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1. Introduction and the main results

Throughout the article K will denote a fixed algebraically closed field. By an algebra is 
meant an associative finite dimensional K-algebra with an identity, which we shall assume 
(without loss of generality) to be basic and indecomposable. For an algebra A, we denote 
by modA the category of finite dimensional (over K) right A-modules, by indA its full 
subcategory formed by the indecomposable modules, and by D : modA → modAop

the standard duality HomK(−, K). Given a module M in modA, we denote by [M ] the 
image of M in the Grothendieck group K0(A) of A. Thus [M ] = [N ] if and only if the 
modules M and N have the same simple composition factors including the multiplicities. 
An algebra A is called selfinjective if AA is an injective module, or equivalently, the 
projective and injective modules in modA coincide. An important class of selfinjective 
algebras is formed by the orbit algebras R/G, where R is a selfinjective locally bounded 
K-category and G is an admissible group of automorphisms of R. Then we have a Galois 
covering R → R/G which frequently allows us to reduce the representation theory of 
R/G to the representation theory of R. In the theory, the selfinjective orbit algebras 
B̂/G given by the repetitive categories B̂ of triangular algebras B and infinite cyclic 
admissible groups G of automorphisms of B̂ are of particular interest. We also note that 
for the algebras B of finite global dimension, the stable module category mod B̂ of B̂ is 
equivalent (as a triangulated category) to the derived category Db(modB) of bounded 
complexes over modB [13].

An important combinatorial and homological invariant of the module category modA
of an algebra A is its Auslander–Reiten quiver ΓA. The vertices of ΓA are the isoclasses 
[X] of modules X in indA, and the number of arrows starting at [X] and ending in 
[Y ] in ΓA is the number of linearly independent irreducible morphisms from X to Y in 
modA. Moreover, we have the Auslander–Reiten translations τA = DTr and τ−A = TrD. 
We shall identify a vertex [X] of ΓA with the module X. By a component of ΓA we 
mean the connected component of ΓA. For a component Γ of ΓA we denote by Γs its 
stable part, that is the subquiver of Γ obtained by deleting the τA-orbits of both the 
projective and the injective modules. The Auslander–Reiten quiver ΓA describes the 
structure of the quotient category modA/rad∞

A , where rad∞
A is the infinite Jacobson 

radical of modA (the intersection of all powers radi
A, i � 1, of the Jacobson radical radA

of modA). By a result due to Auslander [5], A is of finite representation type if and only 
if rad∞

A = 0 (see also [16] for an alternative proof of this result). On the other hand, if A
is of infinite representation type, then (rad∞

A )2 �= 0, by a result proved in [8]. In general, 
it is important to study the shape and behavior of the components of ΓA in the category 
modA. Recall that a translation quiver Γ = (Γ, τ) is said to be a tube if it contains a 
cyclic path and its underlying topological space is homeomorphic to S1 ×R+, where S1

is the unit circle and R+ is the non-negative real line [11], [26]. Then Γ is a stable tube if 
and only if it is of the form ZA∞/(τ r), for some integer r � 1. By a quasi-tube we mean a 
translation quiver Γ such that its full translation subquiver formed by all vertices which 
are not projective–injective is a tube [29].
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Following [30], a family C = (Cλ)λ∈Λ of components of ΓA is said to be generalized 
standard if rad∞

A (X, Y ) = 0 for all modules X and Y in C. It was proved in [30, (2.3)]
that every generalized standard family C of components in ΓA is almost periodic, that is, 
all but finitely many τA-orbits in C are periodic. In particular, for a selfinjective algebra 
A, every infinite generalized standard component C of ΓA is either acyclic with finitely 
many τA-orbits or a quasi-tube.

In the paper we are concerned with the structure of selfinjective algebras A for which 
the Auslander–Reiten quiver ΓA admits a generalized standard component. A distin-
guished class of such algebras is formed by the selfinjective algebras of finite representa-
tion type. By general theory (see [32, Section 3]) these algebras are socle deformations of 
the orbit algebras B̂/G, for tilted algebras B of Dynkin type and infinite cyclic groups 
G of automorphisms of B̂. Further, it was proved in [34–36] that every selfinjective al-
gebra A having an acyclic generalized standard component in ΓA is of the form B̂/G, 
for a tilted algebra B of Euclidean or wild type and an infinite cyclic group G of auto-
morphisms of B̂. On the other hand, the description of selfinjective algebras A whose 
Auslander–Reiten quiver admits a generalized standard quasi-tube is an exciting but 
difficult problem. Namely, every algebra is a quotient algebra of a selfinjective algebra 
A with ΓA having a generalized standard stable tube (see [30], [31]). We refer to [6], 
[14], [15], [17] for some work on the structure of selfinjective algebras having generalized 
standard families of quasi-tubes.

In order to formulate the main result of the paper we need to present some concepts.
Let A be an algebra. Recall that a smooth quasi-tube is a quasi-tube whose all non-

stable vertices are projective–injective. For a smooth quasi-tube T of ΓA we denote by 
s(T ) the number of simple modules in T , by p(T ) the number of projective modules 
in T , and by r(T ) the rank of the stable tube T s. Obviously, if A is selfinjective then 
each quasi-tube is smooth. Moreover, in this case we know that s(T ) + p(T ) � r(T ) − 1
for any quasi-tube T in ΓA [24]. A family C = (Cλ)λ∈Λ of smooth quasi-tubes in ΓA

is said to be maximally saturated by simple and projective modules if there exist two 
simple right A-modules S and T which are not in C and the following conditions are 
satisfied:

(MS1) s(Cλ) + p(Cλ) = r(Cλ) − 1 for any λ ∈ Λ;
(MS2) the simple composition factors of indecomposable modules in C are: S, T , the sim-

ple modules in C, and the socles and tops of indecomposable projective modules 
in C;

(MS3) C = (Cλ)λ∈Λ consists of all quasi-tubes such that Cλ admits an indecomposable 
module Eλ with socEλ = S and topEλ = T .

In particular, if p(Cλ) = 0 for any λ ∈ Λ, we say that a family C = (Cλ)λ∈Λ of stable 
tubes is maximally saturated by simple modules.
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The following main result of the paper describes the structure of all selfinjective alge-
bras whose Auslander–Reiten quiver admits a generalized standard family of quasi-tubes 
maximally saturated by simple and projective modules.

Theorem 1.1. Let A be a basic, connected, finite dimensional selfinjective algebra over 
an algebraically closed field K. The following statements are equivalent.

(i) ΓA admits a generalized standard family C = (Cλ)λ∈Λ of quasi-tubes maximally 
saturated by simple and projective modules.

(ii) A is isomorphic to an orbit algebra B̂/G of the repetitive category B̂ of a branch 
extension B of a canonical algebra C with respect to the canonical P1(K)-family of 
stable tubes of ΓC and G is an infinite cyclic group of automorphisms of B̂ of one 
of the forms:
(a) G = (ϕνB̂), for ϕ a strictly positive automorphism of B̂,
(b) G = (ϕνB̂), for B a canonical algebra and ϕ a rigid automorphism of B̂,
where νB̂ is the Nakayama automorphism of B̂.

We note that the selfinjective algebras occurring in the second statement of the above 
theorem are selfinjective algebras of strictly canonical type investigated in [18], [19], [20]. 
In particular, the structure and homological properties of the Auslander–Reiten quivers 
of selfinjective algebras of strictly canonical type were described in [18].

The following direct consequence of Theorem 1.1 and [25, Theorem 2] provides a 
characterization of the trivial extensions of the canonical algebras by their minimal 
injective cogenerators.

Corollary 1.2. Let A be a basic, connected, finite dimensional symmetric algebra over an 
algebraically closed field K. The following statements are equivalent.

(i) ΓA admits a generalized standard family C = (Cλ)λ∈Λ of quasi-tubes maximally 
saturated by simple and projective modules.

(ii) ΓA admits a generalized standard family T = (Tλ)λ∈Λ of stable tubes maximally 
saturated by simple modules.

(iii) A is isomorphic to the trivial extension B �D(B) of a canonical algebra B.

The paper is organized in the following way. In Section 2 we recall the canonical 
algebras and describe their canonical family of stable tubes. Section 3 presents quasi-tube 
enlargements of algebras. In Section 4 we show the needed facts on repetitive algebras 
and their orbit algebras. Section 5 contains results on selfinjective algebras of strictly 
canonical type which allow us to state that the implication (ii) ⇒ (i) of Theorem 1.1 is 
true. In Section 6 we complete the proof of Theorem 1.1. The final Section 7 is devoted 
to some examples illustrating the main results of the paper.



A. Jaworska-Pastuszak et al. / Journal of Algebra 520 (2019) 367–399 371
For basic background on the representation theory of algebras applied in the paper 
we refer to the books [1], [26], [27], [28], [37], [38].

2. Canonical algebras

The aim of this section is to introduce the canonical algebras and show that they 
are exactly the algebras whose Auslander–Reiten quiver contains a faithful generalized 
standard family of stable tubes maximally saturated by simple modules.

Throughout the paper for a vertex x in the Gabriel quiver QA of an algebra A, by 
S(x), P (x) and I(x) we denote a simple, indecomposable projective and indecomposable 
injective A-module at the vertex x, respectively. Moreover, by M = (Ma, Mα)a∈Q0,α∈Q1 , 
where Q0 is a set of vertices and Q1 is a set of arrows in QA, we denote a K-linear 
representation of QA. If I is an admissible ideal of KQA, then by representation M =
(Ma, Mα) of QA we will mean a representation satisfying the relations in I.

Let m ≥ 2 be an integer number, p = (p1, . . . , pm) a sequence of positive integer 
numbers and λ = (λ1, . . . , λm) a sequence of pairwise different elements of the projective 
line P1(K) = K ∪ {∞} normalized in such a way that λ1 = ∞ and λ2 = 0. Consider the 
quiver Δ(p) of the form
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α2,1 α2,p2

α1,1

αm,1

α1,p1

αm,pm

0 ω.

