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Two subgroups A and B of a finite group G are said to be 
tcc-permutable if X permutes with Y g for some g ∈ 〈X, Y 〉, 
for all X ≤ A and all Y ≤ B. Some aspects about the normal 
structure of a product of two tcc-permutable subgroups are 
analyzed. The obtained results allow to study the behaviour 
of such products in relation with certain classes of groups, 
namely the class of T-groups and some generalizations.
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1. Introduction

All groups considered in the paper are finite.
Within the theory of finite groups, the structure of subgroups and the way how they 

are embedded into the group influence its structure, and conversely. Then a natural 
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approach to the subject consists in looking for decompositions of the group as product 
of subgroups. Direct product, and also normal products, i.e. products of normal sub-
groups, appear as relevant decompositions. A basic significant fact to be mentioned here 
is that supersoluble groups are closed under taking direct products but not for normal 
products. This has been the origin of a large and fruitful research on products of groups. 
Asaad and Shaalan searched in [7] for criteria of supersolubility, and introduced the cor-
responding concepts of totally and mutually permutable products, which can be seen as 
extensions of direct products and normal products, respectively: Two subgroups A and 
B of a group G are said to be totally permutable if every subgroup of A permutes with 
every subgroup of B, while A and B are called mutually permutable if A permutes with 
every subgroup of B, and conversely. Much is known nowadays about the structure of 
totally and mutually products of groups (see [1,9,14,15,17,18,22,23,34]), which turns out 
to be cornerstones of a huge research, continuing to present days, and extending influence 
into different areas, as formation theory (see [1,11–14,21,24,34]), Fitting classes (see [17,
18,20–22,28–30]) and classes of groups defined in terms of subgroup embeddings; we refer 
in particular to T-groups, i.e. groups in which normality is a transitive relation in the 
group, and generalizations of this class of groups given by the ascending series of classes 
of PT-, PST-, SC-, and SM-groups, where PT-groups and PST-groups are defined in the 
same way but with transitive relations given by permutability and permutability with 
Sylow subgroups, respectively, SM-groups are those groups where each subnormal sub-
group permutes with every maximal subgroup, and following Robinson [37], SC-groups 
are groups whose chief factors are simple (see [8,9,18,19]). We refer to [10] for a good 
convenient recopilation on the topic.

Sometimes permutability turns out to be a strong hypothesis. In this direction further 
progress nicely shows that it is still possible to obtain good information by considering 
conditional permutability. We recall that two subgroups X and Y of a group G are said 
to be conditional permutable (c-permutable, for brevity) in G if X permutes with Y g

for some g ∈ G. For instance, trivially any two Sylow p-subgroups of a group G, for 
a fixed prime p, are conditional permutable in G, but they are not permutable if they 
are different. This example shows the much wider reach of conditional permutability 
in comparison with permutability. Stricter, but in some respect more natural also, is 
the concept of complete conditional permutability (or cc-permutability): Two subgroups 
X and Y of a group G are said to be cc-permutable if X permutes with Y g for some 
g ∈ 〈X, Y 〉.

Now total permutability can be generalized to total cc-permutability (or tcc-
permutability), i.e. the subgroups A and B of a group G are said to be tcc-permutable 
if every subgroup of A is cc-permutable with every subgroup of B. If G = AB we say 
that G is the tcc-permutable product of the subgroups A and B.

These concepts first appear in [26] and were initially used to provide new supersol-
ubility criteria (see also [2,27,32,33]). We refer to [3,5] for surveys on these and further 
progress.
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The present paper mainly concerns tcc-permutability, and we are interested in a better 
understanding of the inner structure of such products of subgroups, particularly in their 
normal structure. In this direction, we take further the study carried out in [4,6], and are 
inspired by the investigation of Beidleman and Heineken in [17] on mutually permutable 
products. As in the case of mutually permutable products (see [17]), we prove in Sec-
tion 2 that the factors of a tcc-permutable product have the cover-avoidance property 
in the product (Corollary 1), i.e. each factor either covers or avoids each chief factor of 
the product ([25, A. Definition (10.8)]). Moreover, a minimal normal subgroup of the 
product which is either covered or avoided simultaneously by the two factors is cyclic of 
prime order (Propositions 1, 2). As a consequence, Corollary 2 describes tcc-permutable 
products which are primitive groups of type 3, and complete, for two factors, the charac-
terization of primitive tcc-permutable products, together with corresponding results in 
[4, Lemma 4, Corollary 5] for primitive groups of types 1 and 2 (for which in fact only 
type 1 is possible; see Lemmas 4, 5).

The results in Section 2 are then applied in Section 3 to find new classes of groups 
which are closed with respect to tcc-permutable products. A previous research within 
the framework of formation theory has been carried out in [4,6]. Now, we take further 
previous developments on totally and mutually permutable products, and search for the 
interaction between the ascending series of classes of T-, PT-, PST-, SC-, and SM-groups 
and tcc-permutability. For the last two classes of groups, we prove that a tcc-permutable 
product belongs to the class if and only if the factors do so (Theorems 2, 3). The necessary 
condition holds also for T-, PT-, PST-groups (Theorem 4). The proof rests in addition 
on the good behaviour of the soluble residual and radical in a tcc-permutable product 
(Proposition 3). For the converse additional hypotheses are needed (see Remark 3 and 
Theorem 5), as happens for totally permutable products (see [8,19]).

We point out that totally permutable products are tcc-permutable, and so, in many 
cases, the research on the last kind of products develops as generalization of previous 
studies on the first ones. It is remarkable how many results on totally permutable prod-
ucts remain true in the more general setting in spite of the failure of significant structural 
properties (see [2,4,6] and Remark 1). As showed in this paper, even more surprising is 
the revealed analogy of certain results between mutually permutable products and tcc-
permutable products. Mutual permutability and tcc-permutability appear to be quite 
different extensions of total permutability. They are concepts which are not connected 
with each other and basic structural properties are different (see Example 1, Remark 1, 
comment after Theorem 2 in relation with Part (i), and Proposition 3 (ii) with the 
previous comment).

We shall adhere to the notation used in [25].

2. Minimal normal subgroups and cc-permutability

The following lemma gives information about normal subgroups of tcc-permutable 
products, in fact for more general products by considering c-permutability instead of 
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cc-permutability. A corresponding result for mutually permutable products was obtained 
in [1, Lemma 3].

