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is 2-affine. Moreover, we prove the analogous version of this result
for Durov’s notion of generalized schemes.
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1. Introduction

For every morphism of schemes f : Y → X we have a pullback functor f ∗ : Qcoh(X) → Qcoh(Y )

between categories of quasi-coherent sheaves. It preserves direct sums, cokernels and tensor products,
i.e. it is a cocontinuous symmetric monoidal functor. In this paper, we are concerned with the converse:
is every cocontinuous symmetric monoidal functor F : Qcoh(X) → Qcoh(Y ) induced by a morphism
Y → X? Or more precisely, does f �→ f ∗ implement an equivalence between HomSch(Y , X) (regarded
as a discrete category) and the category Homc⊗(Qcoh(X),Qcoh(Y )) of all cocontinuous symmetric
monoidal functors and monoidal natural transformations?

Apart from being interesting in its own right, this question arises naturally as part of the discussion
on “2-algebraic geometry” in [3]. In that paper, a notion of commutative 2-ring is introduced. These
are symmetric monoidal categories satisfying some extra technical conditions; the important thing for
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us is that categories of the form Qcoh(X) are examples of commutative 2-rings, and one would like
to conclude that X �→ Qcoh(X) is fully faithful, and hence one can recover 1-algebraic geometry as
affine 2-algebraic geometry.

The problem also arises in the course of Jacob Lurie’s work on Tannaka reconstruction for stacks.
[15, Theorem 5.11] solves a modified version of this problem (for so-called geometric stacks, rather
than just schemes): instead of the full Homc⊗(Qcoh(X),Qcoh(Y )), Lurie’s result involves the subcat-
egory whose objects are functors satisfying a technical condition referred to as tameness (cf. [15,
Definition 5.9]), and whose morphisms are monoidal isomorphisms. Essentially, tameness means
preservation of faithful flatness. This is a rather awkward global condition which seems to be very
hard to check, so it is tempting to try to avoid it.

Our aim, then, is to answer the question affirmatively for schemes satisfying reasonable conditions,
but with no additional assumptions on our symmetric monoidal functors. The main result of the paper
(see 3.4.3) is:

Theorem. Let X be a quasi-compact quasi-separated scheme, and Y an arbitrary scheme. Then, the functor
f �→ f ∗ implements an equivalence

Hom(Y , X) � Homc⊗
(
Qcoh(X),Qcoh(Y )

)
.

This improves on the corresponding result on projective schemes, obtained in [1] by rather dif-
ferent methods. In the language of that paper, our result is that every quasi-compact quasi-separated
scheme is tensorial. It is unclear whether or not the same is true for quasi-compact quasi-separated
(algebraic) stacks, but certain partial results can be obtained (although we will not discuss stacks
much in this paper); we mention, for example, that the result is not very difficult to prove for classify-
ing stacks of finite groups. Recently, Daniel Schäppi [19,20] has proven the corresponding equivalence
if X is an Adams stack (i.e. a geometric stack with the strong resolution property) and even classified
those monoidal categories which are of the form Qcoh(X) for some Adams stack X using a suitable
generalization of Tannakian categories.

The paper is organized as follows:
Section 2 reviews basics on monoidal categories and universal cocompletions. This will in par-

ticular settle Theorem 3.4.3 in the special case when X is affine. We also make some preparations
concerning immersions.

Section 3 contains the proof of our Theorem 3.4.3. It is broken down into two steps: First, Y is
(the spectrum of) a local ring, and finally, an arbitrary scheme. We remark that the proof is entirely
elementary and self-contained, in the sense that it only uses algebraic geometry as developed in
EGA I [10]. We also include a subsection outlining a general picture of what “categorified algebraic
geometry” should look like, and how the results obtained in this paper fit into that framework.

Finally, in Section 4 we argue that the main results and their proofs carry over to algebraic geom-
etry in the context of generalized schemes as developed in [6], with only minor modifications.

2. Preliminaries on tensor categories

2.1. Definition of tensor categories

All rings and algebras under consideration are commutative and unital. A tensor category is a cat-
egory together with a tensor product which is unital, associative and symmetric up to compatible
isomorphisms. These are called ACU ⊗-categories in [18, 2.4], and are commonly known as symmet-
ric monoidal categories [16, XI.1]. In addition, tensor categories are assumed to be R-linear for some
fixed ring R: this means that the underlying category is R-linear and the tensor product is R-linear
in both variables [18, 0.1.2]. Tensor functors are understood to be strong, i.e. they respect the tensor
structure up to a canonical isomorphism (as in [18, 4.1.1, 4.2.4]). For R-linear tensor categories C , D
we denote by Hom⊗/R(C, D) (or by Hom⊗(C, D) if R is clear from the context) the category of all
R-linear tensor functors C → D . Morphisms in this category are tensor natural transformations, that
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is, natural transformations which are compatible with the tensor structure [18, 4.4.1]. Thus we obtain
the 2-category of R-linear tensor categories. The unit of a tensor category C is usually denoted by 1C .
The a priori noncommutative R-algebra End(1C ) turns out to be commutative by a variation of the
Eckmann–Hilton argument [18, 1.3.3.1]. Alg(R) denotes the category of R-algebras, and Mod(R) that
of right R-modules.

By a cocomplete tensor category we mean one whose underlying category is cocomplete (i.e. has
all small colimits), and such that the tensor product is cocontinuous in each variable. This means that
for all objects X and all small diagrams {Yi}, the canonical morphism

colim
i

(X ⊗ Yi) → X ⊗ colim
i

Y i

is an isomorphism, and similarly for the other variable (this also follows by symmetry). For discrete
diagrams this is just the categorified distributive law

⊕
i

(X ⊗ Yi) = X ⊗
⊕

i

Y i .

Therefore, we can think of R-linear cocomplete tensor categories as categorified R-algebras and might
call them R-2-algebras. In fact, Chirvasitu and Johnson-Freyd call them 2-rings [3, 2.3.1], dropping the
Mod(R)-enrichment and assuming presentability of the underlying category.

If S is an R-algebra, then Mod(S) is an R-linear cocomplete tensor category. The tensor product
is the usual tensor product of S-modules and the unit is S . More generally, if X is an R-scheme,
then its category of quasi-coherent modules Qcoh(X) is an R-linear cocomplete tensor category with
tensor product ⊗X and unit OX . This is our main example. Various reconstruction theorems such as
the classical one by Gabriel for noetherian schemes [8], by Rosenberg for quasi-separated schemes
[17,2] and recently by Lurie for geometric stacks [15] suggest that all the information of (a nice) X is
already encoded in this 2-algebra Qcoh(X) and therefore we can think of usual algebraic geometry as
2-affine (see also [3, 1.2]).

