal ideal
if and only if r is such that for all x, y | r we have x | y or y | x, i.e. r is rigid. Clearly, as no element
of R is a prime, nor a prime power, we have a factorization r = xy where x and y are nonunits. Now
as r is rigid, x | y or y | x and so x2 | r or y2 | r. Now let P be a maximal ideal containing (X − 1)R
such that P is potent containing a rigid element s. But then there is a rigid element r dividing X − 1
and so there is a nonunit factor x such that x2 | r and so x2 | (X − 1), contradicting the fact that
(X − 1)R is a radical ideal as shown in [34, Example 3.6 and Lemma 3.7]. �

Let ∗ be a star operation of finite character on D . We say that D is of finite ∗-character if each
nonzero nonunit of D is contained in only finitely many maximal ∗-ideals of D . We shall call an
ideal A of D ∗-locally principal if AD P is principal for each maximal ∗-ideal P of D and we shall
call D a ∗-LPI domain if every nonzero ∗-locally principal ideal of D is ∗-invertible. Obviously, finite
d-character ⇔ finite character; finite t-character ⇔ finite w-character; d-LPI domain ⇔ LPI domain;
and w-LPI domain ⇔ t-LPI domain.

It is now well-established that a Prüfer domain (resp. PvMD) D is of finite character (resp., finite
t-character) if and only if D is an LPI (resp., w-LPI) domain. Look up [40] for the relevant results and
history. As it was shown in [14], most cases where LPI (resp., w-LPI) implies finite character (resp.,
finite t-character) fall under the cases where every finitely generated ideal is contained in at least
one ideal of a fixed type, e.g., invertible ideal (resp., t-invertible t-ideal). Finocchiaro et al. in [17],
took a direction that could avoid using the approach used in [14]. Here we show that there are some
situations, mostly involving conditionally well behaved prime t-ideals such that ∗-LPI implies finite
∗-character, where ∗ is a star operation of finite character.

Theorem 1.6. Let ∗ be a star operation of finite character on D such that F = ∗-Max(D) is independent. Then
D is of finite ∗-character if and only if D is ∗-LPI.

Proof. (⇒) This is an immediate consequence of [7, Lemma 2.2].
(⇐) Suppose that D is ∗-LPI. Let x ∈ P\{0} where P ∈ ∗-Max(D) and consider xD P ∩ D . Then

xD P ∩ D ⊆ P and to no other member of ∗-Max(D) [8, Lemma 2.3]. Now (xD P ∩ D)D P = xD P and
(xD P ∩ D)D Q = D Q for all Q ∈ ∗-Max(D) with Q �= P , and so xD P ∩ D is ∗-locally principal. Hence
by the assumption, xD P ∩ D is ∗-invertible. Next, note that ∗F = ∗w because the members of F are
maximal ∗-ideals and ∗w is of finite character and that ∗-invertible is ∗w -invertible [5]. Thus ∗F
is of finite character, for each P ∈ F and 0 �= x ∈ P , xD P ∩ D is ∗F -invertible and unidirectional (is
contained in P and in no other member of F ); hence all requirements of (4) of [8, Theorem 3.3] are
met, and so by [8, Theorem 3.3] F is independent of finite character which translates to “D is of
finite ∗-character”. �

We say that D is of t-dimension one if every member of t-Max(D) is of height-one. Obviously, if D
is of t-dimension one, then t-Max(D) is independent and D is well behaved (and hence conditionally
well behaved). An integral domain of t-dimension one that is also of finite t-character is called a
weakly Krull domain. (These domains were studied in [7, Theorem 3.1], called weakly Krull domains
in [3].) We recall from [7, Theorem 3.1] that D is a weakly Krull domain if and only if every nonzero
prime ideal of D contains a nonzero t-invertible primary t-ideal, if and only if P being minimal over
a proper principal ideal (x) implies xD P ∩ D is t-invertible.
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Corollary 1.7. Let D be of t-dimension one. Then the following are equivalent.

(1) D is of finite t-character.
(2) D is a weakly Krull domain.
(3) Every maximal t-ideal of D is potent.
(4) D is a w-LPI domain.

Proof. (1) ⇔ (2) This follows because D is of t-dimension one.
(1) ⇒ (3) Theorem 1.1(2).
(3) ⇒ (1) Assume that every maximal t-ideal of D is potent. If P is a maximal t-ideal of D , then

there is a nonzero finitely generated ideal A such that A ⊆ P but A � Q for all Q ∈ t-Max(D) \ {P }.
Hence P = √

A because D is of t-dimension one. Let x be a nonzero nonunit of D . Then each minimal
prime ideal of xD is a maximal t-ideal, and hence the radical of a finitely generated ideal. Thus, x is
contained in only finitely many maximal t-ideals [20, Theorem 2.1]. Hence D is of finite t-character.

