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Introduction

The aim of the representation theory of artin algebras is to characterize and to classify 
algebras using properties of module categories. The representation dimension of an artin 
algebra was introduced by Auslander [9] and he expected that this invariant would 
give a measure of how far an algebra is from being representation-finite. He proved 
that a non-semisimple algebra Λ is representation-finite if and only if its representation 
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dimension rep.dimΛ is two. Iyama proved that the representation dimension of an artin 
algebra is always finite (see [19]) and Rouquier has constructed examples of algebras 
with rep.dimΛ = r for any r ≥ 2 (see [23]).

Igusa and Todorov gave in [18] an interesting connection with the finitistic dimension 
conjecture. They proved that if Λ has representation dimension at most three then its 
finitistic dimension is finite.

Auslander proved in [9] that if Λ is a hereditary algebra, then rep.dimΛ is at most 
three. Many other classes of algebras have representation dimension at most three, as for 
example, tilted and laura algebras [7], trivial extensions of hereditary algebras [14] and 
quasi-tilted algebras [22]. Other results can be found also in [15,26].

In order to calculate the representation dimension of an artin algebra Λ, one reason-
able approach would be to split the module category modΛ of the finitely generated 
modules into pieces and calculate the representation dimension of algebras associated 
to each piece. In this sense, we consider for a full subcategory C of indΛ closed under 
successors its support algebra ΛC, in the sense of [2], and for a full subcategory A of 
indΛ closed under predecessors its support algebra AΛ. Our two main theorems (The-
orems 2.6 and 4.2) relate rep.dimΛ to rep.dim AΛ or rep.dimΛC when A and C satisfy 
some additional hypotheses.

Before stating our first main theorem, we need to recall some definitions. Let Λ be an 
artin algebra and indΛ be a full subcategory of modΛ consisting of one representative 
from each isomorphism class of indecomposable modules. A trisection of indΛ is a triple 
of disjoint full subcategories (A, B, C) such that indΛ = A ∪ B ∪ C and Hom(C, B) =
Hom(C, A) = Hom(B, A) = 0, see [1]. We say that B is finite if it contains only finitely 
many objects of indΛ. We denote by LΛ and RΛ, respectively, the left and the right parts 
of modΛ in the sense of [16] (or see Section 1.2 below). For the definition of covariantly 
and contravariantly finite subcategories, we refer the reader to [12] (or see Section 1.3
below).

The first theorem is the following:

Theorem. Let Λ be a representation-infinite artin algebra and (A, B, C) be a trisection of 
indΛ with B finite.

(a) If C ⊆ RΛ and add C is covariantly finite, then

rep.dimΛ = max{3, rep.dim AΛ}.

(b) If A ⊆ LΛ and addA is contravariantly finite, then

rep.dimΛ = max{3, rep.dimΛC}.

As consequences of this theorem we prove that the class of ada algebras, introduced 
and studied in [3], has representation dimension at most three (Corollary 5.3), and give 
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another proof of Theorem 4.1 in [7] saying that strict laura algebras have representation 
dimension at most three.

If C is not necessarily contained in RΛ and A is not necessarily contained in LΛ

the second theorem gives a relationship between the representation dimension of Λ and 
those of AΛ and of ΛC. For this, however, we have to assume that indΛC is closed under 
successors or indA Λ is closed under predecessors.

For a full subcategory X of indΛ, we denote by X c = indΛ \ X its complement.

Theorem. Let Λ be an artin algebra with a trisection (A, B, C) of indΛ. If

(a) (A ∪ indΛC)c is finite and indΛC is closed under successors

or

(b) (indAΛ ∪ C)c is finite and indAΛ is closed under predecessors,
then,

rep.dimΛ ≤ max{rep.dim AΛ, rep.dimΛC}.

As a consequence of this second theorem we prove that if R is the Nakayama ori-
ented pullback [20] of the morphisms A → B and C → B, then we have rep.dimR ≤
max{rep.dimA, rep.dimC} (Corollary 5.8).

This paper is organized as follows. The first section is dedicated to preliminaries with 
some definitions and useful results. Section 2 and Section 4 are the proofs of the first 
and the second theorems, respectively. Section 3 studies the relation of the representation 
dimension of an algebra with the representation dimension of the support algebras of 
the complements of left and right parts; this study is useful for the proof of the result 
concerning ada algebras. Finally, Section 5 contains applications of the main results: 
laura algebras, ada algebras and Nakayama oriented pullbacks.

1. Preliminaries

In this first section, we recall some well-known definitions that we use in this text.

1.1. Notation

In this paper, all algebras are artin algebras. For an algebra Λ, we denote by modΛ

the category of all finitely generated right Λ-modules and by indΛ a full subcategory of 
modΛ consisting of exactly one representative from each isomorphism class of indecom-
posable modules. For a Λ-module M , we denote by Λ(−,M) the functor HomΛ(−, M). 
For a subcategory C of modΛ we write M ∈ C to express that M is an object in C. 
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We denote by add C the full subcategory of modΛ with objects the finite direct sums 
of summands of modules in C and, if M is a module, we abbreviate add{M} as addM . 
We denote the projective (or injective) dimension of a module M as pdΛM (or idΛM , 
respectively). We say that C is finite if it has only finitely many isomorphism classes of 
indecomposable Λ-modules and we say that C is cofinite if Cc is finite. We say that Λ
is a representation-finite algebra if indΛ is finite. It is representation-infinite otherwise. 
We denote by GenM (or CogenM) the full subcategory of modΛ having as objects all 
modules generated (or cogenerated, respectively) by M . We denote by τΛ = DTr and 
τ−1
Λ = TrD the Auslander–Reiten translations.

For an algebra that is determined by a quiver QΛ we denote by ei the idempotent 
associated to the vertex i ∈ (QΛ)0 and by eΛ =

∑
i∈(QΛ)0 ei its identity. In this case, 

we denote by Pi, Ii and Si the projective, injective and simple, respectively, associated 
to the vertex i ∈ (QΛ)0.

For further definitions and facts on modΛ, we refer to [8,11].