If C , D are R-linear cocomplete tensor categories, we denote by Homc⊗/R(C, D) the category of
all cocontinuous R-linear tensor functors C → D; if C , D are just cocomplete categories, we denote
by Homc(C, D) the category of cocontinuous functors. For example, every morphism f : Y → X of
R-schemes induces a cocontinuous R-linear tensor functor f ∗ : Qcoh(X) → Qcoh(Y ). As we have
already mentioned in the introduction, the main purpose of this paper is to show that every cocon-
tinuous tensor functor arises in this way.

2.2. Universal cocompletion

Fix a small R-linear category C . The category of presheaves

Ĉ := Hom/R
(
Cop,Mod(R)

)

is cocomplete and we have the Yoneda embedding C → Ĉ . In fact, it is the universal cocompletion
of C :

Proposition 2.2.1. For a cocomplete R-linear category D, the Yoneda embedding induces an equivalence of
categories Homc/R (̂C, D) � Hom/R(C, D).

Proof. See [14, 4.4] for a proof in the context of general enriched categories. The crux is that every
presheaf is a canonical colimit of representable functors [16, III.7]. �

If C is a small R-linear tensor category, then we may extend the tensor product C × C → C to a
bicocontinuous functor Ĉ × Ĉ → Ĉ (called Day convolution); just use the universal property of Ĉ in
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both factors. Then, Ĉ becomes a cocomplete R-linear category and in fact, has the following universal
property:

Proposition 2.2.2. For a cocomplete R-linear tensor category D, the Yoneda embedding induces an equiva-
lence of categories

Homc⊗/R (̂C, D) � Hom⊗/R(C, D).

Proof. As sketched above, this is a direct consequence of the previous proposition. See [11] for a
proof for general enriched tensor categories. �
Proposition 2.2.3. Let A be an R-algebra. Then, Mod(A) is an R-linear cocomplete tensor category satisfying
the following universal property: for every R-linear cocomplete tensor category C , we have an equivalence of
categories

Homc⊗/R
(
Mod(A), C

) � HomAlg(R)

(
A,End(1C )

)
.

Here the right hand side is a set considered as a discrete category.

Proof. We may consider A as an R-linear tensor category with just one object and endomorphism
algebra A. The tensor product of endomorphisms is the multiplication of A. Then, R-linear tensor
functors A → C correspond to R-algebra homomorphisms A → End(1C ). Unpacking the definition
of Â, it is clear that it is exactly Mod(A), with its usual tensor structure. Now apply the previous
proposition. �
Corollary 2.2.4. Let X, Y be R-schemes, where X is affine. Then, f �→ f ∗ is an equivalence of categories
HomR(Y , X) � Homc⊗/R(Qcoh(X),Qcoh(Y )).

Proof. Let X = Spec(A) for some R-algebra A. Then we have an equivalence

HomR(Y , X) � HomAlg(R)

(
A,Γ (OY )

) = HomAlg(R)

(
A,End(OY )

)

� Homc⊗/R
(
Mod(A),Qcoh(Y )

) � Homc⊗/R
(
Qcoh(X),Qcoh(Y )

)
.

It follows from the constructions that this composition is exactly f �→ f ∗ . �
2.3. Immersions

Definition 2.3.1. Recall that a lax tensor functor F : D → E is a functor equipped with morphisms
uF : 1E → F (1D) and (cF )X,Y : F (X) ⊗ F (Y ) → F (X ⊗ Y ) for X, Y ∈ D , which are compatible in a suit-
able sense [16, XI.2]. Thus, in contrast to a (strong) tensor functor, we don’t require these morphisms
to be invertible. An oplax tensor functor F : D → E is just a lax tensor functor F : Dop → Eop, which
means that F comes equipped with natural morphisms F (1D) → 1E and F (X ⊗Y ) → F (X)⊗ F (Y ). To-
gether with tensor natural transformations the lax tensor functors constitute a category Homlax(D, E).

Remark 2.3.2. A typical example arises from adjunctions: Assume we are given a tensor functor
G : E → D , whose underlying functor has a right adjoint F : D → E , with unit η : idE → F G and counit
ε : G F → idD . Then F becomes a lax tensor functor as follows: We define uF as the composition
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1E
η

F (G(1E))
u−1

G
F (1D)

and define cF as the composition

F (X) ⊗ F (Y )
η

F (G(F (X) ⊗ F (Y )))
c−1

G
F (G(F (X)) ⊗ G(F (Y )))

ε⊗ε
F (X ⊗ Y ).

Lemma 2.3.3. In the above situation, F is indeed a lax tensor functor. Besides, the unit η : idE → F G as well
as the counit ε : G F → idD are tensor natural transformations.

Proof. This is an exercise in diagram chasing. On the other hand, it is a special case of a theorem by
Kelly about doctrinal adjunctions [13, 1.4]. �
Example 2.3.4. If f : Y → X is a quasi-compact, quasi-separated morphism, then the direct image
functor f∗ preserves quasi-coherence [10, 6.7.1], thus restricts to a functor f∗ : Qcoh(Y ) → Qcoh(X)

which is right adjoint to the tensor functor f ∗ : Qcoh(X) → Qcoh(Y ). By the discussion above, f∗ be-
comes a lax tensor functor.

In the special case that i : Y ↪→ X is a quasi-compact immersion of schemes (for example a closed
immersion or a quasi-compact open immersion), observe that i∗ is fully faithful, which implies that
the counit i∗i∗ → id is an isomorphism. The following proposition deals with this kind of situation
and will become important later:

Definition 2.3.5. Let C , D , E be tensor categories and i = (i∗, i∗, η, ε) an adjunction, where i∗ : E → D
is a tensor functor and, as above, i∗ : D → E becomes a lax tensor functor. Assume that the counit
ε : i∗i∗ → idD is an isomorphism. A functor F : E → C is called i-local if Fη : F → F i∗i∗ is an isomor-
phism. If the adjunction is induced by a quasi-compact immersion i : Y ↪→ X as above, we also say
Y -local instead of i-local.

Proposition 2.3.6. In the situation of Definition 2.3.5 we have:

1. F is i-local if and only if F maps every morphism φ , such that i∗φ is an isomorphism, to an isomorphism.
2. For every lax tensor functor G : D → C the lax tensor functor Gi∗ : E → C is i-local. Conversely, to every

i-local lax tensor functor F : E → C we may associate the lax tensor functor F i∗ : D → C . This establishes
an equivalence of categories

Homlax(D, C) ∼= {
F ∈ Homlax(E, C) i-local

}
.

3. This restricts to an equivalence of categories

Hom⊗(D, C) ∼= {
F ∈ Hom⊗(E, C) i-local

}
.

4. If C , D, E are cocomplete tensor categories, then it even restricts to an equivalence of categories

Homc⊗(D, C) ∼= {
F ∈ Homc⊗(E, C) i-local

}
.

