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An atomic monoid M is called a length-factorial monoid 
(or an other-half-factorial monoid) if for each non-invertible 
element x ∈ M no two distinct factorizations of x have the 
same length. The notion of length-factoriality was introduced 
by Coykendall and Smith in 2011 as a dual of the well-
studied notion of half-factoriality. They proved that in the 
setting of integral domains, length-factoriality can be taken 
as an alternative definition of a unique factorization domain. 
However, being a length-factorial monoid is, in general, weaker 
than being a factorial monoid (i.e., a unique factorization 
monoid). Here we further investigate length-factoriality. First, 
we offer two characterizations of a length-factorial monoid M , 
and we use such characterizations to describe the set of Betti 
elements and obtain a formula for the catenary degree of M . 
Then we study the connection between length-factoriality 
and purely long (resp., purely short) irreducibles, which are 
irreducible elements that appear in the longer (resp., shorter) 
part of any unbalanced factorization relation. Finally, we 
prove that an integral domain cannot contain purely long 
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and purely short irreducibles simultaneously, and we construct 
a Dedekind domain containing purely long (resp., purely 
short) irreducibles but not purely short (resp., purely long) 
irreducibles.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

An atomic monoid M is called half-factorial if for each non-invertible x ∈ M , any 
two factorizations of x have the same length. In contrast to this, we say that M is 
length-factorial if for each non-invertible x ∈ M , any two distinct factorizations of x have 
different lengths. An integral domain is called half-factorial if its multiplicative monoid is 
half-factorial. Half-factorial monoids and domains have been systematically investigated 
during the last six decades in connection with algebraic number theory, combinatorics, 
and commutative algebra: from work that appeared more than two decades ago, such as 
[4,9–11,38,39], to more recent literature, including [17,21,23,30,34–36]. The term “half-
factorial” was coined by Zaks in [39]. On the other hand, length-factorial monoids were 
first investigated in 2011 by the second and fourth authors [13]. As their main result, they 
proved that unique factorization domains can be characterized as integral domains whose 
multiplicative monoids are length-factorial. Recently, length-factorial monoids have been 
classified in the class of torsion-free rank-1 monoids [28], in the class of submonoids of 
finite-rank free monoids [26], and in the class of monoids of the form N0[α], where α is 
a positive algebraic number [8].

Here we offer a deeper investigation of length-factoriality in atomic monoids and inte-
gral domains as well as some connections between length-factoriality and the existence of 
certain extremal irreducible elements, which when introduced in [13] were called purely 
long and purely short irreducibles. We say that a monoid satisfies the PLS property if it 
contains both purely long and purely short irreducibles. Every length-factorial monoid 
satisfies the PLS property, and here we determine classes of small-rank monoids where 
every monoid satisfying the PLS property is length-factorial. We will also establish that 
the multiplicative monoid of an atomic domain never satisfies the PLS property. As a 
result, we will rediscover that the multiplicative monoid of an integral domain is length-
factorial if and only if the integral domain is a unique factorization domain, which was 
the main result in [13].

In Section 3, which is the first section of content, we offer two characterizations of 
length-factorial monoids. The first of such characterizations is given in terms of the 
integral independence of the set of irreducibles and the set of irreducibles somehow 
shifted. The second characterization states that a non-factorial monoid is length-factorial 
if and only if the kernel congruence of its factorization homomorphism is nontrivial and 
can be generated by a single factorization relation. This second characterization will 
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allow us to recover [13, Proposition 2.9]. In addition, we use the second characterization 
to determine the set of Betti elements and study the catenary degree of a length-factorial 
monoid.

In Section 4, we delve into the study of purely long and purely short irreducibles. For 
an element x of a monoid M , a pair of factorizations (z1, z2) of x is called irredundant 
if z1 and z2 have no irreducibles in common and is called unbalanced if |z1| �= |z2|. 
An irreducible a of M is called purely long (resp., purely short) provided that for any 
pair of irredundant and unbalanced factorizations of the same element, the longer (resp., 
shorter) factorization contains a. We prove that the set of purely long (and purely short) 
irreducibles of an atomic monoid is finite, and we use this result to decompose any atomic 
monoid as a direct sum of a half-factorial monoid and a length-factorial monoid.

Section 5 is devoted to the study of length-factoriality in connection with the PLS 
property on the class consisting of finite-rank atomic monoids. Observe that this class 
comprises all finitely generated monoids, all additive submonoids of Zn, and a large 
class of Krull monoids. We start by finding the number of irreducibles (up to associates) 
of a finite-rank length-factorial monoid. Then we show that for monoids of rank at 
most 2, being length-factorial is equivalent to satisfying the PLS property. We conclude 
the section by offering further characterizations of length-factoriality for rank-1 atomic 
monoids.

In Section 6, we investigate the existence of purely long and purely short irre-
ducibles in the setting of integral domains, arriving to the surprising fact that an 
integral domain cannot simultaneously contain purely long and purely short irre-
ducibles. As a consequence, we rediscover the main result of [13]: the multiplica-
tive monoid of an integral domain is length-factorial if and only if the integral do-
main is a unique factorization domain (a shorter proof of this result was later given 
in [1, Theorem 2.3]). We also exhibit examples of Dedekind domains containing purely 
long (resp., purely short) irreducibles, but not purely short (resp., purely long) irre-
ducibles.

2. Fundamentals

2.1. General notation

Throughout this paper, we let N denote the set of positive integers and, in addition, 
we set N0 := N ∪ {0}. For a, b ∈ Z with a ≤ b, we let �a, b� be the discrete interval 
from a to b, that is, �a, b� = {n ∈ Z : a ≤ n ≤ b}. Also, for S ⊆ R and r ∈ R, we 
set S≤r := {s ∈ S : s ≤ r} and, with similar meaning, we use the notations S≥r, S<r, 
and S>r. If q ∈ Q>0, then we let n(q) and d(q) denote the unique positive integers 
satisfying q = n(q)/d(q) and gcd(n(q), d(q)) = 1. Unless we specify otherwise, when we 
label elements in a certain set by si, si+1, . . . , sj , we always assume that i, j ∈ N0 and 
that i ≤ j.
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2.2. Commutative monoids

We tacitly assume that each monoid (i.e., a semigroup with an identity element) we 
treat here is cancellative and commutative. As all monoids we shall be dealing with are 
commutative, we will use additive notation unless otherwise specified. For the rest of this 
section, let M be a monoid. We let M• denote the set M\{0}, and we let U (M) denote 
the group consisting of all the units (i.e., invertible elements) of M . We say that M is 
reduced if U (M) = {0}.

For the monoid M , there exist an abelian group gp(M) and a monoid homomorphism 
ι : M → gp(M) such that any monoid homomorphism M → G, where G is an abelian 
group, uniquely factors through ι. The group gp(M), which is unique up to isomorphism, 
is called the Grothendieck group1 of M . The monoid M is torsion-free if nx = ny for 
some n ∈ N and x, y ∈ M implies that x = y. A monoid is torsion-free if and only if 
its Grothendieck group is torsion-free (see [3, Section 2.A]). If M is torsion-free, then 
the rank of M , denoted by rank(M), is the rank of the Z-module gp(M), that is, the 
dimension of the Q-vector space Q ⊗Z gp(M).

An equivalence relation ρ on M is called a congruence provided that ρ is compatible 
with the operation of M , that is, for all x, y, z ∈ M the inclusion (y, z) ∈ ρ implies 
that (x + y, x + z) ∈ ρ. The elements of a congruence are called relations. Let ρ be 
a congruence on M . Clearly, the set M/ρ of congruence classes (i.e., the equivalence 
classes) naturally turns into a commutative semigroup with identity element (it may 
not be cancellative). The subset {(x, x) : x ∈ M} of M ×M is the smallest congruence 
of M , and is called the trivial (or diagonal) congruence. Every relation in the trivial 
congruence is called diagonal, while (0, 0) is called the trivial relation. We say that a set 
σ ⊆ M ×M generates the congruence ρ provided that ρ is the smallest (under inclusion) 
congruence on M containing σ. A congruence on M is cyclic if it can be generated by 
one element.

For x, y ∈ M , we say that y divides x in M and write y |M x provided that x = y+ y′

for some y′ ∈ M . If x |M y and y |M x, then x and y are said to be associates and, in this 
case, we write x ∼ y. Being associates determines a congruence on M , and Mred := M/ ∼
is called the reduced monoid of M . When M is reduced, we identify Mred with M . For 
S ⊆ M , we let 〈S〉 denote the smallest (under inclusion) submonoid of M containing S, 
and we say that S generates M if M = 〈S〉. An element a ∈ M \U (M) is an irreducible
(or an atom) if for each pair of elements u, v ∈ M such that a = u + v either u ∈ U (M)
or v ∈ U (M). We let A (M) denote the set of irreducibles of M . The monoid M is called 
atomic if every element in M \U (M) can be written as a sum of irreducibles. Clearly, M
is atomic if and only if Mred is atomic. Each finitely generated monoid is atomic [20, 
Proposition 2.7.8].

