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1. Introduction

Let g be a finite-dimensional semisimple Lie algebra over C with Cartan subalgebra h. 
Set l = rank g and fix an ordered base Π = {α1, . . . , αl} of the corresponding root system 
Φ = Φ+�Φ− of g, where Φ+ and Φ− denote the sets of positive and negative roots of Φ, 
respectively. Also let λ1, . . . , λl denote the so-called fundamental weights corresponding 
to our choice of base Π and write Λ = Zλ1 + · · ·+Zλl for the associated integral weight 
lattice. Finally, let Λ+ denote the set of dominant integral weights and recall the existence 
of a partial order on Λ, defined by μ � λ if and only if λ − μ ∈ Γ, where Γ ⊂ Λ is the 
monoid of Z�0-linear combinations of simple roots.

It is well-known that the set of isomorphism classes of irreducible finite-dimensional 
g-modules is in one-to-one correspondence with the set Λ+ of dominant integral weights. 
Furthermore, a class representative L(λ) corresponding to a given weight λ ∈ Λ+ can be 
constructed as the quotient of the so-called Verma module of weight λ, written Δ(λ), by 
its unique maximal submodule rad(λ), that is

L(λ) = Δ(λ)/rad(λ).

Even though infinite-dimensional, Verma modules are h-semisimple, i.e., can be decom-
posed as direct sums of their weight spaces. Moreover, such decompositions are well 
understood: for a given dominant integral weight λ ∈ Λ+ and any integral weight μ ∈ Λ, 
a basis for the weight space in Δ(λ) corresponding to μ is known (see (7) in Section 2.4
below) and hence so is the multiplicity mΔ(λ)(μ) of μ in Δ(λ). In addition, one gets that 
the set Λ(Δ(λ)) of weights of Δ(λ) simply consists of all μ ∈ Λ such that μ � λ.

Unfortunately, not that much can be said about weight spaces in L(λ) for an arbitrary 
dominant integral weight λ ∈ Λ+. Firstly, finding out if a given weight μ ≺ λ belongs 
to the set Λ(λ) of weights of L(λ) is far from being immediate, as it generally requires 
one to determine the unique dominant integral weight to which μ is conjugate (under 
the action of the Weyl group of g). Moreover, an explicit description of the (often very 
large) set

Λ+(λ) = Λ(λ) ∩ Λ+

for λ ∈ Λ+ with large coefficients (when written as a Z-linear combination of fundamental 
weights) is usually hard to come by (see [11] for a recursive method). The first result in 
this paper shows that under certain assumptions on λ ∈ Λ+ and μ ∈ Λ, the multiplicity 
of μ in L(λ) is the same as the multiplicity of μ′ in L(λ′), where λ′ is a dominant integral 
weight whose coefficients (again, when written as a Z-linear combination of fundamental 
weights) are smaller than or equal to those of λ, and μ′ ∈ Λ is the unique integral weight 
satisfying λ′ − μ′ = λ − μ. The proof essentially relies on the existence of an explicit 
description of the maximal submodule rad(λ) of Δ(λ) (see [8, Section 2.6] or Theorem 2.4
below).



494 M. Cavallin / Journal of Algebra 471 (2017) 492–510
Proposition A. Let λ =
∑l

r=1 arλr ∈ Λ+ be a dominant integral weight and let μ ∈ Λ be 
such that μ = λ −

∑l
r=1 crαr for some c1, . . . , cl ∈ Z�0, so that μ � λ. Also assume the 

existence of a non-empty subset J of {1, . . . , l} such that 0 � cj � aj for every j ∈ J

and set λ′ = λ +
∑

j∈J (cj − aj)λj, μ′ = λ′ − (λ − μ). Then

mL(λ)(μ) = mL(λ′)(μ′).

While Proposition A can sometimes allow one to study weight spaces in smaller mod-
ules than those initially considered, an effective method to compute weight multiplicities 
in most irreducibles is still needed. As mentioned in the abstract of this paper, this can 
be accomplished by applying the well-known formula of Freudenthal [6], for example. 
We refer the reader to [7, Theorem 22.3] for a proof of the following.

Theorem (Freudenthal’s formula). Let λ ∈ Λ+ be a dominant integral weight and let 
μ ∈ Λ. Also set d(λ, μ) = 2(λ + ρ, λ − μ) − ||λ − μ||2, where ρ denotes the sum of all 
fundamental weights and (−, −) is the usual inner product on Λ. Then the multiplicity 
of μ in L(λ) is given recursively by

d(λ, μ) mL(λ)(μ) = 2
∑

α∈Φ+

∞∑
r=1

mL(λ)(μ + rα)(μ + rα, α).

The recursive nature of Freudenthal’s formula makes the latter quite demanding in 
terms of complexity, especially in unbounded rank, due to the quadratic growth of |Φ+|
as l → ∞. However, it is still more efficient than the recursive method of Racah ([5, Sec-
tion 8.11]) or the closed formula provided by Kostant ([9]), for example. (Indeed, both 
involve a summation over all elements in the Weyl group, which becomes very cumber-
some as the rank of g grows.) Furthermore, various authors have been studying ways of 
improving the efficiency of Freudenthal’s formula over the past decades, like Moody and 
Patera ([11]) for example, who developed an algorithm allowing faster computation of 
multiplicities. If interested in more recent formulas, we refer the reader to [10,12,4], or 
[13]. (The third paper describes a closed formula in the special case where g is a simple 
Lie algebra of type C2 over C.)

The second result of this paper consists in another modification of the aforementioned 
formula of Freudenthal, applicable under certain conditions on λ and μ. For 1 � j � l

and α =
∑l

r=1 drαr ∈ Γ, define the j-level of α by levelj(α) = dj and set

Φ+
j = {α ∈ Φ+ : levelj(α) > 0}.