Proof. 1. First note that i∗η : i∗ → i∗i∗i∗ is an isomorphism, since it is right inverse to the isomor-
phism εi∗ . This already shows one direction. Now assume that F is i-local and consider a morphism
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φ : M → N in E such that i∗φ is an isomorphism. The naturality of η with respect to φ yields the
commutative diagram

F (M)
F (φ)

F (ηM )

F (N)

F (ηN )

F (i∗i∗M)
F (i∗i∗φ)

F (i∗i∗N).

Since F is i-local, the vertical arrows are isomorphisms. The bottom arrow is an isomorphism since
i∗φ is one. Thus also the top arrow F (φ) is an isomorphism.

2. Let G : D → C be a lax tensor functor. Since i∗η is an isomorphism, we see that Gi∗ : E → C
is i-local. Conversely, if F : E → C is an i-local lax tensor functor, then F i∗ : D → C is a lax tensor
functor. Of course, the same works for tensor natural transformations. We obtain functors

Homlax(D, C)

−◦i∗

{F ∈ Homlax(E, C) i-local}.
−◦i∗

Let us show that they are pseudo-inverse to each other. Given a lax tensor functor G : D → C we have
a natural isomorphism of functors Gε : Gi∗i∗ → G , which is even a tensor natural transformation by
Lemma 2.3.3. Similarly, for an i-local lax tensor functor F : E → C the natural isomorphism Fη : F →
F i∗i∗ is actually an isomorphism of lax tensor functors by the same lemma.

3. Since i∗ is a tensor functor, we see that Gi∗ is a tensor functor provided that G is a tensor
functor. Now assume that F is an i-local tensor functor. We have to show that F i∗ is a tensor functor.
The morphism 1C → (F i∗)(1D) is defined as the composition 1C → F (1E ) → F (i∗1D). The first mor-
phism is an isomorphism since F is a tensor functor. The second one is F applied to η1E : 1E → i∗1D ,
hence also an isomorphism. Now let M, N ∈ D . The morphism (F i∗)(M)⊗ (F i∗)(N) → (F i∗)(M ⊗ N) is
defined as the composition F (i∗(M))⊗ F (i∗(N)) → F (i∗M ⊗ i∗N) → F (i∗(M ⊗N)), where the first mor-
phism is an isomorphism since F is a tensor functor and the second one is c : i∗M ⊗ i∗N → i∗(M ⊗ N)

mapped by F . But i∗c is an isomorphism. By 1. above, F maps c to an isomorphism.
4. Since i∗ has a right adjoint, it is cocontinuous. We see that Gi∗ is a cocontinuous tensor

functor provided that G is a cocontinuous tensor functor. Now assume that F is an i-local co-
continuous tensor functor. We have to show that F i∗ is cocontinuous. This works as before: For
a diagram {M j} in D , the canonical morphism colim j(F i∗)(M j) → (F i∗)(colim j M j) factors as the
isomorphism colim j F (i∗M j) ∼= F (colim j i∗M j) followed by F applied to the canonical morphism
colimi i∗M j → i∗(colimi M j), which is clearly an isomorphism after applying i∗ . Thus F maps it to
an isomorphism, and we’re done. �
Corollary 2.3.7. Let i : Y → X be a quasi-compact immersion of schemes. Then, for every cocomplete tensor
category C , the functors i∗ and i∗ induce an equivalence of categories

Homc⊗
(
Qcoh(Y ), C

) ∼= {
F ∈ Homc⊗

(
Qcoh(X), C

)
Y -local

}
.

Corollary 2.3.8. Let F : Qcoh(X) → Qcoh(Y ) be a cocontinuous tensor functor. Assume that i : U → X is a
quasi-compact immersion, where U is affine. If F is i-local, then F is induced by a morphism.

Proof. Combine Corollaries 2.3.7 and 2.2.4. �
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3. Proof of the theorem

3.1. Full faithfulness

We now embark on the proof of the theorem announced in the introduction. We have to prove
that the functor f �→ f ∗ is an equivalence, that is, it is fully faithful and essentially surjective. The
following proposition takes care of the full faithfulness part.

Proposition 3.1.1. Let f , g : Y → X be morphisms of schemes with X quasi-separated, and let α : f ∗ ⇒ g∗
be a tensor natural transformation. Then, f = g and α = id.

Proof. Both f = g and α = id can be checked stalkwise on Y : They hold if and only if the corre-
sponding statements hold for f ◦ i y and g ◦ i y for all points y ∈ Y , where i y : Spec(OY ,y) → Y is the
canonical map. As a consequence, we may assume that Y is the spectrum of a local ring S . Its closed
point will be denoted by y.

Next we claim that f (y) is a specialization of g(y). Indeed, let I ⊆OX be the vanishing ideal sheaf
of the closed subset Z := {g(y)} of X . Since α induces a map of S-algebras f ∗(OX/I) → g∗(OX/I),
it follows that supp g∗(OX/I) ⊆ supp f ∗(OX/I). According to [10, Chapitre 0, 5.2.4.1], this means that
g−1(Z) ⊆ f −1(Z). Now y ∈ g−1(Z) implies f (y) ∈ Z = {g(y)}, which proves our claim.

If i : U ↪→ X is an affine open neighborhood of f (y), then it must contain g(y), too. Since Y is
local, then both f and g factor through U , say f = i f ′ and g = ig′ for morphisms f ′, g′ : Y → U .
Remark that i is a quasi-compact immersion since X is quasi-separated and that f ∗ ∼= f ′ ∗i∗ is i-local,
similarly g∗ . Now Corollary 2.3.7 gives us a tensor natural transformation α′ : f ′ ∗ ⇒ g′ ∗ of tensor
functors Qcoh(U ) → Qcoh(Y ) with i∗α′ = α. But now are in the affine case and Corollary 2.2.4 yields
f ′ = g′ and α′ = id. This implies f = g and α = id, and we are done. �
3.2. Good schemes

The following notion will play a crucial role in the rest of the paper.

Definition 3.2.1. A scheme Y is called good if every cocontinuous tensor functor Qcoh(X) → Qcoh(Y ),
where X is a quasi-compact quasi-separated scheme, is induced by some morphism Y → X . A ring A
is called good if Spec(A) is good.

Remark 3.2.2. Since Proposition 3.1.1 already provides the full faithfulness part of Theorem 3.4.3, Y is
good precisely when f �→ f ∗ implements an equivalence

Hom(Y , X) � Homc⊗
(
Qcoh(X),Qcoh(Y )

)

for every quasi-compact quasi-separated scheme X .