1 The Grothendieck group of a monoid is often called the difference or the quotient group depending on 
whether the monoid is written additively or multiplicatively.
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2.3. Factorizations

The free commutative monoid on the set A (Mred) is denoted by Z(M), and the 
elements of Z(M) are called factorizations. If z ∈ Z(M) consists of � irreducibles of 
Mred (counting repetitions), then we call � the length of z and write |z| := �. We say 
that a ∈ A (M) appears in z provided that a + U (M) is one of the � irreducibles 
of z. The unique monoid homomorphism πM : Z(M) → Mred satisfying π(a) = a for all 
a ∈ A (Mred) is called the factorization homomorphism of M . When there seems to be 
no risk of ambiguity, we write π instead of πM . The kernel

kerπ := {(z, z′) ∈ Z(M)2 : π(z) = π(z′)}

of π is a congruence on Z(M), which we call the factorization congruence of M . In 
addition, we call an element (z, z′) ∈ kerπ a factorization relation. Let (z, z′) be a 
factorization relation of M . We say that a ∈ A (M) appears in (z, z′) if a appears in 
either z or z′. We call (z, z′) balanced if |z| = |z′| and unbalanced otherwise. Also, we say 
that (z, z′) is irredundant provided that no irreducible of M appears in both z and z′. 
For each x ∈ M , we set

Z(x) := ZM (x) := π−1(x + U (M)) ⊆ Z(M).

Observe that Z(u) = {0} if and only if u ∈ U (M). In addition, note that M is atomic if 
and only if π is surjective, that is Z(x) �= ∅ for all x ∈ M . For each x ∈ M , we set

L(x) := LM (x) := {|z| : z ∈ Z(x)} ⊂ N0.

The monoid M is called a factorial monoid (or a unique factorization monoid) provided 
that |Z(x)| = 1 for all x ∈ M . On the other hand, M is called a half-factorial monoid
if |L(x)| = 1 for all x ∈ M . Let R be an integral domain (i.e., a commutative ring with 
identity and without nonzero zero-divisors). We let R• denote the multiplicative monoid 
R \ {0} and, to simplify notation, we write πR and Z(R) instead of πR• and Z(R•), 
respectively. In addition, for each x ∈ R•, we set ZR(x) := ZR•(x) and LR(x) := LR•(x). 
It is clear that R is atomic (resp., a unique factorization domain) if and only if the 
monoid R• is atomic (resp., factorial). We say that R is a half-factorial domain provided 
that R• is a half-factorial monoid. See [5] for a survey on half-factorial domains.

The notion of a half-factorial monoid is therefore obtained from that of a factorial 
monoid by keeping the existence and weakening the uniqueness of factorizations, more 
specifically, replacing |Z(x)| = 1 by |L(x)| = 1 for every x ∈ M . In [13] the second and 
fourth authors proposed a dual way to weaken the unique factorization property and 
obtain the following natural relaxed version of a factorial monoid.

Definition 2.1. Let M be an atomic monoid. We say that M is length-factorial if for all 
x ∈ M and z1, z2 ∈ Z(x) the equality |z1| = |z2| implies that z1 = z2.



S.T. Chapman et al. / Journal of Algebra 578 (2021) 186–212 191
Before proceeding, we make the following observation.

Remark 2.2. The term “length-factorial” seems like a natural choice as for every ele-
ment x of a length-factorial monoid M and every � ∈ L(x) there is a unique factorization 
in Z(x) of length �. We emphasize, however, that the monoids we study here under the 
term “length-factorial monoids” were first investigated in [13] under the term “other-
half-factorial monoids”; observe that the later term highlights the contrast with the 
half-factorial property.

Note that a monoid is length-factorial if and only if its reduced monoid is length-
factorial. It is clear that every factorial monoid is length-factorial. We say that a length-
factorial monoid is proper if it is not factorial. The study of length-factoriality will be our 
primary focus of attention here. It has been proved in [13] that the multiplicative monoid 
of an integral domain is a length-factorial monoid if and only if the integral domain is a 
unique factorization domain, i.e., the multiplicative monoid of an integral domain cannot 
be a proper length-factorial monoid. We will obtain this, along with several additional 
fundamental results, as a consequence of our investigation.

3. Characterizations of length-factorial monoids

The main purpose of this section is to provide characterizations of a proper length-
factorial monoid in terms of the integral dependence of its set of irreducibles and also 
in terms of its factorization congruence. We will use the established characterizations 
to describe the set of Betti elements and study the catenary degree of a given length-
factorial monoid. Throughout this section, we assume that M is an atomic monoid.

3.1. Characterizations of a length-factorial monoid

The notion of integral independence plays a central role in our first characterization of 
a length-factorial monoid. Let S be a subset of M . We say that S is integrally independent
in M if S is linearly independent as a subset of the Z-module gp(M), that is, for any 
distinct s1, . . . , sn ∈ S and any c1, . . . , cn ∈ Z the equality 

∑n
i=1 cisi = 0 in gp(M)

implies that ci = 0 for every i ∈ �1, n�. We proceed to establish two characterizations of 
proper length-factorial monoids.

Theorem 3.1. Let M be an atomic monoid that is not a factorial monoid. Then the 
following statements are equivalent.

(a) The monoid M is a length-factorial monoid.
(b) There exists a ∈ A (Mred) such that A (Mred) \ {a} and a − A (Mred) \ {a} are 

integrally independent sets in gp(Mred).
(c) The congruence kerπ is nontrivial and cyclic.
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Proof. Since M is a length-factorial monoid if and only if Mred is a length-factorial 
monoid and since the factorization homomorphisms of both M and Mred are the same, 
there is no loss in assuming that M is a reduced monoid. Accordingly, we identify Mred

with M .
(a) ⇒ (b): Assume that M is a length-factorial monoid. Observe that the set A (M)

cannot be integrally independent as, otherwise, M would be a factorial monoid. Then 
there exist a ∈ A (M) and m ∈ N such that

ma =
k∑

i=1
miai (3.1)

for some a1, . . . , ak ∈ A (M) \ {a} and m1, . . . , mk ∈ Z. Let us verify that A (M) \ {a}
is an integrally independent set in gp(M). Suppose, for the sake of a contradiction, that 
this is not the case. Then there exist b ∈ A (M) \ {a} and n ∈ N satisfying

nb =
�∑

i=1
nibi (3.2)

for some b1, . . . , b� ∈ A (M) \ {a, b} and n1, . . . , n� ∈ Z. Take ci = 1
2 (|mi| − mi) and 

c′i = 1
2 (|mi| +mi) for every i ∈ �1, k�, and also take di = 1

2(|ni| −ni) and d′i = 1
2 (|ni| +ni)

for every i ∈ �1, ��. Then set

z1 := ma +
k∑

i=1
ciai, z2 :=

k∑
i=1

c′iai, w1 := nb +
�∑

j=1
djbj , and w2 :=

�∑
j=1

d′jbj .

It follows from (3.1) and (3.2) that both (z1, z2) and (w1, w2) are irredundant factoriza-
tion relations of M . Because (z1, z2) and (w1, w2) are irredundant and nontrivial, the 
length-factoriality of M guarantees that they are both unbalanced. Assume, without loss 
of generality, that |z1| > |z2| and |w1| < |w2|. Clearly, ((|w2| − |w1|)z1, (|w2| − |w1|)z2)
and ((|z1| − |z2|)w1, (|z1| − |z2|)w2) are both factorization relations of M . By adding 
them, one can produce a new balanced factorization relation with exactly one of its two 
factorization components involving the irreducible a. However, this contradicts that M
is a length-factorial monoid. Thus, A (M) \ {a} is integrally independent in gp(M).

Let a ∈ A (M) be as in the previous paragraph. We proceed to argue that the set 
a −A (M) \{a} is also integrally independent in gp(M). Take now b1, . . . , b� ∈ A (M) \{a}
and n1, . . . , n� ∈ Z such that 

∑�
i=1 ni(bi − a) = 0. Then set di = 1

2 (|ni| − ni) and 
d′i = 1

2(|ni| + ni) for every i ∈ �1, ��, and consider the factorizations

z1 :=
�∑

dibi +
( �∑

d′i

)
a and z2 :=

�∑
d′ibi +

( �∑
di

)
a.
i=1 i=1 i=1 i=1
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The equality 
∑�

i=1 nibi =
(∑�

i=1 ni

)
a ensures that (z1, z2) is a balanced factorization 

relation. Since M is a length-factorial monoid, z1 = z2 and therefore ni = di−d′i = 0 for 
every i ∈ �1, ��. As a consequence, we can conclude that a −A (M) \ {a} is an integrally 
independent set in gp(M).

(b) ⇒ (c): Suppose that there exists a ∈ A (M) such that both A (M) \ {a} and 
a −A (M) \{a} are integrally independent sets in gp(M). Let S be the subgroup of gp(M)
generated by A (M) \ {a}. We have seen before that A (M) is an integrally dependent 
set. As a result, the annihilator Ann(a + S) of a + S in the Z-module gp(M)/S is not 
trivial. Since Ann(a + S) is an additive subgroup of Z, there exists m ∈ N such that 
Ann(a + S) = mZ. Then there is an irredundant factorization relation (w1, w2) ∈ kerπ
such that exactly m copies of a appear in w1 and no copies of a appear in w2.