(1) ⇔ (4) Since D is of t-dimension one, t-Max(D) is independent. Thus, the result follows directly
from Theorem 1.6. �
Remark 1.8. We had originally proved Theorem 1.6 for t-operation alone, thanks are due to the re-
viewer for pointing out to us the more general result that is Theorem 1.6 now. This result was first
proved for ∗ = d in [33, Lemma 3.9].

Note that every height-one prime ideal is a t-ideal, because it is minimal over each of its nonzero
principal subideals. Also, note that if every maximal ideal is a t-ideal, then the notions of “t-invertible”
and “invertible” coincide. This gives the following corollary.

Corollary 1.9. Let D be a one-dimensional integral domain. Then the following are equivalent.

(1) D is of finite character.
(2) D is an LPI domain.
(3) For every nonzero prime ideal P of D and for every nonzero x ∈ P , xD P ∩ D is invertible.

Let D be an integral domain and � be a set of prime ideals of D such that D = ⋂
P∈� D P . In

[17, Proposition 1.8], it was shown that if D = ⋂
P∈� D P is locally finite, then It = ⋂

P∈�(I D P )t for
all I ∈ F (D).

Proposition 1.10. Let D = ⋂
α D Sα , where {Sα} is a nonempty family of multiplicative subsets of D. If the

intersection D = ⋂
α D Sα is locally finite, then

At =
⋂

α

(AD Sα )t

for all A ∈ F (D).

Proof. For each A ∈ F (D), let A∗ = ⋂
α(AD Sα )t . It is routine to check that ∗ is a star operation

on D (for the property (iii) of star operations, note that A∗ ⊆ (AD Sα )t , and hence (A∗D Sα )t ⊆
((AD Sα )t)t = (AD Sα )t for all α). Also, since the intersection is locally finite, ∗ is of finite character
on D [1, Theorem 2]. Note that if S is a multiplicative set of D , then (I D S )t = (It D S )t for all I ∈ F (D)

[30, Lemma 3.4]. Hence It ⊆ ⋂
α(I D Sα )t = I∗ . Thus t � ∗, and so ∗ = t since ∗′ � t for any star opera-

tion ∗′ of finite character on D . Therefore A∗ = At for all A ∈ F (D). �
Corollary 1.11. Let D = ⋂

α D Sα , where {Sα} is a nonempty family of multiplicative subsets of D, and suppose
that the intersection is locally finite. If P is a maximal t-ideal of D, then P D Sα is a maximal t-ideal of D Sα for
some Sα .
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Proof. By Proposition 1.10, Pt = ⋂
α(P D Sα )t . Hence P D Sα ⊆ (P D Sα )t � D Sα for some Sα . Note that if

Q is a maximal t-ideal of D Sα with (P D Sα )t ⊆ Q , then Q ∩ D is a t-ideal of D , and since P ⊆ Q ∩ D
and P is a maximal t-ideal, we have P = Q ∩ D . Hence Q = P D Sα , and thus P D Sα is a maximal
t-ideal. �

We use Corollary 1.11 to give another proof of Theorem 1.1(2) that an integral domain of finite
t-character is conditionally well-behaved.

Proof of Theorem 1.1(2). Let M be a maximal t-ideal of D . Then, by Corollary 1.11, M D P is a maximal
t-ideal of D P for some maximal t-ideal P of D . But, note that if P �= M , then M D P = D P , and so
(M D P )t = D P . Thus M D M is a maximal t-ideal of D M . �

Continuing with the theme of conditionally well behaved domains we note the following result.

Proposition 1.12. The following hold for an integral domain D.

(1) If D is a quasi-local domain with maximal ideal M, with M a t-ideal, then every t-invertible ideal of D is
principal.

(2) If D is conditionally well behaved, then “t-locally t-invertible” is equivalent to “t-locally principal”.

Proof. (1) Let A be a t-invertible ideal of D . Then (A A−1)t = D implies that A A−1 is in no maximal
t-ideals of D . That means that A A−1 = D . This forces A to be invertible and hence principal.

(2) Note that t-locally principal is t-locally invertible, and hence t-locally t-invertible anyway. For
the reverse implication, note that if A is t-locally t-invertible, then AD M is t-invertible for each
maximal t-ideal M of D . But as M is well behaved, M D M is a t-ideal and so, by (1) above, AD M
is principal. �
Corollary 1.13. If D is of finite t-character, then every t-locally t-invertible ideal of D is t-invertible.

Proof. Let I be a t-locally t-invertible ideal of D . Then I is t-locally principal by Theorem 1.1(2) and
Proposition 1.12, and thus I is t-invertible because integral domains of finite t-character are w-LPI
domains [12, Corollary 2.2]. �

Let GV(D) = { J ∈ F (D) | J is finitely generated and J v = D}, and let 2-GV(D) = { J ∈ GV(D) |
J is generated by two elements}. For each I ∈ F (D), let It2 = {x ∈ K | x J ⊆ I for some J ∈ 2-GV(D)}.
In [24, Proposition 3.3], it was shown that if D is Noetherian, then t2 = w , and hence t2 is a star
operation on D . More generally, assume that D is of finite t-character. Let I ∈ GV(D), and choose a
nonzero a ∈ I . Then there exist only finitely many maximal t-ideals of D containing a, say, P1, . . . , Pn .
Note that It = D; so I � Pi for i = 1, . . . ,n, and hence I �

⋃n
i=1 Pi . Choose another b ∈ I − ⋃n

i=1 Pi .
Then (a,b) ⊆ I and (a,b)v = D . Thus t2 = w on D . We next give a necessary and sufficient condition
for t2 to be a star operation on D .