Lemma 1. Let the group G = AB be the product of subgroups A and B such that every 
subgroup of A is c-permutable in G with every subgroup of B. If N is a normal subgroup 
of G, then (A ∩ N)(B ∩ N) is a normal subgroup of G. Moreover, if N is a minimal 
normal subgroup of G, then either N = (A ∩N)(B ∩N) or A ∩N = B ∩N = 1.

Proof. By the hypothesis, there exists g ∈ G such that (B ∩ N)Ag = Ag(B ∩ N). But 
g = ab for some a ∈ A and b ∈ B. We can deduce that B ∩N permutes with A, because 
B ∩N is a normal subgroup of B. Analogously, A ∩N permutes with B. We notice that 
N ∩ (A(B ∩N)) = (A ∩N)(B ∩N) = N ∩ (B(A ∩N)). Therefore, (A ∩N)(B ∩N) is 
normalized by both A and B and so by G. If in addition N is a minimal normal subgroup 
of G, the rest of the result follows easily. �

The following lemmas are key facts in our work. A relevant structural property of 
a tcc-permutable product G = AB of subgroups A and B is that the commutator 
subgroup [A, B] is a normal nilpotent subgroup of G ([4, Theorem 4]). Then we can 
state the following easily:

Lemma 2. Let the group G = AB be the product of the tcc-permutable subgroups A
and B and let N be a minimal normal subgroup of G. Then [A, B] ≤ CG(N) and 
G/CG(N) is the central product of the subgroups ACG(N)/CG(N) and BCG(N)/CG(N), 
i.e. [ACG(N)/CG(N), BCG(N)/CG(N)] = 1.

Proof. Let N be a minimal normal subgroup of G. From [4, Theorem 4] and 
[25, A. Theorem (10.6)] it follows that [A, B] ≤ F (G) ≤ CG(N). Consequently, 
[ACG(N)/CG(N), BCG(N)/CG(N)] = 1, as desired. �
Lemma 3. Let the group G = AB be the product of the tcc-permutable subgroups A and B. 
Let N be an abelian normal subgroup of G. Then:

(i) N ∩B and A are totally permutable subgroups.
(ii) If N is a p-group for a prime number p, then Op(A) normalizes N∩B and acts as a 

universal power automorphism group on N∩B. In particular, if N is an elementary 
abelian p-group, Op(A)/COp(A)(N ∩B) is a cyclic group of order dividing p − 1.

(iii) If N is a minimal normal p-subgroup of G for a prime number p and N ≤ B, then 
Op′(A) centralizes N .

Proof. (i) Let n ∈ N ∩ B and a ∈ A. Then there exists x ∈ 〈n, a〉 ≤ N〈a〉 such 
that 〈n〉x〈a〉 = 〈a〉〈n〉x. Let x = n0a

i with n0 ∈ N and i ∈ Z. Since N is abelian, 
〈n〉x〈a〉 = (〈n〉〈a〉)ai and so 〈n〉 permutes with 〈a〉. Therefore N ∩ B and A are totally 
permutable subgroups.
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(ii) Let Aq be a Sylow q-subgroup of A with q �= p and n ∈ N ∩ B. Then [〈n〉, Aq] ≤
N ∩ 〈n〉Aq = 〈n〉, which means that Aq normalizes 〈n〉. Since N ∩ B is abelian, we 
deduce that Op(A) acts as a universal power automorphism group on N ∩ B and the 
result follows.

(iii) By (ii), Op(A) acts as a universal power automorphism group on N = N ∩B. Let 
Ap be a Sylow p-subgroup of A. Then [Op(A), Ap] ≤ C := CG(N), which implies that 
ApC is normalized by A = Op(A)Ap. Using Lemma 2, we can deduce that ApC/C is nor-
mal in G/C, and so ApC/C ≤ Op(G/C). Since Op(G/C) = 1 (cf. [25, A. Lemma (13.6)]), 
we have that Ap centralizes N . Therefore Op′(A) centralizes N as desired. �

We recall in the next two lemmas the structure of monolithic primitive groups, i.e. 
primitive groups with a unique minimal normal subgroup (types 1 and 2), which are 
product of pairwise tcc-permutable subgroups.

Lemma 4. ([4, Lemma 4]) Let the group 1 �= G = G1 · · ·Gr be the product of pairwise 
permutable subgroups G1, . . . , Gr, for r ≥ 2. Assume that Gi and Gj are tcc-permutable 
subgroups for all i, j ∈ {1, . . . , r}, i �= j. Assume in addition that G is a primitive group 
of type 1. Let N be the unique minimal normal subgroup of G and p be a prime divisor 
of |N |. Then either G is supersoluble or the following conditions are satisfied:

(i) w.l.o.g. N ≤ G1;
(ii) G2 · · ·Gr is a cyclic group whose order divides p − 1;
(iii) there exists a maximal subgroup M of G with CoreG(M) = 1 such that M =

(M ∩G1)(G2 · · ·Gr) and M ∩G1 centralizes G2 · · ·Gr.

Lemma 5. ([4, Corollary 5]) Let the group G = G1 · · ·Gr be the product of pairwise 
permutable subgroups G1, . . . , Gr, for r ≥ 2, and Gi �= 1 for all i = 1, . . . , r. Assume 
that Gi and Gj are tcc-permutable subgroups for all i, j ∈ {1, . . . , r}, i �= j. Let N be a 
minimal normal subgroup of G. Then:

1. If N is non-abelian, then there exists a unique i ∈ {1, . . . , r} such that N ≤ Gi. 
Moreover, Gj centralizes N and N ∩Gj = 1 for all j ∈ {1, . . . , r}, j �= i.

2. If G is a monolithic primitive group, then the unique minimal normal subgroup N is 
abelian.

The next Theorem 1 gives information about minimal normal subgroups in relation 
with the factors of a tcc-permutable product. The cover-avoidance property of the factors 
of a tcc-permutable product will follow as an easy consequence of this result.

Theorem 1. Let the group G = AB be the product of the tcc-permutable subgroups A

and B. If N is a minimal normal subgroup of G, then {A ∩N, B ∩N} ⊆ {1, N}.
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Proof. Assume that the result is not true and let the group G = AB be a counterexample 
with minimal order. Then there exists a minimal normal subgroup N of G which does not 
satisfy the thesis. By Lemma 5 we have that N is an abelian p-group for some prime p. 
From Lemma 1 we deduce that N ∩ A �= 1 and N ∩ B �= 1. Without loss of generality 
we may assume that 1 �= A ∩ N �= N . We set C = CG(N) and note that G �= C. We 
distinguish two cases:
Case 1: N ∩B �= N .

