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Abstract

Fix a prime number �. In this paper we develop the theory of relative pro-� completion of discrete and
profinite groups—a natural generalization of the classical notion of pro-� completion—and show that the
pro-� completion of the Torelli group does not inject into the relative pro-� completion of the corresponding
mapping class group when the genus is at least 2. (See Theorem 1 below.) As an application, we prove that
when g � 2, the action of the pro-� completion of the Torelli group Tg,1 on the pro-� fundamental group of
a pointed genus g surface is not faithful.

The choice of a first-order deformation of a maximally degenerate stable curve of genus g determines
an action of the absolute Galois group GQ on the relative pro-� completion of the corresponding mapping
class group. We prove that for all g all such representations are unramified at all primes �= � when the first
order deformation is suitably chosen. This proof was communicated to us by Mochizuki and Tamagawa.
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1. Introduction

Suppose that Γ is a discrete or profinite group and that P is a profinite group. Suppose that
ρ : Γ → P is a continuous, dense homomorphism.1 The relative pro-� completion Γ (�),ρ of Γ

with respect to ρ : Γ → P is defined by

Γ (�),ρ := lim←− Gφ

where the limit is taken over the inverse system of commutative triangles

Γ
φ

ρ

Gφ

ρφ

P

where Gφ is a profinite group, φ is a continuous dense homomorphism, ρφ is continuous, and
kerρφ is a pro-� group. There are natural homomorphisms Γ → Γ (�),ρ → P whose composition
is ρ.

Relative pro-� completion with respect to the trivial representation ρ of a discrete or profinite
group is simply the classical pro-� completion of the group. Relative pro-� completion with
respect to non-trivial representations is natural in arithmetic geometry.

Since finite �-groups are nilpotent, the classical pro-� completion of a group Γ with vanishing
H1(Γ,F�) is trivial. Since all mapping class groups in genus g are perfect when g � 3, their
pro-� completions are trivial.2 In contrast, the natural relative pro-� completions of mapping
class groups are large and more closely reflect their structure. For example, when the number of
marked points is at least 1, a mapping class group injects into its relative pro-� completion.

Suppose that g, n, and r are non-negative integers satisfying 2g − 2 + n + r > 0. Denote
by Γg,n,�r the mapping class group of a compact oriented surface of genus g with n distinct
points and r distinct non-zero tangent vectors (or, alternatively, r boundary components) whose
anchor points are distinct from the n marked points.3,4 Denote by Tg,n,�r its Torelli subgroup.
Denote the group of symplectic 2g × 2g matrices with entries in a ring R by Spg(R). Denote the
relative pro-� completion of Γg,n,�r with respect to the natural homomorphism Γg,n,�r → Spg(Z�)

by Γ
(�)

g,n,�r . Denote the pro-� completion of Tg,n,�r by T
(�)

g,n,�r .
For m ∈ N, the level m subgroup Spg(Z)[m] of Spg(Z) is defined to be the kernel of

Spg(Z) → Spg(Z/mZ). The level m subgroup of Γg,n,�r is defined to be the inverse image of
Spg(Z)[m] in Γg,n,�r . Denote the relative pro-� completion of Γg,n,�r [m] with respect to the ho-
momorphism to the closure of its image in Spg(Z�) by Γg,n,�r [m](�).

Define a discrete group T to be �-regular if every finite quotient of T that is an �-group is
the quotient of a torsion free nilpotent quotient of T . Free groups, surface groups and pure braid

1 A homomorphism φ : Γ → G from a group Γ to a topological group G is dense if its image is dense in G.
2 The pro-� completions of mapping class groups vanish in genus 1 when � �= 2,3 and in genus 2 when � �= 2,5 for

similar reasons.
3 A detailed definition is given in Section 3.1.
4 We adopt the standard convention that n and �r are omitted when they are zero. For example, Γg = Γ

g,0,�0,

Γg,�r = Γg,0,�r and Γg,n = Γ � .

g,n,0
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groups are all �-regular. We suspect, but were unable to prove, that when � is odd and n + r > 0,
Tg,n,�r is �-regular.

