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The basic character theory of finite monoids over the complex 
numbers was developed in the sixties and seventies based on 
work of Munn, Ponizovskĭı, McAlister, Rhodes and Zalcstein. 
In particular, McAlister determined the space of functions 
spanned by the irreducible characters of a finite monoid over 
C and the ring of virtual characters. In this paper, we present 
the corresponding results over an arbitrary field.
As a consequence, we obtain a quick proof of the theorem 
of Berstel and Reutenauer that the characteristic function of 
a regular cyclic language is a virtual character of the free 
monoid. This is a crucial ingredient in their proof of the 
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rationality of the zeta function of a sofic shift in symbolic 
dynamics.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The representation theory of finite monoids has enjoyed a rebirth over the past two 
decades [8,22,27,28,35–37,42–46,52–54], in a large part due to applications to Markov 
chain theory [3–7,12–18,23,51], data analysis [32–34] and automata theory [1,2,55]. This 
paper is a further contribution to the representation theory of finite monoids.

We say that two elements a and b of a finite monoid M are character equivalent 
over a field K if every irreducible character of M over K agrees on a and b. Character 
equivalence for the field of complex numbers was described by McAlister [38], see also [49]
and [30]. The arguments of [38], in fact, work over any algebraically closed field of 
characteristic 0. In this paper we determine character equivalence for an arbitrary field 
and we prove that the irreducible characters form a basis for the algebra of K-valued 
functions on M which are constant on character equivalence classes. As is often the case 
in the representation theory of finite monoids, the result is obtained via a reduction to 
the case of finite groups, which was essentially handled by Berman [9].

Recall that a virtual character is a difference of two characters. The virtual characters 
of M over K form a ring and we show that it is isomorphic to the direct product of the 
rings of virtual characters of maximal subgroups of M over K (one per regular D-class), 
as is the case over C [38]. Moreover, we show that a function that is constant on character 
equivalence classes is a virtual character if and only if its restriction to each maximal 
subgroup is a virtual character.

As an application of our results, we give a character theoretic proof of a result of 
Berstel and Reutenauer [11], which they put to good use in order to prove the rationality 
of the zeta function of a sofic shift in symbolic dynamics [31]. More precisely, if A∗ is the 
free monoid on a finite set A, then a language L ⊆ A∗ is said to be cyclic if:

i) for all n > 0, one has u ∈ L ⇐⇒ un ∈ L;
ii) uv ∈ L ⇐⇒ vu ∈ L.

For example, if X is a subshift of AZ, then the set L of all words w such that 
· · ·ww.ww · · · ∈ X is cyclic. Recall that a language L ⊆ A∗ is regular if it is accepted 
by a finite state automaton [24]. Berstel and Reutenauer proved that the characteristic 
function A∗ −→ {0, 1} of a regular cyclic language L ⊆ A∗ is a virtual character of A∗

(over any field). From this, they easily deduced the rationality of the zeta function of L
and hence the rationality of zeta functions of sofic shifts.

In a recent paper [40] Perrin gave another proof that the characteristic function of 
a regular cyclic language is a K-linear combination of irreducible characters over any 
algebraically closed field K of characteristic 0 using the character theory results of 
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McAlister [38]. This motivated us to look for a proof of the original result of Berstel 
and Reutenauer using the character theory of finite monoids over an arbitrary field.

2. Characters of monoids over an arbitrary field

Let M be a monoid and K a field of characteristic p ≥ 0. A representation of M over 
K is a monoid homomorphism ϕ: M −→ Mr(K). One says that r is the degree of ϕ. 
A representation is irreducible if there is no proper nonzero subspace V of Kr such that 
ϕ(m) · v ∈ V for all m ∈ M and v ∈ V . Mostly we shall assume that M is finite, except 
in Section 4.

We say that two representations ϕ1 and ϕ2 of degree r are equivalent, written ϕ1 ∼ ϕ2, 
if there exists an invertible matrix A ∈ Mr(K) such that Aϕ1(m)A−1 = ϕ2(m) for all 
m ∈ M . The set of all equivalence classes of irreducible representations of M over K is 
denoted IrrK(M).

The character of a representation ϕ is the map χϕ: M −→ K given by

χϕ(m) = Tr(ϕ(m))

where Tr(A) denotes the trace of a matrix A. Notice that if the degree r is 1, then the 
character agrees with the representation. An irreducible character is the character of an 
irreducible representation. If ϕ1 ∼ ϕ2, then χϕ1 = χϕ2 .

The following theorem is Theorem 9.22 in [29].

Theorem 2.1. If χ1, . . . , χm are characters of inequivalent irreducible representations of 
a finite group G over a field K, then they are linearly independent and, in particular, 
non-zero and distinct.

It is well known [21, Theorem 27.22] that if K is an algebraically closed field of 
characteristic 0, then the number of irreducible characters of a finite group G over K is 
the number of conjugacy classes. Moreover, the irreducible characters form a basis for 
the space of functions f : G −→ K constant on conjugacy classes. McAlister [38] obtained 
the appropriate generalization to representations of finite monoids over an algebraically 
closed field; the result was obtained at the same time independently by Rhodes and 
Zalcstein, but only published many years later [49]; see also [30]. Our goal is to extend 
McAlister’s results to arbitrary fields.

Definition 2.2. Let K be a field and M a monoid. We say that m1, m2 ∈ M are character 
equivalent if χ(m1) = χ(m2) for all characters χ of M , or equivalently for all irreducible 
characters χ of M , over K.