Let q be the largest prime dividing the order of G/C. Without loss of generality we 
may assume that q divides the order of AC/C. Now, we split the proof into the next 
following steps:
Step 1.1 AC/C is a supersoluble group.

By [6, Lemma 2.7] we have that AU is a normal subgroup of G. Since N is a minimal 
normal subgroup of G and N ∩A �= N , we deduce that [AU , N ] = 1. Therefore, we have 
that AU ≤ C and AC/C is a supersoluble group.
Step 1.2 Let Aq be a Sylow q-subgroup of A. Then AqC is a normal subgroup of G. In 
particular, q �= p.

From Step 1.1 and the choice of q, we deduce that AqC/C = Oq(AC/C). By Lemma 2
we have that AC/C is a normal subgroup of G/C. Consequently, AqC/C is normal in 
G/C. Moreover, since Op(G/C) = 1 (cf. [25, A. Lemma (13.6)]), it follows that p �= q.
Step 1.3 Let Aq be a Sylow q-subgroup of A. Then Aq ≤ CA(N ∩B).

By Lemma 3, Op(A) normalizes N ∩ B and Op(A)/COp(A)(N ∩ B) is a cyclic group 
of order dividing p −1. If p divides the order of AC/C, then p < q by the choice of q and 
Step 1.2. Then Aq ≤ CA(N ∩ B) and we are done. Otherwise, for a Sylow p-subgroup 
Ap of A, we would have that A = Op(A)Ap ≤ NG(N ∩ B), which would imply that 
1 �= N ∩B is normal in G and so N = N ∩B, a contradiction.
Step 1.4 Contradiction to Case 1.

Let Aq be a Sylow q-subgroup of A. By Lemma 1 and Step 1.3, we have that 
[N, AqC] = [(N ∩ B)(N ∩ A), AqC] = [N ∩ A, AqC] ≤ N ∩ A �= N . But [N, AqC] is 
normal in G by Step 1.2, which implies [N, AqC] = 1 and Aq ≤ C, a contradiction.
Case 2: N ≤ B.

We split the proof into the following steps:
Step 2.1 AC = Op(A)C and it normalizes every subgroup of N .

By Lemma 3 we know that AC = Op(A)C and Op(A) acts as a universal power 
automorphism group on N = N ∩B. Hence Op(A)C normalizes every subgroup of N .
Step 2.2 B = G.

If K is a minimal normal subgroup of B contained in N , then K is normal in G by 
Step 2.1 and so we deduce that K = N . Assume that B is a proper subgroup of G. 
Hence, we can see that B = (A ∩ B)B is the product of the tcc-permutable subgroups 
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A ∩ B and B. The choice of G implies that either 1 = N ∩ (A ∩ B) = N ∩ A or 
N = N ∩ (A ∩B) ≤ A. Both cases are not possible, so G = B.
Step 2.3 The final contradiction.

By Lemma 3(i) and Step 2.2, we have that N ∩ A is a permutable subgroup of G. 
Applying [35] (see also [10, Corollary 1.5.6]) it follows that N ∩ A ≤ Z∞(G), since 
CoreG(N ∩ A) = 1. Therefore, N ≤ Z∞(G) and N = N ∩ A, a contradiction which 
concludes the proof. �

We recall that a subgroup U of a group G is said to cover a chief factor H/K of G
if HU = KU and to avoid H/K if U ∩ H = U ∩ K. The subgroup U is said to have 
the cover-avoidance property in G, and it is also called CAP-subgroup in this case, if U
either covers or avoids each chief factor of G ([25, A. Definition (10.8)]).

Corollary 1. Let the group G = AB be the product of the tcc-permutable subgroups A
and B. Then A and B are CAP-subgroups of G.

Proof. If H/K is a chief factor of G, then H/K is a minimal normal subgroup of G/K, 
which is a tcc-permutable product of the subgroups AK/K and BK/K. Let X ∈ {A, B}. 
By Theorem 1, XK/K either covers or avoids H/K and so X does, which proves the 
result. �

A corresponding result to Corollary 1 for mutually permutable products was proved 
by Beidleman and Heineken in [17].

Propositions 1 and 2 next study the cases when a minimal normal subgroup of a 
tcc-permutable product is either covered or avoided simultaneously by the two factors, 
in which cases the minimal normal subgroup has prime order. Examples (i), (iv) in 
Remark 1 below show that both cases are possible (in spite of the situation when the 
group is a nonsupersoluble monolithic primitive group; see Lemmas 4, 5).

Proposition 1. Let the group G = AB be the product of the tcc-permutable subgroups A

and B. Let N be a minimal normal subgroup of G. Assume that N ≤ A ∩ B. Then 
|N | = p, where p is a prime number.

Proof. From Lemma 5 we deduce that N is an abelian p-group for some prime p. By 
Lemma 3 (ii), (iii), we deduce that A = Op(A)Op′(A) and B = Op(B)Op′(B) normalize 
each subgroup of N ≤ A ∩B, which implies that |N | = p, since N is a minimal normal 
subgroup of G = AB. �

Nevertheless, the next example shows that it is not possible to replace tcc-permutable 
product by mutually permutable product in the previous result.

Example 1. Let X = Sym(3) be the symmetric group of degree 3. By [25, B. Corol-
lary (10.7)], X has an irreducible and faithful module V , which has dimension 2, over F5, 
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the field of 5 elements. Let G = [V ]X be the corresponding semidirect product, which 
is the mutually permutable product of A = V X3 and B = V X2, where Xp is a Sylow 
p-subgroup of X for p ∈ {2, 3} . We observe that V is a minimal normal subgroup of G, 
which is covered by both A and B, but V is not of prime order.

Next we will deal with the case when a minimal normal subgroup N in a tcc-
permutable product G = AB is avoided by the two factors, that is, N ∩A = 1 = N ∩B.

Proposition 2. Let the group G = AB �= 1 be the product of the tcc-permutable sub-
groups A and B. Let N be a minimal normal subgroup of G. Assume that N ∩ A =
N ∩B = 1. Then |N | = p, where p is a prime number.

Proof. Assume that the result is false and let the group G = AB be a counterexample 
with |G| minimal, as in the statement. Let N be a minimal normal subgroup of G such 
that N ∩A = N ∩B = 1 but N is not of prime order. From Lemma 5 we deduce that N
is an abelian p-subgroup for some prime p. (We notice that the hypotheses of the result 
imply that A �= 1 and B �= 1.) We split the proof into the following steps:
Step 1. G/CG(N) is a cyclic group.