Observe that a positive root α ∈ Φ+ belongs to Φ+
j if and only if αj appears in the 

decomposition of α as a sum of simple roots. Also, it is clear that 0 � levelj(α) � 6
for every α ∈ Φ+ and finally, if g is of classical type (i.e. of type A, B, C or D), then 
0 � levelj(α) � 2 for every 1 � j � l and α ∈ Φ+.
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Theorem B. Let λ =
∑l

r=1 arλr ∈ Λ+ be a dominant integral weight and let μ ∈ Λ be 
such that μ = λ −

∑l
r=1 crαr for some c1, . . . , cl ∈ Z�0. Also assume the existence of 

1 � j � l such that 0 < levelj(λ −μ) � aj (or equivalently, such that 0 < cj � aj). Then

mL(λ)(μ) = 1
cj

∑
α∈Φ+

j

cj∑
r=1

levelj(α) mL(λ)(μ + rα).

Remark. One fundamental difference between the formula stated in Theorem B and 
the classical formula of Freudenthal resides in the indices of summation, especially those 
associated to the second sum, ranging over all elements in Φ+

j instead of Φ+. For example, 
if g is of classical type, then |Φ+

1 | ∈ O(l), while |Φ+| ∈ O(l2). Also, even in the case where 
{1 � j � l : 0 < cj � aj} = ∅, there still might exist r > 0, α ∈ Φ+ such that μ + rα ≺ λ

and {1 � j � l : 0 < levelj(λ − μ − rα) � aj} 
= ∅. Consequently mL(λ)(μ + rα) could 
be computed using Theorem B, hence simplifying the use of Freudenthal’s formula, even 
though μ itself did not satisfy the necessary condition.

Finally, let g be a simple Lie algebra of type Al over C, and for a non-zero dominant 
integral weight λ =

∑l
r=1 arλr, define Iλ = {r1, . . . , rNλ

} to be maximal in {1, . . . , l}
such that r1 < . . . < rNλ

and 
∏

r∈Iλ
ar 
= 0. The following result consists of a direct 

application of Theorem B in unbounded rank.

Proposition C. Let g be a simple Lie algebra of type Al over C and let λ =
∑l

r=1 arλr be 
a non-zero dominant integral weight. Also let Iλ = {r1, . . . , rNλ

} be as above and consider 
μ = λ − (α1 + · · · + αl) ∈ Λ. If Nλ = 1, then mL(λ)(μ) = 1, while if Nλ � 2, then

mL(λ)(μ) =
Nλ∏
i=2

(ri − ri−1 + 1).

Remark. Observe that the weight μ ∈ Λ defined in the statement of Proposition C is 
dominant integral if and only if a1al 
= 0 (see Section 5 for more details). Also notice that 
Proposition C consists in a generalization of [14, Lemma 8.6], which simply corresponds 
to the special situation in which Iλ = {1, l}.

2. Preliminaries

In this section, we recall some elementary properties concerning semisimple Lie alge-
bras and their representations, starting by fixing some notation that will be used for the 
rest of the paper. Most of the results presented here can be found in [2,7] and [8]. Let g
be a semisimple Lie algebra over C with Cartan subalgebra h. Set l = rank g and fix an 
ordered base Π = {α1, . . . , αl} of the corresponding root system Φ = Φ+ � Φ−, where 
Φ+ and Φ− denote the sets of positive and negative roots of Φ, respectively. To each 
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root α ∈ Φ corresponds a 1-dimensional subspace gα of g (called a root space) defined 
by

gα = {x ∈ g : [h, x] = α(h)x for all h ∈ h}.

It is quite common to consider a basis B = {yα, hr, xα : α ∈ Φ+, 1 � r � l} for g, where 
xα ∈ gα, yα ∈ g−α are root vectors for α ∈ Φ+ and hr = [xαr

, yαr
] for 1 � r � l. Such 

a basis can be chosen in many ways. For example, a standard Chevalley basis (see [3, 
Chapter 4]) has integral structure constants and hence is easy to work with. (For our 
purpose though, it is not necessary to make such a refined choice for a basis of g.) Fixing 
an ordering � on Φ+ = {γ1, . . . , γm} with γr = αr for 1 � r � l yields an ordered basis

B = {y1, . . . , ym, h1, . . . , hr, x1, . . . , xm} (1)

for g, where xr ∈ gγr
, yr ∈ g−γr

are root vectors for 1 � r � m and hr = [xr, yr] for 
1 � r � l. Throughout this paper, we fix an ordered basis as in (1) for any semisimple 
Lie algebra g.

2.1. Integral weights

The root system Φ of g spans a Q-form E0 of the dual space h∗ on which the Killing 
form (−, −) is non-degenerate, providing E = E0 ⊗Q R with a natural structure of 
Euclidean space. The Z-span of Φ in E is called the root lattice of Φ, and the dual lattice 
to Φ in E, defined by

Λ = {λ ∈ E : 〈λ, α〉 ∈ Z for every α ∈ Π},

is called the integral weight lattice associated to Φ. (Here we adopt the notation 〈x, y〉 =
2(x, y)(y, y)−1 for x, y ∈ E with y 
= 0.) It is a free Abelian group of rank l with 
basis {λ1, . . . , λl}, where λ1, . . . , λl denote the fundamental weights corresponding to 
our choice of base Π, that is 〈λi, αj〉 = δij for every 1 � i, j � l. In addition, let

Λ+ = {λ ∈ Λ : 〈λ, αr〉 � 0 for every 1 � r � l}

be the set of dominant integral weights and recall the existence of a partial order � on Λ, 
defined by μ � λ if and only if λ − μ ∈ Γ, where Γ ⊂ Λ is the monoid of Z�0-linear 
combinations of simple roots. We also write μ ≺ λ to indicate that μ � λ and μ 
= λ. 
Finally, for α ∈ Φ, define the reflection sα : E → E relative to α by

sα(λ) = λ− 〈λ, α〉α,

this for every λ ∈ h∗, and denote by W the finite group 〈sαr
: 1 � r � l〉, called the Weyl 

group of Φ. We say that λ, μ ∈ h∗ are conjugate under the action of W (or W -conjugate) 
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if there exists w ∈ W such that wλ = μ, in which case we write λ ∼W μ. One easily 
shows that W stabilizes Λ and it is well-known (see [7, Section 13.2, Lemma A], for 
example) that each weight in Λ is W -conjugate to a unique dominant integral weight. 
Also if λ ∈ Λ+, then wλ � λ for every w ∈ W .