Let us verify that (w1, w2) is unbalanced. Suppose, by way of contradiction, that 
|w1| = |w2|. Note that the equality π(w1) − π(w2) = 0 in gp(M) ensures the existence 
of a0, . . . , ak ∈ A (M) (with a0 = a) and m0, . . . , mk ∈ Z (with m0 = m) such that ∑k

i=0 miai = 0. As |w1| = |w2|, the equality 
∑k

i=0 mi = 0 holds. As a consequence, one 
finds that

k∑
i=1

mi(a− ai) = a
k∑

i=0
mi −

k∑
i=0

miai = 0.

This, along with the fact that mi �= 0 for some i ∈ �1, k�, contradicts that a −A (M) \{a}
is an integrally independent set. Hence |w1| �= |w2|, and so (w1, w2) is unbalanced.

We still need to show that (w1, w2) generates the congruence kerπ. Towards this end, 
take a nontrivial irredundant factorization relation (z1, z2) ∈ kerπ. As A (M) \ {a} is 
integrally independent, a must appear in (z1, z2). Assume, without loss of generality, 
that exactly n copies of a appear in z1 for some n ∈ N. Thus, from π(z1) = π(z2)
we deduce that n ∈ Ann(a + S), and so n = km for some k ∈ N. Then after can-
celing na on both sides of π(wk

1z2) = π(wk
2z1), we obtain two integral combinations 

of irreducibles in A (M) \ {a}, whose corresponding coefficients must be equal. Hence 
(z1, z2) = (w1, w2)k.

(c) ⇒ (a): Suppose that kerπ is a cyclic congruence generated by an unbalanced 
irredundant factorization relation (w1, w2). Let ∗ denote the monoid operation of the 
congruence kerπ. Take (z, z′) ∈ kerπ such that z �= z′. Since (w1, w2) generates kerπ, 
there exist n ∈ N and z0, . . . , zn ∈ Z(M) with z0 = z and zn = z′ such that for every 
i ∈ �1, n� the equality

(zi−1, zi) = (w1, w2) ∗ (di, di) (3.3)

holds for some di ∈ Z(M). After multiplying all the identities in (3.3) (for every 
i ∈ �1, n�), one finds that (z, z′) ∗ (z1 · · · zn−1, z1 · · · zn−1) = (wn

1 , w
n
2 ) ∗ (d, d), where 

d = d1 · · · dn. Since z1 · · · zn−1 divides both wn
1 d and wn

2 d in the free monoid Z(M)
and gcd(wn

1 , w
n
2 ) = 1, there exists z′′ ∈ Z(M) such that z1 · · · zn−1z

′′ = d. As a result, 



194 S.T. Chapman et al. / Journal of Algebra 578 (2021) 186–212
(z, z′) = (z′′wn
1 , z

′′wn
2 ) and so (z, z′) is an unbalanced factorization relation. Hence M is 

a length-factorial monoid. �
Following [13], we call a factorization relation (w1, w2) in kerπM master if any irre-

dundant and unbalanced factorization relation of M has the form (wn
1 , w

n
2 ) or (wn

2 , w
n
1 )

for some n ∈ N. A master factorization relation must be irredundant and unbalanced 
unless M is a half-factorial monoid. When M is a proper length-factorial monoid we 
have seen that kerπ is a nontrivial cyclic congruence, and it is clear that (w1, w2) is 
a generator of kerπ if and only if (w1, w2) is a master factorization relation, in which 
case, the only master factorization relations of M are (w1, w2) and (w2, w1). In this case, 
one can readily verify that if |w1| < |w2|, then |w1| < |z| < |w2| for each factorization 
z ∈ Z(π(w1)) \ {w1, w2}. As a consequence of Theorem 3.1, we obtain the following 
corollary, which was first established in the proof of the main theorem of [13].

Corollary 3.2. Let M be an atomic monoid. Then M is a proper length-factorial monoid 
if and only if it admits an unbalanced master factorization relation (w1, w2), in which 
case the only master factorization relations of M are (w1, w2) and (w2, w1).

The numerical monoids that are proper length-factorial monoids have been charac-
terized in [13] as those having precisely two irreducibles. This was generalized in [28, 
Proposition 4.3], which states that the additive submonoids of Q≥2 that are length-
factorial monoids are those generated by two elements. In general, every monoid that 
can be generated by two elements is a length-factorial monoid.

Corollary 3.3. Let M be a monoid generated by two elements. Then kerπ is cyclic, and M

is a length-factorial monoid.

Proof. As M is finitely generated, it is atomic. We can assume, without loss of generality, 
that M is reduced. If M is a factorial monoid, then there is nothing to show. Therefore 
assume that M is not a factorial monoid. Then there exists a generating set A of M
with |A| = 2. Because M is not a factorial monoid, A (M) = A. As both sets A \ {a}
and a −A \ {a} are singletons, the corollary follows from Theorem 3.1. �

When a monoid cannot be generated by two elements, its factorization congruence 
may not be cyclic (even if the monoid is finitely generated). The next example illustrates 
this observation.

Example 3.4. For n ∈ N≥3, consider the additive submonoid M = {0} ∪N≥n of N0. It can 
be readily verified that M is atomic and A (M) = �n, 2n −1�. Since 2(n +1) = n +(n +2), 
it follows that M is not a length-factorial monoid. Then Theorem 3.1 guarantees that 
the factorization congruence of M is not cyclic.
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3.2. Connection with the catenary degree

We call a finite sequence z0, z1, . . . , zk of factorizations in Z(M) a chain of factoriza-
tions from z0 to zk if π(z0) = π(z1) = · · · = π(zk), where π is the factorization homomor-
phism of M . Consider the subset R of Z(M)2 defined as follows: a pair (z, z′) ∈ Z(M)2
belongs to R if there exists a chain of factorizations z0, z1, . . . , zk from z to z′ such that 
gcd(zi−1, zi) �= 1 for every i ∈ �1, k�, where gcd(zi−1, zi) denotes the greatest common 
divisor of zi−1 and zi as elements of the free commutative monoid Z(M). It follows im-
mediately that R is an equivalence relation on Z(M) that refines kerπ. For each x ∈ M , 
we let Rx denote the set of equivalence classes of R inside Z(x). An element b ∈ M

is called a Betti element provided that |Rx| ≥ 2. Let Betti(M) denote the set of Betti 
elements of M . As we proceed to show, every proper length-factorial monoid contains 
essentially one Betti element.

Proposition 3.5. If M is a proper length-factorial monoid, then |Betti(Mred)| = 1.

Proof. Since M is a proper length-factorial monoid, Corollary 3.2 ensures the existence 
of a master factorization relation (w1, w2). Assume that |w1| < |w2|. We claim that 
b = π(w1) is a Betti element. To see this, take w′

1 ∈ Z(b) with w′
1 �= w1. As w1 is the 

minimum-length factorization of the master relation (w1, w2), it follows that |w1| < |w′
1|. 

Therefore (w1, w′
1) = (wwn

1 , ww
n
2 ) for some w ∈ Z(M) and n ∈ N, which implies that 

w = 1 and n = 1, that is, w′
1 = w2. As a result, Z(b) = {w1, w2}. This, along with the 

fact that (w1, w2) is irredundant, guarantees that |Rb| = 2. Hence b ∈ Betti(Mred).
Now take x ∈ Mred such that x �= b, and let us verify that x cannot be a Betti element 

of Mred. If |Z(x)| = 1, then |Rx| = 1, and so x /∈ Betti(Mred). Assume, therefore, that 
|Z(x)| ≥ 2. Take z, z′ ∈ Z(x) with z �= z′ and suppose, without loss of generality, that 
|z| < |z′|. Then (z, z′) = (wwn

1 , ww
n
2 ) for some w ∈ Z(M) and n ∈ N. If w �= 1, then 

z, z′ is a chain of factorizations from z to z′ such that gcd(z, z′) �= 1. Otherwise, the fact 
that x �= b ensures that n ≥ 2, and after taking zi = wn−i

1 wi
2 for each i ∈ �0, n�, one 

can readily see that z0, z1, . . . , zn is a chain of factorizations from z to z′ satisfying that 
gcd(zi−1, zi) �= 1 for every i ∈ �1, n�. Hence |Rx| = 1, and so x /∈ Betti(Mred). �

We will conclude this section studying the (monotone, equal) catenary degree of a 
length-factorial monoid; we express the (monotone) catenary degree in terms of any of 
the master factorization relations. The distance d(z, z′) between two factorizations z
and z′ in Z(M) is defined as follows:

d(z, z′) := max
{∣∣∣∣ z

gcd(z, z′)

∣∣∣∣,
∣∣∣∣ z′

gcd(z, z′)

∣∣∣∣
}
.

It is routine to verify that d is indeed a distance function. For N ∈ N0, a chain of 
factorizations z0, z1, . . . , zk is called an N -chain from z0 to zk if d(zi−1, zi) ≤ N for 
every i ∈ �1, k�. For x ∈ M , we let c(x) denote the smallest N ∈ N0 such that for every 
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z, z′ ∈ Z(x) there exists an N -chain of factorizations from z to z′; when such an N does 
not exist, we set c(x) = ∞. The catenary degree of M , denoted by c(M), is defined by

c(M) := sup{c(x) : x ∈ M}.