By [4, Proposition 1] we know that A′ and B′ are subnormal subgroups of G. Since 
N is a minimal normal subgroup of G, we have that N ≤ NG(A′) ∩ NG(B′) (cf. [25, 
A. Lemma (14.3)]). Then [A′, N ] = [B′, N ] = 1, because N∩A = N∩B = 1. On the other 
hand, from Lemma 2, it follows that [A, B] ≤ CG(N). Consequently, G′ = A′[A, B]B′ ≤
CG(N) and G/CG(N) is an abelian group. Now we conclude that G/CG(N) is a cyclic 
group (cf. [25, B. Theorem (9.8)]), as desired.
Step 2. N is not a minimal X-invariant subgroup for X ∈ {A, B}. In particular, ACG(N)
and BCG(N) are proper subgroups of G.

Assume that N is a minimal A-invariant subgroup. If AN < G, since AN = A(AN ∩
B) �= 1 is the product of the tcc-permutable subgroups A and AN ∩ B, and N is a 
minimal normal subgroup of AN , which is avoided by both A and AN ∩ B, the choice 
of G implies that |N | = p, a contradiction. Consequently, G = AN and A is a maximal 
subgroup of G. Therefore, if we set L = CoreG(A), we have that G/L = (A/L)(NL/L) is 
a primitive group with a unique minimal normal subgroup NL/L ∼= N , since A ∩N = 1. 
Moreover, G/L = (A/L)(BL/L) is the product of the tcc-permutable subgroups A/L

and BL/L. By Lemma 4, either G/L is supersoluble or A/L is a cyclic group whose order 
divides p − 1. In both cases we can conclude that |N | = p, a contradiction. Therefore, 
N is not a minimal A-invariant subgroup, and the same is true for B. In particular, 
ACG(N) and BCG(N) are proper subgroups of G.
Step 3. The final contradiction.

By Step 2 there exists M a maximal subgroup of G containing ACG(N). Observe that 
M = A(M ∩B) �= 1 is the product of the tcc-permutable subgroups A and B ∩M , and 
N ≤ M . The minimal choice of G implies that N is not a minimal normal subgroup of M . 
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Moreover, any minimal normal subgroup of M contained in N has order p. On the other 
hand, from Step 1 we have that G/CG(N) is abelian, so M �G and |G : M | = q where q
is a prime. We consider now N as an irreducible FpG-module, Fp the field of p-elements, 
and apply Clifford’s theorem (cf. [25, B. Theorem (7.3)]). Let W be an irreducible 
FpM -submodule of NM and denote by H(W ) the homogeneous component of N belong-
ing to W and IG(W ) = NG(H(W )) the inertia subgroup of W . Then either IG(W ) = M

or IG(W ) = G. In the first case, since H(W ) is irreducible as FpIG(W )-module, it 
follows that W = H(W ) has order p and |N | = pq, because N is a direct sum of its ho-
mogeneous components. If this were the case for any maximal subgroup of G containing 
either ACG(N) or BCG(N), we would deduce that G/ACG(N) and G/BCG(N) would 
be q-groups, and then G/(ACG(N) ∩ BCG(N)) would be a cyclic q-group. Therefore, 
since G = AB, it would follow that either G = A(ACG(N) ∩ BCG(N)) = ACG(N) or 
G = B(ACG(N) ∩ BCG(N)) = BCG(N), a contradiction with Step 2. Hence we may 
assume that IG(W ) = G and then N is a homogeneous FpM -module with |W | = p. But 
this implies that M acts as a universal power automorphism group on N , in particular, 
M normalizes every subgroup of N , and then N is a minimal B-invariant subgroup, the 
final contradiction. �

As mentioned in the Introduction (see also Lemmas 4, 5), the structure of tcc-
permutable products which are monolithic primitive groups has been described in 
[4, Lemma 4, Corollary 5]. As an application of our results on the cover-avoidance prop-
erty, the structure of a tcc-permutable product of two factors, which is a non-monolithic 
primitive group, is also clarified.

Corollary 2. Let the group G = AB be the product of the tcc-permutable subgroups A
and B with A �= 1 and B �= 1. Assume in addition that G is a primitive group of type 3, 
i.e. with two minimal normal subgroups. Let N1 and N2 be the minimal normal subgroups 
of G. Then G = A × B where A = N1, B = N2 and N1 ∼= N2 are nonabelian simple 
groups.

Proof. From [25, A. Theorem (15.2)] we have that G is a primitive group with stabi-
lizer M , G = MN1 = MN2, N1 = CG(N2) and N2 = CG(N1). Using Lemma 2 we 
deduce that [A, B] ≤ CG(N1) ∩CG(N2) = N2 ∩N1 = 1. By Proposition 1, Proposition 2
and Corollary 1 we have w.o.l.g that N1 ≤ A and B ∩ N1 = 1. So, we obtain that 
[N1, B] = 1 and 1 �= B ≤ CG(N1) = N2. Using again Corollary 1 we have that B = N2

and [A, N2] = 1. We conclude that A = N1 and G = A × B = N1 × N2 with N1 ∼= N2

nonabelian simple groups. �
Remark 1. We refer to [2, Examples 2, 3] (also [6, Examples 3.5, 3.6]) and to [4, Exam-
ple 1] for examples showing the failure of significant structural properties and results of 
products of totally permutable subgroups when considering instead tcc-permutability.
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When comparing totally permutable products and mutually permutable products, the 
intersection of the factors has played a key role. We gather next some significant previ-
ous results in this direction as well as basic structural properties of mutually permutable 
products in relation with minimal normal subgroups. Also the statement 4 below is a 
key fact within the study of mutually permutable products in the framework of Fit-
ting classes. Then we provide examples showing that they are missed when considering 
tcc-permutability. These examples together with Example 1, comment after Theorem 2
in relation with Part (i), and Proposition 3 (ii) with the previous comment, show that 
the concepts of tcc-permutability and mutual permutability are not connected with each 
other and basic structural properties of corresponding products are different, as men-
tioned in the Introduction.

Known results on mutually and totally permutable products of subgroups:

1. ([34, Lemma 2]) If G = AB is the product of the totally permutable subgroups A
and B, then A ∩B is a nilpotent subnormal subgroup of G.
For statements 2–7, let G = AB be the product of the mutually permutable sub-
groups A and B. Then:

2. ([23, Proposition 3.5(b)]) If A ∩ B = 1, then A and B are totally permutable sub-
groups.