2.2. Universal enveloping algebras

In this section, we recall some elementary facts on universal enveloping algebras of 
Lie algebras. Most of the results presented here can be found in [2] or [7]. A universal 
enveloping algebra of an arbitrary Lie algebra L over C is a pair (U(L), ι), where U(L) is 
an associative algebra with 1 over C, ι : L → U(L) is a linear map satisfying

ι([x, y]) = ι(x)ι(y) − ι(y)ι(x), (2)

for x, y ∈ L, and such that the following universal property holds: for any associative 
algebra U with 1 and any linear map η : L → U satisfying (2), there exists a unique 
morphism of algebras φ : U(L) → U such that φ ◦ ι = η. The existence and uniqueness 
(up to isomorphism) of such a pair (U(L), ι) are not too difficult to establish (see [7, 
Section 17.2], for example) and the well-known Poincaré–Birkhoff–Witt Theorem (or 
PBW-Theorem) implies that if L is a Lie algebra with corresponding universal enveloping 
algebra (U(L), ι), then ι is injective. Furthermore, if L is identified with its image in U(L)
and if (b1, b2, . . .) is an ordered basis for L, then a basis for U(L) is given by

{
bt11 · · · btkk : k ∈ Z�0, t1, . . . , tk ∈ Z�0

}
.

In the case where g is a semisimple Lie algebra with ordered basis as in (1), one 
deduces that a basis for U(g) consists of elements of the form

yr11 · · · yrmm hs1
1 · · ·hsl

l xt1
1 · · ·xtm

m , (3)

where ri, sj , ti ∈ Z�0 for every 1 � i � m and every 1 � j � l. Finally, U(g) can be 
decomposed into a direct sum of subspaces of the form U(g)γ, where γ ∈ ZΦ and U(g)γ
is spanned by those monomials in (3) for which γ =

∑m
i=1 (ti − ri)γi.

2.3. Representations of U(g)

In this section, we recall some basic properties of U(g)-modules (or equivalently, 
g-modules). Unless specified otherwise, the results recorded here can be found in [7, 
Section 20]. Let V denote an arbitrary U(g)-module and for μ ∈ h∗, set

Vμ = {v ∈ V : hv = μ(h)v for all h ∈ h}.

An element μ ∈ h∗ with Vμ 
= 0 is called a weight of V and Vμ is said to be its correspond-
ing weight space. The dimension of Vμ (possibly infinite) is called the multiplicity of μ
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in V and is denoted by mV (μ). It behaves well with respect to short exact sequences, in 
the following sense: if 0 → V1 → V2 → V3 → 0 is a short exact sequence of U(g)-modules 
and μ ∈ h∗, then

mV2(μ) = mV1(μ) + mV3(μ). (4)

Also write Λ(V ) to denote the set of weights of V and as in the integral case, define a 
partial order on the latter by saying that μ ∈ Λ(V ) is under λ ∈ Λ(V ) (written μ � λ) if 
and only if λ −μ ∈ Γ, where Γ denotes the monoid of Z�0-linear combinations of simple 
roots. In addition, we write μ ≺ λ to indicate that μ is strictly under λ, i.e. μ is under 
λ and μ 
= λ.

A U(g)-module V is said to be a weight module if it is h-semisimple, that is, if it can 
be decomposed into a direct sum of its weight spaces. If dimV < ∞, then V is always 
a weight module, while if on the other hand V is infinite-dimensional, then the sum of 
its weight spaces might be a proper submodule. Nevertheless, two weight spaces corre-
sponding to different weights always intersect trivially, from which one easily deduces 
that if U , W are two submodules of a weight module V and μ ∈ Λ(V ), then

(U + W )μ = Uμ + Wμ. (5)

A non-zero vector v+ ∈ V is called a maximal vector of weight λ ∈ h∗ if v+ ∈ Vλ and 
xrv

+ = 0 for every 1 � r � m. Also, we say that V is a highest weight module of weight 
λ if there exists a maximal vector v+ ∈ Vλ such that U(g)v+ = V . Write n =

⊕m
r=1〈xr〉C

and n− =
⊕m

r=1〈yr〉C. Since U(g) = U(n−)U(h)U(n), the module V is generated by v+

as a U(n−)-module, so that

Vμ =
〈
yr11 · · · yrmm v+ : r1, . . . , rm ∈ Z�0,

m∑
i=1

riγi = λ− μ

〉
C

(6)

for any μ ∈ h∗. Finally, the natural action of the Weyl group W on h∗ induces an action 
on Λ(V ). As in the integral case, we say that λ, μ ∈ Λ(V ) are conjugate under the action 
of W (or W -conjugate) if there exists w ∈ W such that wλ = μ.

2.4. Verma modules and the BGG category O

In the remainder of this paper, we shall be particularly interested in finitely generated, 
h-semisimple U(g)-modules V such that for every v ∈ V , the subspace U(n)v of V is 
finite-dimensional. (The latter condition is called local n-finiteness.) Such modules form 
the objects of a subcategory O of the category of (left) U(g)-modules, called the BGG 
category. The latter is closed under submodules, quotients and finite direct sums and it 
turns out that every irreducible module in O can be obtained as the quotient of a certain 
highest weight module, called a Verma module. All results presented here can be found 
in [8, Chapter 1], for example.
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Definition 2.1 (Verma module). Set b = n ⊕ h and for λ ∈ h∗, let Cλ denote the 
U(b)-module defined by nξ = 0 and hξ = λ(h)ξ for all h ∈ h and ξ ∈ C. The Verma 
module of weight λ is the U(g)-module Δ(λ) obtained by inducing Cλ from b to g, that 
is,

Δ(λ) = U(g) ⊗U(b) Cλ.