(1, 1) (1, 2) (1, p1 − 1)

(2, 1) (2, 2) (2, p2 − 1)

(m, 1) (m, 2) (m, pm − 1)

For m = 2, C(p, λ) is defined to be the path algebra KΔ(p) of the quiver Δ(p) over K. 
For m ≥ 3, C(p, λ) is defined to be the quotient algebra KΔ(p)/I(p, λ) of the path 
algebra KΔ(p) by the ideal I(p, λ) of KΔ(p) generated by the elements

αj,pj
. . . αj,1 + α1,p1 . . . α1,1 + λjα2,p2 . . . α2,1, where j ∈ {3, . . . ,m}.

Following [26], C(p, λ) is said to be a canonical algebra of type (p, λ), p the weight 
sequence of C(p, λ), and λ the (normalized) parameter sequence of C(p, λ). It follows 
from [26, (3.7)] that, for a canonical algebra C = C(p, λ), the Auslander–Reiten quiver 
ΓC of C is of the form

ΓC = PC ∪ T C ∪QC

where PC is a family of components containing all indecomposable projective C-modules 
(hence the unique simple projective C-module S(0) associated with the vertex 0 of Δ(p)),
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QC is a family of components containing all indecomposable injective C-modules (hence 

the unique simple injective C-module S(ω) associated with the vertex ω of Δ(p)), and 

T C = (T C
λ )λ∈P1(K) is a canonical P1(K)-family of pairwise orthogonal standard stable 

tubes separating PC from QC and containing all simple C-modules except S(0) and 

S(ω). Moreover, if rCλ denotes the rank of the stable tube T C
λ , then rCλi

= pi, for any 

i ∈ {1, . . . , m}, and rCλ = 1, for λ ∈ P1(K) \ {λ1, . . . , λm}.
Let C = C(p, λ) be a canonical algebra. We recall the description of modules ly-

ing on the mouths of stable tubes of the canonical P1(K)-family T C = (T C
λ )λ∈P1(K)

of ΓC :

(a) For λ = λ1 = ∞, the mouth of T C
λ = T C

∞ consists of the simple C-modules 
S(1, 1), . . . , S(1, p1 − 1) at the vertices (1, 1), . . . , (1, p1 − 1) of Δ(p), if p1 ≥ 2, and 

the nonsimple C-module E(∞) of the form
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with j ∈ {3, . . . , m};
(b) For λ = λ2 = 0, the mouth of T C

λ = T C
0 consists of the simple C-modules 

S(2, 1), . . . , S(2, p2 − 1) at the vertices (2, 1), . . . , (2, p2 − 1) of Δ(p), if p2 ≥ 2, and 

the nonsimple C-module E(0) of the form
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with j ∈ {3, . . . , m};
(c) For λ = λj with j ∈ {3, . . . , m}, the mouth of T C

λ consists of the simple C-modules 
S(j, 1), . . . , S(j, pj − 1) at the vertices (j, 1), . . . , (j, pj − 1) of Δ(p), if pj ≥ 2, and 

the nonsimple C-module E(λj) of the form
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for i ∈ {3, . . . , m} \ {j};
(d) For λ ∈ P1(K) \{λ1, . . . , λm}, the mouth of T C

λ consists of one nonsimple C-module 
E(λ) of the form
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with j ∈ {3, . . . , m}.

The following results describing generalized standard stable tubes of an Auslander–
Reiten quiver were established in [30, Corollary 5.3].

Proposition 2.1. Let A be an algebra and Γ a stable tube of ΓA. Then the following 
statements are equivalent.

(i) Γ is generalized standard.
(ii) Γ is standard.
(iii) The mouth of Γ consists of pairwise orthogonal bricks.
(iv) rad∞

A (X, X) = 0 for any module X in Γ.

Recall that an indecomposable A-module X is called a brick if its endomorphism 
algebra EndA(X) is isomorphic to K.

We now give the characterization of canonical algebras by means of a family of stable 
tubes which is maximally saturated by simple modules.

Theorem 2.2. Let B be an algebra. Then the following statements are equivalent.
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(i) ΓB contains a faithful generalized standard family C = {Cλ}λ∈Λ of stable tubes max-
imally saturated by simple modules.

(ii) B is a canonical algebra.

Proof. We prove only that (i) implies (ii), as the other implication is obvious in view of 
the above description.

Let n be the rank of K0(B) and S = S(0), T = S(ω) be simple B-modules at the 
vertices 0 and ω of the Gabriel quiver QB of B, respectively. Since C is a generalized 
standard family we have that the modules S and T are not isomorphic and hence 0 �= ω. 
For a module M ∈ C, by lC(M) we shall denote the length of M in the additive category 
add C of C in modB, that is, the length l of a chain M = M0 ⊃ M1 ⊃ ... ⊃ Ml = 0
of submodules of M which belong to C and such that Mj−1/Mj is a module from the 
mouth of Cλ, for 1 ≤ j ≤ l and some λ ∈ Λ. If X is a module from the mouth of Cλ, for 
some λ ∈ Λ, by X[j] we shall denote a module M which belongs to infinite ray starting 
at X such that lC(M) = j.

We have two cases to consider.
(1) Assume that the family C = {Cλ}λ∈Λ consists entirely of homogeneous tubes. 

Since C is faithful family maximally saturated by simple modules, we have that S and T
are the only simple B-modules. Moreover, by [30, Lemma 5.9] pdAX ≤ 1 and idAX ≤ 1
for any indecomposable module X ∈ C. Therefore, the Gabriel quiver QB of B does not 
admit any oriented cycle. Then, by (MS3), we conclude that QB is of the form:

0 ω

� ...� ◦◦
α1

αm

for some m ≥ 1. Assume that α1, ..., αm are linearly independent elements of the K-vector 
space eωBe0 and hence B is the path algebra KQB . Note that m ≥ 2 since B is 
representation-infinite. If m ≥ 3, then B is wild and ΓB does not contain tubes (see 
[28, XVIII.1.6]). Hence B is the path algebra KQB of the Kronecker quiver:

0 ω
�� ◦◦

α1

α2

and C = {Cλ}λ∈Λ is a unique P1(K)-family of homogeneous tubes of ΓB (see [27, 
(XI.4.6)]).

(2) Assume that {C1 ..., Cm}, for some m � 1, is a complete set of stable tubes of 
rank at least two in the family C = {Cλ}λ∈Λ. Note that all simple modules from C lie 
on mouths of these tubes. Since C is faithful, simple modules from C together with S
and T form the set of all simple B-modules. We mention also that the number m of 
nonhomogeneous tubes in ΓB is no greater than n, by [30, (2.2)].

Let Ci, for some i ∈ {1, ..., m}, be a tube of rank r(Ci) = pi ≥ 2. Denote by 
S(i,1), ..., S(i,pi−1) all simple modules which belong to Ci and by Fi the remaining module 



A. Jaworska-Pastuszak et al. / Journal of Algebra 520 (2019) 367–399 375
from the mouth of Ci. Note that Fi satisfies the condition (MS3), otherwise an epimor-
phism f : Eλ → T shall not factorize by a mouth module (see [27, Lemma X.2.9]).

We start with describing the Gabriel quiver QB of B. Since C is generalized standard 
family of stable tubes, by Proposition 2.1, we have that

dimKExt1B(S′, S′′) = dimKHomB(S′′, τBS
′) =

{
1, if τBS

′ = S′′

0, if τBS
′ �= S′′

,

for any simple modules S′, S′′ in C. Consider now the tube Ci. Without loss of generality 
we assume that τBS(i,l) = S(i,j) if l = j + 1, for j ∈ {1, ..., pi − 2} and τBS(i,1) = Fi, 
τBFi = S(i,pi−1). Observe that:

• dimKExt1B(T, S(i,pi−1)) = dimKHomB(τ−B S(i,pi−1), T ) = dimKHomB(Fi, T ) =
dimKHomB(Fi, T ) = 1, since T = topFi,

• dimKExt1B(T, S(i,j)) = dimKHomB(τ−B S(i,j), T ) = dimKHomB(S(i,j+1), T ) = 0, 
since S(i,j+1), T are nonisomorphic simple B-modules, for 1 ≤ j < pi − 1,

• dimKExt1B(S(i,1), S) = dimKHomB(S, τBS(i,1)) = dimKHomB(S, Fi) = 1, because 
S = socFi,

• dimKExt1B(S(i,j), S) = dimKHomB(S, τBS(i,j)) = dimKHomB(S, S(i,j−1)) = 0, since 
S, S(i,j−1) are nonisomorphic simple B-modules, for any 1 < j ≤ pi − 1,

• dimKExt1B(S(i,j), T ) = 0, for any 1 ≤ j ≤ pi − 1, because HomB(T, τBS(i,j)) =
HomB(T, S(i,j−1)) = 0, for j > 1, and HomB(T, τBS(i,1)) = HomB(T, Fi) =
HomB(topFi, Fi) = 0,

• dimKExt1B(S, S(i,j)) = 0, for any 1 ≤ j ≤ pi − 1, because HomB(τ−B S(i,j), S) =
HomB(S(i,j+1), S) = 0, for j < pi − 1, and HomB(τ−BS(i,pi−1), S) = HomB(Fi, S) =
HomB(Fi, socFi) = 0.

Denote by (i, j), for 1 ≤ i ≤ m and 1 ≤ j ≤ pi − 1, the vertex of QB for which S(i,j)
is the simple B-module at this vertex, that is S(i,j) = S(i, j). Then by [1, (III.2.12)], we 
obtain that QB has a subquiver Q of the form

◦ ◦ ◦

◦ ◦

◦ ◦ ◦

◦ ◦

� �

� �

� ���

��
	

	
	
 �

�
��...

...
...

...
. . .

. . .

αm,2

α1,2

αm,pm−1

α1,p1−1

αm,1 αm,pm

α1,1 α1,p1

0 ω

(1, 1) (1, 2) (1, p1 − 1)

(m, 1) (m, 2) (m, pm − 1)�
� αm+1

...
αr

where r ≥ m, there are no other vertices in QB, no other arrows starting at or ending 
in vertices (i, j) and no other arrows starting at ω and ending in 0. Since C form a 
hereditary family of modules in modB (see [30, Lemma 5.9]), then any path αi,pi

. . . αi,1, 
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for 1 ≤ i ≤ m, is a nonzero element of B, and Q does not admit any oriented cycle. 
Therefore, we conclude that QB = Q.

