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In this paper we are going to give an explicit description of the so
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study intersection theory in G .
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1. Introduction

Let G be an adjoint semisimple algebraic group over the field C of complex numbers. We can
consider G as a G × G-homogeneous space under left and right action. Thus G is identified with the
quotient of G × G modulo the diagonal copy Gd of G , that is the subgroup of elements fixed by the
order two automorphism obtained by exchanging the factors. In view of this we can apply the results
of [DP2] and consider the so called ring of conditions R(G) of G . This ring has been introduced in
order to study some classical problems in enumerative geometry and has been recently used to give
explicit formulae for intersection indices and Euler characteristic of hypersurfaces in G (see [K1,K2]).

The purpose of this paper is to give an explicit description of R(G,Q) := R(G) ⊗ Q. In order to
achieve this, we are first going to generalize the definition of R(G) and introduce a G × G-equivariant
version RG×G(G) of it. R(G) will then be the quotient of RG×G(G) modulo an explicit ideal.

RG×G(G) is the direct limit of the G × G-equivariant cohomology of embeddings of G as a G × G-
homogeneous space, so in order to describe it one needs to first describe, for any such embedding
Y , the equivariant cohomology ring H∗

G×G(Y ,Q). This is achieved using results in [BDP,St2] and the
methods in [St3] (see also [U]). Once this is obtained, one has to describe the cohomology homomor-
phism induced by a G × G-equivariant morphism f : Y1 → Y2 between two regular embeddings Y1
and Y2.
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A different approach for the study of the cohomology of the wonderful compactification has been
developed in [DP1] and [LP]. This has been generalized in [BJ] to the case of wonderful varieties of
minimal rank. Furthermore in that paper equivariant Chern classes have been computed in terms of
the associated toric variety.

The paper is organized as follows. Section 2 contains a brief digest of the main definitions and
properties related to equivariant cohomology which we are going to use in our work.

In Section 3 we are going to recall the definition of regular toroidal embeddings, their construction
and classification, in terms of an associated toric variety given in [DP2].

In Section 4, given a regular toroidal embedding Y , we are going to describe its equivariant co-
homology. Our first step will be the determination of the G × G-orbits in Y obtained using the orbit
structure of the associated toric variety. Once this has been done, we are going to use this result to
describe, following [St3], H∗

G×G(Y ,Q).
Finally in Sections 5 and 6, we are going to deduce rather easily, as a consequence of our previous

work, the main results describing both RG×G(G) and R(G).
It should be noted that although our description of RG×G(G) is rather explicit as a ring of functions

on the product of the reflection representation of the Weyl group of G times a fundamental Weyl
chamber, a presentation of this ring in terms of generators and relations is far from being obtained.
We believe that this would be quite useful and we hope to be able to tackle this problem in the
future.

Finally we should remark the analogy of our results with those of McMullen [McM] describing the
polytopal algebra which can be thought as a toric version of our RG×G(G).

2. A brief digest of equivariant cohomology

In this section we are going to define equivariant cohomology and recall a few of its properties.
Let K be a topological group. Consider the universal fibration p : EK → BK , where EK is contractible

with free K -action and BK = EK/K is the classifying space of K .
Take a K -space X . The equivariant cohomology of X with coefficients in a commutative ring A

is the cohomology ring H∗
K (X, A) := H∗(XK , A) of the Borel construction [Bo2] XK := EK ×K X . We

denote by π : XK → BK the fibration over BK with fiber X .
In what follows K will always be a complex algebraic group and X an algebraic variety. A will be

the field Q of rational numbers.
Since the Borel construction is clearly functorial for K -spaces, we deduce that, given a K -

equivariant map f : X → Y of K -spaces, we get a homomorphism f ∗ : H∗
K (Y , A) → H∗

K (X, A). In
particular the projection to a point q : X → pt induces on H∗

K (X,Q) the structure of an algebra over
H∗

K (pt,Q) = H∗(BK,Q).
Also assume that q : V → X is a K -equivariant complex vector bundle on X , namely a vector

bundle with a K -action compatible with the projection q and such that K acts linearly on the fibers.
Take the Borel construction V K and consider the induced projection qK : V K → XK . We get a complex
vector bundle on XK whose Chern classes in H∗