3. ([17, Lemma 1(v)], [23]) 〈(A ∩B)G〉/CoreG(A ∩B) is nilpotent; in particular, A ∩B

is subnormal in G.
4. ([22, Theorem 2]) There exist subnormal subgroups L and M of G, with A′ ≤ L ≤ A

and B′ ≤ M ≤ B, such that A ∩B ≤ L ∩M and G′ ≤ LM .
5. ([10, Lemma 4.3.3(3)]) If N is a minimal normal subgroup of G, then either N ≤ A ∩B

or [N, A ∩B] = 1.
6. ([17, Lemma 1 (viii)], [10, Lemma 4.3.3(5)]) If N is a minimal normal subgroup of G

with N ≤ A and N ∩B = 1, then either [N, A] = 1 or [N, B] = 1.
7. ([17, Lemma 2)], [10, Lemma 4.3.9)]) If N is a minimal normal subgroup of G with 

N ∩ A = 1 = N ∩ B, then N ∼= Zp, where p is a prime, and either [N, A] = 1 or 
[N, B] = 1

Examples on tcc-permutable products of subgroups:

(i) (Failure of 1. when considering tcc-permutability instead of total permutability.)
Let G = Sym(3) be the symmetric group of degree 3 and consider G = AB the 
trivial factorization with G = A = B. Then A and B are tcc-permutable subgroups 
in G, but A ∩B = G = Sym(3) /∈ N . (See also (iii).)
The next examples show the failure of statements 2–7 when considering tcc-
permutability instead of mutual permutability

(ii) (Failure of 2, 6.) We consider the group constructed in [2, Example 3]: Let V =
〈a, b〉 ∼= Z5 × Z5 and Z6 ∼= C = 〈α, β〉 ≤ Aut(V ) given by aα = a−1, bα = b−1; 
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aβ = b, bβ = a−1b−1. Let G = [V ]C be the corresponding semidirect product of V
with C. Set A = 〈α〉 and B = V 〈β〉. Then G = AB is the tcc-permutable product 
of the subgroups A and B. But:

Obviously A ∩B = 1 but A and B are not totally permutable.
V is the unique minimal normal subgroup of G, V ≤ B and A ∩ V = 1, but 
[V, A] �= 1 and [V, B] �= 1.

(iii) (Failure of 3, 4, 5.) ([2, Example 2]) Let again G = Sym(3) be the symmetric group 
of degree 3 and consider the factorization G = AB with A = G and B a Sylow 
2-subgroup of G. Then A and B are tcc-permutable in G. But:

A ∩B = B is not a subnormal subgroup of G;
〈(A ∩B)G〉/CoreG(A ∩B) ∼= G = Sym(3) is not nilpotent.
Since A ∩B = B and the unique subnormal subgroup M of G contained in B is 
the trivial one, there exists no subnormal subgroup L of G, with A′ ≤ L ≤ A, 
such that A ∩B ≤ L ∩M .
Let N be the Sylow 3-subgroup of G. Then N is the unique minimal normal 
subgroup of G, N � A ∩B and [N, A ∩B] = [N, B] �= 1.

(iv) (Failure of 7.) Let V = 〈a, b〉 ∼= Z3 × Z3 and Z2 ∼= C = 〈α〉 ≤ Aut(V ) given 
by aα = a−1, bα = b−1. Let G = [V ]C be the corresponding semidirect product
of V with C. Set A = [〈a〉]〈α〉 and B = [〈b〉]〈α〉. Then G = AB and A and B are 
tcc-permutable subgroups.
Let D be the diagonal subgroup of V . Then D is a minimal normal subgroup of G, 
A ∩D = B ∩D = 1, but [D, A] �= 1 and [D, B] �= 1.
(Proposition 2 shows that the first part of statement 7 holds for tcc-permutable 
products.)

Nevertheless, the intersection A ∩B of the factors of a tcc-permutable product G = AB

of subgroups A and B still enjoys some nice properties. As a direct consequence of 
Proposition 1, by considering the trivial factorization A ∩B = (A ∩B)(A ∩B), it follows 
that A ∩B is supersoluble, since its chief factors have prime order (Corollary 3(i) below). 
Though it should be mentioned that this fact is also a consequence of a stronger result 
[26, Theorem 3.8] involving c-permutability, which shows in particular that a group 
is supersoluble if and only if every maximal subgroup is c-permutable in the group. 
The second part of the next Corollary 3 is a consequence of a significant property of 
tcc-permutable products, obtained in [4, Theorem 3], which states that the nilpotent 
residuals of the corresponding factors are normal subgroups in the whole group. With 
the previous notation, since A = A(A ∩ B) and B = B(A ∩ B) are tcc-permutable 
products of the subgroups A and A ∩B, and B and A ∩B, respectively, we can deduce 
that G = AB normalizes (A ∩B)N . Hence, the following result follows.

Corollary 3. Let the group G = AB be the product of the tcc-permutable subgroups A

and B. Then,
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(i) A ∩B is a supersoluble group.
(ii) (A ∩ B)N is a normal subgroup of G. In particular, (A ∩ B)/CoreG(A ∩ B) is a 

nilpotent group.

Corollary 3(i) will be applied in the next section to prove Theorem 3.

3. On T-, PT-, PST-, SC- and SM-groups and conditional permutability

First, we collect here the permutability notions considered in this section: a subgroup 
of a group G is called permutable if it permutes with every subgroup of G, and a subgroup 
of G is called S-permutable if it permutes with all Sylow subgroups of G. A group G is 
called a T-group if normality is a transitive relation in G, that is, if all subnormal sub-
groups of G are normal in G. A group G is called a PT-group if permutability is a 
transitive relation in G. As a consequence of [36, 13.2.1], PT-groups are exactly those 
groups where all subnormal subgroups are permutable. A group G is called a PST-
group if S-permutability is a transitive relation in G. From [31, Satz 1], PST-groups 
are exactly those groups in which all subnormal subgroups are S-permutable. Robinson 
in [37] introduced and classified SC-groups as groups whose chief factors are simple. 
Finally, Beidleman and Heineken in [16] began the study of the so-called SM-groups, 
which are those groups where each subnormal subgroup permutes with every maximal 
subgroup. The classes of all finite T-, PT-, PST-, SC- and SM-groups will be denoted 
by T , PT , PST , SC and SM, respectively. They form the following ascending series 
T ⊂ PT ⊂ PST ⊂ SC ⊂ SM. (We refer to [16, Theorem A] for the last containment 
and to [10] for an overview of the rest.)