Remark 3.2.3. For an arbitrary scheme X , both the functor Hom(−, X) and the pseudofunctor
Homc⊗(Qcoh(X),Qcoh(−)) are stacks in the Zariski topology on the category of all schemes (even
in the fpqc topology by descent theory [24, 2.55, 4.23], but we won’t need that here). It is clear that
the pullback construction gives a morphism of stacks

Hom(−, X) → Homc⊗
(
Qcoh(X),Qcoh(−)

)
,

which we have already seen to be fully faithful if X is quasi-separated. In particular, goodness is
a Zariski local property. More explicitly, if F is a cocontinuous tensor functor Qcoh(X) → Qcoh(Y )

and Y is covered by open subschemes Yi such that each restriction F |Yi : Qcoh(X) → Qcoh(Yi) is
induced by a unique morphism Yi → X , then full faithfulness implies that these morphisms glue to a
morphism Y → X which induces F .
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3.3. Local rings are good

Let (A,m) be a local ring and F : Qcoh(X) → Mod(A) be a cocontinuous tensor functor, where X
is quasi-compact and quasi-separated.

Definition 3.3.1. Let i : U ↪→ X be an affine open subscheme. We call F weakly U -local if for every
quasi-coherent ideal I ⊆OX with I|U =OU , F maps the inclusion I ↪→OX to an isomorphism.

Lemma 3.3.2. If I ⊆OX is a quasi-coherent ideal such that F maps the inclusion I ↪→OX to an epimorphism,
then F even maps it to an isomorphism.

Proof. We may view I as a non-unital commutative algebra object in the tensor category Qcoh(X),
such that the inclusion I ↪→OX is an algebra homomorphism. Clearly, the diagram

I ⊗ I I

OX ⊗ I
∼=

commutes. Thus B := F (I) is a non-unital algebra object in Mod(A) together with a non-unital alge-
bra homomorphism f : B → A such that bc = f (b)c for all b, c ∈ B . By assumption, f is surjective.
Every element e ∈ f −1(1) will serve as a unit for B . Since b = be = f (b)e, it follows that f is also a
monomorphism, and hence an isomorphism. �
Lemma 3.3.3. There is some affine open subscheme i : U ↪→ X such that F is weakly U -local.

Proof. Choose some affine open covering X = U1 ∪ · · · ∪ Un . If F is not weakly Uk-local for every
1 � k � n, then by Lemma 3.3.2 there are quasi-coherent ideals Ik ⊆ OX with Ik|Uk = OUk such that
F (Ik ↪→ OX ) is not an epimorphism, thus factors through m ⊆ A = F (OX ). Then the same must be
true for F (

⊕
k Ik →OX ) and hence for F (

∑
k Ik ↪→OX ). This is a contradiction since

∑
k Ik =OX . �

Lemma 3.3.4. Let M, N, P ∈ Qcoh(X) and ψ : M ⊗ N → P be a pairing. Assume we are given a quasi-
coherent submodule P ′ ⊆ P . Define a submodule M ′ ⊆ M by

Γ
(
U , M ′) = {

m ∈ Γ (U , M): ∀V ⊆ U , ∀n ∈ Γ (V , N), ψ(m|V ⊗ n) ∈ Γ
(

V , P ′)}.
If N is of finite type, then M ′ is quasi-coherent.

Remark 3.3.5. In other words, M ′ is the largest submodule of M whose pairing with N by means of
ψ lands inside P ′ ⊆ P . We will denote it by (P ′ : N)ψ .

Proof. Quasi-coherence is local on X , so we can assume that X is affine, and hence there is an
epimorphism On

X → N . By composing ψ with the resulting epimorphism M ⊗On
X → M ⊗ N , one gets

a pairing ψ ′ : M ⊗On
X → P .

Now, ψ ′ : M ⊗ On
X → P is essentially the same as a morphism ψ ′ : M → Pn , and M ′ is nothing

but the kernel of the morphism M
ψ ′

−→ Pn → Pn/(P ′)n of quasi-coherent sheaves. In conclusion, M ′ is
quasi-coherent. �
Lemma 3.3.6. If F is weakly U -local, then F is U -local, that is: If φ : M → N is a morphism in Qcoh(X) which
is an isomorphism on U , then F maps φ to an isomorphism.
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Proof. Since φ factors as an epimorphism followed by a monomorphism, both of which are isomor-
phisms on U , it suffices to treat two cases:

1. φ is a monomorphism. In this case φ may be treated as an inclusion M ⊆ N . Write N as the fil-
tered colimit of its quasi-coherent submodules {Ni} of finite type [10, 6.9.9], and consider the pairings
ψi :OX ⊗ Ni → N .

Fixing an i, note that I = (M : M + Ni)ψi ⊆ OX equals (M : Ni)ψi ; by Lemma 3.3.4, I is a quasi-
coherent ideal. Thus we may replace Ni by Ni + M and assume M ⊆ Ni . By the very definition, I is the
largest ideal such that the multiplication I ⊗ Ni → N factors through M . Observe that I|U =OU , since
M|U = N|U . The weak U -locality of F implies that F maps I ↪→ OX to an isomorphism. Consider the
following commutative diagrams:

I ⊗ M OX ⊗ M

∼=

I ⊗ Ni M

I ⊗ Ni OX ⊗ Ni

∼=

M Ni

Keeping in mind that F (I ⊗ M → M) is an isomorphism (because F (I ↪→OX ) is one), the left hand di-
agram shows that F maps I ⊗M → I ⊗Ni and hence also M ↪→ Ni to a split monomorphism. Similarly,
the right hand diagram shows that F (M ↪→ Ni) is a split epimorphism. In conclusion, F (M ↪→ Ni) is
an isomorphism for all i. Taking the colimit over i, it follows that F (M ↪→ N) is an isomorphism.

2. φ is an epimorphism. Let K = M ×N M the difference kernel of φ. It consists of pairs of sec-
tions (m,m′) such that φ(m) = φ(m′). Since φ is an epimorphism, it is the coequalizer of the
two projections p1, p2 : K ⇒ M . Then, F (φ) is the coequalizer of F (p1) and F (p2), so that it suf-
fices to show F (p1) = F (p2). If i : M → K is the diagonal homomorphism defined by m �→ (m,m),
we clearly have p1i = p2i = idM . Since φ is an isomorphism on U , the same must be true for i.
Now, i is a split monomorphism, so the first case shows that F (i) is an isomorphism. But then,
F (p1) = F (i)−1 = F (p2). �
Theorem 3.3.7. Every local ring is good.

Proof. If F : Qcoh(X) → Mod(A) is as above, we have seen in Lemma 3.3.3 that F is weakly U -local
for some U , hence U -local by Lemma 3.3.6. Now use Corollary 2.3.8. �
3.4. Every scheme is good

Proposition 3.4.1. Let X be a quasi-compact quasi-separated scheme and Y an arbitrary scheme. Let
F : Qcoh(X) → Qcoh(Y ) be a cocontinuous tensor functor. Then, for every y ∈ Y , there is a local homo-
morphism OX,x → OY ,y for some x ∈ X, together with an isomorphism of tensor functors from Qcoh(X) to
Mod(OY ,y):

F (M)y ∼= Mx ⊗OX,x OY ,y .