K (X,Q) are called the equivariant Chern classes of V .
Suppose K is connected. Let U be the unipotent radical of K . Using the fact that U is contractible,

we deduce that H∗
K (pt) � H∗

K/U (pt). Thus we can assume that K is reductive. If this is the case,
choose a maximal torus T in K . Set t = Lie T and W = N(T )/T the Weyl group. Then one knows
[Bo1] that H∗

K (pt,Q) � Q[t∗]W , where the elements of t∗ have degree 2. This is well known to be a
polynomial ring, since W is generated by reflections.

Following for example [GKM], we define a space X to be equivariantly formal if, setting I ⊂ H∗
K (pt)

equal to the ideal of elements of positive degree, then

(1) H∗
K (X) is a free H∗

K (pt)-module of finite rank,
(2) H∗(X) = H∗

K (X)/I H∗
K (X).

It is known, see [Bo2], that if X has only cohomology in even degrees, then X is equivariantly formal.
Now if X is a smooth projective K -variety with finitely many K -orbits, one knows as a consequence
of a result by Białynicki-Birula [Bia] (see also [BDP] for a discussion), that X can be paved by a finite
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number of locally closed affine spaces and hence has only cohomology in even degrees. It follows that
X is equivariantly formal, thus the knowledge of the equivariant cohomology can be in principle used
to determine the cohomology of X .

3. Regular embeddings

We are going to work over the field C of complex numbers, but everything we are going to state
will work verbatim over an arbitrary algebraically closed field of characteristic zero if we use, instead
of cohomology (respectively equivariant cohomology), the Chow ring (respectively the equivariant
Chow ring).

Given an algebraic group H , by a H-embedding we mean a pair (Y , jY ) where Y is a normal
H × H-variety and jY : H → Y is a H × H-equivariant embedding (H × H acts on H by left and right
multiplication), whose image is a dense open set in Y . Given two H-embeddings (Y , jY ) and (Y ′, jY ′),
a morphism of embeddings is a morphism π : Y ′ → Y such that jY = π jY ′ . In this case we shall say
that Y ′ lies over Y . Notice that if such a morphism π exists, it is clearly unique.

Also notice that if H is commutative, for example a torus, since the right and left multiplications
coincide, the H × H-action on Y reduces to an H-action. In particular if H is a torus, an H-embedding
is a toric variety with torus H .

Let us recall that when G is an adjoint semisimple group, one has the so called wonderful com-
pactification X of G [DP,St1]. This is a G-embedding (X, j) with j : G → X .

From now on we assume that we have chosen once and for all a maximal torus T in G and a
Borel subgroup T ⊂ B ⊂ G and we let Δ = {α1, . . . ,α�} be the corresponding set of simple roots for
the associated root system Φ .

Let us briefly recall the combinatorial structure of the G × G-orbits in X . If we consider the com-
plement D = X − G , then D is a divisor with normal crossings and smooth irreducible components
D1, . . . , D� .

For each subset Γ ⊂ Δ, the intersection

DΓ =
⋂

α j /∈Γ

D j

is irreducible and it is the closure of a unique G × G-orbit OΓ (of course X = DΔ). Then the cor-
respondence associating to each subset Γ of Δ the orbit OΓ is a bijection. In particular the orbit
corresponding to the empty set is the unique closed orbit in X , which is isomorphic to G/B × G/B ,
and we have that Γ ⊃ Γ ′ if and only if OΓ ⊃OΓ ′ (the reader should be careful enough to notice that
our indexing for orbits is “complementary” to the one used in our previous paper [St3] in the sense
that there the orbit OΓ was denoted by OΔ\Γ ).