Theorem 1.14. Let It2 = {x ∈ K | x J ⊆ I for some J ∈ 2-GV(D)} for all I ∈ F (D). Then t2 is a star operation
on D if and only if for J1, J2 ∈ 2-GV(D), there exists a J ∈ 2-GV(D) with J ⊆ J1 J2 .

Proof. (⇒) Let J1, J2 ∈ 2-GV(D), and put I = J1 J2. Clearly, J t2
1 = J t2

2 = D , and since t2 is a star

operation on D , we have It2 = ( J t2
1 J t2

2 )t2 = D . Hence 1 ∈ It2 , and thus there is a J ∈ 2-GV(D) so that
J = 1 · J ⊆ I .

(⇐) Let 0 �= x ∈ K and A, B ∈ F (D). It is easy to check that (i) (xD)t2 = xD and (xA)t2 = xAt2 and
(ii) A ⊆ At2 , and A ⊆ B implies At2 ⊆ Bt2 . Hence it suffices to show that (iii) (At2 )t2 = At2 .

To do this, we first note that At2 is a D-module because At2 = ⋃{(A : J ) | J ∈ 2-GV(D)} is a direct
union of D-modules by assumption. Moreover, if z A ⊆ D for some 0 �= z ∈ D , then z At2 = (z A)t2 ⊆
Dt2 = D . Therefore At2 ∈ F (D).



176 D.D. Anderson et al. / Journal of Algebra 396 (2013) 169–183
Now, we prove that (At2 )t2 ⊆ At2 , and thus (At2 )t2 = At2 by (ii) above. Let x ∈ (At2 )t2 . Then
x(α,β) ⊆ At2 for some (α,β) ∈ 2-GV(D) ⇒ xα J1 + xβ J2 ⊆ A for some J1, J2 ∈ 2-GV(D) because
At2 ∈ F (D) ⇒ x(α,β) J ⊆ xα J + xβ J ⊆ A, where J ∈ 2-GV(D) with J ⊆ J1 J2, ⇒ x J ′ ⊆ A, where
J ′ ∈ 2-GV(D) with J ′ ⊆ (α,β) J , ⇒ x ∈ At2 . Thus (At2 )t2 ⊆ At2 . �

We end this section with an example of integral domains (that need not be of finite t-character)
on which t2 = w .

Example 1.15. (See [24, Theorem 4.5].) If D = R[y] is the polynomial ring over an integral domain R ,
then t2 is a star operation on D with t2 = w , but D need not be of finite t-character.

Proof. Let A be a nonzero finitely generated ideal of R[y] such that A−1 = R[y]. Then (i) A ∩ R �= (0),
(ii) there is a nonzero f ∈ A with c( f )v = R , where c( f ) is the ideal of R generated by the coefficients
of f , and (iii) (a, f )v = R[y] for all 0 �= a ∈ A ∩ R [24, Lemma 4.4]. Therefore, t2 = w on R[y]. Note
that R[y] is of finite t-character if and only if R is of finite t-character (see Corollary 3.4). Hence R[y]
need not be of finite t-character. �
2. PvMDs of finite t-character

Let D be an integral domain with quotient field K , S be a multiplicative subset of D , X be an
indeterminate over D , and D(S) = D + X D S [X]. Clearly, D(S) is an integral domain with D[X] ⊆ D(S) ⊆
D S [X] ⊆ K [X]. As in [22], we say that D is a ring of Krull type if D is a locally finite intersection of
essential valuation overrings of D; equivalently, D is a PvMD of finite t-character. In this section, we
study when D(S) is a ring of Krull type.

We first recall the prime t-ideal structure of D(S) intersecting S which is very useful in the sequel.

Lemma 2.1. Let P be the set of prime ideals of D intersecting S.

(1) {P + X D S [X] | P ∈P} is the set of prime ideals of D(S) intersecting S.
(2) If A is an ideal of D(S) such that A ∩ S �= ∅, then A = (A ∩ D)D(S) = (A ∩ D) + X D S [X]. Moreover,

At = (A ∩ D)t + X D S [X].
(3) If P ∈ P, then P + X D S [X] is a prime (resp., maximal) t-ideal of D(S) if and only if P is a prime (resp.,

maximal) t-ideal.