Theorem 1. Suppose that g � 3 and that r and n are non-negative integers. For each prime num-
ber � and each positive integer m, the kernel of the natural homomorphism T

(�)

g,n,�r → Γg,n,�r [m](�)
is central in T

(�)

g,n,�r and contains a copy of Z�. If Tg,n,�r is �-regular, then there is an exact sequence

0 → Z� → T
(�)

g,n,�r → Γg,n,�r [m](�) → Spg(Z�)[m] → 1.

The theorem is trivially false in genus 0 as T0,n,�r = Γg,n,�r . The theorem is false in genus 1 as

SL2(Z) does not have the congruence subgroup property. In genus 2 the kernel of T
(�)

2,n,�r → Γ
(�)

2,n,�r
is very large as we explain in Section 6.4.

Theorem 1 may be regarded as an integral analogue of results about the relative unipotent
completion of mapping class groups that are proved in [11,12]. It is also an analogue for mapping
class groups of a result of Deligne [6], which may be stated as follows. Suppose that S is either
SLn (n � 3) or Spg (g � 2). Suppose that Γ is a finite index subgroup of S(Z) and that Γ̃ is the
restriction of the universal central extension of S(Z) to Γ . Denote the relative pro-� completion
of Γ (resp. Γ̃ ) with respect to the homomorphism to the closure of the image of Γ → S(Z�)

(resp. Γ̃ → S(Z�)) by Γ (�) (resp. Γ̃ (�)). Deligne’s result implies that there is an exact sequence

0 → Z�
×e−−→ Z� → Γ̃ (�) → Γ (�) → 1

where e ∈ {1,2}. It and the basic structure result for the relative unipotent completion of mapping
class groups [11] mentioned above are the two main tools in the proof of Theorem 1. The main
technical ingredient in the proof is the existence (Corollary 6.10) of a central extension of a finite
index subgroup of Spg(Z) by Z in a subquotient of Γg,n,�r whenever g � 3. This extension is a
non-zero multiple of the restriction of the universal central extension of Spg(Z).

Suppose that n � 0 and that (S, {x0, . . . , xn}) is an n + 1 marked surface of genus g � 2. Let
S′ = S −{x1, . . . , xn} be the corresponding n-punctured surface. Since the action of the mapping
class group Γg,n+1 on π1(S

′, x0) induces an action of Γ
(�)
g,n+1 on π1(S

′, xo)
(�), Theorem 1 implies

that the action of the pro-� Torelli group T
(�)
g,n+1 on π1(S

′, x0)
(�) is not faithful. Similarly, since

the outer action of Γg,n on π1(S
′, x0) induces an outer action of Γ

(�)
g,n on π1(S

′, x0)
(�), the outer

action of T
(�)
g,n on π1(S

′, x0)
(�) is not faithful.5

Corollary 2. If g � 2 and n � 0, then the natural homomorphisms

T
(�)
g,n+1 → Autπ1(S

′, x0)
(�) and T (�)

g,n → Outπ1(S
′, x0)

(�)

are not injective. Their kernels each contain a copy of Z�.

The injectivity of the corresponding homomorphisms

Γ
(�)
g,n+1 → Autπ1(S

′, x0)
(�) and Γ (�)

g,n → Outπ1(S
′, x0)

(�)

for mapping class groups is not known for any (g,n), with g � 3 and n � 0.

5 When g = 2, the statement follows from Corollary 6.13.
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The proof of the following result (in the case r = 0) was communicated to us by Mochizuki
and Tamagawa.