1.2. Subcategories closed under predecessors

Given M, N ∈ indΛ, a path from M to N in indΛ is a sequence of non-zero morphisms 
M = X1 → X2 → · · · → Xt = N (t ≥ 1) where Xi ∈ indΛ for all i. In this case, we say 
that M is a predecessor of N and that N is a successor of M .

We say that A is closed under predecessors if, whenever M is a predecessor of N with 
N ∈ A, then M ∈ A. Dually, we define subcategory closed under successors.

For a module M , we denote by SuccM the full subcategory of indΛ consisting of 
all successors of any indecomposable summand of M . This category is, of course, closed 
under successors. Dually we denote by PredM the full subcategory of indΛ consisting 
of all predecessors of any indecomposable summand of M .

We recall from [16] that the right part RΛ of modΛ is the full subcategory of indΛ

defined by

RΛ = {M ∈ indΛ | idΛN ≤ 1 for each successor N of M}.

Clearly, RΛ is closed under successors. Dually, the left part,

LΛ = {M ∈ indΛ | pdΛN ≤ 1 for each predecessor N of M}

is a full subcategory of indΛ closed under predecessors.
Another way to produce subcategories closed under predecessors is by means of tri-

sections [1]. A trisection of indΛ is a triple of disjoint full subcategories (A, B, C) of indΛ

such that indΛ = A ∪B ∪ C and Hom(C, B) = Hom(C, A) = Hom(B, A) = 0. If (A, B, C)
is a trisection of indΛ then the subcategory A is closed under predecessors and C is 
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closed under successors. Also, B is convex in indΛ, that is, if M = M1 → M2 → · · · →
Mt−1 → Mt = N is a path in indΛ with M, N ∈ B then Mi ∈ B for all i = 1, ..., t.

1.3. Covariantly and contravariantly finite subcategories

The notions of contravariantly and covariantly finite subcategories were introduced 
in [12,13]. Let X be an additive full subcategory of modΛ. We say that X is contravari-
antly finite if for any Λ-module M , there is a morphism fM : XM → M with XM ∈ X
such that any morphism f : X → M with X ∈ X factors through fM . Dually we define
covariantly finite subcategories and X is called functorially finite if it is both contravari-
antly and covariantly finite. Finally, following [10], X is called homologically finite if 
it is contravariantly finite or covariantly finite. For instance, if C is a finite or cofinite 
subcategory of indΛ, then add C is functorially finite in modΛ (see [12]). In particular, 
for a module M ∈ modΛ, the category addM is functorially finite.

If X is an additive subcategory of modΛ, closed under extensions, then a module 
M ∈ X is called Ext-projective in X if Ext1Λ(M, −)|X = 0. Dually, a module N to be
Ext-injective in X if Ext1Λ(−, N)|X = 0. If (X , Y) is a torsion pair, then M ∈ X is 
Ext-projective in X if and only if τΛM ∈ Y and N ∈ Y is Ext-injective in Y if and only 
if τ−1

Λ N ∈ X (see [13]).
Let A be a full subcategory closed under predecessors of indΛ then C = Ac is closed 

under successors and in this case (add C, addA) is a split torsion pair. Denote by E the 
direct sum of a full set of representatives of the indecomposable Ext-injective modules 
in A and by F the direct sum of a full set of representatives of the indecomposable 
Ext-projective modules in C. We need the following particular case of the main result 
of [24].

Lemma 1.1. Let A be a full subcategory closed under predecessors of indΛ and C = Ac. 
The following conditions are equivalent:

(a) addA is contravariantly finite.
(b) addA = CogenN for some N ∈ modΛ.
(c) addA = CogenE.
(d) add C is covariantly finite.
(e) add C = GenM for some M ∈ modΛ.
(f) add C = GenF . �

Let C be a full subcategory of indΛ closed under successors such that addC is covari-
antly finite. Denote by F the direct sum of all indecomposable Ext-projective modules 
in C and by N the direct sum of all indecomposable injective Λ-modules lying in C.

Lemma 1.2. (See [6] (5.3).) Let C be a full subcategory of indΛ closed under successors. 
Assume that add C is covariantly finite. Then:
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(a) F is convex if and only if C ⊆ RΛ.
(b) If, moreover, add C contains all the injective Λ-modules, then C ⊆ RΛ if and only if 

Λ is tilted having F as a slice module. �
Note that, by [7] (2.1), the algebra Λ is tilted if and only if it has a convex tilting 

module. For properties of tilted algebras we refer to [8].

1.4. Support algebras

Let A be a full subcategory of indΛ closed under predecessors. Following [2], we define 
its support algebra AΛ to be the endomorphism algebra of the direct sum of a full set of 
representatives of the isomorphism classes of the indecomposable projectives lying in A. 
Let C be a full subcategory of indΛ closed under successors, we define dually the support 
algebra ΛC of C. Note that modAΛ and modΛC are full subcategories of modΛ. We have 
the following properties from [6] (4.1).

Lemma 1.3. Let A be a full subcategory of indΛ closed under predecessors and C a full 
subcategory of indΛ closed under successors.

(a) All indecomposable Λ-modules lying in A have a natural structure of indecomposable 

AΛ-modules;
(b) The indecomposable projective AΛ-modules are just the indecomposable projective 

Λ-modules lying in A;
(c) For any indecomposable AΛ-module M we have pd(AΛ)M = pdΛM and id(AΛ)M ≤

idΛM ;
(a′) All indecomposable Λ-modules lying in C have a natural structure of indecomposable 

ΛC-modules;
(b′) The indecomposable injective ΛC-modules are just the indecomposable injective 

Λ-modules lying in C;
(c′) For any indecomposable ΛC-module M we have id(ΛC)M = idΛM and pd(ΛC)M ≤

pdΛM . �
1.5. Representation dimension

A module M is called a generator of modΛ if any projective Λ-module belongs to 
addM , it is called a cogenerator of modΛ if any injective Λ-module belongs to addM and 
it is called a generator–cogenerator of modΛ if it is both a generator and a cogenerator 
of modΛ.

Definition 1.4. Let Λ be a non-semisimple artin algebra. The representation dimension
rep.dimΛ of Λ is the infimum of the global dimensions of the algebras EndM where M
is a generator–cogenerator of modΛ.
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For the original definition of representation dimension and further details, we refer 
to [9]. The characterization given above as definition appears in the same paper.