The module Δ(λ) also admits a description by generators and relations, from which 
one deduces that Δ(λ) plays the role of universal highest weight module of weight λ in 
the category O (see [8, Section 1.3]). Therefore by (6), one gets that the weight space 
Δ(λ)μ corresponding to μ ∈ h∗ is spanned by the set

B(λ)μ =
{
yr11 · · · yrmm vλ : r1, . . . , rm ∈ Z�0,

m∑
i=1

riγi = λ− μ

}
, (7)

where vλ denotes a maximal vector of weight λ in Δ(λ). The cardinality of the set (7)
equals P (λ −μ), where P : h∗ → Z�0 corresponds to the Kostant function, whose value at 
α ∈ h∗ is defined to be the number of distinct sets of non-negative integers c1, . . . , cm for 
which α =

∑m
r=1 crγr. The following result consists in a description of a basis for Δ(λ)μ, 

thus leading to the knowledge of the multiplicity of μ in Δ(λ). Its proof immediately 
follows from the fact that Δ(λ) ∼= U(n−) as U(n−)-modules (see [7, Section 20.3], for 
example).

Lemma 2.2. Let λ, μ ∈ h∗ and consider the Verma module Δ(λ) of weight λ. Then the 
set (7) forms a basis for Δ(λ)μ. In particular dim Δ(λ)μ = P (λ − μ).

Remark 2.3. Let λ, δ ∈ h∗ and fix two maximal vectors vλ, vδ in Δ(λ)λ, Δ(δ)δ, re-
spectively. Also let γ ∈ Γ and set μ = λ − γ, ν = δ − γ. By Lemma 2.2, we have 
mΔ(λ)(μ) = mΔ(δ)(ν) and the sets B(λ)μ, B(δ)ν as in (7) form ordered bases of Δ(λ)μ, 
Δ(δ)ν , respectively. Furthermore, for any y ∈ U(n−), the coefficients of yvλ with respect 
to B(λ)μ and the coefficients of yvδ with respect to B(δ)ν are identical, since obtained 
by successively applying standard commutation formulas in U(g).

It turns out that Δ(λ) contains a unique maximal submodule rad(λ) and throughout 
this paper, we write L(λ) = Δ(λ)/ rad(λ) for the corresponding irreducible quotient. 
Unfortunately, there is no analogue of Lemma 2.2 for weight spaces in L(λ) for an 
arbitrarily given λ ∈ h∗. Nevertheless, applying (4) to the short exact sequence

0 → rad(λ) → Δ(λ) → L(λ) → 0

and using Lemma 2.2, one easily sees that knowing the multiplicity of μ ∈ h∗ in rad(λ)
leads to the knowledge of mL(λ)(μ) as well. Now for λ ∈ h∗ arbitrary, no simple de-
scription of rad(λ) is known, while in the case where λ is dominant integral, then the 
following result gives a better understanding of the structure of rad(λ).
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Theorem 2.4. Let λ =
∑l

r=1 arλr ∈ Λ+ be a dominant integral weight and fix a maximal 
vector vλ of weight λ in Δ(λ). Then the following assertions hold.

1. For every 1 � r � l, the element yar+1
r vλ is a maximal vector of weight λ −(ar+1)αr

in Δ(λ).
2. For every 1 � r � l, the U(g)-module generated by yar+1

r vλ is isomorphic to Δ(λ −
(ar + 1)αr).

3. The unique maximal submodule rad(λ) of Δ(λ) is given by

rad(λ) =
l∑

r=1
U(g)yar+1

r vλ.

Proof. The proof of Parts 1 and 2 essentially depends on some standard commutation 
formulas in U(g) (see [8, Proposition 1.4], for example). Also, we refer the reader to [8, 
Theorem 2.6] for a proof of Part 3. �
3. Proof of Proposition A

For a non-empty subset J of {1, . . . , l}, set hJ = 〈hj : j ∈ J〉 as well as gJ = 〈g±αj
:

j ∈ J〉. Clearly the Levi subalgebra gJ of g is a semisimple Lie algebra over C, having 
Cartan subalgebra hJ and root system ΦJ = Φ ∩ Z{αj}j∈J . We start by stating the 
following result, whose proof can be found in [1, Lemma 2.2.8], for example.

Lemma 3.1. Let λ ∈ Λ+ be a dominant integral weight and let μ ∈ Λ be such that μ ≺ λ. 
Also let J ⊆ {1, . . . , l} be such that μ = λ −

∑
j∈J cjαj for some subset {cj}j∈J of Z�0. 

Then

mL(λ)(μ) = mL
(
λ|hJ

) (μ|hJ
) .

Remark 3.2. Let λ =
∑l

r=1 arλr ∈ Λ+ and let μ ∈ Λ be such that μ = λ −
∑l

r=1 crαr ∈ Λ
for some c1, . . . , cl ∈ Z�0. Also let J ⊆ {1, . . . , l} be minimal such that μ = λ −

∑
j∈J cjαj . 

An application of Lemma 3.1 then shows that mL(λ)(μ) is independent of the value of each 
ak such that k /∈ J . In particular mL(λ)(μ) = mL(λ′)(μ′), where λ′ = λ −

∑
k/∈J akλk and 

μ′ = λ′ − (λ − μ). Consequently one can assume cj 
= 0 for every j ∈ J in Proposition A
and focus on the situation where g is simple.