The notion of catenary degree was introduced by Geroldinger in [18] in the context 
of Noetherian domains, although the term was coined later in [19]. Since then, several 
variations of the catenary degree have been investigated.

An N -chain z0, z1, . . . , zk of factorizations in Z(M) is said to be monotone provided 
that |z0| ≤ |z1| ≤ · · · ≤ |zk| or |z0| ≥ |z1| ≥ · · · ≥ |zk|. For x ∈ M , we let cmon(x) (resp., 
ceq(x)) denote the smallest N ∈ N0 such that for every z, z′ ∈ Z(x) (resp., z, z′ ∈ Z(x)
with |z| = |z′|) there exists a monotone N -chain of factorizations from z to z′; if such 
an N does not exist, then we set cmon(x) = ∞ (resp., ceq(x) = ∞). In addition, we set

cmon(M) := sup{cmon(x) : x ∈ M} and ceq(M) := sup{ceq(x) : x ∈ M},

and call them the monotone catenary degree and the equal catenary degree of M , respec-
tively. It is clear from the definition that c(x) ≤ cmon(x) and ceq(x) ≤ cmon(x) for all 
x ∈ M and, therefore, c(M) ≤ cmon(M) and ceq(M) ≤ cmon(M). For every � ∈ N0 and 
x ∈ M , set Z�(x) := {z ∈ Z(x) : |z| = �} and define cadj(x) as follows:

cadj(x) := sup
{
d(Zk(x),Z�(x)) : k, � ∈ L(x), k < �, and �k, �� ∩ L(x) = {k, �}

}
,

where d(Z1, Z2) = min{d(z1, z2) : z1 ∈ Z1 and z2 ∈ Z2} for any nonempty subsets Z1
and Z2 of Z(M). The adjacent catenary degree of M , denoted by cadj(M), is then defined 
as

cadj(M) := sup{cadj(x) : x ∈ M}.

It is clear that cmon(x) = max{ceq(x), cadj(x)} for all x ∈ M and, as a consequence, 
cmon(M) = max{ceq(M), cadj(M)}. The notion of monotone catenary degree was intro-
duced by Foroutan in [15], and it has been fairly studied in past literature (see [22] and 
references therein). In [33, Section 3], Philipp provides characterizations of the mono-
tone, equal, and adjacent catenary degrees of M in terms of the factorization congruence 
kerπ.

Proposition 3.6. Let M be a monoid, and let (w1, w2) be a master factorization relation 
of M . Then the following statements hold.

(1) The monoid M is length-factorial if and only if ceq(M) = 0.
(2) If M is a proper length-factorial monoid, then

cadj(M) = cmon(M) = c(M) = max{|w1|, |w2|}.
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Proof. (1) For the direct implication, assume that M is a length-factorial monoid. 
Since M is length-factorial, for every x ∈ M two factorizations in Z(x) have the same 
length if and only if they are equal, which immediately implies that ceq(x) = 0. Hence 
ceq(M) = 0. Conversely, suppose that ceq(M) = 0. Take x ∈ M , and let z and z′ be 
two factorizations of x such that |z| = |z′|. Since ceq(x) ≤ ceq(M) = 0, it follows that 
d(z, z′) = 0, and so z = z′. Thus, distinct factorizations of x must have different lengths. 
Hence M is a length-factorial monoid.

(2) Now suppose that M is a proper length-factorial monoid. In order to find the 
catenary degree of M , it suffices to look at the set Betti(M): indeed, it follows from [32, 
Corollary 9] that

c(M) = sup{μ(b) : b ∈ Betti(M)},

where μ(x) = sup{minz∈ρ |z| : ρ ∈ Rx}. By Proposition 3.5, the monoid M contains only 
one Betti element b up to associate, and we have seen that Rb consists of two classes, 
namely, {w1} and {w2}. Thus, c(M) = μ(b) = max{|w1|, |w2|}.

Since ceq(M) = 0, the equality cadj(M) = cmon(M) holds. Finally, let us argue that 
cmon(M) = c(M). If b ∈ Betti(M), then Z(b) = {w1, w2}, as we have seen in the proof 
of Proposition 3.5. Clearly, w1, w2 is a monotone N -chain of factorizations from w1
to w2, where N = max{|w1|, |w2|}. Thus, cmon(b) ≤ max{|w1|, |w2|} = c(M). Now 
suppose that x ∈ M is not a Betti element. If |Z(x)| = 1, then cmon(x) = 0 ≤ c(M). 
Suppose, otherwise, that |Z(x)| > 1 and take z, z′ ∈ Z(x) such that z �= z′. As M is a 
length-factorial monoid, we can assume that |z| < |z′|, so (z, z′) = (wwn

1 , ww
n
2 ) for some 

w ∈ Z(M) and n ∈ N. In this case, we can take zi := wwn−i
1 wi

2 for each i ∈ �0, n� to 
obtain an N -chain of factorizations from z to z′, where N = max{|w1|, |w2|} = c(M). 
This implies that cmon(x) ≤ c(M). Hence cmon(M) ≤ c(M) and, therefore, the equality 
must hold. �
4. Pure irreducibles: the PLS property

In this section, we study the notions of purely long and purely short irreducibles (as 
introduced in [13]) in connection with length-factoriality. Based on these notions of ir-
reducible elements, we introduce a class of atomic monoids that strictly contains that of 
length-factorial monoids. We will see that each monoid in this new class naturally de-
composes as a sum of a half-factorial monoid and a length-factorial monoid. Throughout 
this section, we let M be an atomic monoid.

4.1. Pure irreducibles

Let (z1, z2) be an unbalanced factorization relation of M . Then we call the factor-
ization of bigger (resp., smaller) length between z1 and z2 the longer (resp., shorter) 
factorization of (z1, z2).
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Definition 4.1. Let M be a monoid, and take a ∈ A (Mred). We say that a is purely long
(resp., purely short) if a is not prime and for all irredundant and unbalanced factorization 
relations (z1, z2) of M , the fact that a appears in z1 implies that |z1| > |z2| (resp., 
|z1| < |z2|).

Remark 4.2. As by definition a purely long (or short) irreducible is not prime, it must 
appear in at least one nontrivial irredundant factorization relation of M .

We let L (M) (resp., S (M)) denote the set comprising all purely long (resp., purely 
short) irreducibles of Mred. When M is a proper length-factorial monoid, it follows 
from Corollary 3.2 that both L (M) and S (M) are nonempty sets. More precisely, if 
z1, z2 ∈ Z(M) satisfy |z1| < |z2| and (z1, z2) is an irredundant factorization relation 
generating the factorization congruence of a length-factorial monoid M , then L (M)
(resp., S (M)) consists of all irreducibles that appear in z2 (resp., z1).

We call any element of L (M) ∪ S (M) a pure irreducible. As a consequence of the 
following proposition we will obtain that every atomic monoid contains only finitely 
many pure irreducibles.

Proposition 4.3. For an atomic monoid M , let a be a purely short/long irreducible, and 
let (w1, w2) be an irredundant factorization relation. Then a appears in (w1, w2) if and 
only if (w1, w2) is unbalanced.

Proof. To argue the direct implication suppose, by way of contradiction, that (w1, w2)
is balanced. We also assume, without loss of generality, that a appears in w2. Suppose 
first that a ∈ L (M), and take an irredundant factorization relation (z1, z2) such that 
|z1| > |z2| and a appears in z1. Then we can take n ∈ N large enough such that the 
number of copies of a that appear in wn

1 z1 is strictly smaller than the number of copies of a
that appear in wn

2 z2. Therefore (wn
1 z1, wn

2 z2) yields, after cancellations, an irredundant 
and unbalanced factorization relation whose shorter factorization involves a. However, 
this contradicts that a is purely long. Supposing that a ∈ S (M), one can similarly arrive 
to another contradiction.

For the reverse implication, assume that (w1, w2) is unbalanced with |w1| < |w2|. 
Suppose first that a ∈ L (M). Take an irredundant factorization relation (z1, z2) such 
that a appears in (z1, z2). There is no loss in assuming that a appears in z1 and, therefore, 
that |z1| > |z2|. Then there exists n ∈ N such that |wn

1 z1| < |wn
2 z2|. Since a appears 

in the shorter factorization of (wn
1 z1, wn

2 z2), the fact that a is a purely long irreducible 
guarantees that a also appears in the longer factorization of (wn

1 z1, wn
2 z2). Hence a

appears in w2. For a ∈ S (M) the proof is similar. �
Corollary 4.4. For an atomic monoid M , both sets L (M) and S (M) are finite.

Proof. If M is a half-factorial monoid, then both sets L (M) and S (M) are empty. 
Otherwise, there must exist an unbalanced factorization relation (z1, z2). It follows now 
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from Proposition 4.3 that every pure irreducible of M appears in (z1, z2). Hence both 
sets L (M) and S (M) must be finite. �

Clearly, atomic monoids having both purely long and purely short irreducibles are 
natural generalizations of length-factorial monoids, and they will play an important role 
in the remainder of this paper.

Definition 4.5. If an atomic monoid M contains both purely long and purely short irre-
ducibles, then we say that M has the PLS property or that M is a PLS monoid.