Recall that a morphism f : M → N is said to be right minimal if any morphism g such 
that fg = f is an isomorphism. Let X be an additive full subcategory of modΛ. A right 
X -approximation of M is a morphism f : X → M with X ∈ X such that the sequence 
of functors Λ(−, X) → Λ(−,M) → 0 is exact in X . A morphism f is a minimal right 
X -approximation of M if it is a right X -approximation of M and also a right minimal 
morphism.

Remark 1.5. An additive full subcategory X of modΛ is contravariantly finite if and only 
if any module M ∈ modΛ has a right X -approximation.

Consider X̄ ∈ modΛ and X = add X̄. Let f : X → M be a right X -approximation 
of M . By [11] (I.2.2) there exists a decomposition X = X ′⊕X ′′ such that f |X′ : X ′ → M

is right minimal and f |X′′ = 0. Moreover f factors through f |X′ , that is, there exists 
l: X → X ′ such that f = fX′ ◦ l. Therefore fX′ is also a right X -approximation of M
and so it is a minimal right X -approximation of M .

Definition 1.6. Let Λ be an artin algebra and X be an additive full subcategory of 
modΛ. An X -approximation resolution of length r of a module M is an exact sequence 
0 → Xr → Xr−1 → · · · → X1 → M → 0 such that Xi ∈ X for each i, and the induced 
sequence of functors

0 → Λ(−, Xr) → Λ(−, Xr−1) → · · · → Λ(−, X1) → Λ(−,M) → 0

is exact in X .

Note that if (∗) 0 → Xr
ϕr→ Xr−1 → · · · → X2

ϕ2→ X1
ϕ1→ M → 0 is an 

X -approximation resolution of M then ϕ1 and each restriction ϕi: Xi → Kerϕi−1 are 
right X -approximations. We are using, by abuse of notation, the same notation for the 
morphism ϕi and for the restriction of ϕi over its image. If each of these morphisms is 
right minimal, we say that (∗) is a minimal X -approximation resolution.

For a Λ-module X̄, each module has a minimal right add X̄-approximation. Then we 
can construct a minimal add X̄-approximation resolution for each module in modΛ.

Lemma 1.7. Let X̄ and M be Λ-modules in modΛ. If there exists an add X̄-approximation 
resolution of length r of M then there exists a minimal add X̄-approximation resolution 
of length at most r of M .

Proof. Let 0 → Xr
ϕr→ Xr−1 → · · · → X2

ϕ2→ X1
ϕ1→ M → 0 be an add X̄-approximation 

resolution of length r of M . We can construct an exact sequence 0 → K → X ′
r+1

ψr+1→
X ′

r
ψr→ X ′

r−1 → · · · → X ′
2

ψ2→ X ′
1

ψ1→ M → 0 where each ψi (over its image) is a minimal 
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right add X̄-approximation. Then, for i ∈ {1, 2, · · · , r + 1}, there exist fi: Xi → X ′
i such 

that the diagram

0 0 0

fr+1

Xr

ϕr

fr

· · · X2
ϕ2

f2

X1
ϕ1

f1

M 0

0 K X ′
r+1

ψr+1
X ′

r

ψr · · · X ′
2

ψ2
X ′

1
ψ1

M 0

is commutative. By minimality of each ψi we have that each fi is a retraction and, 
in particular, we have X ′

r+1 = 0. This completes the proof. �
Remark 1.8. It follows from this lemma that, if there exists an add X̄-approximation 
resolution of length r of M , then we can assume that it is minimal.

Definition 1.9. A Λ-module X̄ is said to have the r-approximation property if each 
indecomposable Λ-module has an add X̄-approximation resolution of length at most r.

Theorem 1.10. (See [14,15,26].) For an artin algebra Λ, rep.dimΛ ≤ r + 1 if and only 
if there exists a generator–cogenerator of modΛ satisfying the r-approximation prop-
erty. �

Auslander proved in [9] that Λ is representation-finite if and only if rep.dimΛ ≤ 2. 
Thus, if Λ is representation-infinite, then rep.dimΛ ≥ 3.

An important class of algebras which has representation dimension at most 3 is the 
class of tilted algebras as demonstrated in [7]. There, it is proved that if T is a convex 
tilting module of a tilted algebra Λ then Λ ⊕DΛ ⊕T is a generator–cogenerator having the 
2-approximation property. Here, we use some arguments from this paper in Lemma 2.2
below.

Many other classes of algebras have been shown to have representation dimension at 
most 3, see, for instance [7,9,14,15,22,26].

2. Proof of the first theorem

The next trivial corollary of Lemma 1.1 will be useful in the sequel.

Corollary 2.1. Let (A, B, C) be a trisection of indΛ such that B is finite. Then add C is 
covariantly finite if and only if addA is contravariantly finite.

Proof. This follows immediately from Lemma 1.1 and the finiteness of B. �
Let C ⊆ RΛ be a full subcategory of indΛ closed under successors such that addC is 

covariantly finite. Denote by F the direct sum of all indecomposable Ext-projectives in 
add C and by N the direct sum of all indecomposable injective Λ-modules lying in C.
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Lemma 2.2. Let C ⊆ RΛ be a full subcategory of indΛ closed under successors such 
that add C is covariantly finite. For each M ∈ C, there exists a short exact sequence 
0 → F2 → F1 ⊕ I1 → M → 0 with I1 ∈ addN and F1, F2 ∈ addF that is an 
add(F ⊕N)-approximation resolution of length 2 of M .

Proof. Since C ⊆ RΛ by Lemma 1.3 we have C ⊆ R(ΛC). And since add C contains all 
the injective ΛC-modules it follows from Lemma 1.2 that ΛC is a tilted algebra and F is 
a convex tilting ΛC-module.