For example, if K = C and M is a finite group, then character equivalence is conjugacy.
Let M be a finite monoid. Then e ∈ M is an idempotent if e2 = e. The set of 

idempotents is denoted E(M). The set eMe = {eme | m ∈ M} = {m ∈ M | em = m =
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me} is a monoid with identity e and the multiplication induced from M . Let Ge be the 
group of invertible elements of eMe. It is called the maximal subgroup of M at e.

If m is an element of a finite monoid M , then there exist r, s > 0 such that mr = mr+s. 
By choosing r and s minimal, the set G = {mr, . . . , mr+s−1} is a cyclic group of order s
isomorphic to Zs via the map sending mt to the residue class of t mod s [20, Theorem 1.9]. 
The identity of the group is mk, where k is the unique integer such that r ≤ k ≤ r+s −1
and k ≡ 0 mod s, and is denoted symbolically by mω. The group G is generated by 
mωm, which we denote mω+1. Note that if M is a finite monoid, then m|M |! = mω for 
all m ∈ M because, retaining the above notation, r, s ≤ |M | and hence |M |! ≡ 0 mod s.

Definition 2.3. Let M be a finite monoid and let p = 0 or be prime. Let m ∈ M .

a) We say that m is a group element if there exists s > 0 such that m = ms or, 
equivalently, m = mω+1.

b) For a group element m, the minimal s > 0 such that m = ms+1 is its order, denoted 
|m|, in which case {m, . . . , ms} is a cyclic group of order |m|.

c) We say m is p-regular if m is a group element and p = 0 or p does not divide |m|.

If p > 0 is a prime and g is an element of a finite group G with identity e, then g can 
be uniquely factored as g = gpgp′ where gp has order a p-power, gp′ has order prime to p

(i.e., gp′ is p-regular) and gp, gp′ commute. Indeed, if |g| is pkt with gcd(t, p) = 1, then 
gp = gr and gp′ = gs where r ≡ 1 mod pk, r ≡ 0 mod t and s ≡ 1 mod t, s ≡ 0 mod pk. 
See [21, Lemma 40.3] and its proof for details. If p = 0, we define gp = e and gp′ = g.

If M is a finite monoid, then for any m ∈ M , we observe that mω+1 is always a group 
element and so mω+1

p′ makes sense.
Let us fix some notation that will be used throughout this section. Let K be a field of 

characteristic p ≥ 0. Let n be the least common multiple of the orders of the p-regular 
elements of M . Notice that p � n and that we have a homomorphism θ from the Galois 
group Gal(K(ξn)/K) into the multiplicative group Z∗

n, where ξn is a primitive nth-root 
of unity in a fixed algebraic closure K̄ of K, defined as follows. If σ ∈ Gal(K(ξn)/K), 
then σ(ξn) = ξ�n, where � ∈ Z∗

n, and we put θ(σ) = �. Let T = θ(Gal(K(ξn)/K)) ≤ Z∗
n, 

also denoted Im Gal(K(ξn)/K).
Let us now assume that M is a group G. Following Berman [9], we say that p-regular 

elements g, h ∈ G are K-conjugate, denoted g ∼K h, if there exist x ∈ G and j ∈ T

such that xgx−1 = hj . It is easy to check that this is an equivalence relation on the set 
p-reg(G) of p-regular elements of G.

Theorem 2.4. (See Berman [9].) Let G be a finite group and K a field of characteristic 
p ≥ 0. Then the number of equivalence classes of irreducible representations of G over 
K is the number of K-conjugacy classes of p-regular elements of G.

This result can be found in characteristic 0 as [21, Theorem 42.8]; a proof in charac-
teristic p using Brauer characters can be found in [47].
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We shall need the following lemma clarifying ∼K .

Lemma 2.5. If t is such that the orders of all p-regular elements of a finite group G divide 
t and T ′ = Im Gal(K(ξt)/K) in Z∗

t , then g ∼K h if and only if there exist x ∈ G and 
j ∈ T ′ such that xgx−1 = hj.

Proof. Let n be the least common multiple of the orders of the p-regular elements of G
and observe that it is a divisor of t. Then since K(ξt)/K is abelian, it follows that the sub-
field K(ξn) is Gal(K(ξt)/K)-invariant and that the restriction map Gal(K(ξt)/K) −→
Gal(K(ξn)/K) is a surjective homomorphism. Also if σ ∈ Gal(K(ξt)/K) with σ(ξt) = ξjt , 
then σ(ξn) = ξjn. Therefore, if α: Z∗

t −→ Z∗
n is the surjective homomorphism given by 

α(j) = j mod n, then T = α(T ′). Moreover, if j ∈ T ′, then hj = hα(j) because |h|
divides n, which divides t. The lemma follows. �

Recall that two idempotents e and f in a monoid M are D-equivalent, written e D f , 
if there exist x, y ∈ M with xyx = x, yxy = y, xy = e and yx = f ; see [20, Section 2.3]
or [56, Proposition 1.3] for details. An equivalence class for the D-relation is called a 
D-class. It is well known that in a finite monoid M , one has that e D f if and only if 
MeM = MfM [48, Appendix A]. (In general, elements m, n ∈ M are called J -equivalent
if MmM = MnM .) Note that the D-relation is customarily defined for arbitrary ele-
ments of a monoid, but we have restricted the definition here to idempotents.

The following well-known lemma, cf. [56, Proposition 1.4] or [20, Theorem 2.20], will 
play a key role later.