Proof. (1) [13, Theorem 2.1]. (2) [16, Lemma 3.7]. (3) follows from (1) and (2). �
It is known that D(S) is a PvMD if and only if D is a PvMD and S is a t-splitting set [4, The-

orem 2.5], if and only if D(S) is well behaved [38, Proposition 3.3]. (The multiplicative set S is a
t-splitting set of D if for each nonzero d ∈ D , we have dD = (AB)t for some integral ideals A and
B of D with At ∩ sD = sAt for all s ∈ S and Bt ∩ S = ∅; equivalently, dD S ∩ D is t-invertible for all
0 �= d ∈ D [4, Proposition 3.1].)

Lemma 2.2. If D(S) = D + X D S [X] is a PvMD, then

t-Max
(

D(S)
) ⊆ {

A ∩ D(S)
∣∣ A ∈ t-Max

(
D S [X]) with A ∩ D S = (0)

}

∪ {
P D S [X] ∩ D(S)

∣∣ P ∈ t-Max(D) with P ∩ S = ∅}

∪ {
P + X D S [X] ∣∣ P ∈ t-Max(D) with P ∩ S �= ∅}

.

Proof. Let R = D(S) and Q ∈ t-Max(R). Clearly, R S = D S [X] and both R S and D S are PvMDs. If Q ∩
S �= ∅, then Q = (Q ∩ D) + X D S [X] and Q ∩ D is a maximal t-ideal of D with (Q ∩ D) ∩ S �= ∅
by Lemma 2.1. Hence we assume that Q ∩ S = ∅. Then Q S is a prime t-ideal of R S because R is a
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PvMD, and hence either Q S ∩ D S = (0) or Q S = P D S [X] for some nonzero prime ideal P of D . If
Q S ∩ D S = (0), then Q S ∩ R = Q and Q S is a maximal t-ideal of R S because D S is a PvMD. Next,
assume Q S = P D S [X]. We claim that P is a maximal t-ideal of D . Since Q S is a t-ideal, both P D S
and P are t-ideals. If P is not a maximal t-ideal, then there is a maximal t-ideal P ′ of D with P � P ′ .
Note that, since R is a PvMD, S is a t-splitting set of D , and hence if P ′ ∩ S �= ∅, then P ∩ S �= ∅
[4, Lemma 4.2], a contradiction. So P ′ ∩ S = ∅, but, in this case, Q S � P ′D S [X] and P ′D S [X] is a
t-ideal of R S . So Q � P ′D S [X] ∩ R and P ′D S [X] ∩ R is a t-ideal, a contradiction. Thus P is a maximal
t-ideal. �
Lemma 2.3. If D(S) = D + X D S [X] is a PvMD, then

t-Max
(

D(S)
) ⊇ {

P D S [X] ∩ D(S)
∣∣ P ∈ t-Max(D) with P ∩ S = ∅}

∪ {
P + X D S [X] ∣∣ P ∈ t-Max(D) with P ∩ S �= ∅}

.

Proof. Let R = D(S) and P be a maximal t-ideal of D . If P ∩ S �= ∅, then P + X D S [X] is a maximal
t-ideal of D(S) by Lemma 2.1. Next, assume P ∩ S = ∅. Note that P D S is a maximal t-ideal of D S ; so
P D S [X] is a maximal t-ideal of D S [X], and hence P D S [X] ∩ R is a t-ideal of R . Thus, by Lemma 2.2,
P D S [X] ∩ R is a maximal t-ideal of R . �
Corollary 2.4. Let R = D(S) , i.e., R = D + X D S [X]. If R is a PvMD, then

{
Q ∈ t-Max(R)

∣∣ Q ∩ D �= (0)
} = {

P D S [X] ∩ R
∣∣ P ∈ t-Max(D) with P ∩ S = ∅}

∪ {
P + X D S [X] ∣∣ P ∈ t-Max(D) with P ∩ S �= ∅}

.

Proof. This is an immediate consequence of Lemmas 2.2 and 2.3. �
We are now ready to prove the main result of this section.

Theorem 2.5. The following statements are equivalent for D(S) = D + X D S [X].

(1) D(S) is a ring of Krull type.
(2) D is a ring of Krull type, S is a t-splitting set, and the set of maximal t-ideals of D that intersect S is

finite.

Proof. Let R = D(S) . Then R is a PvMD because R is a PvMD if and only if D is a PvMD and S is
t-splitting. Note that each nonzero nonunit of R is contained in finitely many maximal t-ideals Q
of R with Q ∩ D = (0) because R D\{0} = K [X] is a principal ideal domain (PID). Hence the t-finite
characterness of D(S) is completely determined by {Q ∈ t-Max(R) | Q ∩ D �= (0)}. Clearly, X ∈ P +
X D S [X] for each maximal t-ideal P of D intersecting S . Also, if |{P ∈ t-Max(D) | P ∩ S �= ∅}| < ∞,
then D is of finite t-character if and only if each nonzero nonunit of D(S) is contained in finitely many
maximal t-ideals of the form P D S [X]∩ R , where P ∈ t-Max(D) with P ∩ S = ∅. Thus, by Corollary 2.4,
R is of finite t-character if and only if D is of finite t-character and |{P ∈ t-Max(D) | P ∩ S �= ∅}| <

∞. �
It is known that every multiplicative subset of D is a t-splitting set if and only if D is a weakly

Krull domain [4, p. 8]. Thus, every multiplicative subset of a Krull domain is a t-splitting set. Let
X1(D) be the set of height-one prime ideals of D . Obviously, if D is a Krull domain, then X1(D) =
t-Max(D).