Theorem 3. Suppose that � is a prime number. For all non-negative integers g,n, r satisfying
2g − 2 + n + r > 0, the action of GQ on Γ

(�)

g,n,�r , determined by the choice of a suitably chosen
smoothing of a maximally degenerate stable curve of type (g,n, r) as a tangential base point, is
unramified at all primes �= �.

We record the following consequence which follows directly from this result using the func-
toriality of relative unipotent completion and the fact (proved in [18] as a consequence of the
“comparison theorem” proved there) that the GQ-action on Γ

(�)

g,n,�r extends to the relative unipo-
tent completion Gg,n,�r ⊗Q Q� of Γg,n,�r over Q�.

Corollary 4. For all prime numbers �, the GQ representation on the relative unipotent comple-
tion Gg,n,�r ⊗ Q� is unramified outside �. Consequently, the GQ action on Gg,n,�r ⊗ Q� induces an
action of π1(Spec Z[1/�]).

This result should be a useful technical ingredient in the investigation of “Teichmüller
motives”—relative motives over moduli spaces of curves—of which elliptic motives and elliptic
polylogarithms [3] will be special cases.

2. Relative pro-� completion

2.1. Basic properties

As in the introduction, we suppose that Γ is a discrete or profinite group, that P is a profinite
group, and that ρ : Γ → P is a continuous, dense homomorphism.

The relative pro-� completion of Γ with respect to ρ is characterized by a universal mapping
property: if G is a profinite group, ψ : G → P a continuous homomorphism with pro-� kernel,
and if φ : Γ → G is a continuous homomorphism whose composition with ψ is ρ, then there is
a unique continuous homomorphism Γ (�),ρ → G that extends φ:

Γ
ρ

φ
Γ (�),ρ P

G

ψ

The following property is a direct consequence of the universal mapping property.

Proposition 2.1. A dense homomorphism ρ : Γ → P from a discrete group to a profinite group
induces a homomorphism ρ : Γ̂ → P from the profinite completion of Γ to P . The natural
homomorphism Γ → Γ̂ induces a natural isomorphism Γ (�),ρ → Γ̂ (�),ρ .
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Suppose that S is a linear group scheme over Z. For a positive integer m and a commutative
ring R, set

S(R)[m] = ker
{
S(R) → S(R/mR)

}
.

This is the level m subgroup of S(R). Note that S(Z�)[m] = S(Z�)[�ν], where ν = ord�(m).
We say that S(Z) has the congruence subgroup property if every finite index subgroup of

S(Z) contains the level m subgroup S(Z)[m] of S(Z) for some m > 0, or equivalently, the natural
homomorphism S(Z)∧ → S(Ẑ) is injective. In this case, the profinite completion of S(Z) is the
closure of its image in S(Ẑ).

Proposition 2.2. Suppose that S is a linear group scheme over Z. If S satisfies

(1) S(Z) has the congruence subgroup property, and
(2) S(Z) → S(Z/N) is surjective for every positive integer N ,

then the natural homomorphism S(Z)∧ → S(Ẑ) is an isomorphism. If, in addition, m is a pos-
itive integer and for every prime number p not dividing �m, S(Fp) has no non-trivial quotient
�-group, then, the relative pro-� completion of S(Z)[m] with respect to S(Z)[m] → S(Z�)[m] is
the closure of S(Z)[m] in S(Z�), which equals S(Z�)[�ν], where ν = ord�(m).

Proof. The morphism

S(Z) → S(Ẑ) ∼= lim←−
N

S(Z/N)

induces a homomorphism S(Z)∧ → S(Ẑ), which is injective by condition (1) and surjective by
condition (2). Condition (2) also implies that the sequence

1 → S(Z)[m] → S(Z) → S(Z/mZ) → 1

is exact. Since the right group is finite, the sequence

1 → S(Z)[m]∧ → S(Z)∧ → S(Z/mZ) → 1

of profinite completions is exact. On the other hand, the sequence

1 → S(Ẑ)[m] → S(Ẑ) → S(Z/mZ) → 1 (1)

is exact by definition. The isomorphism S(Z)∧ → S(Ẑ) therefore induces an isomorphism of
S(Z)[m]∧ with S(Ẑ)[m].