Lemma 2.6. Let M be a monoid and let e, f ∈ M be D-equivalent idempotents. Suppose 
that x, y ∈ M with xyx = x, yxy = y, xy = e and yx = f . Then ϕ: eMe −→ fMf and 
ψ: fMf −→ eMe defined by ϕ(a) = yax and ψ(b) = xay are inverse isomorphisms of 
monoids. Consequently, ϕ and ψ restrict to inverse isomorphisms of Ge and Gf .

Let e1, . . . , ek be elements in E(M) representing the distinct D-classes of idempotents 
of M . We can define a partial order on the set {e1, . . . , ek} by ei � ej if and only if 
MeiM ⊆ MejM .

The following is a fundamental result, proved independently by Munn [39] and Poni-
zovskĭı [41] based on earlier work of Clifford [19]; see [20, Theorem 5.33] or [49]. A simpler, 
module-theoretic approach can be found in [27].

Theorem 2.7 (Clifford–Munn–Ponizovskĭı). Let M be a finite monoid, K a field and 
e1, . . . , ek idempotents representing the D-classes of idempotents of M . If ϕ: M −→
Mr(K) is an irreducible representation, then there exists a unique minimal idempotent ei
(with respect to �) among e1, . . . , ek such that ϕ(ei) �= 0. Moreover, one has that

i) for m ∈ M , ϕ(m) �= 0 if and only if ei ∈ MmM ;

ii) ϕ|Gei
∼

[
ϕ̂ 0
0 0

]
, where ϕ̂ is an irreducible representation of the group Gei.

The element ei is called the apex of ϕ.
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In addition, the map

ψ: IrrK(M) −→
k


i=1
IrrK(Gei)

given by ψ(ϕ) = ϕ̂ is a bijection.

Let us interpret part of the above theorem in terms of characters.

Corollary 2.8. Let ϕ: M −→ Mr(K) be an irreducible representation with apex ei. If χ is 
the character of ϕ, then χ|Gei

= χϕ̂ where ϕ̂ is as in Theorem 2.7.

Proof. This is immediate from ii) of Theorem 2.7. �
We can now prove the analogue of Theorem 2.1 for monoids.

Theorem 2.9. If χ1, . . . , χs are characters of inequivalent irreducible representations of a 
finite monoid M over a field K, then they are non-zero, distinct and linearly independent.

Proof. Without loss of generality, we may suppose that there are c1, . . . , cs in K \ {0}
such that

0 = c1χ1 + · · · + csχs.

Let e = ei be minimal with respect to � among the apexes of the representations 
χ1, . . . , χs. Reordering the representations we can assume that e is the apex for χ1, . . . , χt

where 1 ≤ t ≤ s, and that χt+1, . . . , χs have a different apex than e.
Any g in the group Ge satisfies MeM = MgM . So, if e� is the apex of χj with 

j > t (and hence � �= i), then Me�M � MeM = MgM by minimality of e. Therefore, 
ϕj(g) = 0 by i) of Theorem 2.7. We conclude that χj(g) = 0, for all g ∈ Ge and t < j ≤ s.

Therefore, for any g ∈ Ge, we obtain

0 = c1χ1(g) + · · · + ctχt(g).

But χ1|Ge
, . . . , χt|Ge

are characters of distinct irreducible representations of Ge by 
Theorem 2.7 and Corollary 2.8, a contradiction with the linear independence of irre-
ducible characters of finite groups, cf. Theorem 2.1. �
Remark 2.10. In [26, Theorem 2.1] it is shown that, for arbitrary monoids (possibly 
infinite), the only obstruction to characters of distinct irreducible representations being 
linearly independent is that one or more of the characters might be identically zero and 
that this can indeed happen for infinite groups.
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The following lemma is crucial for understanding character equivalence. We recall that 
if n is the least common multiple of the orders of the p-regular elements of M , then T
denotes the image of Gal(K(ξn)/K) in Z∗

n.

Lemma 2.11. If χ is a character of M over a field K of characteristic p ≥ 0 and a, b ∈ M , 
then

a) χ(ab) = χ(ba);
b) χ(a) = χ(aω+1

p′ );
c) χ(a) = χ(aj) if a is p-regular and j ∈ T .

Proof. Let ϕ: M −→ M�(K) be a representation. Since χ(m) = Tr(ϕ(m)), it follows that

χ(ab) = Tr(ϕ(ab)) = Tr(ϕ(a)ϕ(b)) = Tr(ϕ(b)ϕ(a)) = Tr(ϕ(ba)) = χ(ba).

To show (b), let r, s > 0 be the minimal integers such that ar = ar+s. Write s = pkt

where pk and t are coprime. If p = 0, we take k = 0 and interpret pk = 1 and t = s (to 
avoid having to write out two separate cases). Then

ϕ(a)r = ϕ(a)r+s =⇒ ϕ(a)r(ϕ(a)s − 1) = 0 =⇒ ϕ(a)r(ϕ(a)t − 1)p
k

= 0.

Let p(x) = xr(xt − 1)pk . Then p(ϕ(a)) = 0 and so the minimal polynomial of ϕ(a)
divides p(x). Let K̄ be an algebraic closure of K containing K(ξn). Then in M�(K̄) we 
have

ϕ(a) ∼

⎡
⎢⎢⎢⎣
λ1 ∗ · · · ∗
0 λ2

. . .
...

...
. . . . . . ∗

0 · · · 0 λ�

⎤
⎥⎥⎥⎦ ,

where the non-zero elements among λ1, . . . , λ� ∈ K̄ are roots of xt − 1. Let z ≥ r such 
that z ≡ 1 mod t and z ≡ 0 mod pk. Then az = aω+1

p′ . Therefore,

ϕ(aω+1
p′ ) = ϕ(az) = ϕ(a)z ∼

⎡
⎢⎢⎢⎢⎣
λz

1 ∗ · · · ∗

0 λz
2

. . .
...