Moreover, if we define f (y) := x, then the map f : Y → X is continuous.

Proof. Let y ∈ Y . The pullback functor associated to the canonical morphism Spec(OY ,y) → Y is given
by N �→ N y . The composition F y : Qcoh(X) → Mod(OY ,y) is induced by a morphism Spec(OY ,y) → X ,
since the local ring OY ,y is good (Theorem 3.3.7). This factors as Spec(OY ,y) → Spec(OX,x) → X for
some x ∈ X and some local homomorphism OX,x → OY ,y [10, 2.5.3], which proves the first part of
the statement.

For the second part, let I ⊆ OX be a quasi-coherent ideal. Then OX → OX/I gets mapped by F
to an epimorphism, say OY →OY / J for some quasi-coherent ideal J ⊆OY . For y ∈ Y and x := f (y),
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we have an isomorphism

(OY / J )y ∼= (OX/I)x ⊗OX,x OY ,y .

Since OX,x → OY ,y is local, this shows that OY / J vanishes at y if and only if OX/I vanishes at x.
We arrive at f −1(supp(OX/I)) = supp(OY / J ), so f is continuous. �
Theorem 3.4.2. Every scheme is good.

Proof. Let F : Qcoh(X) → Qcoh(Y ) be a cocontinuous tensor functor. By Proposition 3.4.1 we may
associate to it a continuous map f : Y → X (not a morphism yet). Cover Y with open subsets which
get mapped into affine open subsets of X . Since we may work locally on Y (Remark 3.2.3), we

may assume that f factors as Y → U
i

↪→ X for some affine open subscheme i : U ↪→ X . We claim
that F is U -local: Since isomorphisms can be checked stalkwise, it is enough to prove the claim
for F y : Qcoh(X) → Mod(OY ,y), where y ∈ Y . By Theorem 3.3.7, F y is induced by some morphism
g : Spec(OY ,y) → X . As a continuous map g is just a restriction of f and therefore factors through U .
Thus F y is U -local. �

In other words (cf. 3.2.2), we have proven:

Theorem 3.4.3. Let X be a quasi-compact quasi-separated scheme, and Y an arbitrary scheme. Then, the
functor f �→ f ∗ implements an equivalence

Hom(Y , X) � Homc⊗
(
Qcoh(X),Qcoh(Y )

)
.

In conclusion, the category of quasi-compact quasi-separated schemes (regarded as a 2-category
with only identity 2-morphisms) embeds fully faithfully into the dual of the 2-category of cocomplete
tensor categories. As explained in the introduction, this means that ordinary algebraic geometry is in
a certain sense “2-affine”; we will elaborate in the next section.

Corollary 3.4.4. Let X be a quasi-compact quasi-separated scheme, and Y an arbitrary locally ringed space.
If Qcohfp(X) denotes the category of quasi-coherent modules of finite presentation on X, then f �→ f ∗ im-
plements an equivalence between Hom(Y , X) and the category of tensor functors Qcohfp(X) → Qcohfp(Y )

which are right exact.

Proof. This follows from Theorem 3.4.3 and [1, 3.11]. �
Remark 3.4.5. The same proof works when Y is an arbitrary locally ringed space, in fact we have

Hom(Y , X) � Homc⊗
(
Qcoh(X),Mod(Y )

)

and every cocontinuous tensor functor Qcoh(X) → Mod(Y ) already maps into Qcoh(Y ) as defined in
[10, Chapitre 0, 5.1.3].

Example 3.4.6. Here is a simple application of our main theorem. Let X , Y be as above and let
g : Y → X be a morphism of the underlying ringed spaces, i.e. it is not required that the induced
homomorphisms on local rings g#

y : OX,g(y) → OY ,y are local. Nevertheless, we can still define a co-
continuous tensor functor g∗ : Qcoh(X) → Qcoh(Y ) [10, Chapitre 0, 5.1.4]. By Theorem 3.4.3 there is
a unique morphism f : Y → X of locally ringed spaces such that g∗ ∼= f ∗ . Actually this also holds when
X is an arbitrary scheme. Let us outline three (equivalent) descriptions of f , the first one actually
coming from the proof of the theorem:
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1. By gluing it is enough to consider the case that X = Spec(A) is affine. Then g yields on global
sections a homomorphism A → Γ (Y ,OY ), which corresponds to a morphism of locally ringed
spaces f : Y → Spec(A) [10, 1.6.4].

2. For y ∈ Y the homomorphism g#
x :OX,g(y) →OY ,y pulls the maximal ideal of OY ,y back to some

prime ideal p of OX,g(y) . The canonical morphism Spec(OX,g(y)) → X [10, 2.5.1] maps it to a
point f (y) satisfying g(y) ≺ f (y). This defines a continuous map f : Y → X . The maps on stalks
are defined by f #

y :OX, f (y) = (OX,g(y))p →OY ,y , which are local by construction. They extend to
a sheaf homomorphism OX → f∗OY .

3. The forgetful functor U from locally ringed spaces to ringed spaces has a right adjoint functor
R [9]. This adjunction induces a monad on the category of locally ringed spaces. Every scheme
X has a canonical module structure R(U (X)) → X with respect to this monad, which eventually
comes down to the existence of canonical morphisms Spec(OX,x) → X . Now, if Y is a locally
ringed space, then a morphism of ringed spaces g : U (Y ) → U (X) induces a morphism of locally
ringed spaces

f : Y → R
(
U (Y )

) → R
(
U (X)

) → X .

3.5. Categorification

In this section we outline the categorification process alluded to above. For basics on 2-categories,
we refer the reader to [21, Section 9].

Definition 3.5.1.

1. A 2-ring is a cocomplete tensor category. The 2-category of 2-rings is denoted by 2-Ring.
2. The 1-opposite of 2-Ring is called the 2-category of 2-affine schemes.
3. A stack is a pseudofunctor Schop → Cat which satisfies effective descent with respect to the fpqc

topology. Together with natural transformations and modifications, we obtain the 2-category of
stacks, denoted by Stack.

4. Let C be a 2-ring. Its spectrum Spec(C) is defined by

Spec(C)(X) = Homc⊗
(
C,Qcoh(X)

)
, X ∈ Sch.

This is indeed a stack by descent theory for quasi-coherent modules [24, 4.23], and this construc-
tion provides us with a 2-functor Spec from 2-Ringop to Stack.