Since add C = GenF ⊆ Gen(F ⊕N), then by [7] (1.4), for any M ∈ C there exists an 
exact sequence 0 → K → F1 ⊕ I1 → M → 0 with F1 ∈ addF , I1 ∈ addN such that the 
short sequence

0 → Λ(−,K) → Λ(−, F1 ⊕ I1) → Λ(−,M) → 0

is exact in add(F ⊕N). Now by [7] (2.2) (f), we have K ∈ addF and therefore we have 
an add(F ⊕N)-approximation resolution of length 2 of M . �
Lemma 2.3. Let Λ be an artin algebra and (A, B, C) a trisection of indΛ with B finite, 
C ⊆ RΛ and assume add C is covariantly finite. Then,

rep.dimΛ ≤ max{3, rep.dim AΛ}.

Proof. Denote AΛ = A and suppose that rep.dimA = r + 1. Let X̄ be a generator–
cogenerator of modA which has the r-approximation property in indA. Consider the 
following modules:

– X̄ ′ the direct sum of all indecomposable summands of X̄ that lie in A;
– Z the direct sum of all indecomposable Λ-modules lying in B;
– F the direct sum of all indecomposable Ext-projectives in add C; and
– N the direct sum of all indecomposable injective Λ-modules lying in C.

We will prove that M̄ = X̄ ′ ⊕ Z ⊕ F ⊕ N is a generator–cogenerator of modΛ and 
that it has the max{2, r}-approximation property in indΛ.

Let P ∈ indΛ be a projective Λ-module. If P lies in A then P is a projective A-module 
and so it is a summand of X̄ ′. If P lies in B then it is a summand of Z. And, if P lies 
in C then P is an Ext-projective in add C and so a summand of F . Thus M̄ is a generator 
of modΛ.

Let I ∈ indΛ be an injective Λ-module. If I lies in A then I is an injective A-module 
and so it is a summand of X̄ ′. If I lies in B, then it is a summand of Z. And if I lies 
in C, then it is a summand of N . Thus M̄ is a cogenerator of modΛ.

In order to prove that M̄ has the max{2, r}-approximation property in indΛ, consider 
M ∈ indΛ. If M ∈ add M̄ , there is nothing to do, then we can assume that M /∈ add M̄

and, in this case, M ∈ A ∪ C.
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If M ∈ A, then M is an A-module. Let

(1) 0 → Xr
ϕr→ Xr−1 → · · · → X2

ϕ2→ X1
ϕ1→ M → 0

be an add X̄-approximation resolution of length r in modA. Then, since HomΛ(L, N) =
HomA(L, N) for any L, N ∈ A, the sequence of functors

(2) 0 → Λ(−, Xr) → Λ(−, Xr−1) → · · · → Λ(−, X1) → Λ(−,M) → 0

is exact in add X̄. Since add X̄ ′ ⊆ add X̄, it follows that (2) is exact in add X̄ ′. The 
sequence (2) is zero in add(Z ⊕ F ⊕ N) because all the indecomposable summands of 
Z⊕F ⊕N are in B∪C and A is closed under predecessors. This proves that (2) is exact 
in add M̄ and therefore (1) is an add M̄ -approximation resolution of length r of M .

If M ∈ C, then, by Lemma 2.2, there exists an add(F ⊕N)-approximation resolution 
of length 2 of M :

(3) 0 → F2 → F1 ⊕ I1 → M → 0

with F1, F2 ∈ addF ⊆ add M̄ and I1 ∈ addN ⊆ add M̄ . Let L ∈ indΛ be a summand of 
X̄ ′⊕Z. If L is a projective Λ-module, then 0 → Λ(L,F2) → Λ(L,F1 ⊕ I1) → Λ(L,M) → 0
is exact. If L is not projective, then τΛL /∈ C, because C is closed under successors and 
L /∈ C, while F2 ∈ add C so we have

Ext1Λ(L,F2) ∼= DHomΛ(F2, τΛL) = 0.

Therefore, we have that the short sequence

0 → Λ(−, F2) → Λ(−, F1 ⊕ I1) → Λ(−,M) → 0

is exact in add(X̄ ′ ⊕ Z) and so (3) is an add M̄ -approximation resolution of length 2
of M . This proves that rep.dimΛ ≤ max{3, r + 1} and completes the proof. �
Lemma 2.4. Let A be a convex full subcategory of indΛ and 0 → X

f→ Y
g→ Z → 0 be 

an exact sequence in addA. If K is an Ext-injective in addA which is a summand of 
X, then it is isomorphic to a summand of Y .

Proof. Let p: X → K and i: K → X be the natural morphisms such that p ◦ i = 1K . 
There exists a commutative diagram with exact rows

0 X

p

f
Y

g
Z

1Z

0

0 K Q Z 0
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where Q is the pushout of f and p. By convexity, Q is in addA. Since K is Ext-injective 
in addA then the exact sequence 0 → K → Q → Z → 0 splits. So we have the following 
commutative diagram with exact rows

0 X

p

f
Y

(
h1
h2

)

g
Z

1Z

0

0 K (
1
0
) K ⊕ Z Z 0

By the commutativity we have 
( h1
h2

)
f =

( 1
0

)
p, that is h1 ◦ f = p. So h1 ◦ f ◦ i =

p ◦ i = 1K . This proves that h1: Y → K is a retraction and therefore K is isomorphic to 
a summand of Y . �
Lemma 2.5. Let A be a full subcategory of indΛ closed under predecessors and
X̄ ∈ modΛ. If f : X → M is a minimal right add X̄-approximation of M , then Ker f has 
no Ext-injective direct summand in addA.

Proof. Let K be a direct summand of Ker f which is Ext-injective in addA. By the last 
lemma, K is also a direct summand of X. But f(K) = 0 and this is a contradiction with 
the minimality of f by [11] (I.2.3). �
Theorem 2.6. Let Λ be a representation-infinite artin algebra and (A, B, C) be a trisection 
of indΛ with B finite.

(a) If C ⊆ RΛ and add C is covariantly finite, then

rep.dimΛ = max{3, rep.dim AΛ}.

(b) If A ⊆ LΛ and addA is contravariantly finite, then

rep.dimΛ = max{3, rep.dimΛC}.