...
. . . . . . ∗

0 · · · 0 λz
�

⎤
⎥⎥⎥⎥⎦ .

Observe that, if λi �= 0, then λt
i = 1 and so λz

i = λi because z ≡ 1 mod t. Of course, 
λz
i = λi is also true if λi = 0. Therefore,

χ(a) = Tr(ϕ(a)) =
�∑

i=1
λi =

�∑
i=1

λz
i = Tr(ϕ(az)) = χ(aω+1

p′ ),

which establishes (b).
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Now let n be the lcm of the orders of the p-regular elements of M , T =
Im Gal(K(ξn)/K) ≤ Z∗

n, and L = K(ξn). If a is p-regular, then a = at+1 with t = |a|
coprime to p. Thus p(ϕ(a)) = 0, for p(x) = x(xt − 1), and t divides n. Consequently all 
eigenvalues of ϕ(a) (over K̄) belong to L. Then over M�(L) we have

ϕ(a) ∼

⎡
⎢⎢⎢⎣
λ1 ∗ · · · ∗
0 λ2

. . .
...

...
. . . . . . ∗

0 · · · 0 λ�

⎤
⎥⎥⎥⎦ and ϕ(aj) ∼

⎡
⎢⎢⎢⎢⎣
λj

1 ∗ · · · ∗

0 λj
2

. . .
...

...
. . . . . . ∗

0 · · · 0 λj
�

⎤
⎥⎥⎥⎥⎦ .

We define α: Gal(L/K)) −→ Aut(M�(L)) by

α(g)

⎛
⎜⎝
⎡
⎢⎣
a11 . . . a1�
...

...
a�1 . . . a��

⎤
⎥⎦
⎞
⎟⎠ =

⎡
⎢⎣
g(a11) . . . g(a1�)

...
...

g(a�1) . . . g(a��)

⎤
⎥⎦ .

We note that M�(K) is the set of fixed points of Gal(L/K) acting on M�(L) and hence 
α(g)(ϕ(a)) = ϕ(a) for all g ∈ Gal(L/K). Let j ∈ T and let g ∈ Gal(L/K) be such that 
g(ξn) = ξj . Note that if λ is either 0 or an nth-root of unity, then g(λ) = λj . Also note 
that if A and B are similar matrices, then so are α(g)(A) and α(g)(B). Thus we have

ϕ(a) = α(g)(ϕ(a)) ∼

⎡
⎢⎢⎢⎢⎣
g(λ1) ∗ · · · ∗

0 g(λ2)
. . .

...
...

. . . . . . ∗
0 · · · 0 g(λ�)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
λj

1 ∗ · · · ∗

0 λj
2

. . .
...

...
. . . . . . ∗

0 · · · 0 λj
�

⎤
⎥⎥⎥⎥⎦

and so χ(a) = Tr(ϕ(a)) =
∑�

i=1 λ
j
i = Tr(ϕ(aj)) = χ(aj), as required. �

The following theorem is the main result of this paper.

Theorem 2.12. Let M be a finite monoid, a, b ∈ M and K a field of characteristic p ≥ 0. 
Let T = Im Gal(K(ξn)/K) ≤ Z∗

n with n the least common multiple of the orders of 
p-regular elements of M . Then the following conditions are equivalent:

a) a and b are character equivalent over K;
b) a and b are equivalent by ≡, where ≡ is the least equivalence relation in M satisfying:

i) m1m2 ≡ m2m1, ∀ m1, m2 ∈ M

ii) m ≡ mω+1
p′ , ∀ m ∈ M

iii) if m ∈ M is p-regular and j ∈ T , then m ≡ mj;
c) a and b are equivalent by ≈, where a ≈ b if and only there exist x, y ∈ M and j ∈ T

such that
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i) xyx = x, yxy = y

ii) xaω+1
p′ y = (bω+1

p′ )j
iii) xy = bω, yx = aω.

Moreover, the distinct irreducible characters of M form a basis for the space of K-valued 
functions on M that are constant on ≡-classes.

Proof. First we prove that ≈ is an equivalence relation. It is reflexive, since given a ∈ M , 
it is enough to choose x = y = aω and j = 1.

Now suppose that a ≈ b with x, y, j as above and put g = aω+1
p′ and h = bω+1

p′ . Let j′
be the inverse of j in the group T ≤ Z∗

n. Since the order of h divides n by choice of n, 
we have hjj′ = h. Thus, using Lemma 2.6, we have that

yhx = yhjj′x = y(xgy)j
′
x = yxgj

′
yx = aωgj

′
aω = gj

′

and so b ≈ a.
Finally, if a ≈ b and b ≈ c, there exist x1, x2, y1, y2 ∈ M and j1, j2 ∈ T such that:

a) xiyixi = xi, yixiyi = yi for i = 1, 2;
b) x1a

ω+1
p′ y1 = (bω+1

p′ )j1 ;
c) x2b

ω+1
p′ y2 = (cω+1

p′ )j2 ;
d) y1x1 = aω, x1y1 = bω;
e) y2x2 = bω, x2y2 = cω.

By choosing x3 = x2x1 and y3 = y1y2 ∈ M , we obtain

x3 = x2x1 = x2x1y1x1 = x2b
ωx1 = x2b

ωbωx1 = x2x1y1y2x2x1 = x3y3x3

and similarly y3x3y3 = y3. Also, we have y3x3 = y1y2x2x1 = y1b
ωx1 = y1x1y1x1 = aω

and x3y3 = x2x1y1y2 = x2b
ωy2 = x2y2x2y2 = cω.