Consider now the algebra B′ = eBe, where e = e0 + eω is the sum of the primitive 
orthogonal idempotents e0, eω corresponding to the vertices 0 and ω, respectively. There 
is the canonical restriction functor

rese : modB → modB′

which assigns to a module M in modB the module rese(M) = Me in modB′ and to a 
homomorphism f : M → N in modB its restriction rese(f) : rese(M) → rese(N) to Me. 
Note that QB′ is an enlarged Kronecker quiver with r arrows

0 ω .
�
� ◦◦

α1

αr

...

Now we apply the functor rese to the additive subcategory add(Ci) of modB. Observe 
that rese(S(i,1)) = rese(S(i,2)) = ... = rese(S(i,pi−1)) = 0. Moreover, since Fi = τBS(i,1), 
we have rese(Fi) = Z = (Zx, Zα)x,α, where Zx = K for the vertices 0, ω, and Zα = 0
only for α = αi. Clearly, rese(Fi) is an indecomposable B′-module. We shall now fix 
Ei = S(i,1)[pi]. Let Mi = Fi[pi + 1]. Since τ−BFi = S(i,1), there exists an exact sequence 
of B-modules

0 Fi

f
Mi

g
Ei 0 .

Then we have an exact sequence of B′-modules

0 rese(Fi)
rese(f)

rese(Mi)
rese(g)

rese(Ei) 0

because the restriction functor rese is exact (see [1, Theorem I.6.8]). Observe that 
rese(Ei) = rese(Fi). Moreover, W = rese(Mi) is indecomposable, since Mi is indecom-
posable and, for j ∈ {1, ..., m}, Wαj

: K2 → K2 is given by Wαj
= (Mi)�, where 

� = αj,pj
αj,pj−1 ...αj,2αj,1.

We are now in the position to show that rese(f) is a left almost split homomorphism 
in modB′. Since rese(Mi) is indecomposable and rese(g) �= 0, rese(f) is not a section. 
Let u : rese(Fi) → U , for some indecomposable B′-module U , be a non-zero homomor-
phism which is not a section. Since EndB′(rese(Fi)) ∼= K, it follows that U � rese(Fi). 
Invoking the extension functor Le : modB′ → modB, Le(−) = HomB′(Be, −), which 
is right adjoint to rese, we obtain that there exists a homomorphism v : Fi → Le(U)
of B-modules such that u = rese(v). The functor Le preserves indecomposability of 
modules, thus Le(U) is indecomposable. Moreover, there is a functorial isomorphism 
reseLe

∼= 1mod B (see [1, Theorem I.6.8]). Hence, v is not a section. We claim that 
Le(U) is not of the form Fi[j] for j ∈ {1, ..., pi}. Observe that rese(Fi[j]) = rese(Fi)
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for any j ∈ {1, ..., pi}. Then the claim follows from the facts that reseLe(U) ∼= U and 
U � rese(Fi). Therefore, v : Fi → Le(U) is a composition wfpi

...f1 for some homo-
morphism w : Mi → Le(U) and irreducible homomorphisms fj : Fi[j] → Fi[j + 1] for 
j ∈ {1, ..., pi} (see [1, Lemma IV.5.1]). Thus v factorizes through Mi = Fi[pi + 1]. In-
voking now the restriction functor rese, we conclude that u = rese(v) factorizes through 
rese(Mi). It shows that u is left almost split and, by [1, Theorem IV.1.13],

0 rese(Fi)
rese(f)

rese(Mi)
rese(g)

rese(Ei) 0

is an almost split sequence in modB′. Consequently, the image of Ci by the functor rese
is a homogeneous tube of ΓB′ . Again, by [28, (XVIII.1.6)], we conclude that r = 2 since 
B′ is a tame algebra. Hence dimKeωBe0 = 2.

Let us denote by �i the path αi,pi
...αi,1 if 1 ≤ i ≤ m, and the arrow αi if m +

1 ≤ i ≤ r. Assume now that λ�i = �j for some j �= i, 1 ≤ j, i ≤ r and non-zero 
λ ∈ K. Fix a stable tube Ci ∈ C which contains the simple modules S(x) at the vertices 
x ∈ {(i, 1), (i, 2), ..., (i, pi − 1)}. For simplicity, denote the unique non-simple module Fi

which lies on the mouth of Ci by F . Observe that Fαi,1 = ... = Fαi,pi
= 0 and hence 

F�i
= Fαi,pi

...αi,1 = 0. Then F�j
= Fλ�i

= 0 which is impossible since F = τBS(i,1).
Without loss of generality we may now assume that �1, �2 form a basis of 

eωBe0. From the above consideration we conclude that the equations which describe 
�3, ..., �m, αm+1, ..., αr define the set Ω of generic relations (in the sense of [26]) in KQB. 
Then, by [26, (3.7)], B ∼= KQB/〈Ω〉 is a canonical algebra and C is a canonical separating 
P1(K)-family of stable tubes of ΓB. Note that B is a canonical algebra of type (p, λ), 
where the weight sequence p contains a subsequence (p1, ..., pm) and the parameter se-
quence λ is determined by relations in Ω. Following [18, Lemma 1.1] (see also [26, (3.7)]), 
if m = r ≥ 3, we may assume that pi ≥ 2 for each i ∈ {1, ..., m}. �
3. Quasi-tube enlargements of algebras

In this section we introduce quasi-tube enlargements of algebras which are essential 
in the paper. For convenience of the reader, we shall start with evoking the definition 
of admissible operations on a translation quiver and then present the corresponding 
admissible operation on an algebra. We consider only the admissible operations of type 
(ad 1), (ad 2), (ad 1∗) and (ad 2∗) (see [3], [4], [22] for more).

For a field K and t ≥ 1, we denote by Ht(K) the t × t-lower triangular matrix algebra⎡⎢⎢⎢⎢⎢⎢⎣
K 0 0 · · · 0
K K 0 · · · 0
K K K · · · 0
...

...
...

. . .
...

K K K · · · K

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Then by Γt we denote a translation quiver isomorphic to the Auslander–Reiten quiver 
ΓHt(K) of algebra Ht(K):

◦
◦

◦

◦
◦

◦

◦
◦

◦
◦

◦
◦

◦
���

���
���

���
���

���

���
������

���

���		�

		�
		�

		�
		�

		�
		�

		�
		�		�

. . .

. . .

. . .

. .
.. .

.

Y1

Y2

Yt−1

Yt

Let now Γ = (Γ, τ) be a translation quiver (with trivial valuations). For the vertex X
in Γ, called the pivot, the following operations, called the admissible operations, modify 
Γ to a new translation quiver Γ′ = (Γ′, τ ′) whose shape depends on the shape of paths 
in Γ starting at X, and dually ending at X.

(ad 1) Suppose that Γ admits an infinite sectional path starting at X

X = X0 → X1 → X2 → · · ·

(that is, Xi �= τXi+2, for any i ≥ 0), and assume that every sectional path in Γ starting 
at X is a subpath of the above path. We then let Γ′ be the translation quiver having as 
vertices those of Γ, those of Γt, additional vertices Zij and X ′

i, where i ≥ 0, 1 ≤ j ≤ t, 
and having arrows as in the figure below:
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X3

X2

X1

X0

Z3t

Z2t

Z1t

Z0t

Z31

Z21

Z11

Z01

Y1

Z32

Z22

Z12

Z02

Y2

X′
3

X′
2

X′
1

X′
0Yt τ−

A X0

τ−
A X1

�

�
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The translation τ ′ of Γ′ is defined as follows: τ ′Zij = Zi−1,j−1 if i ≥ 1, j ≥ 2, τ ′Zi1 =
Xi−1 if i ≥ 1, τ ′Z0j = Yj−1 if j ≥ 2 and Z01 is projective, τ ′X ′

0 = Yt, τ ′X ′
i = Zi−1,t if 

i ≥ 1 and τ ′(τ−Xi) = X ′
i provided Xi is not injective in Γ, otherwise X ′

i is injective in Γ′. 
For the remaining vertices of Γ′, τ ′ coincides with the translation of Γ or Γt, respectively. 
For t = 0, the new translation quiver Γ′ is obtained from Γ by inserting only the sectional 
path consisting of the vertices X ′

i, i ≥ 0.
(ad 2) Suppose that Γ admits two sectional paths starting at X, one infinite and the 

other finite with at least one arrow

Yt ← Yt−1 ← . . . ← Y2 ← Y1 ← X = X0 → X1 → X2 → . . .

such that any sectional path starting at X is a subpath of one of these paths and X0
is injective. Then Γ′ is the translation quiver having as vertices those of Γ, additional 
vertices X ′

0, Zij , X ′
j (where 1 ≤ i, 1 ≤ j ≤ t), and having arrows as in the figure below:
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The translation τ ′ of Γ′ is defined as follows: X ′
0 is projective–injective, τ ′Zij =

Zi−1,j−1 if i ≥ 2, j ≥ 2, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z1j = Yj−1 if j ≥ 2, τ ′X ′
1 = Yt, 

τ ′X ′
i = Zi−1,t if i ≥ 2 and τ ′(τ−Xi) = X ′

i provided Xi is not injective in Γ, otherwise 
X ′

i is injective in Γ′. For the remaining vertices of Γ′, τ ′ coincides with the translation τ
of Γ.

The admissible operations (ad 1∗) and (ad 2∗) are dual to (ad 1), (ad 2), respectively.
Observe that a quasi-tube in the sense of [29], can be defined in a constructing way. 

Namely, a connected translation quiver Γ is a quasi-tube if it can be obtained from a 
stable tube by an iterated application of admissible operations (ad1), (ad 2), (ad 1∗), 
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or (ad 2∗). Moreover, note that any operation of type (ad 1) (respectively, (ad 1∗)) is an 
iterated ray insertion (respectively, coray insertion) in the sense of [11], [26]. Thus, we 
have that a ray tube (respectively, a coray tube), in the sense of [11], [26], is a connected 
translation quiver obtained from a stable tube by an iterated (possibly zero) application 
of admissible operations (ad 1) (respectively, (ad 1∗)).