Proof. We will only prove part (a) because (b) is dual.
By Lemma 2.3, we have rep.dimΛ ≤ max{3, rep.dim AΛ}.
On the other hand, suppose rep.dimΛ = s + 1. Note that s ≥ 2 because Λ is a 

representation-infinite algebra. Let M̄ be a generator–cogenerator of modΛ which has the 
s-approximation property in indΛ. Denote A = AΛ, B′ = B ∩ indA and C′ = C ∩ indA. 
Then (A, B′, C′) is clearly a trisection of indA with B′ finite. Consider the following 
modules:
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– M̄ ′ the direct sum of all indecomposable summands of M̄ that lie in A;
– E the direct sum of all indecomposable Ext-injectives in addA which are not injective 

in modΛ;
– Z the direct sum of all indecomposable A-modules lying in B′;
– F the direct sum of all indecomposable Ext-projectives in add C′; and
– N the direct sum of all indecomposable injective A-modules lying in C′.

We will prove that the A-module X̄ = M̄ ′⊕E⊕Z⊕F ⊕N is a generator–cogenerator 
of modA and that it has the s-approximation property in indA.

If P ∈ indΛ is a projective A-module, then P is a projective Λ-module lying in A and 
so P is a summand of M̄ ′. Let I ∈ indA be an injective A-module. If I lies in A then I
is an Ext-injective in addA and so I is a summand of M̄ ′ if it is injective in modΛ, or I
is a summand of E if it is not injective. If I lies in B′ then it is a summand of Z and if I
lies in C′ then it is a summand of N . Therefore X̄ is a generator–cogenerator of modA.

To prove that X̄ has the s-approximation property consider M ∈ indA such that 
M /∈ add X̄. Then M ∈ A ∪ C′.

By Corollary 2.1, since add C is covariantly finite in modΛ, then addA is contravari-
antly finite in modΛ and hence it is contravariantly finite in modA. Now, since (A, B′, C′)
is a trisection of indA with B′ finite, then add C′ is covariantly finite in modA. Note that 
C′ is closed under successors in indA and, by Lemma 1.3, we have C′ ⊆ RA. Therefore, 
if M ∈ C′, by Lemma 2.2, there is an exact sequence in modA

0 → F2 → F1 ⊕ I1 → M → 0

with F1, F2 ∈ addF ⊆ add X̄ and I1 ∈ addN ⊆ add X̄ such that the short sequence

0 → A(−, F2) → A(−, F1 ⊕ I1) → A(−,M) → 0

is exact in add(F ⊕N).
Let L ∈ indA be a summand of M̄ ′⊕Z⊕E then L /∈ C′. If L is a projective A-module, 

then

0 → A(L,F2) → A(L,F1 ⊕ I1) → A(L,M) → 0

is exact. If L is not A-projective, then τAL /∈ C′ because C′ is closed under successors 
while F2 ∈ add C′ so we have

Ext1A(L,F2) ∼= DHomA(F2, τAL) = 0.

Therefore, the short sequence

0 → A(−, F2) → A(−, F1 ⊕ I1) → A(−,M) → 0
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is exact in add(M̄ ′⊕Z⊕E) and so 0 → F2 → F1⊕I1 → M → 0 is an add X̄-approxima-
tion resolution of length 2 of M .

If M ∈ A consider an add M̄ -approximation resolution of M :

(1) 0 → Ms
ϕs→ Ms−1 → · · · → M2

ϕ2→ M1
ϕ1→ M → 0.

Since M ∈ A and A is closed under predecessors each Mi ∈ addA and so each
Mi ∈ add M̄ ′ ⊆ add X̄. Since add M̄ ′ ⊆ add M̄ and indA is a full subcategory of indΛ

then the induced sequence

(2) 0 → A(−,Ms) → A(−,Ms−1) → · · · → A(−,M1) → A(−,M) → 0

is exact in add M̄ ′.
The sequence (2) is zero in add(Z ⊕ F ⊕N) because A is closed under predecessors 

and Z ⊕ F ⊕N ∈ add(B ∪ C).
Finally let L ∈ addE be an indecomposable module and denote Ki = Kerϕi for 

i ∈ {1, ..., s − 1}. Since L is Ext-injective in addA and not injective then τ−1
Λ L /∈ A

and since M is not Ext-injective (because M /∈ add X̄) then τ−1
Λ M ∈ A. Therefore 

HomΛ(τ−1
Λ L, τ−1

Λ M) = 0 and so HomΛ(L, M) = 0. If f : L → M is a morphism, then 
there exist an injective Λ-module I and morphisms f1: L → I, f2: I → M such that 
f = f2 ◦ f1. Since I is a summand of M̄ then Λ(I,M1) → Λ(I,M) → 0 is exact, 
so there is a morphism g: I → M1 such that ϕ1 ◦ g = f2, that is f = ϕ1 ◦ (g ◦ f1) =
HomΛ(L, ϕ1)(g ◦ f1) and therefore 0 → Λ(L,K1) → Λ(L,M1) → Λ(L,M) → 0 is ex-
act. Because of Remark 1.8 and Lemma 2.5, we can assume that each Ki ∈ addA (for
i ∈ {1, ..., s − 1}) has no Ext-injective summand, so the same argument is valid replac-
ing M by Ki. Therefore for each i ∈ {1, ..., s − 1} the sequence 0 → Λ(L,Ki+1) →
Λ(L,Mi+1) → Λ(L,Ki) → 0 is exact. This proves that the sequence (2) is exact in addE

and so (1) is an add X̄-approximation resolution of length s of M . This proves that 
rep.dimA ≤ s + 1 = rep.dimΛ and completes the proof of the theorem. �
Corollary 2.7. Let Λ be a representation-infinite algebra.

(a) If A is a cofinite full subcategory of indΛ closed under predecessors, then rep.dimΛ =
rep.dim AΛ.

(b) If C is a cofinite full subcategory of indΛ closed under successors, then rep.dimΛ =
rep.dimΛC.

Proof. For (a) just take B = Ac and C = ∅. Since A is cofinite and indΛ is infinite then 
A ⊆ indA Λ is infinite. Therefore rep.dim AΛ ≥ 3.