For future reference, we highlight the following immediate corollary of Theorem 3.1.

Corollary 4.6. Every proper length-factorial monoid is a PLS monoid.

The converse of Corollary 4.6 does not hold even for finitely generated monoids. For 
any subset S of Rd, we let cone(S) and aff(S) denote the cone and the affine space 
generated by S, respectively.

Example 4.7. For the triples a1 = (0, 1, 1), a2 = (0, 2, 1), a3 = (1, 2, 3), a4 = (2, 2, 2), 
and a5 = (3, 2, 1), consider the submonoid M = 〈ai : i ∈ �1, 5�〉 of (N3

0 , +). Clearly, M
is atomic and it is not hard to check that A (M) = {ai : i ∈ �1, 5�}. Let H be the 
hyperplane described by the equation y = 2. Since a1 /∈ H and ai ∈ H for every i ∈ �2, 5�, 
the irreducible a1 is purely long. Because cone(a1, a2) and aff(a3, a4, a5) only intersect in 
the origin, a1 and a2 cannot be in the same part of any irredundant factorization relation 
of M . Thus, if a2 appears in an irredundant factorization relation involving a1, then it 
must appear in its shorter part. In addition, note that because a2 /∈ aff(a3, a4, a5), there 
is no irredundant factorization relation of M involving a2 but not a1. Hence a2 ∈ L (M), 
and so M is a PLS monoid. However, it follows from [26, Section 5] that M is not a 
length-factorial monoid.

None of the conditions L (M) = ∅ and S (M) = ∅ implies the other one. The following 
example sheds some light upon this observation.

Example 4.8. For the set A = {(0, 3), (1, 2), (2, 1), (3, 0)}, consider the submonoid M of 
(N2

0 , +) generated by A. It is clear that M is atomic, and one can readily check that 
A (M) = A. Since all the irreducibles of M lie in the line determined by the equation 
x + y = 3, it follows from [26, Corollary 5.5] that M is a half-factorial monoid.

Now consider the submonoid M1 of (N2
0 , +) generated by the set A1 = A ∪{(1, 1)}. It is 

easy to verify that M1 is atomic with A (M1) = A1. Moreover, since the irreducibles of M1
are not colinear, it follows from [26, Corollary 5.5] that M1 is not a half-factorial monoid. 
Therefore there exists an irredundant factorization relation (z1, z2) with |z1| �= |z2|. 
Since M is a half-factorial monoid, (1, 1) must appear in (z1, z2); say that (1, 1) appears 
in z1. After projecting on the line determined by the equation y = x, one can easily see 
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that |z1| > |z2|. As a result, (1, 1) is purely long. Note that the irreducibles in A are 
neither purely long nor purely short because they are precisely the irreducibles of M , 
which is a half-factorial monoid. Hence M1 contains a purely long irreducible but no 
purely short irreducibles.

Lastly, considering the submonoid M2 of (N2
0 , +) generated by the set A ∪{(2, 2)} and 

proceeding as we did with M1, one finds that (2, 2) is the only purely short irreducible 
in M2, and also that M2 contains no purely long irreducibles.

We know that half-factorial monoids contain neither purely long nor purely short 
irreducibles. However, there are monoids that are not half-factorial and still contain 
neither purely long nor purely short irreducibles.

Example 4.9. Let M and A be as in Example 4.8, and let M3 be the submonoid of (N2
0 , +)

generated by the set A3 = A ∪ {(0, 2), (1, 1), (2, 0)}. It is not hard to verify that M3 is 
an atomic monoid with A (M3) = A3. Since the equalities 2(1, 1) = (0, 2) + (2, 0) and 
(1, 2) + (2, 1) = (0, 3) + (3, 0) give rise to two irredundant and balanced factorizations 
involving each irreducible of M3, the sets L (M3) and S (M3) must be empty. Because of 
this, M3 cannot be a length-factorial monoid, which is confirmed by [26, Theorem 5.10]. 
In addition, as the points in A3 are not colinear, it follows from [26, Corollary 5.5]
that M3 is not a half-factorial monoid.

4.2. Sum decomposition of PLS monoids

We proceed to show how to decompose the reduced monoid of a PLS monoid M as 
the inner sum of a half-factorial monoid M1 and a finitely generated length-factorial 
monoid M2 satisfying that M1 ∩ M2 = {0}. We emphasize that such a decomposition 
does not guarantee the uniqueness of the representation of an element of M as a sum of 
an element of M1 and an element of M2.

Theorem 4.10. Let M be a PLS monoid. Then there exist submonoids H and O of Mred
satisfying Mred = H+O, where H is a half-factorial monoid and O is a finitely generated 
proper length-factorial monoid such that H ∩O = {0}.

Proof. Let O be the submonoid of Mred generated by the set L (M) ∪ S (M). It is 
clear that O is an atomic monoid with A (O) = L (M) ∪ S (M). Moreover, note that 
L (O) = L (M) and S (O) = S (M). By Corollary 4.4, the monoid O is finitely gener-
ated. To verify that O is a length-factorial monoid, let (z1, z2) be a nontrivial irredundant 
factorization relation in kerπO. Since at least one irreducible in L (M) ∪S (M) appears 
in the relation (z1, z2), the latter must be unbalanced by Proposition 4.3. As a conse-
quence, O is a proper length-factorial monoid.

Now let H be the submonoid of Mred generated by A (M) \ (L (M) ∪ S (M)). It 
follows immediately that H is atomic with A (H) = A (M) \ (L (M) ∪ S (M)). To see 
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that H is a half-factorial monoid, it suffices to observe that since kerπH ⊆ kerπM , any 
irredundant factorization relation of kerπH must be balanced by Proposition 4.3.

Because A (Mred) = A (H) ∪ A (O), we find that Mred = H + O. To argue that H
and O have trivial intersection, suppose that x ∈ H ∩ O. As both H and O are atomic 
monoids, one can take z1 ∈ ZH(x) and z2 ∈ ZO(x). Therefore (z1, z2) ∈ kerπM . Since 
L (M) �= ∅ and S (M) �= ∅, if a pure irreducible appeared in z2, then a pure irreducible 
would appear in z1. As z1 consists of non-pure irreducibles, z2 must be the factorization 
with no irreducibles, whence x = 0. As a result, H ∩ O = {0}, which implies that 
Mred = H ⊕O. �

The converse of Theorem 4.10 does not hold in general, as the following example 
indicates.

Example 4.11. Consider the additive submonoid M of (N2
0 , +) generated by the set 

of lattice points {(1, 1), (0, 3), (1, 2), (2, 1), (3, 0)}. We have already seen in the second 
paragraph of Example 4.8 that L (M) = {(1, 1)} and S (M) = ∅. Therefore M is not 
a PLS monoid. The submonoid H = 〈(1, 2), (0, 3)〉 of M is clearly a factorial monoid 
and, in particular, a half-factorial monoid. On the other hand, one can see that the 
submonoid O = 〈(1, 1), (2, 1), (3, 0)〉 of M is a proper length-factorial monoid by applying 
Theorem 3.1 with a = (1, 1). It follows immediately that M = H ⊕O even though M is 
not a PLS monoid.

We conclude this section with the following proposition.

Proposition 4.12. Let M be a PLS monoid. Then there exists an unbalanced factorization 
relation (w1, w2) ∈ kerπ such that every factorization relation of kerπ has the form 
(wn

1h1, wn
2h2) for some n ∈ N0 and some balanced factorization relation (h1, h2) ∈ kerπ.

Proof. Take a ∈ L (M). Set A = A (M) \ {a}, and let S be the subgroup of gp(M)
generated by A. Since a appears in an irredundant and unbalanced factorization relation 
of M , there exists m ∈ N such that Ann(a + S) = mZ, where Ann(a + S) is the 
annihilator of a + S in the Z-module gp(M)/S. As ma ∈ S, there is an irredundant 
factorization relation (w1, w2) of M such that exactly m copies of a appear in w1. It 
follows from Proposition 4.3 that |w1| > |w2|. Suppose now that (z1, z2) is an irredundant 
factorization relation of M with |z1| > |z2|, and let k ∈ N be the number of copies 
of a appearing in z1. Notice that k ∈ Ann(a + S), and therefore k = nm for some 
n ∈ N. Then (wn

1 z2, wn
2 z1) ∈ kerπ yields, after cancellations, a factorization relation 

that does not involve a. Thus, such a factorization must be balanced by Proposition 4.3
and cannot involve any pure irreducible. So the number of copies of each irreducible b in 
L (M) (resp., S (M)) that appear in z1 (resp., z2) equals n times the number of copies 
of b that appear in w1 (resp., w2). Hence (z1, z2) = (wn

1h1, wn
2h2), where h1, h2 ∈ Z(M)

involve no pure irreducibles. Clearly, (h1, h2) ∈ kerπ, and Proposition 4.3 guarantees 
that |h1| = |h2|. �



202 S.T. Chapman et al. / Journal of Algebra 578 (2021) 186–212
5. Finite-rank monoids

In this section, we continue studying the OHF and the PLS properties, but we restrict 
our attention to the class of finite-rank monoids.