We start the study with the class SC. We note that this class is a formation closed 
under taking normal subgroups, but it is neither subgroup closed nor saturated (see [10, 
Theorem 1.6.3]). As a consequence of Corollary 1 we obtain the following result:

Theorem 2. Let the group G = AB be the product of the tcc-permutable subgroups A

and B. Then:

(i) If A and B ∈ SC, then G ∈ SC.
(ii) If G ∈ SC, then A and B ∈ SC.

Proof. (i) We argue by induction on the order of G. We notice that, for any minimal 
normal subgroup N of G, the factor group G/N = (AN/N)(BN/N) is the product of 
the tcc-permutable SC-subgroups AN/N and BN/N . Then, by induction we have that 
G/N is an SC-group. Using Corollary 1 we have that A and B either covers or avoids N . 
If either N ≤ A ∩ B or N ∩ A = N ∩ B = 1, then by Proposition 1 and Proposition 2
it follows that |N | = p, where p is a prime. Therefore, we have that G is an SC-group. 
Hence, w.o.l.g. we may assume that N ∩ A = 1 and N ≤ B. We take N0 a minimal
normal subgroup of B contained in N . By hypothesis AN0 ≤ G. We notice that A
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normalizes N0, because N0 = N0(N ∩ A) = N ∩ AN0. So, we deduce that N = N0 and 
N is a minimal normal subgroup of B. Since B is an SC-group, we obtain that N is a 
simple group. Consequently, G is an SC-group, which proves (i).

(ii) We prove that A and B are SC-groups by induction on the order of G. We 
notice that, for any minimal normal subgroup N of G, the factor group G/N =
(AN/N)(BN/N) satisfies the hypothesis and, by induction, we have that AN/N and 
BN/N are SC-groups. Since G is an SC-group, N is a simple group. From Corollary 1
we have that A either covers or avoids N . Therefore N ≤ A or N ∩ A = 1, and in both 
cases it follows that A is an SC-group. Analogously, B is an SC-group, and (ii) holds. �

We recall that soluble SC-groups are exactly supersoluble groups. Therefore the above 
result can be seen as a natural extension of the well-known criterion of supersolubility 
due to Asaad and Shaalan, which states that a totally permutable product of super-
soluble subgroups is supersoluble ([7, Theorem 3.1]). More exactly, the result of Asaad 
and Shaalan appears as a consequence of Theorem 2 together with [2, Remark], which 
provides the solubility of a product of totally c-permutable soluble subgroups.

Also in relation with the study of tcc-permutable products in the framework of for-
mation theory, it may be of interest to point out here that SC is a formation containing 
all supersoluble groups, and closed with respect to tcc-permutable products, which is 
not saturated (see [6, Theorem 1.4], [4, Theorem 5, Example 1]).

A result corresponding to Theorem 2 for totally permutable products was obtained in 
[8, Theorem A] for two factors, and in [19, Theorem A] for an arbitrary number of factors, 
though also the arguments used for the proofs here are different. Regarding mutually 
permutable products of subgroups, a corresponding result to Part (ii) in Theorem 2
was obtained in [9, Theorem 3], also in [18, Theorem 3] using a different approach, 
for two factors, and in [10, Theorem 4.5.11] for an arbitrary number of factors. The 
corresponding result to Part (i) for this kind of products has been obtained under the 
additional hypothesis that the intersection of the factors has trivial core ([9, Theorem 2], 
[18, Theorem 3]).

We continue the study with the class SM. This class is closed under taking factor 
groups and normal subgroups. We will need the following structural result on SM-groups:

Lemma 6. ([16, Theorem A]) Let G be a group. Then the following are equivalent:

(i) G is an SM-group;
(ii) G/φ(G) is an SC-group;
(iii) (a) all soluble quotients of G are supersoluble,

(b) all perfect subnormal subgroups of G are normal,
(c) G/φ(G) is an extension of a direct product of non-abelian simple groups by a 

supersoluble group.
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Beidleman, Hauck and Heineken proved in [19, Theorem B] that the class SM is closed 
with respect to products of pairwise totally permutable subgroups. Next, we obtain a 
corresponding result for products of two tcc-permutable subgroups, using also a different 
approach, as application of Corollary 1.

Theorem 3. Let the group G = AB be the product of the tcc-permutable subgroups A

and B. Then:

(i) If A and B ∈ SM, then G ∈ SM.
(ii) If G ∈ SM, then A and B ∈ SM.

Proof. (i) Assume that the result is false and let the group G = AB be a counterexample 
with |G| minimal, and subgroups A and B as in the statement. Hence A �= 1 and B �= 1. 
Let H be a subnormal subgroup of G of minimal order such that H does not permute 
with some maximal subgroup of G, say M . We split the proof into the following steps:
Step 1. G is a primitive group of type 1 with G = NM , CoreG(M) = 1, N the unique 
minimal normal subgroup of G, CG(N) = N , and N ∩ M = 1. Moreover, G is not a 
supersoluble group.

Assume that C := CoreG(M) �= 1. Since the factor group G/C = (AC/C)(BC/C)
satisfies the hypotheses of the result, the choice of G implies that G/C is an SM-group. 
Hence, HM = (HC)M = M(HC) = MH, a contradiction. Therefore, M is a maximal 
subgroup of G with CoreG(M) = 1, and G is a primitive group. From Lemma 5, G is 
a primitive group of type either 1 or 3. If G were a primitive group of type 3, then 
Corollary 2 implies that G = A ×B with A ∼= B nonabelian simple groups. By Theorem 2, 
G would be an SM-group, a contradiction. Therefore, G is a primitive group of type 1. If 
G ∈ U , then G would be an SC-group and, consequently, an SM-group, a contradiction 
which proves Step 1.
Step 2. H ≤ N .

If 1 < N ∩H < H, the minimal choice of H implies that (H ∩ N)M = M(H ∩ N). 
Since M is a maximal subgroup of G, we have that G = (N ∩ H)M and G = HM , 
a contradiction. Hence, either N ∩ H = H or N ∩ H = 1. Assume that N ∩ H = 1. 
We notice that N normalizes H, because H is a subnormal subgroup of G (cf. [25, 
A. Lemma (14.3)]). So, it follows that [N, H] ≤ N ∩H = 1. Since CG(N) = N , we have 
that H ≤ N , a contradiction. Consequently, N ∩H = H, and H ≤ N , as desired.
Step 3. Final contradiction.