The item (b) is dual. �
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Example 2.8. Let k be a field and Λ be the k-algebra given by the quiver

4
γ

5ε 8

1 2α 3
β1

β2

6
δ

7
λ

9

10

bound by the relations βiα = γβi = δβi = εγ = λδ = 0, for i = 1, 2.
The algebra Λ is representation-infinite and so rep.dimΛ ≥ 3. The right part RΛ

consists of all the successors of τ−1P4 and addRΛ is covariantly finite. The left part 
is LΛ = {P1, P2, S2, P3}. Its support algebra (LΛ)Λ is given by the objects 1, 2 and 3, 

that is, (LΛ)Λ is a tilted algebra that has the quiver 1 2
α

3

β1

β2

bound by βiα = 0

with i = 1, 2. Denote A = ind (LΛ)Λ which consists of all predecessors of S3 (and so it 
is infinite). In this case, it is easy to see that (A, (A ∪RΛ)c, RΛ) is a trisection of indΛ

and (A ∪RΛ)c is finite. By Theorem 2.6, rep.dimΛ = rep.dim AΛ. But AΛ = (LΛ)Λ and 
so rep.dimΛ = 3.

There are other ways to see that the algebra in this example has representation dimen-
sion 3, for example using [27] (4.7). But the latter result cannot be used in the following 
Example 2.9 because it involves an algebra with representation dimension 4.

Example 2.9. Let k be a field and Λ be the k-algebra given by the quiver

3
β

1 2
α1

α2

4

γ

δ
5

x1

x2
x3

6
x1

x2
x3

bound by the relations βαl = δαl = γβ = xiγ = xiδ = 0 and xixj = xjxi for l = 1, 2
and for 1 ≤ i, j ≤ 3.

Denote by A the subcategory of indΛ which consists of all predecessors of S2 and by C
the subcategory of indΛ which consists of all successors of S4. Then A ⊆ LΛ and addA
is contravariantly finite, (A, (A ∪ C)c, C) is a trisection of indΛ and (A ∪ C)c is finite. 
By Theorem 2.6, rep.dimΛ = rep.dimΛC . But ΛC is the algebra given by the objects 4, 
5 and 6, that is, ΛC is the algebra given by

4 5
x1

x2
x3

6
x1

x2
x3
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bound by the relations xixj = xjxi for 1 ≤ i, j ≤ 3 and by [21], Examples 7.3 and A.8, 
this algebra has representation dimension 4. Therefore rep.dimΛ = 4.

3. The left and right parts and representation dimension

As a direct consequence of Theorem 2.6, we have the next corollary.

Corollary 3.1. Let Λ be a representation-infinite artin algebra.

(a) If C ⊆ RΛ is a full subcategory of indΛ closed under successors such that addC is 
covariantly finite, then

rep.dimΛ = max
{
3, rep.dim (

Cc
)Λ

}
.

(b) If A ⊆ LΛ is a full subcategory of indΛ closed under predecessors such that addA
is contravariantly finite, then

rep.dimΛ = max{3, rep.dimΛ(Ac)}.

Proof. For (a) just take A = Cc and B = ∅. The item (b) is dual. �
From this, we can prove a stronger result that does not require that the subcategory 

is homologically finite.

Proposition 3.2. Let Λ be a representation-infinite artin algebra.

(a) If C ⊆ RΛ is a subcategory closed under successors, then

rep.dimΛ = max
{
3, rep.dim (

Cc
)Λ

}
.

(b) If A ⊆ LΛ is a subcategory closed under predecessors, then

rep.dimΛ = max{3, rep.dimΛ(Ac)}.

Proof. If each projective indecomposable Λ-module lies in Cc then Λ = (Cc)Λ. Otherwise, 
let D = SuccY where Y is the sum of all projective indecomposable Λ-modules lying 
in C. Then D is a full subcategory of RΛ closed under successors. Denote by F the sum 
of all the Ext-projective indecomposable modules in addD. Since Y is Ext-projective in 
addD we have that D = SuccY ⊆ SuccF . But F ∈ addD and so SuccF ⊆ D, because 
D is closed under successors. Therefore D = SuccF . By [2] (8.2), we have that addD is 
covariantly finite. By Corollary 3.1, it follows that rep.dimΛ = max{3, rep.dim (Dc)Λ}. 
Finally, for a projective indecomposable Λ-module P , we have P ∈ C if and only if P ∈ D, 
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so P /∈ C if and only if P /∈ D and then (Cc)Λ = (Dc)Λ and this completes the proof 
of (a). The item (b) is dual. �
Corollary 3.3. If Λ is a representation-infinite artin algebra, then

rep.dimΛ = max
{
3, rep.dim (RΛ)cΛ

}
= max{3, rep.dimΛ(LΛ)c}. �

Applying the last corollary to the algebra B = (RΛ)cΛ we conclude that

rep.dimΛ = max{3, rep.dimB(LB)c}

and so the representation dimension of Λ depends just on an algebra that is a subcategory 
of (RΛ)cΛ and of Λ(LΛ)c .

4. Proof of the second theorem

Now, even when C is not necessarily in RΛ and A is not necessarily in LΛ we can 
still find a relation between the representation dimension of Λ and the representation 
dimensions of AΛ and of ΛC. For this, however, we need to suppose that indΛC is closed 
under successors or indA Λ is closed under predecessors. To illustrate this hypothesis, 
we show an example.

Example 4.1. In Example 2.8 we have that ind (LΛ)Λ consists of all predecessors of S3, 
that is ind (LΛ)Λ = PredS3 and so it is closed under predecessors. In the same example 
we have that Λ(RΛ) is the hereditary algebra

8

4 5 6 7 9

10

and the module 6
5 3 /∈ indΛ(RΛ) is a successor of S5 ∈ indΛ(RΛ) so it is not closed 

under successors.

Theorem 4.2. Let Λ be an artin algebra with a trisection (A, B, C) of indΛ. If

(a) (A ∪ indΛC)c is finite and indΛC is closed under successors

or
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(b) (indA Λ ∪ C)c is finite and indA Λ is closed under predecessors, then,

rep.dimΛ ≤ max{rep.dim AΛ, rep.dimΛC}.