The following proposition provides a characterization of quasi-tubes in Auslander–
Reiten quivers of selfinjective algebras ([21], [22], [39]).

Proposition 3.1. Let A be a selfinjective algebra and Γ a connected component of ΓA. The 
following statements are equivalent.

(i) Γ is a quasi-tube.
(ii) The stable part Γs of Γ is a stable tube.
(iii) Γ contains an oriented cycle.

Let A be an algebra and X a module in modA. The one-point extension of A by X
is the 2 × 2-matrix algebra

A[X] =
[

A 0
KXA K

]
=
{(

a 0
x λ

)
; a ∈ A, λ ∈ K, x ∈ X

}
with the usual addition of matrices and the multiplication induced from the canonical 
K-A-bimodule structure KXA of X. The quiver QA[X] of A[X] contains the quiver QA

of A as a full convex subquiver, and there is a single additional vertex in QA[X], which 
is a source. Dually, the one-point coextension of A by X is the 2 × 2-matrix algebra

[X]A =
[

K 0
AD(X)K A

]
=
{(

λ 0
f a

)
; a ∈ A, λ ∈ K, f ∈ D(X)

}
with the usual addition of matrices and the multiplication induced from the canonical 
A-K-bimodule structure AD(X)K of D(X). The quiver Q[X]A of [X]A contains the quiver 
QA of A as a full convex subquiver, and there is a single additional vertex in Q[X]A, which 
is a sink.

Suppose now that Γ is a generalized standard component of ΓA. Recall that by a 
support S(X) of the functor HomA(X, −)|Γ, for an indecomposable module X ∈ Γ, we 
mean the K-linear category defined as follows. Let HX denote the full subcategory of 
modA consisting of the indecomposable modules M in Γ such that HomA(X, M) �= 0, 
and IX denote the ideal of HX consisting of the morphisms f : M → N (with M , N
in H(X)) such that HomA(X, f) = 0. We define S(X) to be the quotient category 
H(X)/I(X). We shall identify the K-linear category S(X) with its quiver.

For each admissible operation on Γ of type (ad 1), (ad 2), (ad 1∗), or (ad 2∗), we shall 
now define the corresponding admissible operation on A in such a way that the modified 
translation quiver Γ′ is a component of the Auslander–Reiten quiver ΓA′ of the modified 
algebra A′ (see [3], [4]). Let X be an indecomposable brick in Γ.
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Assume that S(X) consists of an infinite sectional path starting at X:

X = X0 → X1 → X2 → · · ·

and let t ≥ 1. Then X is the pivot of an admissible operation (ad 1) on quiver Γ and 
we get a new translation quiver Γ′. We define the modified algebra A′ of A to be the 
one-point extension A′ = (A × Ht)[X ⊕ Y ], where Y is the unique indecomposable 
projective–injective Ht-module. Moreover, the new translation quiver Γ′ with vertices 
Zij = (K, Xi ⊕ Yj , 

[ 1
1

]
) for i ≥ 0, t ≥ j ≥ 1, and X ′

i = (K, Xi, 1) for i ≥ 0 is called 
the modified translation quiver. For t = 0 we define the modified algebra A′ to be the 
one-point extension A′ = A[X] and the modified translation quiver Γ′ to be the trans-
lation quiver obtained from Γ by inserting the sectional path consisting of the vertices 
X ′

i, i ≥ 0.
If now S(X) consists of two sectional paths starting at X, one infinite and one finite 

with at least one arrow (t ≥ 1)

Yt ← Yt−1 ← . . . ← Y2 ← Y1 ← X = X0 → X1 → X2 → . . . ,

then X is a pivot of an admissible operation (ad 2) on quiver Γ and we get a new 
translation quiver Γ′. Note that X is injective in this case. We define the modified algebra
A′ of A to be the one-point extension A′ = A[X]. Moreover, the new translation quiver 
Γ′ with vertices Zij = (K, XI ⊕ Yj , 

[ 1
1

]
) for i ≥ 1, t ≥ j ≥ 1, and X ′

i = (K, Xi, 1) for 
i ≥ 1 is called the modified translation quiver.

Dually, invoking the one-point coextensions, one defines the modified algebra A′, if X
is a pivot of an admissible operation of type (ad 1∗) or (ad 2∗). Then the following fact 
mentioned above holds (see [3, Section 2]).

Lemma 3.2. The modified translation quiver Γ′ of Γ is a component of ΓA′ .

Let now C be an algebra and T a generalized standard family of stable tubes in ΓC . 
Following [4], an algebra B is said to be a quasi-tube enlargement of C using modules 
from T if there is a finite sequence of algebras A0 = C, A1, ..., Am = B such that, 
for each 0 ≤ j < m, Aj+1 is obtained from Aj by an admissible operation of type 
(ad 1), (ad 2), (ad 1∗), or (ad 2∗), with pivot either in a stable tube of T or in a quasi-
tube of ΓAj

obtained from a stable tube of T by means of the sequence of admissible 
operations (of types (ad 1), (ad 2), (ad 1∗), (ad 2∗)) done so far. Then a T -tubular exten-
sion (respectively, T -tubular coextension) of C, in the sense of [28, (XV.2)], is just a 
quasi-tube enlargement of C invoking only admissible operations of type (ad 1) (respec-
tively, of type (ad 1∗)) [28, XV.2.9].

Proposition 3.3. Let B be a quasi-tube enlargement of an algebra C using modules from 
a generalized standard family T of stable tubes of ΓC , and B the family of components 
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of ΓB obtained from T by means of admissible operations leading from C to B. Then B
is a generalized standard family of quasi-tubes of ΓB.

For the proof of the above proposition we refer to [3, Lemma 2.2, 2.3] and [23, Theo-
rem C].

We end this section with recalling some information about branch extension and 
coextension of an algebra. A branch is a finite connected full bounded subquiver L =
(QL, IL) of the following infinite tree
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which contains the lowest vertex 0 and IL is generated by all paths αβ contained in QL. 
The lowest vertex 0 of L is called the germ of L.

Let C be an algebra and T C = (T C
λ )λ∈Λ is a family of pairwise orthogonal standard 

stable tubes in ΓC . Let E1, . . . , Es be a set of pairwise different modules lying on the 
mouths of the tubes of T C . Consider the multiple one-point extension of C

C[E1, . . . , Es] =
[

C 0

E1 ⊕ . . .⊕Es K1 × . . .×Ks

]

and the multiple one-point coextension of C

[E1, . . . , Es]C =
[

K1 × . . .×Ks 0

D(E1 ⊕ . . .⊕ Es) C

]

where K1 = . . . = Ks = K and the left module structure of E1 ⊕ . . . ⊕ Es

over K1 × . . . × Ks is given by (λ1, . . . , λs)(u1, . . . , us) = (λ1u1, . . . , λsus) for 
λ1, . . . , λs ∈ K, u1 ∈ E1, . . . , us ∈ Es. Observe that C[E1, . . . , Es] is an iterated 
one-point extension C[E1][E2] . . . [Es] and [E1, . . . , Es]C is an iterated one-point co-
extension [E1][E2] . . . [Es]C. Moreover, let C[E1, . . . , Es] = KQC[E1,...,Es]/IC[E1,...,Es]
and [E1, . . . , Es]C = KQ[E1,...,Es]C/I[E1,...,Es]C be the bound quiver presentations of 
C[E1, . . . , Es] and [E1, . . . , Es]C.
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Denote by 0+
1 , . . . , 0+

s (respectively, 0−1 , . . . , 0−s ) the extension vertices of QC[E1,...,Es]
(respectively, coextension vertices of Q[E1,...,Es]C) corresponding to the extensions (re-
spectively, coextensions) by the modules E1, . . . , Es. Choose now branches L1 =
(QL1 , IL1), . . . , Ls = (QLs

, ILs
) with the germs 0∗1, . . . , 0∗s, respectively. The branch ex-

tension of C (branch T C-extension of C in the sense of [28, (XV.3)]), with respect to 
the mouth modules E1, . . . , Es and the branches L1, . . . , Ls, is the bound quiver algebra

C[E1,L1, . . . , Es,Ls] = KQC[E1,L1,...,Es,Ls]/IC[E1,L1,...,Es,Ls],

where the bound quiver (QC[E1,L1,...,Es,Ls], IC[E1,L1,...,Es,Ls]) is obtained from the bound 
quiver (QC[E1,...,Es], IC[E1,...,Es]) of C[E1, . . . , Es] by adding the bound quivers of the 
branches L1, . . . , Ls and making the identification of the vertices 0+

i with 0∗i for i ∈
{1, . . . , s}. Dually, the branch coextension of C (branch T C-coextension of C in the 
sense of [28, (XV.3)]), with respect to the mouth modules E1, . . . , Es and the branches 
L1, . . . , Ls, is the bound quiver algebra

[E1,L1, . . . , Es,Ls]C = KQ[E1,L1,...,Es,Ls]C/I[E1,L1,...,Es,Ls]C ,

where the bound quiver (Q[E1,L1,...,Es,Ls]C , I[E1,L1,...,Es,Ls]C) is obtained from the bound 
quiver (Q[E1,...,Es]C , I[E1,...,Es]C) of [E1, . . . , Es]C by adding the bound quivers of the 
branches L1, . . . , Ls and making the identification of the vertices 0−i with 0∗i for i ∈
{1, . . . , s}.

The following proposition shows that the concepts of the tubular extension and tubular 
coextension coincide with the concept of the branch extension and branch coextension, 
respectively [28, Theorem XV.3.9].

Proposition 3.4. Let C be an algebra and T C be a family of pairwise orthogonal standard 
stable tubes of ΓC . For an algebra A the following equivalences hold.

(i) A is a T C-tubular extension of C if and only if A is a branch T C-extension of C.
(ii) A is a T C-tubular coextension of C if and only if A is a branch T C-coextension 

of C.