From Steps 1, 2 and Lemma 4, we may assume w.l.o.g. that H ≤ N ≤ A = N(M ∩A)
and M = (M ∩ A)B. By Lemma 3, B normalizes every subgroup of N . In particular, 
B permutes with H, and also N is a minimal subgroup of A, which implies that M ∩A

is a maximal subgroup of A. Since A is an SM-group, the subnormal subgroup H of A
permutes with the maximal subgroup M ∩ A of A. Consequently, H permutes with 
M = B(M ∩A), the final contradiction.
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(ii) Assume that the result is false, and let the group G = AB be a counterexample 
with |G| + |A| + |B| minimal, where A and B are subgroups of G as in the statement. 
From Lemma 6 we have that G/φ(G) is an SC-group. If φ(G) = 1, it follows from 
Theorem 2 that A and B are SC-groups and, consequently, A and B are SM-groups. 
Hence φ(G) �= 1. Let N be a minimal normal subgroup of G such that N ≤ φ(G). We 
notice that G/N = (AN/N)(BN/N) satisfies the hypotheses of the result. The choice 
of G implies that AN/N and BN/N are SM-groups.

We claim that A is an SM-group. Using Corollary 1 we have that A either covers or 
avoids N . If N ∩A = 1, then A is an SM-group. Assume now that N ≤ A. If N ≤ φ(A), 
since A/N is an SM-group, it follows that A/φ(A) is an SC-group by Lemma 6. But, 
again Lemma 6 implies that A is an SM-group. Consider now the case that N is not 
contained in φ(A), and let M be a maximal subgroup of A such that A = NM . Since 
A and B are tcc-permutable subgroups and N is normal in G, we may assume that M
permutes with B. Then G = AB = NMB = MB is the product of the tcc-permutable 
subgroups M and B, because N ≤ φ(G). The choice of (G, A, B) implies that M and 
B are SM-groups. On the other hand, A = A ∩ MB = M(A ∩ B) is the product of 
the tcc-permutable subgroups M and A ∩B. By Corollary 3(i), A ∩B is a supersoluble 
group. Consequently, A ∩ B is an SC-group and so also an SM-group. Hence, Part (i) 
implies now that A is an SM-group, and the claim is proved.

Analogously, B is an SM-group, which provides the final contradiction and concludes 
the proof. �

Now we consider the relationship between tcc-permutability and the classes T , PT
and PST . We recall that these three classes are closed under taking quotient groups and 
normal subgroups.

Again as application of the cover-avoidance property in tcc-permutable products of 
groups, obtained in Corollary 1, we will show first that the property of being a T-group, 
a PT-group or a PST-group is inherited by the factors in a tcc-permutable product 
(Theorem 4 below). Corresponding results have been obtained for pairwise totally per-
mutable products of subgroups ([19, Theorem C]; see also [8, Theorem B]) as well as for 
mutually permutable products of two factors ([18, Theorem 5]). In fact, in order to prove 
Theorem 4 it is possible to argue as in the proof of [18, Theorem 5], taking into account 
Corollary 1, and after stating, as in the referred paper, the results about the soluble 
radical and residual in Part (i) and first statement of Part (ii) of the next Proposition 3.

Regarding Part (i) of Proposition 3, the behaviour of the F-residual in a tcc-
permutable product, for a saturated formation F containing all supersoluble groups, 
has been studied in [6] (under the additional hypothesis that F ⊆ S) and [4] (in the 
general case). The required result here, for the soluble residual, is a particular case of 
[6, Corollary 1.5] (see also [4, Corollary 7]) when considering the formation of all soluble 
groups.

On the other hand, a corresponding result to the first statement in the next Propo-
sition 3 (ii), for mutually permutable products, has been obtained in [18, Theorem 4]. 
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Taking into account [6, Lemma 2.3], Lemma 5 and Lemma 1, it is also possible to adapt 
the arguments in the proof of [18, Theorem 4], to prove that XS = X∩GS for X ∈ {A, B}
and a tcc-permutable product G = AB of subgroups A and B.

It is observed in [18, Example] that in general GS �= ASBS in a mutually permutable 
product G = AB of subgroups A and B. However, as proved next, this result holds for 
tcc-permutable products.

We state now the following result:

Proposition 3. Let the group G = AB be the product of tcc-permutable subgroups A

and B. Then:

(i) ([6, Corollary 1.5], [4, Corollary 7]) AS and BS are normal subgroups in G and 
GS = ASBS .

(ii) AS = A ∩GS , BS = B ∩GS , and GS = ASBS .

Proof. By the previous comments, we need only to prove that GS = ASBS . Assume that 
this result is false and let the group G = AB be a counterexample with |G| minimal, 
and A and B subgroups as in the statement. By Lemma 1, we have that ASBS = (A ∩
GS)(B ∩GS) is a normal subgroup of G and ASBS ≤ GS . Assume first that ASBS �= 1. 
We notice that G/ASBS = (ABS/ASBS)(BAS/ASBS) is the tcc-permutable product of 
the subgroups ABS/ASBS y BAS/ASBS . Moreover, (G/ASBS)S = GS/ASBS . Whence, 
the choice of G implies that:

1 �= GS/ASBS = (G/ASBS)S = (ABS/ASBS)S(BAS/ASBS)S
= ((GS/ASBS) ∩ (ABS/ASBS))((GS/ASBS) ∩ (BAS/ASBS))
= ((GS ∩A)BS/ASBS)((GS ∩B)AS/ASBS) = ASBS/ASBS ,

a contradiction.
Hence, ASBS = 1 and S := GS �= 1. Also, A �= 1 and B �= 1. We claim that 

AS is a proper subgroup of G. Assume that AS = G. We notice that S < BS, and 
so BS = BS ∩ G = BS ∩ AS = (BS ∩ A)S, which implies that BS ∩ A �= 1. Since 
[A, B] ≤ S, by [4, Theorem 4], we have that [BS ∩ A, A] ≤ S ∩ A = AS = 1, which 
implies that 1 �= BS ∩A ≤ Z(A) ≤ AS = 1, a contradiction which proves the claim.

Now, on the one hand, AS = AS ∩G = AS ∩AB = A(AS ∩B) is the tcc-permutable 
product of the subgroups A and AS∩B. The choice of G implies that (AS)S = AS(AS∩
B)S = (AS ∩B)S ≤ B.