We first prove Proposition A in the situation where J is a singleton. The general case 
shall then follow by repeated application of this special case. For λ =

∑l
r=1 arλr ∈ Λ+

a dominant integral weight, 1 � j � l and x ∈ Z, define

λj,x = λ + (x− aj)λj .
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Clearly λj,x is simply obtained from λ by replacing aj with x and hence remains dominant 
integral if and only if x ∈ Z�0. In addition, for μ ∈ Λ such that μ � λ, also define

μλj,x = λj,x − (λ− μ).

Obviously λλj,x = λj,x and if μ = λ −
∑l

r=1 crαr, then μλj,x = λj,x −
∑l

r=1 crαr. In 
other words, μλj,x is the unique integral weight for which λ − μ = λj,x − μλj,x . Finally, 
define the j-level of α =

∑l
r=1 drαr ∈ Γ to be levelj(α) = dj . The following elementary 

result provides the reader with a way of becoming familiar with the recently introduced 
notation. It shall be used in Section 4.

Lemma 3.3. Let λ ∈ Λ+ be a dominant integral weight and let α ∈ Γ. Then for every 
1 � j � l and every x ∈ Z, we have

(λj,x, α) = (λj,0, α) + x levelj(α)(λj , αj).

Proof. First notice that (λj,x, α) = (λ + (x − aj)λj , α) = (λ − ajλj , α) + x(λj , α) by 
definition of λj,x and by bilinearity of (−, −). Also λ − ajλj is obviously obtained from 
λ by replacing aj by 0, i.e. λ − ajλj = λj,0. Finally, observe that (λj , αr) = δrj(λj , αj)
for every 1 � r � l and hence (λj , α) = levelj(α)(λj , αj), completing the proof. �

The following result can sometimes provide one with a way of comparing certain 
weight spaces in different Verma modules. Its proof essentially relies on Theorem 2.4, so 
we shall adopt the notation introduced in the statement of the latter.

Lemma 3.4. Let λ =
∑l

r=1 arλr ∈ Λ+ be a dominant integral weight and let μ ∈ Λ be 
such that μ = λ −

∑l
r=1 crαr for some c1, . . . , cl ∈ Z�0, so that μ � λ. Also assume the 

existence of 1 � j � l satisfying 0 < cj � aj and let x ∈ Z�cj . Finally, fix two maximal 
vectors vλ, vλj,x in Δ(λ)λ, Δ(λj,x)λj,x

, respectively. Then there exists an isomorphism of 
vector spaces φ : Δ(λ)μ −→ Δ(λj,x)μλj,x such that

φ
(
(U(g)yar+1

r vλ)μ
)

= (U(g)yar+1
r vλj,x)μλj,x (8)

for every 1 � r � l.

Proof. Let 1 � j � l and x ∈ Z�cj be as in the statement of the Lemma. The set B(λ)μ
as in (7) forms a basis for Δ(λ)μ by Lemma 2.2, showing the existence of a unique linear 
map φ : Δ(λ)μ −→ Δ(λj,x)μλj,x such that

φ(yr11 · · · yrmm vλ) = yr11 · · · yrmm vλj,x (9)

for every r1, . . . , rm ∈ Z�0 satisfying 
∑m

i=1 riγi = λ − μ. Since the elements on the 
right-hand side of (9) form a basis for Δ(λj,x) λj,x by Lemma 2.2 again, the linear map 
μ
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φ is an isomorphism of vector spaces. Now as we assumed cj � aj , we immediately get 
that μ is not under λ − (aj + 1)αj and hence we have

(U(g)yaj+1
j vλ)μ = 0

by Theorem 2.4 (Part 2). Similarly (U(g)yaj+1
j vλj,x)μλj,x = 0 and hence the equality (8)

holds for r = j. In the remainder of the proof, assume 1 � r � l different from j and set 
δr = λ − (ar + 1)αr. By Lemma 2.2 and Theorem 2.4 (Part 2), one successively gets

dim(U(g)yar+1
r vλ)μ = dim Δ(δr)μ

= P (δr − μ)

= P (λj,x + (δr − λ) − (λj,x + μ− λ))

= P (δλj,x
r − μλj,x)

= dim Δ(δλj,x
r )μλj,x

= dim(U(g)yar+1
r vλj,x)μλj,x ,

where the last equality relies on the assumption that r and j are different. Hence it 
suffices to show that φ 

(
(U(g)yar+1

r vλ)μ
)
⊆ (U(g)yar+1

r vλj,x)μλj,x . Let r1, . . . , rm ∈ Z�0
be such that

r1γ1 + · · · + rmγm = μ− (ar + 1)γr

and consider v = yr11 · · · yrmm yar+1
r vλ ∈ Δ(λ)μ. In addition, write B(λ)μ = {v1, . . . , vk}, 

so that B(λj,x)μλj,x = {φ(v1), . . . , φ(vk)} and let ξ1, . . . , ξm ∈ C denote the unique 
complex coefficients satisfying v = ξ1v1 + · · ·+ ξkvk. An application of Remark 2.3 then 
yields

φ(v) = φ

(
k∑

i=1
ξivi

)
=

k∑
i=1

ξiφ(vi) = yr11 · · · yrmm yar+1
r vλj,x ∈ (U(g)yar+1

r vλj,x)μλj,x .