Let now C be a canonical algebra. Recall from [4, Section 2], [26, Section 4] that 
for a branch extension B of C the Auslander–Reiten quiver ΓB has a disjoint union 
decomposition

ΓB = PB ∨ T B ∨QB ,

where PB = PC is a family of components consisting of C-modules and containing all 
indecomposable projective C-modules, QB is a family of components containing all inde-
composable injective B-modules but no projective B-module, and T B is a P1(K)-family 
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(T B
λ )λ∈P1(K) of pairwise orthogonal standard ray tubes separating PB from QB. Re-

spectively, for branch coextension B, PB is a family of components containing all 
indecomposable projective B-modules but no injective B-modules, QB = QC is a fam-
ily of components consisting of C-modules and containing all indecomposable injective 
C-modules, and T B is a P1(K)-family (T B

λ )λ∈P1(K) of pairwise orthogonal standard 
coray tubes separating PB from QB.

4. Selfinjective orbit algebras

In this section we recall needed background on selfinjective orbit algebras.
Let B be an algebra and EB = {ei |1 ≤ i ≤ n} be a fixed set of orthogonal primitive 

idempotents of B with 1B = e1 + . . . + en. Then the repetitive category B̂ of B is the 
category with ÊB = {em,i |m ∈ Z, 1 ≤ i ≤ n} as a set of objects of B̂ and the morphism 
spaces defined by

B̂(em,i, er,j) =

⎧⎪⎨⎪⎩
ejBei, r = m

D(eiBej), r = m + 1
0, otherwise

and the composition of morphisms given by the multiplication in B and the canonical 
B-B-bimodule structure of D(B) = HomK(B, K). For each m ∈ Z, we denote by Bm

the full subcategory of B̂ given by the objects em,i for all i ∈ {1, ..., n}. Observe that B̂
is a selfinjective locally bounded K-category. An automorphism ϕ of B̂ is said to be

• positive if, for each pair (m, i) ∈ Z × {1, . . . , n}, we have ϕ(em,i) = ep,j for some 
p ≥ m and some j ∈ {1, . . . , n};

• rigid if, for each pair (m, i) ∈ Z × {1, . . . , n}, we have ϕ(em,i) = em,j for some 
j ∈ {1, . . . , n};

• strictly positive if it is positive but not rigid.

An important role is played by the Nakayama automorphism νB̂ of B̂ which is defined 
by

νB̂(em,i) = em+1,i , for all (m, i) ∈ Z× {1, ..., n}.

Note that the Nakayama automorphism νB̂ is a strictly positive automorphism of B̂. 
A group G of automorphisms of B̂ is said to be admissible if it acts freely on the set ÊB
and has finitely many orbits.

Let B be an algebra and G be an admissible group of automorphisms of B̂. Following 
Gabriel [12], we may consider the finite orbit K-category B̂/G defined as follows. The 
objects of B̂/G are the elements a = Gx of the set ÊB/G of G-orbits in ÊB and the 
morphism spaces are given by
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(B̂/G)(a, b) =
{

(fy,x) ∈
∏

(x,y)∈a×b

B̂(x, y)| g · fy,x = fgy,gx for all g ∈ G, x ∈ a, y ∈ b

}
,

for all objects a, b of B̂/G. Then we have a canonical Galois covering functor F : B̂ →
B̂/G which assigns to each object x of B̂ its G-orbit Gx, and, for any objects x of B̂
and a of B̂/G, F induces natural K-linear isomorphisms

⊕
y∈ÊB ,Fy=a

B̂(x, y)−̃→(B̂/G)(Fx, a),

⊕
y∈ÊB ,Fy=a

B̂(y, x)−̃→(B̂/G)(a, Fx).

The finite dimensional algebra 
⊕

a,b∈Ê/G(B̂/G)(a, b) associated to the orbit category 

B̂/G is a selfinjective algebra, denoted by B̂/G and called an orbit algebra of B̂, with 
respect to the admissible automorphism group G of B̂. The group G acts also on the 
category mod B̂ of right B̂-modules (identified with contravariant functors from B̂ to 
modK with finite support) by gM = M ◦g−1 for any M ∈ mod B̂ and g ∈ G. Further, we 
have the push-down functor Fλ : mod B̂ → mod B̂/G such that Fλ(M)(a) =

⊕
x∈a M(x)

for a module M in mod B̂ and an object a of B̂/G.
The following theorem is a consequence of [12, Lemma 3.5, Theorem 3.6].

Theorem 4.1. Let B be an algebra and G a torsion-free admissible group of K-linear 
automorphisms of B̂. Then

(i) The push-down functor Fλ : mod B̂ → mod B̂/G induces an injection from the set 
of G-orbits of isomorphism classes of indecomposable modules in mod B̂ into the set 
of isomorphism classes of indecomposable modules in mod B̂/G.

(ii) The push-down functor Fλ : mod B̂ → mod B̂/G preserves the Auslander–Reiten 
sequences.

In general, the push-down functor Fλ : mod B̂ → mod B̂/G, associated to a Galois 
covering F : B̂ → B̂/G is not dense (see [2]). Following [9], a repetitive category B̂ is 
said to be locally support-finite, if for any object x of B̂, the full subcategory of B̂ given 
by the supports suppM of all indecomposable modules M in mod B̂ with M(x) �= 0, is 
finite. Here, by a support of a module M in mod B̂ we mean the full subcategory of B̂
given by all objects z with M(z) �= 0.

The following theorem is a consequence of [10, Proposition 2.5] (see also [9, Theorem]).

Theorem 4.2. Let B be an algebra with locally support-finite repetitive category B̂, and G
be a torsion-free admissible group of automorphisms of B̂. Then the push-down functor 
Fλ : mod B̂ → mod B̂/G is dense. In particular, Fλ induces an isomorphism of the orbit 
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translation quiver ΓB̂/G of the Auslander–Reiten quiver ΓB̂ of B̂, with respect to the 
action of G, and the Auslander–Reiten quiver ΓB̂/G of B̂/G.

Let A be a selfinjective algebra, I an ideal of A, B = A/I, and e an idempotent of 
A such that e + I is the identity of B. We may assume that e = e1 + ... + en, where 
{ei; 1 ≤ i ≤ n} is a complete set of orthogonal primitive idempotents of A which are not 
contained in I. Then such an idempotent e is uniquely determined by I up to an inner 
automorphism of A, and we call it a residual identity of B [33]. Note that B ∼= eAe/eIe. 
For an ideal I of a selfinjective algebra A, we consider its left annihilator 
A(I) = {a ∈
A|ax = 0 for any x ∈ I} and its right annihilator rA(I) = {a ∈ A|xa = 0 for any x ∈ I}. 
Following [33, (2.1)], the ideal I is said to be deforming if eIe = 
eAe(I) = reAe(I) and 
A/I is triangular. The lemma below was proved in [36, Lemma 5.1].

Lemma 4.3. Let A be a selfinjective algebra, e an idempotent of A, and assume that 

A(I) = Ie or rA(I) = eI. Then e is a residual identity of the quotient algebra A/I.

Moreover, the following result was obtained in [33, Proposition 2.3].

Proposition 4.4. Let A be a selfinjective algebra, I an ideal of A, B = A/I, e a residual 
identity of B, and assume that IeI = 0. Then the following conditions are equivalent.

(i) Ie is an injective cogenerator in modB.
(ii) eI is an injective cogenerator in modBop.
(iii) 
A(I) = Ie.
(iv) rA(I) = eI.

Moreover, under these equivalent conditions, we have socA ⊆ I and eIe = 
eAe(I) =
reAe(I).

We end this section with the criterion which is fundamental in the proof of the main 
Theorem 1.1 (see [34, Section 3 and 4] and [36, Theorem 5.3]).

Theorem 4.5. Let A be a selfinjective algebra over an algebraically closed field K. The 
following conditions are equivalent.

(1) A is isomorphic to an orbit algebra B̂/(ϕνB̂), where B is an algebra over K with 
acyclic quiver QB and ϕ is a positive automorphism of B̂.

(2) There is an ideal I of A and an idempotent e of A such that
(i) rA(I) = eI,
(ii) the quiver QA/I of A/I is acyclic.

Moreover, in this case, B is isomorphic to A/I.
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5. Selfinjective algebras of strictly canonical type

The aim of this section is to introduce some results on selfinjective algebras of strictly 
canonical type. In particular, we give an answer to the question when the canonical 
family of quasi-tubes of such an algebra is generalized standard.

The following results were established in [18, Theorem 5.1].

Theorem 5.1. Let B be a branch extension (respectively, branch coextension) of a canon-
ical algebra C. Then there exist algebras Cq, B−

q , B+
q , B∗

q and Bq, q ∈ Z, and a 
decomposition

ΓB̂ = ∨q∈Z(Xq ∨ Cq)

of the Auslander–Reiten quiver ΓB̂ of B̂ such that the following statements hold:

(a) for each q ∈ Z, Xq is a family of components of ΓB̂ containing exactly one simple 
B̂-module Sq;

(b) for each q ∈ Z, Cq is a family (Cq(λ))λ∈P1(K) of pairwise orthogonal standard quasi-
tubes of ΓB̂ with s(Cq(λ)) + p(Cq(λ)) = r(Cq(λ)) − 1, for any λ ∈ P1(K);

(c) for each pair p, q ∈ Z with p < q, we have Hom B̂(Xq, Xp ∨ Cp) = 0 and 
Hom B̂(Cq, Xp ∨ Cp ∨ Xp+1) = 0;

(d) for each q ∈ Z, Cq is a canonical algebra, B−
q is a maximal branch coextension of Cq

in B∗
q , B+

q is a maximal branch extension of Cq in B∗
q , Bq is a one-point extension 

of B+
q−1 and B∗

q is a quasi-tube enlargement of Cq; moreover, Cq, B−
q , B+

q , B∗
q

and Bq are full convex subcategories of B̂ with B̂−
q = B̂ = B̂+

q , νB̂(Cq) = Cq+2, 
νB̂(B−

q ) = B−
q+2, νB̂(B+

q ) = B+
q+2, νB̂(B∗

q ) = B∗
q+2, νB̂(Bq) = Bq+2.