Proof. Suppose that rep.dimAΛ = r+ 1 and rep.dimΛC = s + 1. Let Ȳ be a generator–
cogenerator of modA Λ which has the r-approximation property in indA Λ and let X̄ be 
a generator–cogenerator of modΛC which has the s-approximation property in indΛC . 
Suppose (a) and consider the following modules:

– Ȳ ′ the direct sum of all indecomposable summands of Ȳ that lie in A but not in 
indΛC , and

– Z the direct sum of the all indecomposable modules lying in (A ∪ indΛC)c.

We will prove that M̄ = Ȳ ′ ⊕Z ⊕ X̄ is a generator–cogenerator of modΛ and it has the 
max{r, s}-approximation property in indΛ.

Let P ∈ indΛ be a projective Λ-module. If P lies in A \ indΛC , then P is a projective 

AΛ-module and it is a summand of Ȳ ′. If P lies in (A ∪ indΛC)c, then it is a summand 
of Z. And if P lies in indΛC , then P is a projective ΛC-module and so it is a summand 
of X̄. Let I ∈ indΛ be an injective Λ-module. If I lies in A \ indΛC , then I is an injective
AΛ-module and it is a summand of Ȳ ′. If I lies in (A ∪ indΛC)c, then it is a summand 
of Z. And if I lies in indΛC , then I is an injective ΛC-module and so it is a summand 
of X̄. Therefore M̄ is a generator–cogenerator of modΛ.

Consider M ∈ indΛ such that M /∈ add M̄ . Then M ∈ A ∪ indΛC .
Suppose M ∈ A ⊆ indA Λ such that M /∈ indΛC . There is an add Ȳ -approximation 

resolution of length r in modA Λ:

(1) 0 → Yr
ϕr→ Yr−1 → · · · → Y2

ϕ2→ Y1
ϕ1→ M → 0.

Since A is closed under predecessors and indΛC is closed under successors then any Yi

belongs to add Ȳ ′ ⊆ add M̄ . Since modAΛ is a full subcategory of modΛ, the induced 
sequence

(2) 0 → Λ(−, Yr) → Λ(−, Yr−1) → · · · → Λ(−, Y1) → Λ(−,M) → 0

is exact in add Ȳ ′.
Since A \ indΛC is closed under predecessors and each indecomposable summand of 

Z ⊕ X̄ is not in A \ indΛC , then the sequence (2) is zero in add(Z ⊕ X̄). This proves 
that (2) is exact in add M̄ . Then (1) is an add M̄ -approximation resolution of M .

If M ∈ indΛC , there exists an add X̄-approximation resolution of length s in modΛC :

(3) 0 → Xs
ψs→ Xs−1 → · · · → X2

ψ2→ X1
ψ1→ M → 0.
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Since indΛC is a full subcategory of indΛ, the induced sequence

(4) 0 → Λ(−, Xs) → Λ(−, Xs−1) → · · · → Λ(−, X1) → Λ(−,M) → 0

is exact in add X̄. We have Ni = Kerψi ∈ modΛC , for i ∈ {1, ..., s − 1}. Let N ∈ indΛC
be a non-injective summand of N1, then since indΛC is closed under successors we have 
τ−1
Λ N ∈ indΛC and so

Ext1Λ
(
Ȳ ′ ⊕ Z,N

) ∼= DHomΛ

(
τ−1
Λ N, Ȳ ′ ⊕ Z

)
= 0.

Then the short sequence

0 → Λ(−, N1) → Λ(−, X1) → Λ(−,M) → 0

is exact in add(Ȳ ′ ⊕ Z). The same argument holds true replacing M by Ni for i ∈
{1, ..., s − 1} and this proves that the sequence (4) is exact in add(Ȳ ′ ⊕ Z) and so (3) is 
an add M̄ -approximation resolution of M . Therefore

rep.dimΛ ≤ max{r + 1, s + 1}.

The proof with the hypothesis (b) is dual. �
Example 4.3. In Example 2.8 we exhibit a trisection (LΛ, (LΛ ∪ RΛ)c, RΛ) of indΛ

with (LΛ ∪ RΛ)c infinite. There ind(LΛ) Λ = PredS3 is closed under predecessors 
and (ind(LΛ) Λ ∪ RΛ)c is finite. So, by Theorem 4.2 (b), we have rep.dimΛ ≤
max{rep.dim (LΛ)Λ, rep.dimΛ(RΛ)}. Now, because Λ(RΛ) is hereditary, (LΛ)Λ is tilted 
and Λ is representation-infinite, we have rep.dimΛ = 3.

5. Applications

5.1. Laura algebras

Following [4], we say that an artin algebra Λ is a laura algebra if LΛ ∪RΛ is cofinite 
in indΛ and it is a strict laura algebra if it is a laura but is not quasi-tilted. If Λ is 
a strict laura then Λ is left and right supported (see [5] (4.4)), that is, addLΛ is con-
travariantly finite and addRΛ is covariantly finite, respectively. As the first application 
of Theorem 2.6, we give another proof of the result of [7] (4.1) saying that if Λ is a strict 
laura algebra then rep.dimΛ ≤ 3.

Corollary 5.1. If Λ is a laura algebra, then rep.dimΛ ≤ 3.

Proof. If Λ is quasi-tilted, this follows from [22], hence we can assume that Λ is strict. 
Since Λ is left supported then addLΛ is contravariantly finite and by [5] (5.1) we 
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have that (LΛ)Λ is a product of tilted algebras and so rep.dim (LΛ)Λ ≤ 3. By Corol-
lary 2.1, as (LΛ, B, RΛ \ LΛ) is a trisection of indΛ where B = (LΛ ∪ RΛ)c is finite
then add(RΛ \ LΛ) is covariantly finite. By Lemma 2.3, we have rep.dimΛ ≤
max{3, rep.dim (LΛ)Λ} = 3. �

Let Λ be a strict laura algebra such that LΛ ∩ RΛ = ∅, then (LΛ, B, RΛ), where 
B = (LΛ ∪ RΛ)c is finite, is a trisection of indΛ. On the other hand, if E denotes the 
sum of all indecomposable Ext-injective modules of addLΛ, then X̄ = A ⊕DA ⊕E is a 
generator–cogenerator of A = (LΛ)Λ having the 2-approximation property, by [7] (2.3). 
Then, in this case, the generator–cogenerator constructed in Lemma 2.3 coincides with 
the one constructed in [7] (4.1).