5. Let F be a stack. The 2-ring of regular 2-functions O(F ) is defined as Hom(F ,Qcoh(−)). This
means that a regular 2-function is given by functors M X : F (X) → Qcoh(X) for every scheme X ,
which are compatible with base change, which means that they are equipped with coherent
isomorphisms f ∗ ◦ M X ∼= MY ◦ f ∗ for morphisms f : Y → X . These isomorphisms also belong to
the data. We obtain a 2-functor O : Stack → 2-Ringop.

Remark 3.5.2. If F is an algebraic stack, then our definition of a 2-regular function on F coincides with
the usual definition of a quasi-coherent module on F [23, 7.18]. Thus, we interpret quasi-coherent
modules as categorified regular functions. As usual, 2-regular functions are “added” and “multiplied”
pointwise; similarly, colimits are computed pointwise. If F is representable by a scheme X , then the
2-Yoneda lemma implies O(F ) � Qcoh(X). For a scheme X , we may therefore write O(X) instead of
Qcoh(X).

Remark 3.5.3. It will be obvious to the alert reader that in Definition 3.5.1 we have ignored some
rather serious set-theoretic issues. For example, if F is a stack as defined in part 3, i.e. a 2-functor
defined on the category of all schemes, then O(F ) as defined in part 5 might, in principle, be “too
large” to be a category, in the sense that its set of objects is outside of some universe fixed beforehand
(if one chooses Grothendieck universes as the set-theoretic framework for algebraic geometry).
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There are ways of getting around these difficulties, such as defining stacks only on small sites of
schemes (rather than all schemes), and similarly bounding the “size” of our 2-rings in some sense.
However, since the aim of this section is not to develop a theory in a rigorous and consistent manner
but rather to outline a heuristic principle, we will not go into the details of how the issues could be
resolved, and will continue to ignore them throughout the remainder of the section.

The following categorifies a well-known adjunction [10, 1.6.3]:

Proposition 3.5.4. If F is a stack and C is a 2-ring, then there is a natural equivalence

Hom
(

F ,Spec(C)
) � Hom

(
C,O(F )

)
.

Thus, Spec : 2-Ringop → Stack is right adjoint to O : Stack → 2-Ringop .

Proof. This is entirely formal and an example of (higher) Isbell duality. For a stack F and a scheme X ,
the component F (X) → Hom(O(F ),O(X)) of the unit ηF : F → Spec(O(F )) is defined to be the
obvious evaluation. Similarly, the counit εC : C → O(Spec(C)) is given by evaluation. �
Definition 3.5.5. A stack F is called 2-affine if the unit ηF : F → Spec(O(F )) is an equivalence, i.e. for
every scheme X we have F (X) � Hom(O(F ),O(X)). In [1] this notion was called tensorial. A 2-ring
C is called stacky if the counit C →O(Spec(C)) is an equivalence.

Every adjunction restricts to an equivalence between its fixed points. Thus:

Proposition 3.5.6. The functors Spec and O provide an anti-equivalence of 2-categories between 2-affine
stacks and stacky 2-rings. In particular, a 2-affine scheme is completely determined by its 2-ring of 2-regular
functions.

Now our main Theorem 3.4.3 reads as follows:

Theorem 3.5.7. Every quasi-compact quasi-separated scheme is 2-affine.

In conclusion, although a general scheme X cannot be recovered from its 1-ring of regular func-
tions Γ (X,OX ), it can nevertheless be recovered from its 2-ring of 2-regular functions O(X), which is
just its category of quasi-coherent modules. It would be interesting to know whether every Artin stack
satisfying certain natural finiteness conditions (such as quasi-compactness and quasi-separatedness) is
2-affine, or to have an intrinsic characterization for stacky 2-rings; these and other similar problems
arising naturally in this context are the object of work in progress and will appear in the thesis of the
first author.

We conclude this section with another example of the kind of notion that we believe should play
an important role in categorified algebraic geometry.

A morphism of quasi-compact quasi-separated schemes f : X → S is affine if and only if the canon-
ical morphism Spec( f∗(OX )) → X over S is an isomorphism. This motivates:

Definition 3.5.8. A morphism f : X → S of 2-affine schemes is called 1-affine if the corresponding co-
continuous tensor functor F : C → D satisfies the following condition: There is a right adjoint F∗ of F ,
and the canonical functor Mod(F∗(1D)) → D , defined by M �→ F (M) ⊗F (F∗(1D )) 1D (cf. [1, Section 4]),
is an equivalence of categories.

Then it is easy to see that a morphism of quasi-compact quasi-separated schemes f : X → S is
affine in the usual sense if and only if it is 1-affine when considered as a morphism of 2-affine
schemes, i.e. upon identifying f with its pullback functor f ∗ . As usual we also have an absolute
notion:
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Definition 3.5.9. Let R denote our base ring. A 2-affine scheme X is called 1-affine if the unique
morphism from X to the 2-affine scheme corresponding to Mod(R) is 1-affine. In other words, if C
is the 2-ring corresponding to X , the canonical cocontinuous tensor functor Mod(EndC (1C )) → C (cf.
Proposition 2.2.3) is an equivalence of categories.

Hence, a quasi-compact quasi-separated scheme X is 1-affine when considered as a 2-affine
scheme, i.e. upon identifying X with O(X) ∼= Qcoh(X), if and only if X is affine in the usual sense.

4. Generalized schemes

4.1. Preliminaries and conventions

Nikolai Durov [6] has developed a theory of generalized rings and generalized schemes, which con-
tains, among others, the theory of classical schemes as developed in [10], as well as the more recent
theory of monoid schemes [4,22,5,12]. Originally motivated by Arakelov geometry, Durov’s theory pro-
vides an amazingly general framework for algebraic geometry. For a summary, the reader may consult
[6, Chapter 1] or [7].

In this section we would like to indicate how the results in the main portion of the paper (and
especially Theorem 3.4.3) can be adapted to this general context. In fact, in most cases, the same
proofs can be used. We will refrain from developing the algebraic geometry of generalized schemes in
the style of [10]. Instead, we would like to argue briefly that essentially the same techniques that were
applied for ordinary schemes will also work for generalized schemes, with only minor modifications
and a minimal amount of effort. We do this in order to highlight the fact that not only ordinary
algebraic geometry, but also “absolute” or F1-algebraic geometry can be part of the categorification
process glimpsed in the previous sections.

In the following we will assume that the reader is familiar with Durov’s theory, as in Chapters 5
and 6 of [6]. We will use the unary localization theory and unary prime spectra as developed in
[6, 6.1, 6.2], and hence will not have to deal with more sophisticated notions of spectrum, such as
the one resulting from the total localization theory of [6, 6.3]. In particular, if A is a generalized ring,
Spec(A) is just the set of prime ideals in |A| = A(1) (set of unary operations of A; cf. [6, 4.2.1])
endowed with the usual Zariski topology and the sheaf of generalized rings satisfying O(D( f )) = A f
for all f ∈ |A|.