By Lemma 2.2 and Theorem 2.4 (Parts 1 and 2), any element of (U(g)yar+1
r vλ)μ can be 

expressed as a linear combination of vectors such as v, from which the result follows. �
Let λ ∈ Λ+ be a dominant integral weight and let μ ∈ Λ be such that μ ≺ λ. Also fix 

1 � j � l and x ∈ Z�0. Then mΔ(λ)(μ) = P (λ − μ) = P (λj,x − μλj,x) = mΔ(λj,x)(μλj,x)
by Lemma 2.2 and applying (4) to the exact sequences 0 → rad(λ) → Δ(λ) → L(λ) → 0
and 0 → rad(λj,x) → Δ(λj,x) → L(λj,x) → 0 shows that mL(λ)(μ) = mL(λj,x)(μλj,x) if 
and only if

mrad(λ)(μ) = mrad(λj,x)(μλj,x). (10)
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Now since both λ and λj,x are dominant integral (as x ∈ Z�0), applying Theorem 2.4
(Part 3) shows that the modules rad(λ) and rad(λj,x) are given by

rad(λ) =
l∑

r=1
U(g)yar+1

r vλ, rad(λj,x) =
l∑

r=1
U(g)yar+1

r vλj,x .

Finally, in Lemma 3.4, it was shown that in the case where 1 � j � l satisfies 
0 < cj � aj and x ∈ Z�cj , then there exists an isomorphism φ : Δ(λ)μ −→ Δ(λj,x)μλj,x

of vector spaces such that the diagram

Δ(λ)μ Δ(λj,x)μλj,x

(
U(g)yar+1

r vλ
)
μ

(
U(g)yar+1

r vλj,x
)
μλj,x

∼=

φ

∼=

φ|(
U(g)yar+1

r vλ
)
μ

commutes for every 1 � r � l. Therefore (10) is satisfied thanks to (5) and hence 
the following result holds. (Observe that in the case where cj = 0, then the assertion 
immediately follows from Remark 3.2.)

Corollary 3.5. Let λ =
∑l

r=1 arλr ∈ Λ+ be a dominant integral weight and let μ ∈ Λ be 
such that μ = λ −

∑l
r=1 crαr for some c1, . . . , cl ∈ Z�0, so that μ � λ. Also assume the 

existence of 1 � j � l such that 0 � cj � aj. Then for every integer x ∈ Z�cj , we have

mL(λ)(μ) = mL(λj,x)(μλj,x).

We are finally ready to give a proof of Proposition A. First observe that in the case 
where J is a singleton, then an application of Corollary 3.5 immediately yields the desired 
result. If on the other hand |J | > 1, then fix j ∈ J . By Corollary 3.5 again, we get that

mL(λ)(μ) = mL(λj,cj
)(μλj,cj ). (11)

Clearly λj,cj ∈ Λ+, μλj,cj = λj,cj −
∑l

r=1 crαr and 0 � ck � ak for k ∈ K = J − {j}. In 
addition, adopting the notation of Theorem B, one sees that λ′

j,cj
= λ′ and (μλj,cj )′ = μ′. 

Therefore mL(λj,cj
)(μλj,cj ) = mL(λ′)(μ′) thanks to our induction assumption, which to-

gether with (11), completes the proof.

4. Proof of Theorem B

In this section, we give a proof of Theorem B, which basically consists in a modi-
fied version of the usual formula of Freudenthal (see Section 1 or Theorem 4.1 below),
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applicable in certain situations. For λ ∈ Λ+ a dominant integral weight and μ ≺ λ, set

d(λ, μ) = 2(λ + ρ, λ− μ) − ||λ− μ||2,

where ρ denotes the half-sum of all positive roots in Φ, or equivalently, the sum of all 
fundamental weights. The following formula, due to Freudenthal, gives a recursive way 
to compute the multiplicity of μ in L(λ). We recall it here for reference purposes.

Theorem 4.1 (Freudenthal’s Formula). Let λ ∈ Λ+ be a dominant integral weight. Then 
the multiplicity in L(λ) of any weight μ ∈ Λ is given recursively by

d(λ, μ) mL(λ)(μ) = 2
∑

α∈Φ+

∞∑
r=1

mL(λ)(μ + rα)(μ + rα, α).

Remark 4.2. Thanks to [7, Lemma 13.4 (C) and Proposition 21.3], one gets that 
mL(λ)(μ) = 0 if d(λ, μ) = 0. (In particular, this implies that d(λ, μ) 
= 0 if μ � λ is 
dominant integral.) Therefore Theorem 4.1 provides an effective method for computing 
weight multiplicities inside a given irreducible finite-dimensional module.

Write Q�1[X] for the set of all linear polynomials in the indeterminate X with coef-
ficients in Q. In a similar fashion, let Q1[X] denote the subset of all non-constant linear 
polynomials in Q�1[X]. The following preliminary result is elementary and could easily 
be stated in a much more general setting. Nevertheless, it is included in its most simple 
form for clarity.

Lemma 4.3. Let f ∈ Q�1[X], g ∈ Q1[X] be two linear polynomials (with g non-constant) 
and assume the existence of a non-zero integer x ∈ Z such that g(x)g(x + 1) 
= 0 and 
f(x)g(x)−1 = f(x +1)g(x +1)−1 ∈ Z. Then f is an integral multiple of g. In particular, 
either f = 0 or f ∈ Q1[X] as well.

Proof. Let f, g, x be as in the statement of the Lemma and write f = aX+b, g = cX+q, 
where c 
= 0. By assumption, (ax +b)(c(x +1) +q) = (cx +q)(a(x +1) +b), which one easily 
sees, translates to aq− bc = 0. If a = 0, then one immediately gets bc = 0, which implies 
f = 0 since g is non-constant (in which case the assertion trivially holds). Therefore 
assume a 
= 0 in the remainder of the proof, so that replacing q by a−1bc yields

f(x)
g(x) = a

c
∈ Z,

that is, a is an integral multiple of c. Substituting a by rc for some non-zero integer 
r ∈ Z, one gets that aq− bc = c(rq− b) = 0, so that b = rq (as c 
= 0). Therefore f = rg

as desired, thus completing the proof. �
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The overall structure of the proof of Theorem B is as follows. First we show the 
existence of N ∈ Z and two non-zero polynomials f = aX + b ∈ Q�1[X], g = cX +
q ∈ Q1[X] such that mL(λ)(μ) = f(x)g(x)−1 for every x ∈ Z�N , where we explicitly 
determine a, c ∈ Q (see Lemmas 4.4 and 4.6). By Lemma 4.3, we then get that f is an 
integral multiple of g, i.e. f = mL(λ)(μ)g, and thus the multiplicity of μ in L(λ) equals 
ac−1, from which we easily conclude.