Corollary 2.6. If D is a Krull domain, then D(S) = D + X D S [X] is a ring of Krull type if and only if |{P ∈
X1(D) | P ∩ S �= ∅}| < ∞.
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Proof. Note that every multiplicative subset of a Krull domain is t-splitting; hence D(S) is a PvMD.
Thus the result follows from Theorem 2.5. �

A ring of Krull type D is called an independent ring of Krull type if t-Max(D) is independent. Hence
D is an independent ring of Krull type if and only if D is a weakly Matlis PvMD. It is obvious that
rings of Krull type that are of t-dimension one (e.g., Krull domains) are independent rings of Krull
type.

Corollary 2.7. D(S) = D + X D S [X] is an independent ring of Krull type if and only if D is an independent ring
of Krull type, S is a t-splitting set, and |{P ∈ t-Max(D) | P ∩ S �= ∅}| � 1.

Proof. Let R = D(S) .
(⇒) First, note that X D S [X] ⊆ P + X D S [X] for all P ∈ t-Max(D) with P ∩ S �= ∅; so |{P ∈

t-Max(D) | P ∩ S �= ∅}| � 1. Next, let P0 be a prime t-ideal of D . If P0 ∩ S = ∅, then Q := P0 D S [X] ∩ R
is a prime t-ideal of R , and hence Q is contained in a unique maximal t-ideal. Hence P0 is contained
in a unique maximal t-ideal of D by Corollary 2.4. Thus the proof is completed by Theorem 2.5.

(⇐) By Theorem 2.5, R is a ring of Krull type. For the independence, let Q be a prime t-ideal
of R . If Q ∩ D = (0), then Q ∩ S = ∅, and hence Q S must be a maximal t-ideal of D S [X] because D S

is a PvMD. Thus, either Q is a maximal t-ideal of R or Q is contained in a unique maximal t-ideal
of the form P + X D S [X] for some P ∈ t-Max(D) with P ∩ S �= ∅. Next, assume Q ∩ D �= (0). Then
Q ∩ D[X] is a nonzero prime ideal of D[X] such that (Q ∩ D[X]) ∩ D �= (0), and hence there is a
unique maximal t-ideal P ′ of D so that Q ∩ D[X] ⊆ P ′[X]. Thus, by Corollary 2.4, Q is contained in
a unique maximal t-ideal of R . �
Corollary 2.8. If D is a Krull domain, then D(S) = D + X D S [X] is an independent ring of Krull type if and only
if |{P ∈ X1(D) | P ∩ S �= ∅}| � 1.

Proof. This follows from Corollaries 2.6 and 2.7. �
Corollary 2.9. D is a ring (resp., an independent ring) of Krull type if and only if D[X] is a ring (resp., an
independent ring) of Krull type.

Proof. Clearly, if S is the set of units in D , then D(S) = D[X] and S is a t-splitting set. Thus, the proof
is completed by Theorem 2.5 and Corollary 2.7. �

An integral domain D is called an almost GCD-domain (AGCD-domain) if, for every pair of nonzero
elements a,b ∈ D , there is an integer n = n(a,b) � 1 such that an D ∩ bn D is principal. Clearly, a GCD-
domain is an integrally closed AGCD-domain. We know that D is an integrally closed AGCD-domain
if and only if D is a PvMD with Cl(D) torsion [36, Theorem 3.9]. Also, D(S) is an integrally closed
AGCD-domain if and only if D is an integrally closed AGCD-domain and S is an almost splitting set
[15, Theorem 3.1(a)]. (Recall that S is said to be almost splitting if for each d ∈ D\{0}, there is an m ∈N
such that dm = rs in D where s ∈ S and r is v-coprime to each element of S . Clearly, almost splitting
sets are t-splitting. It is known that if Cl(D) is torsion, then t-splitting sets are almost splitting [10,
Corollary 2.4].)

Let D be an AGCD domain. For a nonzero nonunit x ∈ D , let S(x) = {y | y is a nonunit factor of xn

for some n ∈N}. If r is a nonzero nonunit of D such that no two members of S(r) are v-coprime, we
call r an almost rigid element. Clearly, a nonzero nonunit r ∈ D is almost rigid if and only if, whenever
x and y are two factors of some power of r, then xm | ym or ym | xm for some m ∈ N. The notion of
almost rigid element generalizes the notion of a rigid element in a GCD domain. By [15, Corollary 2.1],
an AGCD domain D is of finite t-character if and only if for each nonzero nonunit x ∈ D , S(x) contains
at most a finite number of mutually v-coprime elements. Also, it follows from [15, Theorem 2.2] that
in an AGCD domain of finite t-character, every maximal t-ideal P contains an almost rigid element r
such that P = {x ∈ D | (x, r)v �= D}; in this case, we say that P is associated to r. Clearly, if P is
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associated to r, then P is a unique maximal t-ideal of D containing r, and thus two distinct maximal
t-ideals of an AGCD domain of finite t-character are associated to a pair of v-coprime almost rigid
elements.