5.1. Number of irreducibles

If M is a reduced finite-rank factorial monoid, then it follows from [20, Proposi-
tion 1.2.3(2)] that |A (M)| = rank(M). In parallel with this, the cardinality of A (M) in 
a finite-rank proper length-factorial monoid M can be determined.

Proposition 5.1. Let M be a proper length-factorial monoid whose rank is finite. Then 
the equality |A (Mred)| = rank(M) + 1 holds.

Proof. As gp(Mred) ∼= gp(M)/U (M), the monoid Mred has finite rank. Hence one can 
replace M by Mred and assume that M is reduced. Set r = rank(M) and then embed M

into the Q-vector space V := Q ⊗Z gp(M) ∼= Qr via M ↪→ gp(M) → Q ⊗Z gp(M), 
where the injectivity of the second map follows from the flatness of the Z-module Q. So 
we can think of M as an additive submonoid of the finite-dimensional vector space Qr. 
By Theorem 3.1, there exists a ∈ A (M) such that A (M) \ {a} and a − A (M) \ {a}
are integrally independent in gp(M). In particular, A (M) \ {a} and a − A (M) \ {a}
are linearly independent inside the vector space V . Because M is atomic, gp(M) can 
be generated by A (M) as a Z-module and, therefore, A (M) is a generating set of V . 
Since M is a proper length-factorial monoid, the monoid M is not a factorial monoid 
and, consequently, A (M) is a linearly dependent set of V . This along with the fact that 
A (M) \{a} is linearly independent in V implies that A (M) \{a} is a basis for V . Hence 
|A (M)| = |A (M) \ {a}| + 1 = r + 1. �
Corollary 5.2. Every finite-rank length-factorial monoid is finitely generated.

The condition of having finite rank in Corollary 5.2 is not superfluous. For instance, 
consider the additive monoid M = 〈2, 3〉 ⊕N∞

0 , where N∞
0 is the direct sum of countably 

many copies of N0. Since 〈2, 3〉 is a proper length-factorial monoid and N∞
0 is a factorial 

monoid, M is a proper length-factorial monoid. However, M is not finitely generated 
because rank(M) = ∞. The converse of Proposition 5.1 does not hold in general, as the 
following example shows.

Example 5.3. For every r ∈ N, consider the submonoid Mr of (Nr
0 , +) that is generated 

by the set S = {v0, rej : j ∈ �1, r�}, where v0 := {e1 + · · · + er}. It is not hard to 
verify that A (Mr) = S, and so |A (Mr)| = r + 1. Notice that each point in S lies in the 
hyperplane of Rr determined by the equation x1 + · · · + xr = r. Hence it follows from 
[26, Corollary 5.5] that Mr is a proper half-factorial monoid. Therefore Mr cannot be a 
length-factorial monoid.
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5.2. Monoids of small rank

As we have emphasized in Corollary 4.6, every proper length-factorial monoid is a 
PLS monoid. We proceed to show that being a length-factorial monoid is equivalent to 
being a PSLM in the class of torsion-free monoids with rank at most 2.

Theorem 5.4. For a torsion-free monoid M with rank(M) ≤ 2, the following statements 
are equivalent.

(a) The monoid M is a proper length-factorial monoid.
(b) The monoid M is a PLS monoid.
(c) The congruence kerπ can be generated by an unbalanced factorization relation.

Proof. (a) ⇔ (c): This is part of Theorem 3.1.
(a) ⇒ (b): This is Corollary 4.6.
(b) ⇒ (a): Assume that M is a PLS monoid, and suppose for the sake of a contradiction 

that M is not a proper length-factorial monoid. Since M is finitely generated, it is atomic. 
As M is not a factorial monoid, |A (M)| ≥ 2. We split the rest of the proof into three 
cases.

CASE 1: |A (M)| = 2. In this case, the factorization congruence kerπ is cyclic by 
Corollary 3.3, and the existence of purely long/short irreducibles implies that any gener-
ator of kerπ must be unbalanced, contradicting that M is not a proper length-factorial 
monoid.

CASE 2: |A (M)| = 3. Take a1, a2, a3 ∈ M such that A (M) = {a1, a2, a3}. Assume, 
without loss of generality, that a1 ∈ L (M) and a2 ∈ S (M). Now take an irredundant 
and balanced factorization relation (z1, z2) ∈ kerπ. Since a1 and a2 are pure irreducibles, 
none of them can appear in (z1, z2). Therefore only copies of the irreducible a3 appear 
in both z1 and z2. This implies that z1 = z2. As (z1, z2) was taking to be irredundant, 
it must be trivial. Hence M is a proper length-factorial monoid, a contradiction.

CASE 3: |A (M)| ≥ 4. First, take a0 ∈ L (M) and a3 ∈ S (M), and then take 
a1, a2 ∈ A (M) \ {a0, a3} such that a1 �= a2. Since a0 is a purely long irreducible, the 
submonoid M ′ := 〈a1, a2, a3〉 of M must be a half-factorial monoid. Now take a nontrivial 
factorization relation (z1, z2) ∈ kerπM ′ . As a3 is a purely short irreducible, it does not 
appear in (z1, z2). Therefore either (z1, z2) or (z2, z1) equals (ma1, ma2) for some n ∈ N. 
Now the fact that M is torsion-free, along with the equality ma1 = ma2, guarantees that 
a1 = a2, which is a contradiction. �
Corollary 5.5. If a torsion-free monoid M is generated by at most three elements, then 
it is a proper length-factorial monoid if and only if it is a PLS monoid.

Proof. There is no loss in assuming that M is reduced. Clearly, |A (M)| ≤ 3. Consider 
the Q-space V = Q ⊗Zgp(M), and identify M with its isomorphic copy inside V provided 
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by the embedding M ↪→ gp(M) → Q ⊗Z gp(M). As M is atomic, A (M) is a spanning 
set of V , whence dimV ≤ 3. If dimV = 3, then A (M) is linearly independent over Q, 
in which case M is the free monoid on A (M). In this case, M is neither a proper length-
factorial monoid nor a PLS monoid. On the other hand, if dimV ≤ 2, then rank(M) ≤ 2
and we are done via Theorem 5.4. �

However, for a finitely generated monoid containing four or more irreducibles, the PLS 
property may not imply the OHF property. This has been illustrated in Example 4.7. In 
the same example, we have seen that the condition of having rank at most 2 is required 
in Theorem 5.4. On the other hand, the following example indicates that the condition 
of being torsion-free is also required in the statement of Theorem 5.4.

Example 5.6. Fix n ∈ N≥4, and consider the submonoid M := 〈ak : k ∈ �1, n�〉 of the 
additive group Zn−2 × Z2, where a1 = (0, 0, 2), a2 = (0, 0, 3), and ak = (k − 3, 1, 0)
for every k ∈ �3, n�. Since M is finitely generated, it must be atomic. In addition, it 
can be readily verified that A (M) = {ak : k ∈ �1, n�}. Now suppose that (z1, z2) is an 
irredundant and unbalanced factorization relation in kerπ, and assume that |z1| < |z2|. 
Since the second component of both a1 and a2 is 0 and the second component of a3, . . . , an
is 1, the numbers of irreducibles in {a3, . . . , an} that appear in z1 and in z2 must coincide. 
A similar observation based on third components shows that a1 appears in z2 but not 
in z1 and also that a2 appears in z1 but not in z2. Hence a1 ∈ L (M) and a2 ∈ S (M), 
which implies that M is a PLS monoid. Checking that M is not a length-factorial monoid 
amounts to observing that the equality (n − 2)a3 = (0, n − 2, 0) = (n − 2)a4 yields an 
irredundant and balanced nontrivial factorization relation of M .

Now we turn to characterize the PSLMs in the class consisting of all torsion-free 
rank-1 monoids, which have been recently studied under the name Puiseux monoids. 
Puiseux monoids have been studied in connection with commutative algebra [12], ordered 
fields [27], commutative factorization theory [6], and noncommutative factorization the-
ory [2]. An updated survey on the atomic structure of Puiseux monoids is given in [7]. 
Notice that a Puiseux monoid is reduced unless it is a group (see [16, Section 24] and 
[24, Theorem 2.9]).

Proposition 5.7. Let M be an atomic Puiseux monoid. Then the following statements are 
equivalent.

(a) The monoid M is a proper length-factorial monoid.
(b) The monoid M is a PLS monoid.
(c) Both inclusions inf A (M) ∈ L (M) and supA (M) ∈ S (M) hold.
(d) At least one of the inclusions inf A (M) ∈ L (M) or supA (M) ∈ S (M) holds.
(e) The equality |A (M)| = 2 holds.
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If any of the conditions above holds, then the sets L (M) and S (M) are singletons: 
L (M) = {inf A (M)} and S (M) = {supA (M)}.

Proof. (a) ⇒ (b): This is Corollary 4.6.
(b) ⇒ (c): Suppose that M is a PLS monoid, and take a� ∈ L (M) and as ∈ S (M). 