Finally, putting g = aω+1
p′ , h = bω+1

p′ and k = cω+1
p′ , we have

x3gy3 = x2x1gy1y2 = x2h
j1y2 = (x2hy2)j1 = (kj2)j1 = kj1j2

where we have again used Lemma 2.6. Thus a ≈ c. This concludes the proof that ≈ is 
an equivalence relation. Next we show that it satisfies i)–iii) of b). This will show that 
b) implies c).

To show i), suppose that m1, m2 ∈ M . We want to show that m1m2 ≈ m2m1. If 
k = |M |!, then (m1m2)ω = (m1m2)k and (m2m1)ω = (m2m1)k. Let x = m1(m2m1)2k−1

and y = (m2m1)km2. Then

yx = (m2m1)km2m1(m2m1)2k−1 = (m2m1)3k = (m2m1)ω



116 A.M. Masuda et al. / Journal of Algebra 431 (2015) 107–126
and

xy = m1(m2m1)2k−1(m2m1)km2 = m1(m2m1)3k−1m2

= m1m2(m1m2)3k−1 = (m1m2)3k = (m1m2)ω.

Clearly then xyx = m1(m2m1)2k−1(m2m1)ω = m1(m2m1)2k−1 = x because (m2m1)2k−1

∈ G(m2m1)ω . Also, we have yxy = (m2m1)ω(m2m1)ωm2 = y. We compute that 
y(m1m2)ω+1x = (m2m1)km2(m1m2)k+1m1(m2m1)2k−1 = (m2m1)4k+1 = (m2m1)ω+1. 
By Lemma 2.6, the assignment z �→ yzx is a group isomorphism from G(m1m2)ω

to G(m2m1)ω with inverse w �→ xwy. Thus y(m1m2)ω+1
p′ x = (m2m1)ω+1

p′ and so 
m1m2 ≈ m2m1 (with j = 1).

Condition ii) is trivially verified by taking x = mω = y and j = 1 and iii) is trivially 
satisfied with x = mω = y. This completes the proof that b) implies c).

Next we prove that c) implies b). Let a, b ∈ M and suppose that a ≈ b with x, y as 
in c). Then

a ≡ aω+1
p′ = aω+1

p′ aω = aω+1
p′ yx ≡ xaω+1

p′ y = (bω+1
p′ )j ≡ bω+1

p′ ≡ b.

That b) implies a) is immediate from Lemma 2.11. For the converse, let

KM/≡ = {f :M/≡ −→ K}
= {f :M −→ K | a ≡ b =⇒ f(a) = f(b)}

where the last equality is an abuse of notation. Then dimKM/≡ = |M/≡|. If χ is a char-
acter, then χ ∈ KM/≡. Let χ1, . . . , χr be the characters of the inequivalent irreducible 
representations of M . By Theorem 2.9, we have that χ1, . . . , χr are linearly independent. 
Thus r ≤ dimKM/≡ = |M/≡|.

Claim 1. If r = |M/≡|, then ≡ is character equivalence.

Proof. We already have that a ≡ b implies that a and b are character equivalent. Let C
be the ≡-class of the element a. Let

δC(x) =
{

1, if x ∈ C

0, if x /∈ C
.

Under the assumption that r = |M/≡|, we have that {χ1, . . . , χr} is a basis for KM/≡. 
Therefore, δC =

∑r
i=1 kiχi for some ki ∈ K. If a and b are character equivalent, then

δC(b) =
r∑

i=1
kiχi(b) =

r∑
i=1

kiχi(a) = δC(a) = 1.

So b ∈ C and a ≡ b. �
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We now complete the proof that a) implies b) by showing that r ≥ |M/≡|. This will 
also show that {χ1, . . . , χr} is a basis for KM/≡. Let e1, . . . , ek be representatives of the 
D-classes of idempotents of M .

Claim 2. |M/≡| ≤ | 
k
i=1 p-reg(Gei)/∼K |.

Proof. We define a surjective function f : 
k
i=1 p-reg(Gei) −→ M/≡ such that if g, h ∈

p-reg(Gei) satisfy g ∼K h, then f(g) = f(h). The claim will then follow.
Let us put f(g) = [g]≡. Suppose that g, h ∈ Gei with g ∼K h. Then, applying 

Lemma 2.5, there exist x ∈ Gei and j ∈ T such that xgx−1 = hj . Putting y = x−1, 
we have that xyx = x, yxy = y, xy = ei = yx and xgy = hj implying that g ≡ h. To 
show that f is surjective, let m ∈ M . Then mω+1

p′ ∈ p-reg(Gmω ). There exists i such that 
mω D ei, and x, y ∈ M such that xyx = x, yxy = y, xy = ei, yx = mω. By Lemma 2.6
there is an isomorphism ϕ: Gmω −→ Gei with ϕ(a) = xay. So xmω+1

p′ y = ϕ(mω+1
p′ ) ∈

p-reg(Gei) and [m]≡ = [xmω+1
p′ y]≡ = f(xmω+1

p′ y). This establishes that f is surjective, 
completing the proof of the claim. �

In light of Claim 2, Theorem 2.4 and Theorem 2.7, we have

|M/≡| ≤ |
k


i=1
p-reg(Gei)/∼K | =

k∑
i=1

| IrrK(Gei)| = | IrrK(M)| = r

as required. This completes the proof of the theorem. �
Let us specialize the result to the case that K is algebraically closed. In this case 

K(ξn) = K and so T = {1}. Thus we recover McAlister’s result [38, Theorem 2.2] and 
obtain its analogue in positive characteristic.