Recall that every line bundle on X admits a canonical G̃ × G̃-linearization, G̃ being the universal
cover of G , since G̃ is simply connected (see [DP]). This implies that if Pic(X) is the Picard group of X ,
then, taking equivariant Chern classes, we get an isomorphism

Pic(X) ⊗ Q � H2
G×G(X,Q). (1)

Finally, denoting by Λ the weight lattice, i.e. the character group of the maximal torus T̃ which is the
pre-image of T in G̃ , we have a commutative diagram

Pic(X)
h∗

Pic(O∅)

Λ
a

Λ × Λ

(2)
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where h∗ is induced by inclusion and a(λ) = (λ,0) − (0, λ), while the vertical arrows are isomor-
phisms. Using this, one gets an identification of Pic(X) with the lattice Λ of weights for our root
system Φ and, under this identification, [O(Di)] = αi ∈ Pic(X).

Denote by Li the line bundle corresponding to the invertible sheaf O(Di) and by si ∈ H0(X, Li)

a section (unique up to a non-zero scalar) whose divisor is Di . This section is G̃ × G̃-invariant.
Consider now the vector bundle V = ⊕�

i=1 Li . It has the G̃ × G̃-invariant section s = ⊕�
i=1 si .

Set now

T = V − {
(v1, . . . , v�)

∣∣ vi = 0 for some i
}
.

T is a principal G�
m-bundle with a G̃ × G̃-action commuting with the G�

m-action. If we take any
G�

m-variety Z , we may consider TZ = Z ×G�
m
T . In particular we get that V = TA� where A� is the

�-dimensional affine space with the tautological G�
m-action.

Let us fix now a G�
m-embedding Z with the property that Z is smooth and there is a proper G�

m-
equivariant morphism ψZ : Z → A� . We then get a proper G × G-equivariant morphism ψ̃Z : TZ → V .

We can now define Y Z as the cartesian product

Y Z
sZ

πZ

TZ

ψ̃Z

X
s

V .

Since s( j(G)) ⊂ T , we get that s ◦ j lifts to a map hZ : G → TZ . So, by the definition of Y Z , we get
an embedding j Z : G → Y Z such that πz ◦ j Z = j.

Notice that if Z ′ is another smooth G�
m-equivariant embedding proper over A� which lies over Z ,

we clearly get a morphism ψ Z
Z ′ : Y Z ′ → Y Z such that j Z = ψ Z

Z ′ ◦ j Z ′ . In [DP2] it is shown the following:

Theorem 3.1. Let Y Z be defined as above. Then:

(1) (Y Z , j Z ) is a smooth complete G-embedding lying over X.
(2) Given a G�

m-orbit N ⊂ Z , consider TN ⊂ TZ . Then s−1
Z (TN ) is a G × G-orbit in Y Z . Moreover the map

which associates to the G�
m-orbit N the G × G-orbit s−1

Z (TN ) is a bijection between the set of G�
m-orbits

in Z and the set of G × G-orbits in Y Z .

An embedding of the form Y Z will be called a regular compactification of G . We now introduce
the poset E as follows. The elements of E are the regular compactifications of G . Moreover we say
that Y Z ′ � Y Z if there is a (necessarily unique) morphism of embeddings ψZ ,Z ′ : Y Z ′ → Y Z (notice
that by abuse of notation, when considering the embedding (Y Z , j Z ), we have omitted the map j Z ).

Correspondingly we get a directed system of rings H∗(Y Z ,Q), with homomorphisms, if Y Z ′ � Y Z ,
ψ∗

Z ,Z ′ : H∗(Y Z ,Q) → H∗(Y Z ′ ,Q). The main result in [DP2] gives us a working definition for the ring
of conditions R(G). Namely:

Theorem 3.2. (See [DP2].) We have a natural isomorphism of rings

R(G) � lim−→ H∗(Y Z ,Q).

The above result, among other things, can be used to give a definition of the equivariant ring of
conditions. Namely for each regular compactification Y Z , consider the G × G-equivariant cohomology
ring H∗

G×G(Y Z ,Q). As before if Y Z ′ � Y Z , we get an induced homomorphism (which we denote by
the same letter as before) ψ∗

Z ,Z ′ : H∗
G×G(Y Z ,Q) → H∗

G×G(Y Z ′ ,Q). Hence we get a directed system of
equivariant cohomology rings H∗

G×G(Y Z ,Q) and we can give the following:



E. Strickland / Journal of Algebra 320 (2008) 3069–3078 3073
Definition 1. The equivariant ring of conditions of the semisimple adjoint group G is the ring

RG×G(G) := lim−→ H∗
G×G(Y Z ,Q).