Denote the order of m at a prime number p by νp . The short exact sequence (1) is the direct
product over all prime numbers p of the exact sequences

1 → S(Zp)
[
pνp

] → S(Zp) → S
(
Z/pνpZ

) → 1.
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Consequently, the profinite completion of S(Z)[m] is

S(Ẑ)[m] =
∏
p

S(Zp)
[
pνp

]
where p ranges over all prime numbers. The homomorphism ρ : S(Z)[m] → S(Z�)[m] induces
the projection

S(Ẑ)[m] ∼=
∏
p

S(Zp)
[
pνp

] → S(Z�)
[
�ν�

]
onto the factor corresponding to �. Since the relative pro-� completion S(Z)[m](�) is the largest
quotient G of the profinite completion S(Ẑ)[m] such that the kernel of G → S(Z�)[m] is pro-�,
there is a surjection ∏

p �=�

S(Zp)
[
pνp

] → ker
{
S(Z)[m](�) → S(Z�)[m]}

whose image is pro-�. Thus, to prove the proposition, it suffices to show that S(Zp)[pνp ] has no
non-trivial �-quotient when p �= �.

Now suppose that p �= �. It is well known that S(Zp)[pN ] is a pro-p group when N > 0.
(It suffices to check this for GLM .) So if N > 0, every homomorphism from S(Zp)[pN ] to an
�-group is trivial. In particular, if νp > 0 (or equivalently if p divides m), then S(Zp)[pνp ] has
no non-trivial �-quotients, as required. Suppose that p does not divide m�. In particular, νp = 0.
Since

1 → S(Zp)[p] → S(Zp) → S(Fp) → 1

is exact by condition (2), every homomorphism S(Zp) → A to an �-group (� �= p) factors
through a homomorphism S(Fp) → A. But we have assumed that there are no non-trivial such
homomorphisms. Thus S(Zp)[pνp ] has no non-trivial �-quotients, as required. �

The hypotheses of Proposition 2.2 are satisfied for all m � 1 when S = Spg when g � 2 and
when S = SLn when n � 3. (See [2] and [9, Theorem 1, p. 12].)

Define Groupf to be the category whose objects are topological groups that are either discrete
or profinite; morphisms are continuous group homomorphisms. The category of discrete groups
and the category of profinite groups are both full subcategories of Groupf . A sequence of group
homomorphisms in Groupf is exact if its is exact in the category of groups.

Proposition 2.3 (naturality). Suppose that Γ1 and Γ2 are objects of Groupf and that P1 and P2
are profinite groups. Suppose that ρj : Γj → Pj are continuous dense homomorphisms. If

Γ1

φΓ

ρ1
P1

φP

Γ2
ρ2

P2
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is a commutative diagram in Groupf , then there is a unique continuous homomorphism φ(�):

Γ
(�),ρ1

1 → Γ
(�),ρ2

2 such that the diagram

Γ1

φΓ

ρ1

Γ
(�),ρ1

1

φ(�)

P1

φP

Γ2

ρ2

Γ
(�),ρ2

2 P2

commutes.

Proof. This follows easily from the universal mapping property. �
Proposition 2.4 (right exactness). Suppose that P1, P2 and P3 are profinite groups and that ρj :
Γj → Pj (j ∈ {1,2,3}) are continuous dense homomorphisms in Groupf . Suppose that the Γj

are all discrete groups or all profinite groups. If the diagram

1 Γ1

ρ1

Γ2

ρ2

Γ3

ρ3

1

1 P1 P2 P3 1

in Groupf commutes and has exact rows, then the sequence

Γ
(�),ρ1

1 → Γ
(�),ρ2

2 → Γ
(�),ρ3

3 → 1

is exact.