(e) for each q ∈ Z, Cq is the canonical P1(K)-family of quasi-tubes of ΓB∗
q
, obtained from 

the canonical P1(K)-family T −
q of coray tubes of ΓB−

q
by infinite rectangle insertions, 

and from the canonical P1(K)-family T +
q of ray tubes of ΓB+

q
by infinite rectangle 

coinsertions;
(f) for each q ∈ Z, Xq consists of indecomposable Bq-modules;
(g) for each q ∈ Z, we have νB̂(Xq) = Xq+2 and νB̂(Cq) = Cq+2;
(h) for each q ∈ Z, Hom B̂(Sq, Cq(λ)) �= 0 for all λ ∈ P1(K), and Hom B̂(Sp, Cq) = 0 for 

p �= q in Z;
(i) for each q ∈ Z, Hom B̂(Cq(λ), Sq+1) �= 0 for all λ ∈ P1(K), and Hom B̂(Cq, Sp) = 0

for p �= q + 1 in Z;
(j) for each q ∈ Z, we have ΩB̂(Cs

q+1) = Cs
q and ΩB̂(X s

q+1) = X s
q , where ΩB̂ is the syzygy 

operator.
(k) B̂ is locally support-finite.

Moreover, there is the following description of torsion-free admissible groups of auto-
morphisms of B̂ [18, Proposition 5.2].
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Proposition 5.2. Let B be a branch extension (respectively, branch coextension) of a 
canonical algebra C. Then there exists a strictly positive automorphism �B̂ of B̂ such 
that the following statements hold:

(i) �B̂ = νB̂ or �2
B̂

= νB̂;
(ii) every torsion-free admissible group G of automorphisms of B̂ is an infinite cyclic 

group generated by a strictly positive automorphism σ�s
B̂
, for some integer s ≥ 1

and some rigid automorphism σ of B̂.

Preserving the above notation, for a canonical algebra C, it follows from Proposi-
tion 3.3 that ΓB contains a generalized standard P1(K)-family C of quasi-tubes. We 
consider C = C0 as a family of components of ΓB̂.

Recall that, following [18], a selfinjective algebra A of the form B̂/G, where B is a 
branch extension (equivalently, branch coextension) of a canonical algebra C and G is 
an infinite cyclic group generated by a strictly positive automorphism of B̂, is called a 
selfinjective algebra of strictly canonical type. The structure and homological properties 
of the Auslander–Reiten quivers of selfinjective algebras of strictly canonical type were 
described in [18, Theorem 5.3]. In particular, for a selfinjective algebra A of strictly 
canonical type its Auslander–Reiten quiver has a decomposition

ΓA =
∨

q∈Z/nZ

(XA
q ∨ CA

q ),

for some positive integer n, and, for each q ∈ Z/nZ, CA
q = (CA

q (λ))λ∈P1(K) is a 
P1(K)-family of quasi-tubes with s(CA

q (λ)) +p(CA
q (λ)) = r(CA

q (λ)) −1 for each λ ∈ P1(K), 
and XA

q is a family of components containing exactly one simple module Sq. Moreover, 
we have the following proposition which is an immediate consequence of properties of 
push-down functor Fλ : mod B̂ → modA.

Proposition 5.3. Let A = B̂/G be a selfinjective algebra of strictly canonical type. Then 
CA
0 = Fλ(C0) is a P1(K)-family of quasi-tubes in ΓA maximally saturated by simple and 

projective modules.

We are now in a position to prove the following equivalence.

Proposition 5.4. Let A = B̂/G, where B is a branch extension (respectively, coextension) 
of a canonical algebra C with respect to the canonical P1(K)-family of stable tubes and G
an admissible group of automorphisms of B̂ generated by a strictly positive automorphism 
of B̂. Then the following statements are equivalent.

(i) The canonical P1(K)-family CA
0 = Fλ(C0) of quasi-tubes of ΓA is generalized stan-

dard.
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(ii) G = (ϕνB̂), where ϕ is strictly positive, or G = (ϕνB̂), where ϕ is rigid and B is a 
canonical algebra.

Proof. Let C be a canonical algebra and T C the canonical P1(K)-family of pairwise 
orthogonal standard stable tubes of ΓC . Since the classes of repetitive algebras of branch 
extensions and branch coextensions of C with respect to the canonical P1(K)-family of 
stable tubes coincide (see [18, Section 4]), invoking Proposition 3.4, we may assume that 
B is a branch coextension of C.

Let A be an orbit algebra B̂/G, where G is generated by a strictly positive automor-
phism g of B̂. Following Theorem 5.1(a) and (b), the Auslander–Reiten quiver ΓB̂ of B̂
has a decomposition:

ΓB̂ = ∨q∈Z(Xq ∨ Cq),

such that, for each q ∈ Z, Xq is a family of components containing exactly one simple 
B̂-module Sq, and Cq is a family (Cq(λ))λ∈P1(K) of pairwise orthogonal standard quasi-
tubes. We set C = C0 and B = B−

0 . Applying now Theorem 5.1(e), (h) and (i), we 
know that there exist, for any q ∈ Z, an indecomposable Cq-module in Cq with Sq+1 in 
its top and an indecomposable Cq+1-module in Cq+1 which has Sq+1 in the socle. Hence 
HomB̂(C0, C1) �= 0.

Assume CA
0 = Fλ(C0) is a generalized standard family of quasi-tubes. Since νB̂(Cq) =

Cq+2 and HomB̂(C0, C1) �= 0, applying Proposition 5.2, we conclude that g = ϕνB̂ , 
where ϕ is a positive automorphism of B̂. Recall that C0 is the canonical P1(K)-family 
of quasi-tubes obtained from the canonical P1(K)-family T B of coray tubes of ΓB by 
iterated infinite rectangle insertions (see Theorem 5.1(e)). Observe that C0 contains no 
projective–injective modules if and only if T B contains no injective modules, that is, 
B = C (see [18, Section 2 and 3]). In this situation HomB̂(C0, C2) = 0, since supp C0 ∩
supp C2 = supp C0∩supp νB̂(C0) = ∅. Suppose now that C0 contains a projective–injective 
module, equivalently B �= C. Then by Theorem 5.1(g), Cp, for any even p ∈ Z, contains a 
projective–injective module. Let P be a projective–injective module which belongs to C2. 
Clearly, then P/socP belongs to C2. From Theorem 5.1(j) we obtain that the simple socle 
socP of P belongs to C1. Again, by Theorem 5.1(j), we get that the projective cover P ′

of socP belongs to C0, because radP ′ = ΩB̂(socP ) belongs to C0. Hence, there is a 
non-zero homomorphism f : P ′ → P which implies that HomB̂(C0, C2) �= 0 for B �= C. 
Therefore, if ϕ is rigid, then B = C. Summing up, we conclude that (i) implies (ii).

Assume now that (ii) holds. Suppose that M , N are indecomposable B̂-modules be-
longing to Cp, for some p ∈ Z. From the description of subcategories B−

q , B+
q of B̂, we 

know that supp Cq ∩ supp Cq+3 = ∅ for any q ∈ Z (see the proof of [18, Theorem 5.1]). 
Then, by the assumption imposed on a strictly positive generator g of the group G, we 
obtain that supp gi

M ∩ suppN = ∅ for any integer i �= 0. Since the push-down functor 
Fλ : mod B̂ → modA is dense, there are the following natural isomorphisms of K-vector 
spaces
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⊕
i∈Z

HomB̂(g
i

M,N) ∼= HomA(Fλ(M), Fλ(N)),

⊕
i∈Z

HomB̂(M, g
i

N) ∼= HomA(Fλ(M), Fλ(N)),

for any indecomposable modules M , N in mod B̂.
Let X, Y be modules in CA

0 = Fλ(C0). Then X = Fλ(M), Y = Fλ(N) for some 
M ∈ Cp, N ∈ Cq, and clearly Fλ(Cp) = Fλ(Cq) = C0. Without loss of generality we may 
assume that p = q = 0. Thus HomA(X, Y ) ∼=

⊕
i∈Z

HomB̂(M, g
i

N) ∼= HomB̂(M, N). 
Since C0 is a family of pairwise orthogonal standard quasi-tubes, we have rad∞

B̂
(M, N) =

0, and hence rad∞
A (X, Y ) = 0. This shows that (ii) implies (i). �

6. Proof of Theorem 1.1

The implication (ii) ⇒ (i) of the main theorem is an immediate consequence of Propo-
sitions 5.3 and 5.4.

We prove now the implication (i) ⇒ (ii). Suppose that C = (Cλ)λ∈Λ is a gener-
alized standard family of quasi-tubes maximally saturated by simple and projective 
modules in the Auslander–Reiten quiver ΓA of a selfinjective algebra A. We recall 
that the annihilator of the family of components C = (Cλ)λ∈Λ is the intersection 
annA(C) =

⋂
X∈C annA(X) of the annihilators of all indecomposable A-modules X be-

longing to C. Consider the quotient algebra D = A/annA(C). Then the family C is a 
generalized standard faithful family of quasi-tubes in ΓD maximally saturated by simple 
and projective modules. We claim that D is a quasi-tube enlargement of a canonical 
algebra C. Namely, a quasi-tube is a connected translation quiver obtained from a stable 
tube by an iterated application of admissible operations (ad 1), (ad 2) and their dual ver-
sions. Assume that, for each λ ∈ Λ, a quasi-tube Cλ is obtained, as a translation quiver, 
from a stable tube Tλ by means of the above operations. This allows us to consider the 
family T (C) =

⋃
λ∈Λ T (Cλ) of indecomposable modules in C such that, for each λ ∈ Λ, 

T (Cλ) corresponds to all vertices of the stable tube Tλ. Let C = D/annD(T (C)) be a 
quotient algebra of D by the annihilator annD(T (C)) of the family T (C) given as the 
intersection 

⋂
Y ∈T (C) annD(Y ) of the annihilators of all modules belonging to T (C). Then 

D is a quasi-tube enlargement of C. Note that the modules from T (C) form the family of 
stable tubes T C = (T C

λ )λ∈Λ in ΓC , where T C
λ = Tλ for every λ ∈ Λ. Clearly, (T C

λ )λ∈Λ is 
a faithful generalized standard family of stable tubes in ΓC (maximally saturated by sim-
ple modules). Thus, invoking Theorem 2.2, we conclude that C is a canonical algebra and 
then D is a quasi-tube enlargement of the canonical algebra C. In particular, Λ = P1(K)
and T C is the separating canonical P1(K)-family (T C

λ )λ∈P1(K) = (T C
λ )λ∈Λ of stable 

tubes in ΓC . Hence, applying [4, (3.5)], we infer that there exists a unique maximal 
branch extension B of C inside D, which is obtained from C by an iterated applica-
tion of algebra admissible operations of type (ad 1) (see also [23, Theorem C]). Then the 
Auslander–Reiten quiver ΓB of B contains a faithful P1(K)-family T B = (T B

λ )λ∈P1(K) of 
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pairwise orthogonal generalized standard ray tubes (obtained from T C = (T C
λ )λ∈P1(K)

by an iterated application of translation quiver admissible operations of type (ad 1)). 
Moreover, D is obtained from B by an iterated application of admissible algebra opera-
tions of types (ad 1∗), (ad 2∗), and C from T B by an iterated application of translation 
quiver admissible operations of types (ad 1∗), (ad 2∗). Then B = D/annD(T B), where 
T B is taken as a family of modules. Thus we conclude that B = A/annA(T B) since 
annD(T B) = annA(T B) ∩D.