4. Orbits in Y Z

Definition 1 tells us that, in order to compute RG×G(G), we first need to compute H∗
G×G(Y Z ,Q)

for every Y Z . In order to do this we can use the results in [BDP]. For this we need first to compute
the equivariant cohomology of every G × G-orbit in Y Z .

The set Δ = {α1, . . . ,α�} of simple roots is a basis for the character group X(T ) of T and gives
an explicit isomorphism of T with G�

m . Using this isomorphism we will, from now on, think of Z
as a T -embedding. Now it is well known (see for example [Tor]) that any T -embedding corresponds
to a fan in the real vector space U = HomZ(X(T ),R), rational with respect to the lattice X(T )∨ of
coweights. In particular under our identifications, A� corresponds to the fan given by the fundamental
Weyl chamber C of positive linear combinations of fundamental coweights and its faces.

Our assumption that Z is smooth and proper over A� tells us that the fan FZ corresponding to Z
gives a polyhedral decomposition of C by simplicial cones each spanned by a basis of X(T )∨ .

Moreover, given a face F of FZ , we associate to F the torus T F ⊂ T defined as the common kernel
of the characters χ ∈ X(T ) vanishing on F (notice that the fact that T is a torus follows immediately,
since F is a face of a simplicial cone spanned by a basis of X(T )∨).

One knows by the theory of toric varieties that we have a bijection between faces in FZ and
T -orbits in Z with the following properties:

(1) Given a face F ∈FZ , the corresponding orbit NF is T -equivariantly isomorphic to T /T F .
(2) Given two faces F1, F2 ∈FZ , F 1 ⊇ F2 if and only if N F2 ⊇NF1 .

We are now ready to study the structure of the G × G-orbit MF := s−1
Z (TNF ) ⊂ Y Z , for any face

of the fan FZ .
Let Γ be the subset of the set of simple roots vanishing on F . Let PΓ ⊃ B denote the parabolic

subgroup associated to Γ and P−
Γ the opposite parabolic subgroup. Let LΓ := PΓ ∩ P−

Γ denote the
corresponding Levi factor and let Z(LΓ ) be the center of LΓ . Define the subgroup HΓ ⊂ LΓ × LΓ by

HΓ = {
(g1, g2) ∈ LΓ × LΓ

∣∣ g1 · g−1
2 ∈ Z(LΓ )

}
.

Since Z(LΓ ) ⊂ T (indeed Z(LΓ ) is the common kernel of the αi lying in Γ ), we get the homomor-
phism

pΓ : HΓ → T

defined by pΓ ((g1, g2)) = g1 · g−1
2 . We set H F := p−1

Γ (T F ).
Consider now the quotient homomorphism

μΓ : PΓ × P−
Γ → LΓ × LΓ .

Let G F := μ−1
Γ (H F ). Notice that since clearly T F ⊆ Z(LΓ ), φF := pΓ ◦ μΓ defines a surjective ho-

momorphism of G F onto T F .
We have:

Proposition 4.1. There is a G × G-equivariant isomorphism between the orbit MF and the homogeneous
space G × G/G F .
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Proof. Consider the projection πZ : Y Z → X . If Γ is the subset in Δ corresponding to the face F
of FZ , then it is clear that πZ (MF ) =OΓ . On the other hand one knows (see [DP]) that as a G × G-
homogeneous space, OΓ is isomorphic to G × G/GΓ , with GΓ = μ−1

Γ (HΓ ).
Consider now for any i = {1, . . . , �} the line bundle Li . If αi ∈ Γ , then the section si is nowhere

zero on OΓ , so that the restriction of Li to OΓ is canonically trivialized.
If on the other hand αi /∈ Γ , consider the homomorphism eαi ◦ pΓ ◦ μΓ : GΓ → Gm and let GΓ,i

be its kernel. Then the G × G-homogeneous Gm-principal bundle L∗
i , namely the complement of the

zero section in Li , is equal as a G × G-homogeneous space to G × G/GΓ,i .
Using the fact that MF = s−1

Z (TNF ) and the structure of NF , our claim is straightforward. �
Proposition 4.1 allows us to describe the equivariant cohomology ring H∗

G×G(MF ,Q). By the very
definition of equivariant cohomology this ring equals the ring H∗

G F
({pt},Q).