Lemma 4.4. Let λ =
∑l

r=1 arλr ∈ Λ+ be a dominant integral weight and let μ ∈ Λ be 
such that μ = λ −

∑l
r=1 crαr for some c1, . . . , cl ∈ Z�0. Also fix 1 � j � l and set

c = 2cj(λj , αj) ∈ Q. (12)

Then adopting the notation introduced in Section 3, there exists q ∈ Q such that for 
every x ∈ Z�0, the linear polynomial g = cX + q ∈ Q�1[X] satisfies the equality

d(λj,x, μ
λj,x) = g(x).

Moreover, g ∈ Q1[X] if and only if levelj(λ − μ) 
= 0, or equivalently, if and only if 
cj 
= 0.

Proof. Fix x ∈ Z�0. By definition, we have λj,x − μλj,x = λ − μ, from which one easily 
deduces that

d(λj,x, μ
λj,x) = 2 (λj,x, λ− μ) + (2ρ− (λ− μ), λ− μ).

Now (λj,x, λ −μ) = (λj,0, λ −μ) + x levelj(λ −μ)(λj , αj) = (λj,0, λ −μ) + cj(λj , αj)x by 
Lemma 3.3 and hence setting q = (2ρ + 2λj,0 − (λ− μ), λ− μ) yields

d(λj,x, μ
λj,x) = cx + q,

with c ∈ Z as in (12). Since q ∈ Q is clearly independent of x and since the latter was 
arbitrarily chosen, we get that the linear polynomial g = cX + q ∈ Q�1[X] satisfies 
d(λj,x, μλj,x) = g(x) for every x ∈ Z�0 as desired. Finally, notice that g ∈ Q�1[X] is 
non-constant if and only if c = 2cj(λj , αj) 
= 0. Since (λj , αj) 
= 0, the second assertion 
holds as well. �
Remark 4.5. Observe that in the case where levelj(λ − μ) 
= 0 in Lemma 4.4, then the 
linear polynomial g ∈ Q1[X] is strictly increasing in X.

For 1 � j � l, recall the definition of Φ+
j = {α ∈ Φ+ : levelj(α) > 0} introduced in 

Section 1. Clearly a positive root α ∈ Φ+ belongs to Φ+
j if and only if αj appears in the 

decomposition of α as a sum of simple roots, or equivalently, if and only if (λj , α) 
= 0.
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Lemma 4.6. Let λ =
∑l

r=1 arλr ∈ Λ+ be a dominant integral weight and let μ ∈ Λ be 
such that μ = λ −

∑l
r=1 crαr for some c1, . . . , cl ∈ Z�0. Also assume the existence of 

1 � j � l such that 0 < cj � aj and set

a = 2
∑

α∈Φ+
j

cj∑
r=1

levelj(α) mL(λ)(μ + rα)(λj , αj) ∈ Q. (13)

Then adopting the notation introduced in Section 3, there exists b ∈ Q such that for every 
x ∈ Z�cj , the linear polynomial f = aX + b ∈ Q�1[X] satisfies the equality

2
∑

α∈Φ+

∞∑
r=1

mL(λj,x)(μλj,x + rα)(μλj,x + rα, α) = f(x).

Proof. Let 1 � j � l be as in the statement of the lemma and fix x ∈ Z�cj . By bilinearity 
of (−, −), we have (μλj,x + rα, α) = (λj,x, α) + (μ − λ + rα, α) and hence Lemma 3.3
yields

(μλj,x + rα, α) = levelj(α)(λj , αj)x + (λj,0 + μ− λ + rα, α).

On the other hand, an application of Proposition A shows that mL(λj,x)(μλj,x +
rα) = mL(λ)(μ + rα) for every r ∈ Z�0 and every α ∈ Φ+. Setting b =
2 
∑

α∈Φ+
∑∞

r=1 mL(λ)(μ + rα)(λj,0 + μ− λ + rα, α) then yields

2
∑

α∈Φ+

∞∑
r=1

mL(λj,x)(μλj,x + rα)(μλj,x + rα, α)

= 2
( ∑

α∈Φ+

∞∑
r=1

mL(λ)(μ + rα) levelj(α)(λj , αj)
)
x + b.

Now levelj(α) = 0 if α /∈ Φ+
j , and if r > cj and α ∈ Φ+

j , then μ + rα is not under λ. 
Therefore we have

2
∑

α∈Φ+

∞∑
r=1

mL(λj,x)(μλj,x + rα)(μλj,x + rα, α) = ax + b,

with a ∈ Q as in (13). Finally, since b ∈ Q is independent of x and since the latter was 
arbitrarily chosen, we get that the linear polynomial f = aX + b ∈ Q1[X] satisfies the 
desired condition. �

We are now able to give a proof of Theorem B. Let λ, μ, j be as in the statement 
of the latter and first observe that mL(λ)(μ) = mL(λj,x)(μλj,x) for every x ∈ Z�cj by 
Proposition A. Now thanks to Lemma 4.4 and Remark 4.5, we get the existence of a linear 
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polynomial g = cX + q ∈ Q1[X] as well as N ∈ Z�0 such that g(x) = d(λj,x, μλj,x) 
= 0
for x � max{cj , N}. An application of Theorem 4.1 then yields

mL(λ)(μ) = 2
g(x)

∑
α∈Φ+

∞∑
r=1

mL(λj,x)(μλj,x + rα)(μλj,x + rα, α)

for every x � max{cj , N}, which by Lemma 4.6 translates to the existence of f = aX +
b ∈ Q�1[X] such that mL(λ)(μ) = f(x)g(x)−1 for every x � max{cj , N}. Consequently f
is an integral multiple of g by Lemma 4.3 (that is, f = mL(λ)(μ)g), and thus mL(λ)(μ) =
ac−1, where c, a ∈ Q are given by (12) and (13), respectively. The result then immediately 
follows.