Now take a ∈ M such that a �= a�. It is clear that n := n(a)n(a�) ∈ M and, moreover, 
z1 := n(a)d(a�)a� and z2 := n(a�)d(a)a are two factorizations in Z(n). Since the factor-
ization relation (z1, z2) is irredundant and a� appears in z1, one finds that |z1| > |z2|. 
Therefore n(a)d(a�) > n(a�)d(a), which means that a > a�. Then we conclude that 
inf A (M) = a� ∈ L (M). The equality supA (M) = as can be argued similarly, from 
which one obtains that supA (M) ∈ S (M).

(c) ⇒ (d): This is obvious.
(d) ⇒ (e): Assume now that inf A (M) ∈ L (M), and take a� ∈ L (M). Since M is 

an atomic Puiseux monoid that is not a factorial monoid, it follows that |A (M)| ≥ 2. 
Suppose, by way of contradiction, that |A (M)| ≥ 3, and take a1, a2 ∈ A (M) \ {a�}
such that a1 �= a2. Consider the element n := n(a1)n(a2) ∈ M . It is clear that both 
z1 := n(a2)d(a1)a1 and z2 := n(a1)d(a2)a2 are factorizations in Z(n), and they have 
different lengths because a1 �= a2. However, the fact that a� does not appear in either z1

or z2 contradicts that a� ∈ L (M). As a result, |A (M)| = 2. One can similarly obtain 
|A (M)| = 2 assuming that supA (M) ∈ S (M).

(e) ⇒ (a): If |A (M)| = 2, it follows from Corollary 3.3 that M is a length-factorial 
monoid. Taking a1 and a2 to be the two irreducibles of M , one finds that n(a2)d(a1)a1

and n(a1)d(a2)a2 are two different factorizations of n(a1)n(a2) ∈ M , and so M is not a 
factorial monoid. Hence M must be a proper length-factorial monoid. �
Corollary 5.8. Let N be a numerical monoid. Then L (N) ∪ S (N) is nonempty if and 
only if |A (N)| = 2, in which case L (N) = {min A (N)} and S (N) = {max A (N)}.

6. Pure irreducibles in integral domains

We proceed to study the existence of purely long and purely short irreducibles in 
the context of integral domains. Throughout this section, we set L (R) := L (R•) and 
S (R) := S (R•) for any atomic integral domain R. In addition, when R is a Dedekind 
domain, we let Cl(R) denote the divisor class group of R.

6.1. Examples of Dedekind domains

For a finite-rank monoid M , we have already seen in Example 4.8 that none of the 
conditions L (M) = ∅ and S (M) = ∅ implies the other one. In this subsection, we 
construct examples of Dedekind domains to illustrate that a similar statement holds in 
the context of atomic integral domains.



206 S.T. Chapman et al. / Journal of Algebra 578 (2021) 186–212
The celebrated Claborn’s class group realization theorem [14, Theorem 7] states that 
for every abelian group G there exists a Dedekind domain D such that Cl(D) ∼= G. The 
following refinement of this result, due to Gilmer, Heinzer, and the fourth author, will 
be crucial in our constructions.

Theorem 6.1. [25, Theorem 8] Let G be a countably generated abelian group generated 
by B ∪ C with B ∩ C = ∅ such that B∗ ∪ C generates G as a monoid for each cofinite 
subset B∗ of B. Then there exists a Dedekind domain D with class group G satisfying 
the following conditions:

(1) the set B ∪ C consists of the classes of G containing nonzero prime ideals;
(2) the set C consists of the classes of G containing infinitely many nonzero prime ideals;
(3) the set B consists of the classes of G containing finitely many nonzero prime ideals.

Moreover, the number of prime ideals in each class contained in B can be specified arbi-
trarily.

Further refinements of Claborn’s theorem in the direction of Theorem 6.1 were given 
by Grams [29], Michel and Steffan [31], and Skula [37]. We are in a position now to 
exhibit a Dedekind domain with a purely short (resp., long) irreducible but no purely 
long (resp., short) irreducibles.

Example 6.2. In this example, we will produce a Dedekind domain in which there is 
a purely short irreducible but no purely long irreducibles. Toward this end, consider a 
Dedekind domain D with class group Cl(D) ∼= Z/3Z. Since Cl(D) is finite and the class 
of Cl(D) corresponding to 2 + 3Z generates Cl(D) as a monoid, one can invoke Theo-
rem 6.1 to assume that the non-principal prime ideals of D distribute within Cl(D) in 
the following way. There is a unique nonzero prime ideal P in the class of Cl(D) corre-
sponding to 1 +3Z and infinitely many nonzero prime ideals in the class corresponding to 
2 + 3Z. Observe that we can separate non-prime irreducible principal ideals I of D into 
the following three types, according to their (unique) factorizations into prime ideals:

(1) I = P 3, (2) I = PQ, or (3) I = Q1Q2Q3,

where Q, Q1, Q2, and Q3 are prime ideals in the class of Cl(D) corresponding to 2 + 3Z. 
By construction, there is only one irreducible principal ideal of type (1), namely, P 3.

Take a ∈ A (D) such that (a) = P 3. Proving that a ∈ S (D) amounts to verifying 
that (a) is a purely short irreducible in the atomic monoid M consisting of all nonzero 
principal ideals of D. To do so, suppose that (a) appears in an irredundant factorization 
relation (z1, z2) ∈ kerπM , where

z1 := (P 3)k
m∏

(PQi)
n∏

(Qj,1Qj,2Qj,3) and z2 :=
m′∏

(PQ′
i)

n′∏
(Q′

j,1Q
′
j,2Q

′
j,3)
i=1 j=1 i=1 j=1
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for some k ∈ N, m, n, m′, n′ ∈ N0, and ideals Qi, Q′
i, Qj,i, and Q′

j,i in the class corre-
sponding to 2 + 3Z. As D is Dedekind, comparing the numbers of copies of P in all 
the irreducibles of the ideal factorizations z1 and z2, one obtains that 3k = m′ − m. 
Now comparing the numbers of copies of prime ideals in the class 2 + 3Z in all the irre-
ducibles of the ideal factorizations z1 and z2, one obtains that m′ −m = 3(n − n′), and 
so n − k = n′. As a result,

|z1| = k + m + n = (3k + m) + (n− k) − k = m′ + n′ − k < |z2|.

Therefore a ∈ S (D), as desired.
Let us proceed to argue that D contains no purely long irreducibles. By the previous 

paragraph, the set L (D) contains no irreducibles generating ideals of type (1). Take 
a2, a3 ∈ A (D) such that the ideals (a2) and (a3) are of type (2) and type (3), respectively. 
Then take prime ideals Q1, . . . , Q5 in the class of Cl(D) corresponding to 2 + 3Z such 
that the equalities (a2) = PQ1 and (a3) = Q2Q3Q4 hold, and Q5 /∈ {Q1, Q2, Q3, Q4}. 
Now consider the ideal factorizations

z1 := (P 3)(Q2Q3Q4),

z2 := (PQ2)(PQ3)(PQ4),

z3 := (P 3)(PQ1)(Q3Q4Q5)(Q3
5), and

z4 := (PQ5)4(Q1Q3Q4).

Notice that (z1, z2) ∈ kerπM is irredundant and satisfies |z1| < |z2|. Because Q2Q3Q4
appears in z1, it follows that a3 /∈ L (D). On the other hand, (z3, z4) ∈ kerπM is also 
irredundant, and it satisfies |z3| < |z4|. Because PQ1 appears in z3, one finds that 
a2 /∈ L (D). As a result, no irreducible generating an ideal of type (2) or type (3) is 
purely long, whence L (D) = ∅.

To complement Example 6.2, we proceed to construct a Dedekind domain having a 
purely long irreducible but no purely short irreducibles.

Example 6.3. Let D be a Dedekind domain with Cl(D) ∼= Z. Since Cl(D) is countable 
and the set {±1} generates Cl(D) as a monoid, we can assume in light of Theorem 6.1
that the non-principal prime ideals of D distribute within Cl(D) as follows. There is a 
unique nonzero prime ideal, which we denote by P , in the class of Cl(D) corresponding 
to −2; there is a unique nonzero prime ideal, which we denote by Q, in the class of Cl(D)
corresponding to 2; and there are infinitely many nonzero prime ideals in each of the 
classes corresponding to −1 and 1. We denote the prime ideals in the class corresponding 
to −1 by (annotated) N and the prime ideals in the class corresponding to 1 by (anno-
tated) M . Notice that we can separate non-prime irreducible principal ideals I of D into 
the following four types, according to their (unique) factorizations into prime ideals:
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(1) I = PQ, (2) I = PN1N2, (3) I = QM1M2, or (4) I = NM,

where N, N1, N2 belong to the class of Cl(D) corresponding to −1 and M, M1, M2 belong 
to the class of Cl(D) corresponding to 1.

