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An error has been discovered in the proof of Lemma 1 of [1]. Taking the union of the set 
of nondiagonal matrix units in Mn(C) with an arbitrary RBA-basis of the commutative 
subalgebra of diagonal matrices will not always produce an RBA-basis of Mn(C), because 
the requirement that λii∗0 = λi∗i0 condition (v) of the RBA definition in [1] may fail 
to hold. The authors would like to express their sincere gratitude to Harvey Blau for 
informing them of this error.
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Lemma 1 is used later in [1] for the conclusion of Theorem 2, which is later utilized for 
the conclusions of Theorem 3 and Corollary 4. The key point in Theorem 2 is that Mn(C)
has a rational RBA-basis consisting of the union of the set of nondiagonal basis elements 
with a rational RBA-basis D = {d0 = 1, d1, . . . , dn−1} of the commutative subalgebra 
of diagonal matrices, considered as an RBA whose involution acts trivially on D. The 
previously overlooked condition (v) of the definition requires that the coefficient of d0
in the expression of the diagonal elementary matrix Eii in the basis D be positive and 
independent of i. The following Lemma, which is due to the reviewer of an earlier version 
of this note, ensures suitable rational RBA-bases of the subalgebra of diagonal n × n

matrices will exist for all positive integers n.

Lemma 1. Let Qn be the commutative algebra of n-dimensional column vectors under 
coordinatewise multiplication.

(i) There exist bases D = {d0, d1, . . . , dn−1} of Qn such that d0 = (1, . . . , 1)� and the 
elements of D are pairwise orthogonal with respect to the usual inner product 〈·, ·〉.

(ii) Any such basis is a rational RBA-basis of Cn with the property that for all i =
0, 1, . . . , n − 1, the coefficient of d0 in the expression of ei = (0, . . . , 0, 1, 0, . . . , 0)�
in the basis D is 1/n.

Proof. (i) Since d0 = (1, . . . , 1)� is a nonzero vector, it is contained in a basis of Qn. 
Applying the usual Gram–Schmidt process to a basis {d0, d1, . . . , dn−1} of Qn will 
result in an orthogonal basis of Qn that contains d0. This proves (i).

(ii) Let D = {d0, d1, . . . , dn−1} be an orthogonal basis of Qn with d0 = (1, . . . , 1)�. Then 
δk = 〈dk, dk〉 > 0 for all k, and 〈di, dj〉 = δi,jδi for all i, j, where δi,j denotes the 
Kronecker delta. Under componentwise multiplication, the structure constants λijk

relative to D satisfy

λijk = δ−1
k 〈di · dj , dk〉, for all i, j, k.

Since the usual inner product satisfies 〈di · dj , dk〉 = 〈di, dj · dk〉, we have that the 
coefficient of d0 in di ·dj is λij0 = δi,jδiδ

−1
0 = δi,jδi/n. It follows from this observation 

that D is a rational RBA-basis of Cn, where the involution acts trivially on D.
Let ei =

∑
j xijdj be the expression of the primitive idempotent ei in terms of the 

basis D. Then 1 = 〈ei, d0〉 = xi0δ0 implies xi0 = 1
n

. As this is independent of i, 
(ii) holds. �
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