5. Proof of Proposition C

Let g be a simple Lie algebra of type Al (l � 2) over C. For λ =
∑l

r=1 arλr ∈ Λ+ a 
non-zero dominant integral weight, define Iλ = {r1, . . . , rNλ

} to be maximal in {1, . . . , l}
such that r1 < . . . < rNλ

and 
∏

r∈Iλ
ar 
= 0. Also let μ = λ − (α1 + · · · + αl). If r1 
= 1, 

then successively applying sα1 , . . . , sαr1−1 to μ shows that μ is W -conjugate to

μ′ = λ−
l∑

i=r1

αi.

Similarly, if rNλ

= l, then successively applying sαl

, . . . , sαrNλ
+1 to μ′ shows that μ′ is 

W -conjugate to

μ′′ = λ−
rNλ∑
i=r1

αi,

so that mL(λ)(μ) = mL(λ)(μ′′). If Nλ = 1, then λ = aiλi and μ′′ = λ − αi for some 
1 � i � l, ai ∈ Z>0, in which case mΔ(λ)(μ′′) = 1 by Lemma 2.2, while an application 
of Theorem 2.4 (Part 3) yields mrad(λ)(μ′′) = 0. Therefore mL(λ)(μ) = 1 and the result 
then holds in this situation, so applying Lemma 3.1 if necessary, we assume Nλ > 1 and 
a1al 
= 0 in the remainder of this section. Here r1 = 1, rNλ

= l, and we aim at showing 
that the multiplicity of μ = λ − (α1 + · · · + αl) in L(λ) is given by

mL(λ)(μ) =
Nλ∏
i=2

(ri − ri−1 + 1). (14)

We proceed by induction on Nλ, starting by considering the case where Nλ = 2, 
that is, Iλ = {1, l} and λ = aλ1 + bλl for some a, b ∈ Z>0. Even though the result is 
well-known in this situation (see [14, Lemma 8.6], for instance), we record an argument 
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here for completeness. Since μ = λ − (α1 + · · ·+ αl), one can apply Theorem B to j = 1
(as 0 < 1 � a), yielding

mL(λ)(μ) =
∑

α∈Φ+
1

level1(α) mL(λ)(μ + α).

One easily sees that Φ+
1 = {α1 + · · · + αr : 1 � r � l} (so in particular level1(α) = 1 for 

α ∈ Φ+
1 ), hence

mL(λ)(μ) =
l∑

r=1
mL(λ)(μ + α1 + · · · + αr).

Now observe that μ +α1 + · · ·+αl = λ, while μ +α1 + · · ·+αr is W -conjugate to λ −αl

for every 1 � r < l. Therefore mL(λ)(μ + α1 + · · · + αr) = 1 for every 1 � r � l and 
hence mL(λ)(μ) = l = l − 1 + 1, i.e. (14) holds. Next assume the existence of N ∈ Z>2

such that (14) holds whenever 2 � Nλ < N , and let λ ∈ Λ+ be such that Nλ = N . As 
in the previous situation, an application of Theorem B to j = 1 (as 0 < 1 � a1) yields

mL(λ)(μ) =
l∑

r=1
mL(λ)(μ + α1 + · · · + αr). (15)

Notice that for every 1 � r � r2 − 1, the weight μ + α1 + · · · + αr is W -conjugate to 
μ + α1 + · · · + αr2−1, so that mL(λ)(μ + α1 + · · · + αr) = mL(λ)(μ + α1 + · · · + αr2−1). 
Consequently (15) becomes

mL(λ)(μ) =
r2−1∑
r=1

mL(λ)(μ + α1 + · · · + αr) +
l∑

r=r2

mL(λ)(μ + α1 + · · · + αr)

= (r2 − 1) mL(λ)(μ + α1 + · · · + αr2−1) +
l∑

r=r2

mL(λ)(μ + α1 + · · · + αr). (16)

Now consider the subset J = {r2, r2 + 1, . . . , l} of {1, . . . , l} and let gJ , hJ be as in 
Section 3. For every 1 � r � l−r2+1, write βr = αr2−1+r, so that ΠJ = {β1, . . . , βl−r2+1}
forms a base for ΦJ , and also denote by ω1, . . . , ωl−r2+1 the corresponding fundamental 
weights. We then get the restrictions ω = λ|hJ

=
∑l−r2+1

r=1 ar2+r−1ωr and ν = (μ + α1 +
· · · + αr2−1)|hJ

= ω − (β1 + · · · + βl−r2+1).
Also by Lemma 3.1, we see that (16) translates to

mL(λ)(μ) = (r2 − 1) mL(ω)(ν) +
l−r2+1∑

mL(ω)(ν + β1 + · · · + βr),

r=1
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where L(ω) denotes the irreducible gJ -module having highest weight ω. Now a suitable 
application of Theorem B shows that the sum on the right-hand side equals mL(ω)(ν), 
so that

mL(λ)(μ) = r2 mL(ω)(ν).

Finally, observe that Iω = {si : 1 � i � Nλ − 1}, where for every 1 � i � Nλ − 1, 
we have si = ri+1 − r2 + 1. In particular Nω = Nλ − 1 < Nλ and thus our induction 
assumption applies, yielding

mL(ω)(ν) =
Nω∏
i=2

(si − si−1 + 1) =
Nλ−1∏
i=2

(ri+1 − ri + 1) =
Nλ∏
i=3

(ri − ri−1 + 1),

from which the desired result follows.
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