Lemma 2.10. Let D be an AGCD domain of finite t-character and let S be a saturated multiplicative set of D.
Then S contains a sequence of mutually v-coprime almost rigid elements of infinite length if and only if |{P ∈
t-Max(D) | P ∩ S �= ∅}| = ∞.

Proof. Let T be the set of all almost rigid elements of D . Then the relation “is non-v-coprime to” is an
equivalence relation in T , and hence for each almost rigid element r, we have the unique equivalence
class [r] and correspondingly a unique maximal t-ideal P (r). Also, note that as D is an AGCD domain
of finite t-character, every maximal t-ideal of D is of the form P (r) = {x ∈ D | (x, r)v � D} for an
almost rigid element r [15, Corollary 2.1]. Now suppose that a maximal t-ideal P (r) intersects S , say,
x ∈ P (r) ∩ S . Then we can find d dividing a power of x such that d is an almost rigid element that
is non-v-coprime to r (see the second to the last paragraph on [15, p. 167]). Thus P (r) intersecting
S implies that there is an almost rigid element d ∈ S such that [r] = [d]. Next as no two v-coprime
elements can share a t-ideal, two distinct maximal t-ideals intersecting S would result in a pair of
v-coprime elements in S . Thus, there are infinitely many distinct maximal t-ideals of D intersecting S
if and only if there is an infinite set of mutually v-coprime elements in S . �
Corollary 2.11. (See [15, Theorem 3.1(b)].) Let D be an integrally closed AGCD domain of finite t-character and
let S be an almost splitting set of D. Then D(S) = D + X D S [X] is of finite t-character if and only if S contains
no sequence of mutually v-coprime almost rigid elements of infinite length.

Proof. This is an immediate consequence of Theorem 2.5 and Lemma 2.10, because an integrally
closed AGCD-domain is a PvMD and almost splitting sets are t-splitting. �

Next, we need to establish that Corollary 2.11 applies directly to the GCD domain case. For this,
we start with the following simple lemma.

Lemma 2.12. Let r be an almost rigid element in an integrally closed AGCD domain D. Then r, and every power
of r, is rigid. In particular, every almost rigid element of a GCD domain is rigid.

Proof. Let x, y ∈ D be nonzero such that x, y | r (resp., x, y | rn for any n ∈ N). Then there is an m ∈ N
such that xm | ym or ym | xm , but this leads to x | y or y | x because D is integrally closed. The “in
particular” part follows because GCD domains are integrally closed AGCD domains. �

It is known that D(S) is a GCD domain if and only if D is a GCD domain and (d, X)v is principal
in D(S) for all 0 �= d ∈ D [13, Theorem 1.1], if and only if D is a GCD domain and the saturation of S
in D is a splitting set [37, Corollary 1.5]. (A saturated multiplicative set S is called a splitting set if
each nonzero d ∈ D can be written as d = rs in D where s ∈ S and (r, s′)v = D for all s′ ∈ S .)

Corollary 2.13. Let D be a GCD domain of finite t-character and let S be a saturated multiplicative set of D
such that D(S) = D + X D S [X] is a GCD domain. Then R is of finite t-character if and only if S contains no
sequence of mutually v-coprime rigid elements of infinite length.

Proof. This follows directly from Corollary 2.11 and Lemma 2.12, because GCD domains are integrally
closed AGCD domains. �
3. Nagata-like theorems

As in Section 2, D denotes an integral domain, S is a saturated multiplicative set of D , X is an
indeterminate over D , and D(S) = D + X D S [X].
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Nagata’s theorem states that if S is generated by prime elements and D satisfies the ascending
chain condition on principal ideals, then D S is a factorial domain (if and) only if D is. (Nagata orig-
inally proved the result for a Noetherian domain and its multiplicative subset generated by a single
prime element [32, Lemma 1].) In this section, we prove this kind of results for integral domains of
finite t-character. We then use this result to give some sufficient conditions for D(S) to be of finite
t-character even when D(S) is not a PvMD.

Proposition 3.1. Let S be a saturated multiplicative set of D, and consider the following two conditions:
(i) each nonzero nonunit x ∈ D belongs to only finitely many maximal t-ideals intersecting S and (ii) every
maximal t-ideal P of D with P ∩ S = ∅ is contracted from a maximal t-ideal of D S . If D S is of finite t-character,
then the following are equivalent.