Take a ∈ A (D) such that (a) = PQ. As in Example 6.2, proving that a ∈ L (D)
amounts to showing that the principal ideal (a) is a long irreducible in the atomic 
monoid M consisting of all nonzero principal ideals of D. To do this, suppose that (a)
appears in an irredundant ideal factorization relation (z1, z2) ∈ kerπM , and write

z1 := (PQ)k
m∏
i=1

(PNi,1Ni,2)
n∏

j=1
(QMj,1Mj,2)

t∏
k=1

(NkMk)

and

z2 :=
m′∏
i=1

(PN ′
i,1N

′
i,2)

n′∏
j=1

(QM ′
j,1M

′
j,2)

t′∏
k=1

(N ′
kM

′
k)

for some k, m, n, t, m′, n′, t′ ∈ N0. Since D is Dedekind, after comparing the numbers 
of copies of the prime ideals P and Q that appear in all irreducibles of z1 and z2, one 
obtains that m −m′ = n − n′ = −k. In addition, after comparing the numbers of copies 
of prime ideals in the class corresponding to −1 that appear in z1 and z2, one obtains 
that t − t′ = −2(m −m′) = 2k. As a result,

|z1| = k+m+n+ t = (m′ +n′ + t′)+ k+(m−m′)+ (n−n′)+ (t− t′) = |z2|+ k > |z2|.

Therefore we can conclude that a ∈ L (D).
Finally, let us verify that D contains no purely short irreducibles. Since any irreducible 

generator of PQ is purely long, D contains no purely short irreducibles of type (1). Take 
a2 ∈ A (D) such that (a2) has type (2), and then take prime ideals N1, N2 in the class 
of Cl(D) corresponding to −1 such that (a2) = PN1N2. In addition, take distinct prime 
ideals N3 and N4 in the class of Cl(D) corresponding to −1 such that N3, N4 /∈ {N1, N2}. 
Finally, take distinct prime ideals M1 and M2 in the class of Cl(D) corresponding to 1. 
Consider the ideal factorizations

z1 := (PQ)(PN1N2)(M1N3)(M2N4) and z2 := (PN1N3)(PN2N4)(QM1M2).

Note that (z1, z2) ∈ kerπM is an irredundant factorization relation satisfying |z1| > |z2|. 
Since PN1N2 appears in z1, it follows that a2 /∈ S (D). As a result, no irreducible 
generating an ideal of type (2) can be purely short. In a similar manner, one can verify 
that no irreducible generating an ideal of type (3) is purely short. Now let a4 be an 
irreducible of D such that (a4) is a principal ideal of type (4). Take N and M in the 
classes of Cl(D) corresponding to −1 and 1, respectively, such that (a4) = NM , and 
then consider the ideal factorizations
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z3 := (PQ)(NM)2 and z4 := (PN2)(QM2).

Notice that (z3, z4) ∈ kerπM is an irredundant factorization relation satisfying |z3| > |z4|. 
Since NM appears in z3, it follows that a4 /∈ S (D). Therefore none of the irreducibles 
generating ideals of type (4) is purely short. As a consequence, S (D) = ∅.

6.2. Integral domains do not satisfy the PLS property

In Section 5, we have proved that in the class of torsion-free monoids with rank at 
most 2, being a proper length-factorial monoid and being a PLS monoid are equivalent 
notions. It was proved in [13] that an integral domain has the length-factorial property 
only if it is a unique factorization domain. In addition, being a proper length-factorial 
monoid implies having both purely long and purely short irreducibles. This begs the 
tantalizing question as to whether there is an atomic integral domain with both purely 
long and a purely short irreducibles. The Dedekind domains constructed in the previous 
subsection do not satisfy this property, and this is not a coincidence.

Theorem 6.4. Let R be an atomic domain. Then either L (R) = ∅ or S (R) = ∅.

Proof. Suppose, by way of contradiction, that R is an atomic domain such that both 
L (R) nor S (R) are nonempty sets. We recall that by Corollary 4.4 both L (R) and 
S (R) are finite sets. Set � := |L (R)| and s := |S (R)|, and then write

L (R) =: {α1, α2, . . . , α�} and S (R) =: {β1, β2, . . . , βs}.

Take ρ ∈ kerπR to be an irredundant and unbalanced factorization relation. It follows 
from Proposition 4.3 that each αi appears in the longer factorization component of ρ
and each βj appears in the shorter factorization component of ρ. Therefore there exist 
factorizations z, z′ ∈ Z(R) such that

ρ = (αa1
1 αa2

2 · · ·αa�

� z, βb1
1 βb2

2 · · ·βbs
s z′)

for some a1, . . . , a�, b1, . . . , bs ∈ N such that none of the αi’s appears in z and none of 
the βj ’s appears in z′. In addition, as the factorization is irredundant, none of the αi’s 
appears in z′ and none of the βj ’s appears in z. We now derive contradictions in the 
following three cases.

CASE 1: �, s ≥ 2. Consider the element

x1 := αa2
2 αa3

3 · · ·αa�

� (αa1
1 − βb1

1 )πR(z) ∈ R. (6.1)

We claim that x1 �= 0. Because R contains no nonzero zero-divisors, verifying that 
x1 �= 0 amounts to showing that αa1

1 − βb1
1 �= 0. Indeed, this must be the case: if 

(αa1
1 , βb1

1 ) ∈ kerπR, then the fact that � ≥ 2 would force the purely long irreducible α2
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to appear in the left factorization component of the relation (αa1
1 , βb1

1 ). Hence both 
αa1

1 −βb1
1 and x1 belong to R•. On the other hand, it follows from (6.1) that β1 divides x1

in R. Thus, there exist w1 ∈ Z(R) and w2 ∈ ZR(αa1
1 −βb1

1 ) such that β1w1 ∈ ZR(x1) and 
w := αa2

2 αa3
3 · · ·αa�

� w2z ∈ ZR(x1). Consider the factorization relation (β1w1, w) ∈ kerπR.
CASE 1.1: β1 does not appear in w. Since β1 ∈ S (R), it follows that |w| > |β1w1|. 

Now the inclusion α1 ∈ L (R) implies that α1 must appear in w and, therefore, in w2. 
As a consequence, α1 divides βb1

1 in R and, therefore, there exists a factorization rela-
tion (α1w

′
1, β

b1
1 ) ∈ kerπR for some w′

1 ∈ Z(R). Clearly, (α1w
′
1, β

b1
1 ) is a non-diagonal 

factorization relation. Since β1 ∈ S (R), the inequality |α1w
′
1| > |βb1

1 | must hold. Thus, 
(α1w

′
1, β

b1
1 ) is an unbalanced factorization relation in which β2 does not appear. This 

contradicts that β2 ∈ S (R).
CASE 1.2: β1 appears in w. Because β1 does not appear in z, we see that β1 must 

appear in w2. This implies that β1 divides αa1
1 in R. Now we can follow an argument 

completely analogous to that we just used in CASE 1.1 to obtain the desired contradic-
tion.

CASE 2: {�, s} = {1, n} for some n ∈ N≥2. Assume will first assume that � = 1. 
Recall that ρ = (αa1

1 z, βb1
1 βb2

2 · · ·βbn
n z′). In this case, we also impose the condition that 

the exponent a1 is the minimum number of copies of the purely long irreducible α1 that 
can appear in any irredundant and unbalanced factorization relation in kerπR. Using 
notation similar to that of CASE 1, we now set

x2 := αa1−1
1 (α1 − βb1

1 )πR(z) ∈ R. (6.2)

Note that x2 �= 0 as otherwise α1 = βb1
1 , which is not possible. Since � = 1, it follows 

from (6.2) that β1 divides x2 in R. Then one can take w1 ∈ Z(R) and w2 ∈ ZR(α1 −βb1
1 )

such that (β1w1, α
a1−1
1 w2z) ∈ kerπR. Clearly, β1 does not divide α1 − βb1

1 , whence β1
does not appear in αa1−1

1 w2z, which implies that |β1w1| < |αa1−1
1 w2z|. By the minimality 

of a1, we see that α1 must appear in w2. Thus, α1 must divide βb1
1 in R. In this case, 

(α1w3, β
b1
1 ) ∈ kerπR for some w3 ∈ Z(R), which is a contradiction because β2 does not 

appear in βb1
1 . The case when � > 1 and s = 1 follows similarly.

CASE 3: � = s = 1. In this case, ρ = (αa1
1 z, βb1

1 z′). We assume that the exponent a1
satisfies the same minimality condition that we imposed in CASE 2. Consider the element

x3 := αa1−1
1 (α1 − β1)πR(z) ∈ R. (6.3)

As α1 − β1 is nonzero and β1 divides x3 in R, there exist factorizations w1 ∈ Z(R) and 
w2 ∈ ZR(α1−β1) such that (β1w1, α

a1−1
1 w2z) ∈ kerπR. Since β1 does not divide α1−β1

in R, it cannot appear in αa1−1
1 w2z and, therefore, |β1w1| < |αa1−1

1 w2z|. This, along with 
the minimality of a1, implies that α1 appears in w2. However, this contradicts that α1
does not divide α1 − β1 in R. �

As a consequence of Theorem 6.4, we rediscover the main result of [13].
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Corollary 6.5. [13, Theorem 2.10] Let R be an integral domain. Then R is a unique 
factorization domain if and only if R• is a length-factorial monoid.

Proof. Clearly, if R is a unique factorization domain, then R• is a factorial monoid 
and, therefore, a length-factorial monoid. For the reverse implication, suppose that R•

is a length-factorial monoid. By Theorem 6.4, either L (R) is empty or S (R) is empty. 
Therefore R• is not a proper length-factorial monoid, and so it is a factorial monoid. 
Hence R is a unique factorization domain. �
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