Corollary 2.13. Let M be a finite monoid, a, b ∈ M and K an algebraically closed field.

1) If the characteristic of K is 0, then the following are equivalent:
a) a and b are character equivalent over K;
b) there exist x, y ∈ M such that

i) xyx = x, yxy = y

ii) xaω+1y = bω+1

iii) xy = bω, yx = aω.
2) If the characteristic of K is p > 0, then the following are equivalent:

a) a and b are character equivalent over K;
b) there exist x, y ∈ M such that

i) xyx = x, yxy = y

ii) xaω+1
p′ y = bω+1

p′

iii) xy = bω, yx = aω.
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Let us next specialize to a finite field Fq of order q. Then Gal(Fq(ξn)/Fq) is generated 
by the Frobenius automorphism c �→ cq. Thus T is the subgroup of Z∗

n generated by q
and so we have the following corollary.

Corollary 2.14. Let M be a finite monoid, a, b ∈ M and Fq be a field of order q and 
characteristic p. Then the following conditions are equivalent:

a) a and b are character equivalent over Fq;
b) there exist x, y ∈ M and k ≥ 0 such that

i) xyx = x, yxy = y

ii) xaω+1
p′ y = (bω+1

p′ )qk

iii) xy = bω, yx = aω.

Finally, we specialize to the case that K = Q. In this case, T = Z∗
n. If g ∈ M is a 

group element, then since |g| divides n, we have that {gj | j ∈ Z∗
n} is precisely the set of 

generators of 〈g〉. From this we obtain our next result.

Corollary 2.15. Let M be a finite monoid and a, b ∈ M . Then the following conditions 
are equivalent:

a) a and b are character equivalent over Q;
b) there exist x, y ∈ M such that

i) xyx = x, yxy = y

ii) x〈aω+1〉y = 〈bω+1〉
iii) xy = bω, yx = aω.

We remark that KM/≡ is a ring with pointwise addition and multiplication (in fact, 
a K-algebra) and that the proof of Theorem 2.12 also establishes the following result.

Corollary 2.16. Let M be a finite monoid and K a field. Let e1, . . . , ek be representatives 
of the D-classes of idempotents of M . Then the map

ψ:
k


i=1
p-reg(Gei)/∼K −→ M/≡

given by ψ([g]∼K
) = [g]≡ is a bijection and hence induces a ring isomorphism

Ψ:KM/≡ −→
k∏

i=1
Kp-reg(Gei

)/∼K

given by

Ψ(f) =
(
fψ|p-reg(Ge1 )/∼K

, . . . , fψ|p-reg(Gek
)/∼K

)

for f ∈ KM/≡.
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3. Virtual characters

A mapping f : M −→ K in KM/≡ is called a virtual character if f is a Z-linear 
combination of irreducible characters or equivalently f = χ1 − χ2 where χ1, χ2 are 
characters of M . Note that the virtual characters form a subring of KM/≡ because the 
product of two characters is the character of the tensor product of the corresponding 
representations [38,49].

We will need a characterization of virtual characters in Section 4. This extends results 
of McAlister [38] proven for the field of complex numbers.

Lemma 3.1. Let χ be a character of a monoid M and let e ∈ E(M). Then χ|Ge
is either 

identically zero or a character of Ge.

Proof. Let ρ: M −→ Mr(K) be a representation whose character is χ. Then ρ(e) is 
an idempotent matrix and hence we have an internal direct sum decomposition Kr =
Im ρ(e) ⊕ker ρ(e). Clearly, Ge = eGee acts by automorphisms on Im ρ(e) and annihilates 
ker ρ(e). Thus

ρ|Ge
∼

[
ρ̂ 0
0 0

]

where ρ̂ is a representation of Ge and so χ|Ge
= χρ̂ is a character. �

We can now characterize the ring of virtual characters. If M is a monoid, let ChK(M)
denote the ring of virtual characters of M (over K). The above lemma shows that there 
is a natural ring homomorphism ρe: ChK(M) −→ ChK(Ge) given by restriction for each 
e ∈ E(M).

Theorem 3.2. Let M be a finite monoid and K a field. Let e1, . . . , ek be representatives 
of the D-classes of idempotents of M . Then f ∈ KM/≡ is a virtual character if and only 
if f|Gei

is a virtual character for i = 1, . . . , k. Moreover, there is a ring isomorphism

Φ: ChK(M) −→
k∏

i=1
ChK(Gei)

given by

Φ(f) = (f|Ge1
, . . . , f|Gek

)

for f ∈ ChK(M).

Proof. Lemma 3.1 implies that the restriction of a virtual character of M to Gei is 
a virtual character and hence Φ is a well-defined homomorphism. We prove that Φ
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is surjective by induction using the order � defined after Lemma 2.6. More precisely, 
order e1, . . . , ek so that ei � ej implies i ≤ j. First note that in a finite monoid M
with identity 1, one has that G1 is the group of invertible elements of M and that 
1 ∈ MmM if and only if m ∈ G1 (cf. [56, Proposition 1.2]). In particular, M \ G1 is 
closed under multiplication and 1 is not D-equivalent to any other idempotent. Also 
MejM ⊆ M = M1M and so 1 = ek.

If ϕ ∈ IrrK(Gek) = IrrK(G1), then ϕ extends to an irreducible representation ϕ′ of 
M by putting

ϕ′(m) =
{
ϕ(m), if m ∈ Gek

0, else.