(1) D is of finite t-character.
(2) The condition (i) holds and D is conditionally well behaved.
(3) The conditions (i) and (ii) hold.

Proof. (1) ⇒ (2) Clearly, the condition (i) holds, and by Theorem 1.1(2), D is conditionally well be-
haved.

(2) ⇒ (3) The condition (ii) holds when P D S is a prime t-ideal for each maximal t-ideal P of D
that is disjoint from S . But, this follows because D is conditionally well behaved (note that P D P is a
t-ideal and P D S = P D P ∩ D S ).

(3) ⇒ (1) Let x be a nonzero nonunit of D . The maximal t-ideals of D containing x are of two
types, ones that are disjoint from S and these are contractions from maximal t-ideals of D S by (ii)
and ones that intersect S and these are finite in number by (i). Thus, since D S is of finite t-character,
x is contained in a finite number of maximal t-ideals of D . �
Remark 3.2. (1) The proof of Proposition 3.1 may leave one wondering about the maximal t-ideals
of D S that do not contract to maximal t-ideals in D . Let M be such a maximal t-ideal of D S , then
M ∩ D is a t-ideal. Suppose that P = M ∩ D is not a maximal t-ideal, and let Q be a maximal t-ideal
of D containing P . We claim that Q ∩ S �= ∅. For if not, then M � Q D S � D S and by the condition (ii)
of Proposition 3.1, Q D S is a maximal t-ideal of D S . This is contrary to the assumption that M is a
maximal t-ideal of D S .

(2) Let Z (resp., Q) be the ring (resp., field) of integers (resp., rational numbers), p be a nonzero
prime number, X and Y be indeterminates over Q, R = Z(p) + (X, Y )Q[[X, Y ]], K be the quotient field
of R , Z be an indeterminate over K and let D = R + Z K [[Z ]]. Then D is a quasi-local domain whose
maximal ideal is a t-ideal, and hence D is of finite t-character. But if we set S = {pn | n = 0,1,2, . . .},
then D S does not have finite t-character [12, Example 2.14].

Corollary 3.3. Assume that D is conditionally well behaved and D S is of finite t-character. Then D is of finite
t-character if and only if each nonzero nonunit x ∈ D belongs to only finitely many maximal t-ideals intersect-
ing S.

An upper to zero in D[X] is a nonzero prime ideal Q of D[X] with Q ∩ D = (0). A domain D is
called a UMT-domain if each upper to zero in D[X] is a maximal t-ideal. It is known that D is a PvMD
if and only if D is an integrally closed UMT-domain [28, Proposition 3.2]. The next result is already
known ([29, Proposition 4.2] and [18, Lemma 2.1]), but we include it here to indicate an application
of Proposition 3.1.

Corollary 3.4. D is of finite t-character if and only if D[X] is of finite t-character.

Proof. (⇒) Let S = D\{0}. Recall that if M is a maximal t-ideal of D[X] such that M ∩ S �= ∅, i.e.,
M ∩ D �= (0), then M = (M ∩ D)[X] and M ∩ D is a maximal t-ideal of D (cf. [28, Proposition 1.1]);
hence for any 0 �= f ∈ D[X], f ∈ M if and only if c( f ) ⊆ M ∩ D . Also, if Q is a maximal t-ideal of D[X]
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with Q ∩ S = ∅, then Q S is a maximal t-ideal of D[X]S (note that D[X]S is a PID) and Q S ∩ D[X] = Q .
So if D is of finite t-character, the conditions (i) and (ii) of Proposition 3.1 are satisfied. Clearly, D[X]S

is of finite t-character. Thus, by Proposition 3.1, D[X] is of finite t-character.
(⇐) This follows directly from the fact that if P is a maximal t-ideal of D , then P [X] is a maximal

t-ideal of D[X]. �
Let Γ be a numerical semigroup and D[Γ ] be the numerical semigroup ring of Γ over D . Then

the map φ : t-Spec(D[X]) → t-Spec(D[Γ ]), given by Q 
→ Q ∩ D[Γ ], is an order-preserving bijection,
where t-Spec(A) is the set of prime t-ideals of an integral domain A [11, Theorem 1.4]. Hence D[X]
is of finite t-character (resp., weakly Matlis) if and only if D[Γ ] is of finite t-character (resp., weakly
Matlis). By Corollary 3.4, D is of finite t-character if and only if D[X] is. Also, it is known that D[X] is
a weakly Matlis domain if and only if D is weakly Matlis and each upper to zero in D[X] is contained
in a unique maximal t-ideal of D[X] [18, Proposition 2.2]. Thus, we have

Corollary 3.5. If Γ is a numerical semigroup, then

(1) D is of finite t-character if and only if D[Γ ] is of finite t-character.
(2) D is weakly Matlis and each upper to zero in D[X] is contained in a unique maximal t-ideal of D[X] if

and only if D[Γ ] is weakly Matlis.

Corollary 3.6. If D is a UMT-domain, then D is weakly Matlis if and only if D[Γ ] is weakly Matlis.