To compute H∗
G F

({pt},Q), notice that first of all the kernel of the homomorphism μΓ : G F → H F

is a unipotent group, so that H∗
G F

({pt},Q) ∼= H∗
H F

({pt},Q).
Now in order to compute H∗

H F
({pt},Q), consider the homomorphism pΓ : H F → T F . The kernel of

pΓ is the Levi subgroup LΓ diagonally embedded in LΓ × LΓ . Let WΓ denote the Weyl group of LΓ ,
that is to say the group of linear transformations in the space X(T ) ⊗ Q generated by the simple
reflections si with respect to the simple roots αi ∈ Γ and one knows that H∗

LΓ
({pt},Q) = Q[UQ]WΓ

with UQ = HomZ(X(T ),Q). On the other hand H∗
T F

({pt},Q) = Q[UQ]/I F , where I F is the ideal of
functions vanishing on F .

Since we work over the rationals, we then have

H∗
H F

({pt},Q
) � H∗

LΓ

({pt},Q
) ⊗Q H∗

T F

({pt},Q
)
. (3)

Consider now the vector space UQ × UQ with the Weyl group W acting on the left factor. Since
WΓ ⊂ W , we also get an action of WΓ on UQ × UQ . We can rephrase the existence of the isomor-
phism (3) as:

Proposition 4.2. The G × G-equivariant cohomology ring of the orbit MF with rational coefficients, is iso-
morphic to the ring Q[UQ × F ]WΓ of polynomial maps on UQ × F ⊂ UQ × UQ invariant under the action
of WΓ .

At this point we are ready to use the results in [BDP] to compute the G × G-equivariant cohomol-
ogy of Y Z .

Let us recall some facts from [BDP]. Consider two faces F1, F2 in FZ and assume that F2 is a
codimension one face in F1. This implies that MF1 is a divisor in MF2 . Take the normal line bundle
L of MF1 in MF2 . Consider the principal Gm-bundle L∗ defined as the complement of the zero
section in L.

We know that T F2 ⊂ T F1 . Moreover recall that we have a surjective homomorphism φF1 :
G F1 → T F1 . Thus we can consider the subgroup G F2

F1
= φ−1

F1
(T F2 ).

By reasoning as in the proof of Proposition 4.1, we deduce that L∗ is a G × G-homogeneous space
isomorphic to G × G/G F2

F1
.

Notice that G F2
F1

⊂ G F1 and also G F2
F1

⊂ G F2 . Moreover if the set of simple roots vanishing on F1

coincides with the set of simple roots vanishing on F2, G F2
F1

= G F2 .
In any case we get the following two homomorphisms:

T F2
F1

: H∗
G×G(MF1 ,Q) → H∗

G×G

(
L∗,Q

); (4)

and

S F1
F : H∗

G×G(MF2 ,Q) → H∗
G×G

(
L∗,Q

)
. (5)
2
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Let us now take the ring
⊕

F∈FZ
H∗

G×G(MF ,Q) with componentwise multiplication.
We define R Z ⊂ ⊕

F∈FZ
H∗

G×G(MF ,Q) as follows. R Z consists of the sequences (aF )F∈FZ with
aF ∈ H∗

G×G(MF ,Q) such that for each pair (F1, F2) of faces in FZ with F2 being a codimension one

face in F1, we have

T F2
F1

(aF1) = S F1
F2

(aF2). (6)

It is clear that R Z is a subring of
⊕

F∈FZ
H∗

G×G(MF ,Q).
At this point for any G × G-orbit MF in Y Z , let

γF : H∗
G×G(Y Z ,Q) → H∗

G×G(MF ,Q)

denote the homomorphism induced by inclusion.
The main result in [BDP] then gives:

Theorem 4.3. Let Y Z be a regular compactification of G. Then the ring homomorphism

γ : H∗
G×G(Y Z ,Q) →

⊕

F∈FZ

H∗
G×G(MF ,Q) (7)

defined by γ (a) = (γF (a))F∈FZ for any a ∈ H∗
G×G(Y Z ,Q), is injective and its image is the ring R Z .