In addition, we would like to work over the base F1. This means that every scheme is defined
over Spec(F1) and that every generalized ring A is an F1-algebra, i.e. it has a zero [6, 6.5.6]. This
implies in particular that the category Mod(A) of A-modules has a zero object and that we can
talk about cokernels and kernels. For example, for a submodule U of an A-module M , we define
M/U to be the cokernel of the inclusion map U ↪→ M; this is nothing but the coequalizer of the
inclusion U ↪→ M and the zero map U → M . The same remarks apply to Qcoh(X), the category of
quasi-coherent modules on a generalized scheme X .

The notion of quasi-compact morphism/scheme [6, 6.5.15] gives rise to the usual notion of quasi-
separated morphism/scheme: A morphism is quasi-separated if its diagonal is quasi-compact. As
before, we will restrict to quasi-compact quasi-separated schemes, mainly because [10, 6.9.9] tells
us that in this situation every quasi-coherent module is the directed colimit of its quasi-coherent
submodules of finite type, which was an essential ingredient in our proof of Lemma 3.3.6. The same
proof works for generalized schemes, the only nontrivial ingredient being the fact that for a quasi-
compact quasi-separated morphism f , the direct image functor f∗ preserves quasi-coherence. The
proof in [10, 6.7.1] can easily be translated to generalized schemes: Instead of considering the ker-
nel of a difference of two module homomorphisms, consider their equalizer. To mention a related
example, in the computation of the structural sheaf of an affine scheme [10, 1.4.1], just replace the
equations f mij (si − s j) = 0 with f mij si = f mij s j . This equation then makes sense in a generalized ring,
which does not come equipped with an addition operation, let alone a subtraction. This reveals a
general recipe for the translation of proofs in [10] to generalized schemes: Write x = y instead of
x − y = 0. It is interesting to note in this context that oftentimes, the addition in a ring is not as
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“fundamental” as its multiplication and its unit are for the development of commutative algebra and
algebraic geometry (cf. [6, 4.8]); this is precisely the reason why Durov’s theory works so well.

We hope that this brief discussion convinces the reader that at least those results from [10] which
were used above in the proof of Theorem 3.4.3, as well as those which were needed in their proofs,
are easily adaptable to generalized schemes.

4.2. Translation of the proofs

Now let us go through Sections 2 and 3 above in the generalized scheme setting.
We consider (cocomplete) symmetric monoidal categories and (cocontinuous) symmetric monoidal

functors between them and for consistency, call them (cocomplete) tensor categories and (cocon-
tinuous) tensor functors. For every generalized scheme X the category of quasi-coherent modules
Qcoh(X) is a cocomplete tensor category with unit |OX |. Note that OX itself is not a quasi-coherent
module, but rather a sheaf of generalized rings. Every morphism of generalized schemes f : Y → X
induces a cocontinuous tensor functor f ∗ : Qcoh(X) → Qcoh(Y ), and our aim will be to show that as
before, this implements an equivalence of categories

Hom(Y , X) � Homc⊗
(
Qcoh(X),Qcoh(Y )

)

when X is quasi-compact and quasi-separated.
We will not fix a base ring and do not require our tensor categories to be linear. This will force

us to find a more direct proof of the universal property of Mod(A) as a cocomplete tensor category,
thereby generalizing Proposition 2.2.3. In order to do this, we will have to find a generalized ring
associated to a cocomplete tensor category C , playing the role of End(1C ) in this general setting. The
following construction achieves this goal, and generalizes [6, 4.3.8]:

Definition 4.2.1. Let C be a category with coproducts, and M ∈ C . Define the algebraic monad End(M)

as follows: For every n ∈ N let

End(M)(n) := Hom
(
M, M⊕n).

For t ∈ End(M)(k) and t1, . . . , tk ∈ End(M)(n) define t(t1, . . . , tk) ∈ End(M)(n) as follows: By the uni-
versal property of the direct sum, the k morphisms ti yield a morphism (t1, . . . , tk) : M⊕k → M⊕n .
Compose this with t : M → M⊕k to obtain a morphism t(t1, . . . , tk) : M → M⊕n .

It is straightforward to check the cosimplicial identities [6, 4.3.2], so that End(M) is, indeed, an
algebraic monad.

Lemma 4.2.2. Let C be a cocomplete tensor category. Then the algebraic monad End(1C ) is commutative, and
hence a generalized ring.

Proof. Let us write 1 := 1C . Letting t ∈ End(1)(n) and t′ ∈ End(1)(m), we have to show [6, 5.1.1] that
a = b where

a = t
(
t′(x11, . . . , x1m), . . . , t′(xn1, . . . , xnm)

)
,

b = t′(t′(x11, . . . , xn1), . . . , t′(x1m, . . . , xnm)
)
.

Here, (xij) is some n ×m-matrix of elements in some End(1)-module X . It suffices to take the univer-
sal example, which is X = End(1)(n × m) with the matrix xij = {(i, j)}n×m , i.e. xij : 1 → 1⊕(n×m) is the
inclusion of the summand with index (i, j). Unwinding the definitions, a is just the composition

1
t

1⊕n t′ ⊕n

(1⊕m)⊕n
∼=

1⊕(n×m).
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Similarly, b factors as

1
t′

1⊕m t⊕m

(1⊕n)⊕m
∼=

1⊕(n×m).

The following commutative diagram finishes the proof:

(1⊕n)⊕m
∼=

1⊕n ⊗ 1⊕m (1⊕m)⊕n
∼=

1⊕m

t⊕m

∼=
1 ⊗ 1⊕m

t⊗1⊕m

1⊕n ⊗ 1

1⊕n⊗t′

1⊕n
∼=

t′ ⊕n

1 ∼=

t′

1 ⊗ 1

t⊗t′

1⊗t′ t⊗1

1∼=

t

Notice that for n = m = 1 this is the usual proof that End(1) is a commutative monoid. �
We now state and prove the analogue of Proposition 2.2.3:

Proposition 4.2.3. For a cocomplete tensor category C and a generalized ring A, there is an equivalence of
categories

Homc⊗
(
Mod(A), C

) � Hom
(

A,End(1C )
)
.

Proof. In the category of A-modules Mod(A) the unit is |A|, the free module of rank 1, and the
generalized ring End(|A|) turns out to be isomorphic to A:

End(A)(n) = HomMod(A)

(|A|, |A|⊕n) = HomMod(A)

(
A(1), A(n)

) ∼= A(n).

Since End is functorial, every cocontinuous tensor functor Mod(A) → C thus induces a homomor-
phism of generalized rings A ∼= End(|A|) → End(1C ).