Then Φ(χϕ′) = (0, 0, . . . , 0, χϕ). It follows that {0} × · · · × {0} × ChK(Gek) is in the 
image of Φ.

Assume that {0} × · · · × ChK(Gei+1) × · · · × ChK(Gek) is in the image of Φ by 
induction. Let ϕ ∈ IrrK(Gei). Then by Theorem 2.7 and Corollary 2.8, there is an 
irreducible representation ϕ′ of M whose character χ satisfies χ|Gei

= χϕ and χ(m) = 0 if 
ei /∈ MmM . It follows that Φ(χ) = (0, . . . , 0, χϕi

, fi+1, . . . , fk) where fj ∈ ChK(Gej ) for 
i +1 ≤ j ≤ k. But then using the induction hypothesis, we deduce (0, . . . , 0, χϕi

, 0, . . . , 0)
is in the image of Φ and so {0} × · · · ×ChK(Gei) × · · · ×ChK(Gek) is in the image of Φ. 
We conclude by induction that Φ is surjective.

Injectivity of Φ follows from the injectivity of Ψ in Corollary 2.16.
Suppose that f ∈ KM/≡ satisfies f|Gei

∈ ChK(Gei) for i = 1, . . . , k. Write f =
c1χ1 + · · · + csχs with χ1, . . . , χs irreducible characters of M and c1, . . . , cs ∈ K \ {0}. 
We prove by induction on s that f ∈ ChK(M). If s = 0, there is nothing to prove.

Let ei be a minimal (with respect to �) element among the apexes of χ1, . . . , χs. With-
out loss of generality, we may assume that χ1, . . . , χt have apex ei and χt+1, . . . , χs have 
apex different than ei. Then, as in the proof of Theorem 2.9, we have that χj(Gei) = 0 if 
j > t and that χ1, . . . , χt restrict to distinct irreducible characters of Gei . Since f|Gei

is a 
virtual character, we deduce by the linear independence of the irreducible characters of 
Gei over K that c1, . . . , ct ∈ Z ·1. Moreover, ct+1χt+1+· · ·+csχs = f−(c1χ1+· · ·+· +ctχt)
still restricts to a virtual character at each Gej because f does, each χj does (by 
Lemma 3.1) and c1, . . . , ct ∈ Z · 1. Thus f − (c1χ1 + · · ·+ · + ctχt) is a virtual character 
by induction, and hence so is f because c1, . . . , ct ∈ Z · 1. �
4. An application: a theorem of Berstel and Reutenauer

Let A be a finite set and A∗ the free monoid on A, that is, the set of all words in 
the alphabet A. The empty word will be denoted 1. A subset L ⊆ A∗ is often called a 
(formal) language. In automata theory, a language L ⊆ A∗ is called regular (or rational) 
if it is accepted by a finite state automaton or equivalently if there is a finite monoid M
and a surjective monoid homomorphism η: A∗ −→ M such that L = η−1(η(L)) [24,25]. 
The zeta function of L is
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ζL(x) = exp
( ∞∑

n=1

an
n
xn

)

where an is the number of words in L of length n; see [10,11]. The length of a word w is 
denoted |w|.

Let K be a field and let K〈A〉 be the ring of polynomials in non-commuting variables 
A with coefficients in K, that is, the free K-algebra on A. Let K〈〈A〉〉 be the ring of 
formal power series in non-commuting variables A with coefficients in K. A power series 
is rational if it belongs to the smallest K-subalgebra of K〈〈A〉〉 containing the polynomials 
and closed under inversion of power series with non-zero coefficient of 1.

One has a right K〈A〉-module structure on K〈〈A〉〉 by defining
( ∑

w∈A∗

cww

)
· a =

∑
w∈A∗

cwwa

for a ∈ A. A celebrated theorem of Schützenberger states that a power series f is rational 
if and only if the K〈A〉-submodule generated by f is finite dimensional over K [11]. Perrin 
defines a power series to be completely reducible if the representation of A∗ associated to 
the K〈A〉-submodule generated by f is a direct sum of irreducible representations [40]. 
The completely reducible series form a K〈A〉-submodule.

Let us say that a power series f ∈ K〈〈A〉〉 is a trace series if there is a char-
acter χ: A∗ −→ K of a finite dimensional representation of A∗ over K such that 
f =

∑
w∈A∗ χ(w) ·w. Perrin observes that trace series, and hence linear combinations of 

trace series, are completely reducible [40]; see also [11].
If L ⊆ A∗ is a language, then its characteristic series is

fL =
∑
w∈L

w ∈ K〈〈A〉〉.

If L is regular, then it is well known that fL is rational [11]. A language L is said to be 
cyclic if:

i) for all s > 0, one has u ∈ L ⇐⇒ us ∈ L;
ii) uv ∈ L ⇐⇒ vu ∈ L.

The key example is the following. Let X ⊆ AZ be a symbolic dynamical system, that 
is, a non-empty closed subspace (in the product topology) invariant under the shift map 
σ: AZ −→ AZ defined by

σ(· · · a−2a−1.a0a1 · · ·) = · · · a−2a−1a0.a1 · · ·

(see [31] for background on symbolic dynamics, including notation). Let L be the set of 
all words w ∈ A∗ such that · · ·ww.ww · · · is a periodic point of X . Then L is a cyclic 
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language. If X is a shift of finite type, or more generally a sofic shift, then L will be 
regular. The zeta function for L gives the zeta function of the shift, and the rationality 
of the zeta function of a sofic shift follows from the rationality of the zeta function of 
any regular cyclic language [10,11].