Using Theorem 4.3, we are going to identify H∗
G×G(Y Z ,Q) with R Z and, using this, we are going

to describe it explicitly.

Definition 2. A function f on the space UQ × C is admissible with respect to the fan FZ if:

(1) For every (closed) face F of FZ the restriction of f to UQ × F is a polynomial function.
(2) Let Γ be a subset of the set of simple roots Δ and let CΓ be the face of C defined by the

vanishing of the roots in Γ . Then the restriction of f to UQ × CΓ is invariant under the action of
WΓ on UQ .

Let us denote by P Z the space of functions admissible with respect to the fan FZ . By the second
condition in Definition 2 and Proposition 4.2, for each face F in FZ we have a homomorphism pF :
P Z → H∗

G×G(MF ,Q) and thus a homomorphism

p : P Z →
⊕

F∈FZ

H∗
G×G(MF ,Q) (8)

defined by p( f ) = (pF ( f ))F∈FZ for any f ∈ P Z .

Proposition 4.4. The homomorphism p maps P Z isomorphically onto R Z .

Proof. The injectivity is clear by the definition of P Z as a ring of functions.
Now remark that if we take two faces F1, F2 in FZ , where F2 is a codimension one face in F1,

then the homomorphism

S F1
F2

: H∗
G×G(MF2 ,Q) → H∗

G×G

(
L∗,Q

)

is injective.
Indeed let Γ1 and Γ2 be the two subsets of Δ corresponding to F1 and F2. Clearly Γ1 ⊆ Γ2.

As we have seen, we can identify H∗
G×G(MF1 ,Q) with Q[UQ × F1]WΓ1 and H∗

G×G(MF2 ,Q)
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with Q[UQ × F2]WΓ2 . On the other hand, by the description of L∗ , we immediately deduce that
H∗

G×G(L∗,Q) can be identified with Q[UQ × F2]WΓ1 . Using all these identifications, we obtain that

S F1
F2

is just given by the inclusion.
Similarly we then get that the homomorphism

T F2
F1

: H∗
G×G(MF1 ,Q) → H∗

G×G

(
L∗,Q

)

can be identified with the restriction homomorphism Q[UQ × F1]WΓ1 → Q[UQ × F2]WΓ1 . This clearly
implies that the image of P Z lies in R Z .

On the order hand the compatibility conditions we have just explained imply that a sequence in
R Z can be clearly patched to give a well defined admissible function on UQ × C with respect to FZ ,
thus proving our claim. �

Theorem 4.3 together with Proposition 4.4 implies the following:

Theorem 4.5. Let Y Z be a regular compactification of G. Then there is a natural ring isomorphism between
H∗

G×G(Y Z ,Q) and the ring P Z of admissible functions with respect to the fan FZ .

Notice that in the special case in which Y Z is the wonderful compactification X , our result gives
the following version of the main result in [St3]:

Corollary 4.6. The ring H∗
G×G(Y Z ,Q) is naturally isomorphic to the ring P of polynomial functions f on

UQ × C such that for each face CΓ of C the restriction of f to UQ × CΓ is invariant under WΓ .