5.2. Ada algebras

As the second application, we consider the class of ada algebras introduced in [3]. 
An artin algebra Λ is called an ada algebra if Λ ⊕DΛ ∈ add(LΛ ∪ RΛ). We have that 
for an ada algebra the representation dimension is less or equal to 3. This follows from 
the next consequence of Proposition 3.2.

Theorem 5.2. Let Λ be a representation-infinite artin algebra. If Λ ∈ add(LΛ∪RΛ), then 
rep.dimΛ = 3.

Proof. For C = RΛ \ LΛ by Proposition 3.2 we have rep.dimΛ =
max{3, rep.dim (Cc)Λ}. But, in this case, a projective P lies in Cc if and only if P ∈ LΛ. 
Then, (Cc)Λ = (LΛ)Λ. Moreover by [5] (2.3) the algebra (LΛ)Λ is a product of quasi-tilted 
algebras and then, by [22], we have rep.dim (LΛ)Λ ≤ 3. Therefore rep.dimΛ = 3. �
Corollary 5.3. If Λ is an ada algebra then rep.dimΛ ≤ 3. �
5.3. Nakayama oriented pullbacks

In this section, all algebras are basic, associative, finite dimensional algebras with 
identities over an algebraically closed field k.

Let A, B and C be algebras and let f : A → B and g : C → B be morphisms. 
The pullback of f and g is the algebra R = {(a, c) ∈ A × C : f(a) = g(c)}. Consider 
the case where A = kQA/IA, C = kQC/IC and QB is a full and convex subquiver 
of QA and of QC such that IA ∩ kQB = IC ∩ kQB =: IB . In this case, the algebra 
B = kQB/IB ∼= eBAeB ∼= eBCeB is a common quotient of A and of C. Let R be the 
pullback of the canonical projections A → B and C → B. The following lemma describes 
the bound quiver of R in terms of the bound quivers of A, B and C.
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Lemma 5.4. (See [17,20].) Let QR be the pushout of the inclusion maps QB → QA and 
QB → QC , and consider the ideal IR = IA + IC + I where I is the ideal generated by all 
paths linking (QA)0 \ (QB)0 and (QC)0 \ (QB)0. Then R ∼= kQR/IR. �

It is easily seen that every indecomposable A-module has an R-module structure. 
We can assume that indA is contained in indR. Similarly we can assume that indB ⊆
indC ⊆ indR.

Definition 5.5. (See [20].) Let R ∼= kQR/IR be the pullback of A → B and C → B. Then 
R is a Nakayama oriented pullback if its bound quiver (QR, IR) satisfies the following 
conditions:

(i) There is no path from (QB)0 to (QC)0 \ (QB)0 and from (QA)0 \ (QB)0 to (QB)0.
(ii) B is a hereditary Nakayama algebra and the connected components QB1, QB2, . . ., 

QBr of QB are of the form QBi = ai,ti → ai,ti−1 → · · · → ai,1 with 1 ≤ i ≤ r and 
ti ≥ 1.

(iii) In QB only sources are target of arrows of (QC)1 \ (QB)1 and only sinks are sources 
of arrows of (QA)1 \ (QB)1.

(iv) No minimal relation of R has its origin in (QB)0.

By the shape of (QR, IR), we have that, for any i ∈ (QC)0, the injective R-module 
associated to i coincides with the injective C-module associated to i. And, for any
i ∈ (QB)0, the injective A-module associated to i coincides with the injective B-module 
associated to i.

So we have the following remark.

Remark 5.6. If M is a C-module then idRM = idCM , that is, the injective dimension of 
M over R coincides with the injective dimension of M over C. And, if M is a B-module 
then idAM = idBM .

It follows from [17,20] that indR = indA ∪ indC and indB = indA ∩ indC and, 
moreover, we have that indC is closed under successors and indA is closed under pre-
decessors.

Now, we have an application of Proposition 3.2.

Corollary 5.7. Let R be a representation-infinite Nakayama oriented pullback of A → B

and C → B.

(a) If C is hereditary then rep.dimR = max{3, rep.dimA}.
(b) If A is hereditary then rep.dimR = max{3, rep.dimC}.

Proof. Denote C = indC \ indB which is closed under successors, so by Remark 5.6, 
as C is hereditary, it follows that C ⊆ RR. By Proposition 3.2, we have that rep.dimR =
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max{3, rep.dim (Cc)R}. But Cc = indA and so (Cc)R = A. This shows that rep.dimR =
max{3, rep.dimA}.

The proof of (b) is dual. �
Finally, as an application of Theorem 4.2, we have a more general result for Nakayama 

oriented pullbacks.

Corollary 5.8. Let R be the Nakayama oriented pullback of A → B and C → B. Then 
rep.dimR ≤ max{rep.dimA, rep.dimC}.

Proof. If A and C are representation-finite algebras, then so is R, because indR =
indA ∪ indC. Suppose that A is representation-infinite. In Theorem 4.2, take A = indA\
indB, B = ∅ and C = indC. Then RC = C and rep.dimR ≤ max{rep.dim AR,

rep.dimC}.
Note that AR = AA and that, for M ∈ indB, by Remark 5.6, we have idAM =

idBM = 1 because B is hereditary. So indB ⊆ RA and since A is a representation-infinite 
algebra, then, by Proposition 3.2, we have rep.dimA = max{3, rep.dim AA} and so 
rep.dim AA ≤ rep.dimA.

Therefore, rep.dimR ≤ max{rep.dimA, rep.dimC}.
A similar proof holds if we suppose that C is representation-infinite. �

Example 5.9. The algebra Λ in Example 2.9 can be seen as a Nakayama oriented pullback 
where A is the algebra with radical square zero given by

3
β

1 2
α1

α2

4

γ

δ

and C is given by

4 5
x1

x2
x3

6
x1

x2
x3

bound by the relations xixj = xjxi for 1 ≤ i, j ≤ 3. This two algebras have represen-
tation dimension 3 and 4, respectively. Then, the last corollary gives us the inequality 
rep.dimΛ ≤ 4.
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