Let I = annA(T B). Then B = A/I. We will show now that I satisfies the conditions 
(2) of Theorem 4.5. Observe that QA/I = QB is acyclic, because B is a T C-branch 
extension of the canonical algebra C.

By J we shall denote the trace ideal of the family T B in A, that is J =
∑

h Im h, where 
h ∈ HomA(Y, AA) for any Y ∈ T B . Since AA is of finite dimension over K, we obtain 
that J is a finite sum J =

∑s
i=1 Im hi for some homomorphisms hi ∈ HomA(Yi, AA)

with Yi ∈ T B . Similarly, by J ′ we denote the trace ideal of the dual family D(T B) of 
left A-modules in A.

We may choose a complete set of pairwise orthogonal primitive idempotents e1, ..., er
of A such that 1A = e1 + ... + er and e = e1 + ... + en, for some n � r, is a residual 
identity of B = A/I. Observe that B ∼= eAe/eIe. We will show that I is a deforming 
ideal of A with 
A(I) = Ie and rA(I) = eI. We will apply the strategy similar to the 
proof of [15, Theorem 7.14].

Proposition 6.1. We have J ∪ J ′ ⊆ I.

Proof. We know that T B = (T B
λ )λ∈P1(K) is a generalized standard family of ray tubes 

in ΓB and the generalized standard family C = (Cλ)λ∈P1(K) of quasi-tubes in ΓA is 
obtained from T B by an iterated application of admissible translation quiver operations 
of types (ad 1∗) and (ad 2∗) corresponding to the admissible algebra operations of types 
(ad 1∗) and (ad 2∗) leading from B to D. Then, applying arguments as in the proof of 
[15, Proposition 7.1], we prove the required inclusion J ∪ J ′ ⊆ I. �

Applying arguments as in the proof of [15, Lemma 7.2] we obtain the following facts.

Proposition 6.2. We have 
A(I) = J , rA(I) = J ′ and I = rA(J) = 
A(J ′).

The following proposition is the key ingredient for proving that I is a deforming ideal 
of A such that 
A(I) = Ie and rA(I) = eI.

Proposition 6.3. We have eIe = eJe = eJ ′e. In particular, (eIe)2 = 0.

Proof. Observe that J is a right B-module since 1A−e ∈ I implies that J(1 −e) ⊆ JI = 0
and so J = Je + J(1A − e) = Je. Hence eJ is an ideal of eAe with eJ ⊆ eIe, by 
Proposition 6.1. We denote by B′ the algebra B′ = eAe/eJ . Note that e is a residual 
identity of B′.
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Consider the canonical restriction functor rese : modA → mod eAe. Applying rese
to the (generalized) standard family C = (Cλ)λ∈Λ of quasi-tubes maximally saturated 
by simple and projective modules in ΓA we obtain the family T B of ray tubes in ΓeAe. 
Moreover, T B is sincere generalized standard in ΓeAe. Further, T B is also sincere gen-
eralized standard family for the quotient algebra B′ = eAe/eJ since eJ ⊆ eIe. We shall 
show that, in fact, the algebras B′ and B are equal.

We shall compare the bound quivers (QB, IB), (QB′ , IB′) of algebras B, B′, respec-
tively. Since QB is a subquiver of QB′ with the same set of vertices, suppose there exists 
an arrow η : x → y in QB′ which does not belong to QB. Recall that QB is of the form

γ+
1 γ+

2 γ+
s

. . .

. . .� � �• • •

�
�
�
��

�
�
�
���

�
�
��

�
�
�
�� �

�
�
���

�
�
��• • •

QL1 QL2 QLs

0+
1 0+

2 0+
s

QC

where QL1 , QL2 , ..., QLs
are the quivers of the branches L1, L2, ..., Ls, respectively, with 

the vertex 0+
i such that radP (0+

i ), for i ∈ {1, ..., s}, are pairwise nonisomorphic mod-
ules lying on the mouths of stable tubes from canonical family T C in ΓC (see [28, 
Chapter XV.3]). For QC we shall use the notation from Section 2. By B′′ we denote 
a quotient algebra of B′ such that the set of arrows of QB′′ consists of all arrows of 
QB and additionally the arrow η. Hence we have a sequence of algebra epimorphisms 
B′ → B′′ → B. This implies that T B is a sincere generalized standard family of ray 
tubes in ΓB′′ . We have the following cases to consider.

(1) Assume that x ∈ QLi
for some i ∈ {1, ..., s}. Since T B contains all projective 

B-modules P (a) for a ∈ QLi
and T B is a family of ray tubes in ΓB′ , a projective 

B-module P (x) is also a projective B′-module. Therefore, if η : x → y in QB′ then η
belongs to QB , a contradiction with an assumption imposed on η. If now y ∈ QLi

, for 
some i ∈ {1, ..., s}, then there exists a homomorphism f : P (y) → P (x) in modB′ given 
by the formula f(−) = η ·−. Hence Im f = ηeyB

′ = ηeAe, because T B is a family of ray 
tubes in ΓeAe. Therefore ηeAe ⊆ eJ , contradiction with the assumption that η ∈ QB′ .

(2) Let now x ∈ QC and y ∈ QC\{ω}. Assume y = (i, k) for some i ∈ {1, ..., m} and 
k ∈ {1, ..., pi − 1}. Then S(i, k) has in modB′′ a minimal injective presentation of the 
form

0 → S(i, k) → I(i, k) → I(i, k + 1) ⊕ I(x) ⊕ I(0+),
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where I(0+) = 0 if there is no branch extension of C at S(i, k). Then using the quasi-
inverse ν−1

B′′ of the Nakayama functor νB′′ , we obtain the following exact sequence

0 → P (i, k) → P (i, k + 1) ⊕ P (x) ⊕ P (0+) → τ−B′′S(i, k) → 0,

where we assume that P (0+) = 0 if I(0+) = 0. Then the socle of τ−B′′S(i, k) contains an 
additional direct summand S(x). Therefore, τ−B′′S(i, k) �= τ−BS(i, k), and hence TB is not 
a family of ray tubes in ΓB′′ and neither is in ΓB′ , a contradiction. In the case of y = 0, 
we repeat the above arguments for a nonsimple module Fi from the mouth of a stable 
tube from T C .

(3) Assume that x = (i, k), for some i ∈ {1, ..., m} and k ∈ {1, ..., pi − 1}, and y = ω. 
Then we show analogously that τ−B′′(τBS(x)) �= S(x) since B′′-module τ−B′′(τBS(x))
contains ηB as a submodule. Again, we get a contradiction.

(4) Let η : ω → ω. By (1), (2) and (3) we conclude that η, α1,p1 , ..., αm,pm
are all arrows 

that start at ω in QeAe. Denote by �i the path αi,pi
...αi,2αi,1, for any i ∈ {1, ..., m}. 

Observe that η�i belongs to the K-vector space eωAe0 generated by �1 and �2, otherwise 
using the canonical restriction functor rese′ : mod eAe → mod e′Ae′ for e′ = eω + e0, we 
obtain that e′Ae′ is a wild algebra (see arguments from the proof of Theorem 2.2 and [28, 
(XVIII.1.6)]). Assume η�i �= 0 in B′′, for some i ∈ {1, . . . , m}. Then η�i = a1�1 + a2�2
for some a1, a2 ∈ K such that a2

1 + a2
2 > 0. Consider the nonsimple module E(0) from 

the mouth of the stable tube T C
0 from the family T C as a B′′-module (see Section 2). 

Note that E(0)
�2 = 0 and hence E(0)

a1�1 = E
(0)
η�i = 0. But E(0)

a1�1(eω) = a1�1 �= 0 and we 
conclude that η�i = 0 for any i ∈ {1, . . . , m}. Let now ki ∈ {0, 1, . . . , pi} be the minimal 
integer such that ηαi,pi

. . . αi,ki
�= 0 in B′′ where we put αi,pi

. . . αi,0 = eω. Then, for any 
i ∈ {1, . . . , m}, there exists a nonzero homomorphism fi : S(i, ki−1)[pi−ki +1] → P (ω)
in mod eAe, where S(i, ki − 1)[pi − ki + 1] is a module of T C-length pi − ki + 1 lying on 
a ray starting at the mouth module S(i, ki − 1) in T C . Note that Im fi = ηeAe. Thus 
ηeAe ⊂ eJ and η /∈ QB′ .

(5) Let now η1, η2, . . . , ηr, for some r ≥ 1, be all arrows in QB′ which start at 0 and 
end in ω.

Consider the Galois covering F : B̃′ → B′ with an infinite cyclic group Z. Then B̃′

is a locally bounded K-category and it follows from [7, Section 2] that B̃′ ∼= KQ
B̃′/IB̃′ , 

where Q
B̃′ is a connected, locally finite, acyclic quiver with I

B̃′ an admissible ideal of 
the path category KQ

B̃′ of Q
B̃′ . Thus quiver Q̃B′ is of the form

· · · · · ·

QB−1 QB0 QB1

� �
� �

...
...