5. The equivariant ring of conditions

At this point we are ready to perform the computation of the ring RG×G(G) as a ring of functions.
Let us recall that by [DP2], given two regular embeddings Y Z , Y Z ′ , we have a (necessarily unique)

G × G-equivariant morphism

F Z
Z ′ : Y Z → Y Z ′

if and only if we have a T -equivariant morphism Z → Z ′ , that is if and only if the fan FZ is a
decomposition of the fan FZ ′ , in the sense that each face F in FZ ′ is the union of faces in FZ . If this
is the case, it is clear that each admissible function with respect to the fan FZ ′ is also admissible with
respect to the fan FZ . Thus we get a natural injection of P Z ′ into P Z . Also it is immediate to verify,
using the construction of the isomorphism between H∗

G×G(Y Z ,Q) and P Z , that the homomorphism

(
F Z

Z ′
)∗ : H∗

G×G(Y Z ′ ,Q) → H∗
G×G(Y Z ,Q)

can be identified with the injection of P Z ′ into P Z .
It is now natural to give the following:

Definition 3. A function f on the space UQ × C is admissible if there exists a fan FZ giving a poly-
hedral decomposition of C by simplicial cones each spanned by a basis of X(T )∨ , such that f is
admissible with respect to FZ .

Notice that since fans FZ ′ and FZ with the above properties have a common decomposition (see
for example [Tor] or [O]), it immediately follows that the space R of admissible functions is a ring.
By our previous considerations we then have:
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Theorem 5.1. The equivariant ring of conditions RG×G(G) is naturally isomorphic to the ring R of admissible
functions.

Remark 5.2. The reader might have noticed that all our rings are graded and that all our isomorphisms
are isomorphisms of graded rings. We have not mentioned this explicitly in the paper in order not to
make the presentation heavier.

6. The cohomology of Y Z and the ring of conditions

We are now going to explain how to deduce the computation of H∗(Y Z ,Q) from the one of the
equivariant cohomology H∗

G×G(Y Z ,Q). In this way we shall also obtain the computation of R(G) from
the one of RG×G(G).

For this we have to describe the structure of H∗
G×G(Y Z ,Q) as a module over the ring H∗

G×G({pt},Q)

induced by the projection Y Z → {pt}.
Recall that, by [DP], Y Z has a paving by affine spaces. It follows by what we have recalled

in Section 2, that H∗
G×G(Y Z ,Q) is a free H∗

G×G({pt},Q)-module and H∗(Y Z ,Q) is the quotient of
H∗

G×G(Y Z ,Q) over the ideal generated by the image of the positive degree part of H∗
G×G({pt},Q).

Since the projection Y Z → {pt} factors through the equivariant map F Z : Y Z → X (to be precise
according to the notations of the previous section our F Z should be denoted by F A�

Z , but the simplified
notation does not create any confusion), we can use the description of the H∗

G×G({pt},Q)-module
structure of H∗

G×G(X,Q) given in [St3].
This goes as follows. As before, let us identify H∗

G×G(X,Q) with a subring of the ring PA�
of

polynomial functions on UQ × C . We can also identify H∗
G×G({pt},Q) with the ring Q[UQ × UQ]W ×W .

Consider now the map

q : UQ × C → UQ × UQ (9)

given by q((u, c)) = (u +c, u −c). Then take the induced map of functions q∗ : Q[UQ ×UQ] → Q[UQ ×
C] = Q[UQ × UQ]. In [St3] it was shown that in fact q∗(Q[UQ × UQ]W ×W ) ⊂ PA�

and that under the
above identifications, the H∗

G×G({pt},Q)-module structure of H∗
G×G(X,Q) is given by q∗ .

Recall that Q[UQ]W is a polynomial ring freely generated by � homogeneous elements F1, . . . , F� .
Our previous considerations imply the following:

Theorem 6.1. Let Y Z be a regular compactification of G.
Identify H∗

G×G(Y Z ,Q) with the ring P Z of admissible functions with respect to the fan FZ . Then we get an
identification of H∗(Y Z ,Q) with the ring P Z / J Z where J Z is the ideal generated by the regular sequence

F1(u + c), . . . , F�(u + c), F1(u − c), . . . , F�(u − c)

for u ∈ UQ , c ∈ C.

Similarly for the ring of conditions we get:

Theorem 6.2. If we identify the equivariant ring of conditions RG×G(G) with the ring R of admissible func-
tions, we obtain an identification of the ring of conditions R(G) with the ring RG×G(G)/ J , where J is the ideal
generated by the regular sequence

F1(u + c), . . . , F�(u + c), F1(u − c), . . . , F�(u − c)

for u ∈ UQ , c ∈ C.
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