Conversely, let α : A → End(1C ) be a homomorphism of generalized rings. Then for every n we
have a map α(n) : A(n) → End(1C ,1⊕n

C ). For X ∈ C this endows the set Hom(1C , X) with an A-module
structure: For t ∈ A(n) and x1, . . . , xn : 1C → X define t(x1, . . . , xn) : 1C → X to be the composition of
α(n)(t) with the morphism (x1, . . . , xn) : 1⊕n

C → X . We thus obtain a functor

Hom(1C ,−) : C → Mod(A),

which is clearly continuous. We claim that it has a left adjoint 1C ⊗A ?.
On free modules, let 1C ⊗A A(X) := 1⊕X

C . For a homomorphism of A-modules σ : A(X) → A(Y )

we obtain a morphism 1⊕X
C → 1⊕Y

C as follows: Since A(X) is the free A-module on X , σ corresponds
to elements tx ∈ A(Y ) for x ∈ X . Now apply α(Y ) to get 1C → 1⊕Y

C for every x, i.e. a morphism
1⊕X

C → 1⊕Y
C . Then one easily checks that 1C ⊗A ? is a well-defined functor on the category of free

A-modules. Now it is clear how to extend 1C ⊗A ? to arbitrary A-modules, since every A-module is
the coequalizer of two maps between free A-modules [6, 3.3.20]. Because of the defining adjunction,
we do not have to check functoriality of 1C ⊗A ? on all A-modules.
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Since 1C ⊗A ? is left adjoint, it is cocontinuous. Also, 1C ⊗A |A| = 1C by construction, so that it
preserves the units. In order to show that it preserves the tensor products, observe that Hom(1C ,−)

is a lax tensor functor, which means that there are natural homomorphisms of A-modules

Hom(1C , X) ⊗ Hom(1C , Y ) → Hom(1C , X ⊗ Y ),

which are induced by the tensor product in C and 1C ⊗ 1C ∼= 1C . Then the adjunction endows 1C ⊗A ?
with the structure of an oplax tensor functor, which means that there are natural morphisms

1C ⊗A (M ⊗A N) → (1C ⊗A M) ⊗ (1C ⊗A N).

In order to show that this is an isomorphism for all A-modules M , N , a colimit argument reduces to
the case M = N = |A|; but then it is trivial.

Thus, 1C ⊗A ? is a cocontinuous tensor functor. Now it is a routine exercise to show that the
functors between Homc⊗(Mod(A), C) and Hom(A,End(1C )), which we have just defined on objects,
are in fact quasi-inverse functors. �

We immediately deduce Corollary 2.2.4 for generalized schemes, which means that we are done
with affine schemes.

Of course, no modification of the category theoretic part of Section 2.3 is necessary. We have al-
ready discussed that [10, 6.7.1] generalizes to the present setting, so Example 2.3.4 still works. What
about the notion of an immersion i : Y ↪→ Z of generalized schemes? Durov suggests a rather cate-
gorical one in [6, 6.5.21], whose properties remain unclear. However, we only need open immersions,
which behave as usual [6, 6.5.7], and closed immersions [6, 6.5.23], which are defined as follows:

A morphism of schemes i : Y → X is a closed immersion if i# : OX → i∗OY is a surjective homo-
morphism of sheaves of generalized rings. It follows that closed subschemes of X correspond to strict
quotients of OX . If J denotes the kernel of i#, then J is a generalized quasi-coherent ideal of OX ,
and there is a surjective homomorphism OX/ J → i∗OY ; it does not, however, have to be an isomor-
phism. This is also the reason why closed immersions don’t have a closed image in general [6, 6.5.19].
However, we only need to consider those closed immersions for which OX/ J ∼= i∗OY and OX/ J is a
unary OX -algebra [6, 5.1.15, 6.5.14].

These may be described as follows: Let I ⊆ |OX | be a quasi-coherent ideal. The corresponding
closed immersion i : Spec(OX/I) ↪→ X is affine and in the case X = Spec(A) is induced by the canon-
ical projection A → A/I , where I ⊆ |A| is an ideal and A/I is defined by the usual universal property.
Under the correspondence between unary A-algebras and algebra objects in Mod(A) [6, 5.3.8], the
quotient A/I corresponds to |A|/I .

In the following, we only refer to closed immersions of this type. Now Corollaries 2.3.7 and 2.3.8
carry over to generalized schemes.

In the proof of Proposition 3.1.1 we need for a generalized scheme Y and a point y ∈ Y the canon-
ical morphism Spec(OY ,y) → Y . This is constructed as in [10, 2.5.1]: Reduce to X = Spec(A), in which
case y corresponds to a prime ideal p ⊆ |A|. We choose the morphism corresponding to the ho-
momorphism of generalized rings A → Ap which is part of the defining universal property of this
localization. In the next paragraph of the proof we need the following formula:

Lemma 4.2.4. For a morphism of generalized schemes f : Y → X and a quasi-coherent ideal I ⊆ |OX | we
have

supp f ∗(|OX |/I
) = f −1(supp

(|OX |/I
))

.

Proof. We can use the same proof as in [10, Chapitre 0, 5.2.4.1]: One reduces to the claim that for
a local homomorphism of generalized local rings [6, 6.2.4] A → B and an ideal I ⊆ |A|, one has
|A|/I ⊗A B = 0 if and only if one has |A|/I = 0. Therefore, let us assume |A|/I �= 0. Then I ⊆ mA , and
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we have two epimorphisms |A|/I ⊗A B � |A|/mA ⊗A B � |B|/mB �= 0. This proves that |A|/I ⊗A B is
non-zero. �

The remainder of Sections 3.1 and 3.2 also carries over directly to generalized schemes. In Sec-
tion 3.3 every occurrence of “epimorphism” has to be replaced by “regular epimorphism”, which
just means a surjective homomorphism. Recall that not every epimorphism of A-modules, where A
is a generalized ring, is surjective: The modules over Z�0 are precisely the commutative monoids
[6, 3.4.12(a)] and localizations such as N → Z provide non-surjective epimorphisms of commutative
monoids. Apart from that, we don’t have to modify Section 3.3. Hence, every generalized local ring is
good.

In Proposition 3.4.1 we need the universal property of the canonical morphism Spec(OY ,y) → Y
in the context of generalized schemes, whose proof can be copied from [10, 2.5.3]. The argument
at the end of the proof of Proposition 3.4.1 has already been repeated above, in our discussion on
Proposition 3.1.1. Finally, Theorems 3.4.2 and 3.4.3 follow as before.

Hence, we have proven:

Theorem 4.2.5. Let X, Y be generalized schemes over F1 , with X quasi-compact and quasi-separated. Then,
the functor f �→ f ∗ implements an equivalence

Hom(Y , X) � Homc⊗
(
Qcoh(X),Qcoh(Y )

)
.

This actually contains our previous Theorem 3.4.3 as a special case. It can also be applied to
monoid schemes in the sense of [4, Section 3]; see [12, 2.5] for the interpretation of monoid schemes
as generalized schemes with zero.
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