η0,1

η0,r

η1,1

η1,r

• • • • • •
ω−1 ω0 ω10−1 00 01

where, for all k ∈ Z and 1 ≤ i ≤ r, we have QBk
= QB , ηk,i : 0k → ωk−1, and 

the generators of IBk
belong to the set of generators of I ′̃ . By B′

− we denote the full 

B
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subcategory of B̃′ whose objects are the objects of Bk for all integer k ≤ 0. Then the 
Auslander–Reiten quiver B′

− has a form

ΓB′
−

= PB′
− ∪ T B0 ∪QB0 ,

where PB′
− is a family of components containing all indecomposable B′

−-modules X
such that rese(X), for e being the residual identity of B0, is zero or belongs to the family 
PB0 of ΓB0 , T B0 = T B and QB0 = QB . By P we denote the projective B̃′-module 
P
B̃′(01) at the vertex 01 (vertex 0 in QB1). Let now R = B′

−[radP ] be a one-point 
extension of B′

− by the radical of P . Since T B0 remains a family of ray tubes in ΓR

(and in Γ
B̃′), we conclude that radP ∈ addQB0 (see [28, Theorem XV.1.6]). Consider 

the projective cover f : P ′ → radP of radP in modB0. Then f factorizes through the 
additive subcategory addT B0 of modB0, because T B0 is a separating family of ray tubes 
in ΓB0 . Therefore, there is a module M ∈ add T B0 and an epimorphism h : M → radP in 
mod B̃′. Further, there exists an epimorphism h′ : M → radP in modB′ because for the 
push-down functor Fλ : mod B̃′ → modB′ we have Fλ(M) = M and Fλ(radP ) = radP . 
Observe that by (1)–(4), P is a projective eAe-module. Hence Imh′ =

∑r
i=1 ηieAe and 

η1, . . . , ηr ∈ eJ , a contradiction.
To sum up, we obtain that eIe = eJ . Hence T B is faithful generalized standard 

family of ray tubes in modB′ because eIe/eJ = annB′(T B) = 0. We show analogously 
that eIe = J ′e. Applying now Proposition 6.2, we have (eIe)2 = eJeeIe = eJeIe =
(eJe)Ie = eJIe = 0. �

We note that although Proposition 6.3 is the analogue of Lemma 7.3 in [15] their 
proofs are different because the family C of quasi-tubes is assumed only to be generalized 
standard whereas in [15] the quasi-tubes in C consist of modules which do not lie on 
infinite short cycles. But having Proposition 6.3, we may proceed as in [15, Section 7], 
and, using Lemmas 7.4–7.12 of [15], prove the following analogue of [15, Proposition 7.13].

Proposition 6.4. We have Ie = J , eI = J ′, and eIe = J ∩ J ′.

This allows us to prove the desired proposition.

Proposition 6.5. I is a deforming ideal of A with 
A(I) = Ie and rA(I) = eI.

Proof. From Proposition 6.2 and 6.4 we know that 
A(I) = J = Ie and rA(I) = J ′ = eI. 
In particular, we have IeI = 0. Therefore, applying Proposition 4.4, we get eIe =

eAe(I) = reAe(I). Since QA/I = QB is acyclic, this shows that I is a deforming ideal 
of A. �

We complete now the proof of implication (i) ⇒ (ii) of Theorem 1.1. Since the ideal 
I and the idempotent e satisfy condition (2) in Theorem 4.5, we conclude that A is 
isomorphic to an orbit algebra B̂/(ϕν ̂), where ϕ is a positive automorphism of B̂. 
B
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Finally, applying Proposition 5.4 we infer that either ϕ is strictly positive or ϕ is rigid 
and B is a canonical algebra, as required in (ii).

7. Examples

The following examples illustrate the statements of Theorem 1.1 and Corollary 1.2.

Example 7.1. Let B = KQB/IB , where QB is the quiver
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and IB is the ideal of the path algebra KQB of QB generated by the elements α1σ1, β1ξ1, 
γ1η2, γ3γ2γ1 +α2α1 +β2β1. Denote by C the bound quiver algebra C = KQC/IC , where 
QC is the full subquiver of Q given by the vertices 5, 6, 7, 8, 9, 10, and IC is the ideal in 
the path algebra KQC of QC generated by γ3γ2γ1+α2α1+β2β1. Then C is the canonical 
algebra C(p, λ) with the weight sequence p = (2, 2, 3) and the parameter sequence λ =
(∞, 0, 1). Further, B is the branch coextension of C in the sense of [28, XV.3]. Namely, 
B = [E1, L1, E2, L2, E3, L3]C with E1 = E(∞) ∈ T C

∞ , E2 = E(0) ∈ T C
0 , E3 = E(1) ∈ T C

1 , 
L1 the branch given by the vertex 1, L2 the branch given by the vertex 2, L3 the branch 
given by the vertices 3, 4 and the arrow η1. Consider the repetitive algebra B̂ of B. Then 
there exists a strictly positive automorphism ϕB̂ of B̂, with ϕ2

B̂
= νB̂ such that, for any 

k ∈ Z, ϕB̂(ek,l) = ek,l+5, if 1 ≤ l ≤ 5 and ϕB̂(ek,l) = ek+1,l−5 = νB̂(ek,l−5), if 6 ≤ l ≤ 10. 
Denote by A the orbit algebra B̂/(ϕB̂). Then A is the bound quiver algebra A = KQ/I, 
where Q is the quiver
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and I is the ideal of KQ generated by the elements γ3γ2γ1+α2α1+β2β1, α1α2, β1β2, γ1γ3, 
α2α1β2β1−β2β1α2α1. Note that A is a symmetric algebra but not a trivial extension of C. 
Hence from Corollary 1.2, ΓA does not admit a generalized standard family of quasi-tubes 
maximally saturated by simple and projective modules. Indeed, by [18, Theorem 5.3] ΓA

has a decomposition
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ΓA = XA ∨ CA

where CA = (CA(λ))λ∈P1(K) is the unique P1(K)-family of quasi-tubes of ΓA containing 
all simple modules and indecomposable projective modules, except the simple module 
S(5) and the projective module P (5) at the vertex 5, which belong to XA. For λ = 1 from 
the parameter sequence consider the module E(1) from the mouth of a stable tube T C

1
in ΓC . Then E(1) belongs to CA(1) and there is a nonzero homomorphism f : E(1) → E(1)

which factors through socE(1) ∼= S(5) ∼= topE(1). Thus f ∈ rad∞(CA).

Example 7.2. Consider the selfinjective algebra A = B̂/(ϕ3
B̂

), where B and ϕB̂ are as 
above. Then A = KQ/I is the bound quiver algebra, where Q is the quiver
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where we identify two vertices denoted by • and I is the ideal of KQ generated by the 
elements γ3γ2γ1 + α2α1 + β2β1, α1α2, β1β2, γ1γ3, α2α1β2β1 − β2β1α2α1. Again, by [18, 
Theorem 5.3] ΓA has a decomposition

ΓA = XA
0 ∨ CA

0 ∨ XA
1 ∨ CA

1 ∨ XA
2 ∨ CA

2

where, for each 0 ≤ i ≤ 2, CA
i = (CA

i (λ))λ∈P1(K) is the P1(K)-family of quasi-tubes 
of ΓA, XA

i is a family of components containing exactly one simple module S(i). Since 
ϕ3
B̂

= (ϕ2
B̂

)ϕB̂ = νB̂ϕB̂ and ϕB̂ is strictly positive automorphism of B̂, by Theorem 1.1
we get that CA

i , for some 0 ≤ i ≤ 2, is generalized standard family of quasi-tubes 
maximally saturated by simple and projective modules. Further, applying Theorem 5.1
(see also [18, Theorem 5.1]), we have that CA

i , for each 0 ≤ i ≤ 2, is a canonical family of 
quasi-tubes of ΓB∗

i
, where B∗

i is a quasi-tube enlargement of canonical algebra Ci = C. 
Note that B∗

i = KQB∗
i
/IB∗

i
, where QB∗

i
is of the form
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and IB∗
i

is the ideal of KQB∗
i

generated by γ3γ2γ1 + α2α1 + β2β1, α1α2, β1β2, γ1γ3 and 
j ≡ i + 1(mod 3). In conclusion, ΓA admits three generalized standard families CA

i , 
0 ≤ i ≤ 2, of quasi-tubes maximally saturated by simple and projective modules.

Example 7.3. Let A = B̂/(νB̂) be a selfinjective algebra, where B = C is the canonical 
algebra as above. Then A = KQ/I is the bound quiver algebra, where Q is the quiver
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10
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β2β1

γ3γ2γ1
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η2
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�
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������������ ���

	
	

	
	

	

��

and I is the ideal of KQ generated by γ3γ2γ1 + α2α1 + β2β1, η1α2, η2β2, α1η1, β1η2,

η1β2β1 − η2α2α1, α2α1η2 − β2β1η1. Following Theorem 5.1 and [18, Theorem 5.3], ΓA

has a decomposition

ΓA = XA
0 ∨ CA

0 ∨ XA
1 ∨ CA

1

where, for i ∈ {0, 1}, CA
i = (CA

i (λ))λ∈P1(K) is the P1(K)-family of quasi-tubes of ΓA, 
XA

i is a family of components containing exactly one simple module S(i). Further, CA
0 is 

the canonical P1(K)-family of stable tubes of ΓC and CA
1 is the canonical P1(K)-family 

of quasi-tubes of ΓB∗
1 , where B∗

1 is the quasi-tube enlargement of Kronecker algebra C1
(given by vertices 0, 1 and arrows η1, η2). Note that CA

1 contains projective A-module but 
no simple A-modules (see [18, Example 5.4]). Since A = B̂/(νB̂) is symmetric algebra, 
there is a nonzero homomorphism f : P → P for projective module P ∈ CA

1 which 
factorizes through simple module topP . Hence f ∈ rad∞

A and only CA
0 satisfies the 

condition of Theorem 1.1.
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