Proof. This follows directly from Corollary 3.5(2) because each upper to zero in D[X] is a maximal
t-ideal. �
Corollary 3.7. Let S be a saturated multiplicative set of D, and consider the condition (#): S meets at most a
finite number of maximal t-ideals of D. If D S is of finite t-character, then the following are equivalent.

(1) D(S) is of finite t-character.
(2) The condition (#) holds and D(S) is conditionally well behaved.
(3) The condition (#) holds and every maximal t-ideal of D(S) that is disjoint from S is contracted from a

maximal t-ideal of D S [X].

Proof. (1) ⇒ (2) By Lemma 2.1, {P + X D S [X] | P ∈ t-Max(D) and P ∩ S �= ∅} is the set of maximal
t-ideals of D(S) intersecting S . Clearly, X ∈ P + X D S [X] for all P ∈ t-Max(D) with P ∩ S �= ∅. Thus, the
condition (#) holds. Also, by Theorem 1.1(2), D(S) is conditionally well behaved.

(2) ⇒ (3) The proof is similar to that of (2) ⇒ (3) of Proposition 3.1.
(3) ⇒ (1) Recall from Corollary 3.4 that D S [X] is of finite t-character if and only if D S is; hence

D(S)
S is of finite t-character because D S [X] = D(S)

S . Also, since every maximal t-ideal of D(S) disjoint

from S is contracted from D(S)
S = D S [X], we see that the conditions (i) and (ii) of Proposition 3.1 are

satisfied. Thus, D(S) is of finite t-character. �
Let D be a PID, L be a proper algebraic extension of the quotient field of D , and R = D + X L[X].

Recall from [40, Proposition 7] that R is of finite (t-)character if and only if D is a semilocal PID; and,
in this case, R is not a PvMD.

Corollary 3.8. Let K be the quotient field of D. Then R = D + X K [X] is of finite t-character if and only if D is
semi-quasi-local whose maximal ideals are t-ideals.

Proof. Let S = D \ {0}. Then R = D(S) , D S = K is of finite t-character, and the condition (#) of Corol-
lary 3.7 means |t-Max(D)| < ∞. Note that R S = K [X] and K [X] is a PID; so every nonzero prime ideal



182 D.D. Anderson et al. / Journal of Algebra 396 (2013) 169–183
of R S is a maximal t-ideal. Thus, every maximal t-ideal of R that is disjoint from S is contracted from
a maximal t-ideal of R S . Hence the result follows directly from Corollary 3.7. �

The other possible use of Proposition 3.1 can be in shortening the proof of Theorem 2.5. However,
we left the proof of Theorem 2.5 intact as it includes the structure of maximal t-ideals of the D +
X D S [X] construction when it is a PvMD. The next application is an example of the D + X D S [X]
domain of finite t-character that is not a PvMD.

Example 3.9. Let D be a valuation domain (hence a PvMD) of dimension � 2, Q be a nonzero non-
maximal prime ideal of D , and S = D \ Q . Then D(S) is conditionally well behaved but not well
behaved [38, Proposition 2.5], and hence D(S) is not a PvMD [38, Proposition 3.3]. However, note
that there are only two types of maximal t-ideals: (i) principal rank one prime ideals P generated by
discrete primes and (ii) the prime ideal M consisting of all non-discrete elements of D(S) [38, Lem-
mas 2.3 and 2.4]. (An f ∈ D(S) is said to be discrete if f (0) is a unit in D .) Note that M is a unique
maximal t-ideal of D(S) that intersects S; so the condition (i) of Proposition 3.1 is met and every
maximal t-ideal different from M is principal. Now as principal prime ideals disjoint with S extend to
principal primes in D(S)

S = D Q [X] we conclude the condition (ii) of Proposition 3.1. Next as D Q [X] is
of finite t-character by Corollary 3.4, the requirements of Proposition 3.1 are satisfied, and thus D(S)

is of finite t-character.

An integral domain D is said to be coherent (resp., v-coherent) if I−1 is finitely generated (resp.,
of finite type) for all nonzero finitely generated ideals I of D . Clearly, Noetherian domain ⇒ coherent
domain ⇒ v-coherent.

Corollary 3.10. Let D be a Noetherian domain and let S be a saturated multiplicative set in D such that S
meets at most a finite number of maximal t-ideals of D. Then D(S) is of finite t-character.

Proof. D S is Noetherian, and so D S is of finite t-character. Hence, by Corollary 3.7, all we need to
establish is that D(S) is conditionally well behaved. For this, we note that if D is Noetherian, then
D(S) is coherent [13, Theorem 4.32] and hence D(S) is well behaved [38, Proposition 1.4]. �

In general, if D is coherent, then D(S) may not be coherent. In Example 3.9, D(S) is not
well behaved, and hence D(S) is not (v-)coherent because (v-)coherent domains are well behaved
[38, pp. 201–202]. Thus, even when D is a valuation domain, D(S) need not be (v-)coherent.
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