On the other hand, S ≤ (AS)S = S((AS)S ∩A) = SAS = S.
Consequently, S = (AS)S ≤ B, which implies S ≤ BS = 1, the final contradiction 

which proves the result. �
Remark 2. 1. Example (iii) in Remark 1 shows that the soluble radicals of the factors in 
a tcc-permutable product are not necessarily normal subgroups in the whole group.
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2. Totally permutable products in the context of Fitting classes have been studied in 
[28–30]. Particularly, a corresponding result to Proposition 3 (ii) for a general Fischer 
class containing all supersoluble groups, instead of the class S of soluble groups, and a 
pairwise totally permutable product of subgroups appears in [30, Theorem 1].

We still follow the notation introduced in [18], to prove the corresponding above-
mentioned Theorem 5 there. Let Θ ∈ {T , PT, PST }. A subnormal subgroup H of a 
group G is said to be Θ-well embedded in G if

(a) H is a normal subgroup of G for Θ = T ,
(b) H is a permutable subgroup in G for Θ = PT ,
(c) H is an S-permutable subgroup in G for Θ = PST ,

Consequently, the following result holds:

Theorem 4. Let the group G = AB be the product of the tcc-permutable subgroups A

and B. If G ∈ Θ, then A, B ∈ Θ.

Remark 3. The converse of Theorem 4 does not hold in general, not even if the group 
G = AB is a product of totally permutable subgroups A and B, as stated in [19], as 
well as in [8]; the direct product of the symmetric group of degree three with a cyclic 
group of order three is an example. Though Theorem C in [8] shows that a positive 
result is possible for totally permutable products of two subgroups under the additional 
hypothesis that the indices of the factors are coprime. We prove next that a corresponding 
result for tcc-permutable products still holds. Using the above notation we formulate 
and prove the following theorem. We notice that some arguments used here appear in 
[8, Theorem C].

Theorem 5. Let the group G = AB be the product of the tcc-permutable subgroups A

and B. Assume that (|G : A|, |G : B|) = 1. If A, B ∈ Θ, then G ∈ Θ.

Proof. Assume that the result is false and let G = AB be a counterexample with |G|
being minimal and A and B tcc-permutable. Let H be a subnormal subgroup of G of 
minimal order such that H is not Θ-well embedded in G. We split the proof into the 
following steps:
Step 1. CoreG(H) = 1 and H has a unique maximal normal subgroup.

Set L = CoreG(H) and assume that L �= 1. Since the factor group G/L =
(AL/L)(BL/L) satisfies the hypotheses of the result, the choice of G implies that H/L

is Θ-well embedded in G/L. Therefore, H is Θ-well embedded in G, a contradiction. 
Then L = 1. Let M1 and M2 be two maximal normal subgroups of H. The choice of H
implies now that M1 and M2 are Θ-well embedded in G. Consequently, H = M1M2 is 
Θ-well embedded in G, a contradiction which completes the proof of Step 1.
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Step 2. H is a soluble group.

Let T = HS denote the soluble residual of H. We notice that A and B are SM-groups, 
and so is G, by Theorem 3. Therefore, Lemma 6 implies that T is a normal subgroup 
of G, because T is a perfect subnormal subgroup of G. Consequently, T ≤ CoreG(H) = 1
and H is a soluble group, as claimed.

Step 3. The final contradiction.

Now, we distinguish the following cases:

Case Θ = T . From Step 1, Step 2 and the minimal choice of H, we deduce that H is 
a p-group for some prime p. W.l.o.g. we may assume that p does not divide |G : A|, 
because (|G : A|, |G : B|) = 1. Hence, H ≤ Op(G) ≤ A and H is a normal subgroup 
of A, because A is a T-group. We claim that H is normalized by B. We notice first 
that |B| = |A ∩ B||G : A|, and consequently a Sylow p-subgroup of A ∩ B is a Sylow 
p-subgroup of B which normalizes H. Moreover, by hypothesis, for each prime q �= p

dividing the order of B, there exists a Sylow q-subgroup Bq of B which permutes with H. 
But then H is normalized by Bq since H is a subnormal Sylow p-subgroup of HBq, and 
the claim follows. Consequently, H is a normal subgroup of G, a contradiction.

Case Θ = PT or Θ = PT S. Since H is not Θ-well embedded in G, we claim that 
there is a p-subgroup P of G, for some prime p, which does not permute with H, and 
which is a Sylow p-subgroup of G in the case Θ = PT S. If Θ = PT , there exists a 
subgroup W of G which does not permute with H. Therefore, for some prime p, there 
exists a Sylow p-subgroup P of W such that P does not permute with H. The case 
Θ = PT S is obvious, and the claim is proved. W.l.o.g. we may assume that p does 
not divide |G : A|. For any g ∈ G it is well-known that G = AgB, and also Ag and 
B are tcc-permutable subgroups ([6, Lemma 2.1]). Therefore, we may also assume that 
P ≤ A. By Step 1 and Step 2, there exists a unique maximal normal subgroup M of H
and H/M is a cyclic group of prime order, q say. The minimal choice of H implies that 
MP = PM . Assume first that q does not divide |G : A|. Then a Sylow q-subgroup Aq

of A is a Sylow q-subgroup of G and Aq ∩ H is a Sylow q-subgroup of H, since H is 
subnormal in G. Consequently, H = M(H ∩A). But H ∩A is a subnormal subgroup of 
A ∈ Θ, which implies that H ∩ A permutes with P ≤ A, and so H permutes with P , 
a contradiction. Consequently, q divides |G : A| and so q does not divide |G : B|. As 
before, if Bq is a Sylow q-subgroup of B, then Hq := Bq ∩H is a Sylow q-subgroup of H, 
which is contained in B, and H = MHq. Let N be a minimal normal subgroup of G. 
We observe that N is simple, because G is an SC-group by Theorem 2. Moreover, since 
N normalizes H and CoreG(H) = 1 by Step 1, it follows that [N, H] ≤ N ∩H = 1, i.e. 
N centralizes H. Now, the choice of G implies that HN/N is Θ-well embedded in G/N

and so HNP is a subgroup of G. By hypothesis there exists x ∈ 〈Hq, P 〉 ≤ HNP such 
that Hx

q P = PHx
q , where x = hny with h ∈ H, n ∈ N and y ∈ P . Then Hh

q P = PHh
q , 

because N centralizes H. Therefore, P permutes H = MHh
q , the final contradiction 

which concludes the proof. �
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