Berstel and Reutenauer [10,11] proved that if L is a regular cyclic language, then the 
characteristic series fL of L is a Z-linear combination of trace series over any field K, 
and hence is completely reducible. They also used this to prove the rationality of ζL. 
We show that this result is an immediate corollary of Theorem 2.12 and Theorem 3.2. 
Perrin proved, using the results of McAlister [38] that fL is a K-linear combination of 
trace series in the case that K is an algebraically closed field of characteristic 0.

Theorem 4.1. (See Berstel and Reutenauer [10].) Let L ⊆ A∗ be a regular cyclic language 
and let K be a field. Then the characteristic series fL of L is a Z-linear combination of 
trace series.

Note that since a non-negative integral combination of trace series is again a trace 
series, the theorem really asserts that fL is a difference of trace series.

Theorem 4.1 is a straightforward consequence of the following lemma about finite 
monoids.

Lemma 4.2. Let M be a finite monoid and K a field. Let X be a subset of M such that:

i) for all s > 0, one has m ∈ X ⇐⇒ ms ∈ X;
ii) m1m2 ∈ X ⇐⇒ m2m1 ∈ X.

Then the characteristic function IX : M −→ K of X defined by

IX(m) =
{

1, if m ∈ X

0, if m /∈ X

is a virtual character of M over K.

Proof. We retain the notation of Theorem 2.12. By hypotheses we have, for m1,

m2, m ∈ M ,

IX(m1m2) = IX(m2m1)

IX(m) = IX(mω+1
p′ )

IX(m) = IX(mj) for j ∈ T.

Therefore, IX ∈ KM/≡ by Theorem 2.12.
If e ∈ E(M) and g ∈ Ge, then gk = e for some k > 0. Thus g ∈ X if and only if e ∈ X. 

We conclude that either Ge ⊆ X or Ge∩X = ∅. In the latter case, IX restricts to 0 on Ge
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and hence is a virtual character; in the former IX restricts to the character of the trivial 
representation of Ge. We conclude that IX is a virtual character by Theorem 3.2. �

We can now prove the theorem of Berstel and Reutenauer.

Proof of Theorem 4.1. Let η: A∗ −→ M be a surjective monoid homomorphism with 
L = η−1(η(L)) and M finite. Let X = η(L). Then

fL =
∑
w∈L

w =
∑

w∈A∗

IX(η(w)) · w =
∑

w∈A∗

IX ◦ η(w) · w (4.1)

where IX is as in Lemma 4.2. Since L is a cyclic language and L = η−1(X), one easily 
checks that X satisfies the hypotheses of Lemma 4.2 and hence IX = χ1 − χ2 where 
χ1, χ2 are characters of M . Indeed, we have

η(w) ∈ X ⇐⇒ w ∈ L ⇐⇒ ws ∈ L ⇐⇒ η(w)s ∈ X

for all s > 1 and w ∈ A∗, and

η(u)η(v) ∈ X ⇐⇒ uv ∈ L ⇐⇒ vu ∈ L ⇐⇒ η(v)η(u) ∈ X

for all u, v ∈ A∗.
Observe that if χ: M −→ K is a character, then χ ◦ η: A∗ −→ K is a character. Thus 

IX ◦ η = χ1 ◦ η − χ2 ◦ η and so fL is a Z-linear combination of trace series by (4.1). �
Because it is so pretty, we recall how Theorem 4.1 implies the rationality of ζL for 

a regular cyclic language L. Also, this will highlight the importance of using virtual 
characters.

Theorem 4.3. (See Berstel and Reutenauer [10].) Let L ⊆ A∗ be a regular cyclic language. 
Then ζL is rational.

Proof. By Theorem 4.1 there exist characters χ1, χ2: A∗ −→ C such that

fL =
∑
w∈L

w =
∑

w∈A∗

(χ1(w) − χ2(w))w.

Let ϕi: A∗ −→ Mni
(C) be representations with χi = χϕi

, for i = 1, 2. Let M1 =∑
a∈A ϕ1(a) and M2 =

∑
a∈A ϕ2(a). A simple induction argument shows that

Mn
i =

∑
|w|=n

ϕi(w) (4.2)

for i = 1, 2. If an is the number of words of length n in L, then, for n ≥ 1,
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an =
∑

|w|=n

χ1(w) − χ2(w)

=
∑

|w|=n

Tr(ϕ1(w)) − Tr(ϕ2(w))

= Tr

⎛
⎝ ∑

|w|=n

ϕ1(w)

⎞
⎠− Tr

⎛
⎝ ∑

|w|=n

ϕ2(w)

⎞
⎠

= Tr(Mn
1 ) − Tr(Mn

2 )

by (4.2).
Therefore,

ζL(x) = exp
( ∞∑

n=1

Tr(Mn
1 ) − Tr(Mn

2 )
n

xn

)
=

exp
(∑∞

n=1
Tr(Mn

1 )
n xn

)
exp

(∑∞
n=1

Tr(Mn
2 )

n xn
)

and so it suffices to show that if B is a k × k-matrix over C, then the series

g(x) = exp
( ∞∑

n=1

Tr(Bn)
n

xn

)

is rational. But if λ1, . . . , λk are the eigenvalues of B with multiplicities, then

g(x) = exp
( ∞∑

n=1

λn
1 + · · · + λn

k

n
xn

)
=

k∏
i=1

exp (− log(1 − λix)) =
k∏

i=1

1
1 − λix

is rational (in fact, it is 1/ det(1 − xB)). �
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