Proof. Denote Γ
(�),ρj

j by Γ
(�)
j . Since Γ2 → Γ3 is surjective, the homomorphism

Γ2 → Γ3 → Γ
(�)

3 has dense image. This implies that Γ
(�)

2 → Γ
(�)

3 is surjective.

Denote the closure of the image of Γ1 → Γ
(�)

2 by N . Observe that this equals the image of

Γ
(�)

1 → Γ
(�)

2 . Since Γ1 is normal in Γ2, this is a closed normal subgroup of Γ
(�)

2 . The image

of N in P2 is P1. The homomorphism Γ
(�)

2 → P2 induces a homomorphism ρ : Γ
(�)

2 /N →
P2/P1 ∼= P3. Since the kernel of the composite Γ2 → Γ

(�)
2 → Γ

(�)
2 /N contains Γ1 it induces

a continuous homomorphism ρ : Γ3 → Γ
(�)

2 /N whose composition with ρ is ρ3. The universal

mapping property of Γ3 → Γ
(�)

3 implies that ρ induces a homomorphism Γ
(�)

3 → Γ
(�)

2 /N , which

is necessarily an isomorphism. Since N is the image of Γ
(�)

1 → Γ
(�)

2 , this implies the exactness

at Γ
(�)

2 . �
Relative pro-� completion is not left exact. One dramatic illustration of this is Deligne’s re-

sult [6], which we now describe.
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Suppose that S is the Z-group scheme SLn or Spg where n � 3 or g � 2. Since S(Z) is perfect,
S(Z) has a universal central extension. Denote the restriction of the universal central extension
of S(Z) to a finite index subgroup Γ by Γ̃ . This is an extension

0 → Z → Γ̃ → Γ → 1.

Deligne [6] proves that every finite index subgroup of Γ̃ contains 2Z, which implies that the
profinite completion of Γ̃ is an extension

0 → Z/eZ → Γ̃ ∧ → Γ ∧ → 1

where e ∈ {1,2}. Since S(Z) has the congruence subgroup property [2], the profinite completion
of Γ is its closure in S(Ẑ).

Deligne’s result can be reformulated and extended to multiples of the universal central exten-
sion Γ̃ → Γ .

Suppose as above that S = SLn or Spg with n � 3 or g � 2. Suppose that Γ is a finite index
subgroup of S(Z). Denote the restriction to Γ of the d th power of the universal central extension
of S(Z) by Γ̃d . (When d = 0, Γ̃d = Γ × Z.) Note that Γ̃ = Γ̃1. For all non-zero d ∈ Z there is a
short exact sequence

1 → Γ̃ → Γ̃d → Z/dZ → 0.

When the context is clear, we will often drop ρ from the notation and denote Γ (�),ρ by Γ (�).
For example, we will denote the relative pro-� completion of Spn(Z) with respect to reduction
mod � by Spn(Z)(�).

Proposition 2.5. For all prime numbers � and all non-zero d ∈ Z, there are short exact sequences

1 → Γ̃ (�) → Γ̃
(�)
d → Z�/dZ� → 0

and

0 → Z�/df Z� → Γ̃
(�)
d → Γ (�) → 1,

where f ∈ {1,2} and f � e, the constant defined above.

Proof. Applying right exactness to the standard exact sequence

1 → Γ̃ → Γ̃d → Z/dZ → 0

implies that the sequence

Γ̃ (�) → Γ̃
(�)
d → Z�/dZ� → 0

is exact. Denote the kernel of Γ̃d → Γ by Kd . Set K = K1. Then each Kd is isomorphic to Z

and K1 is the subgroup of Kd of index d . Injectivity of Γ̃ (�) → Γ̃
(�)
d follows from the fact that

if N is a normal subgroup of Γ̃ whose intersection with K has �-power index, then the subgroup
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Ñ := N · f −1(K ∩ N) of Γ̃d , where d = �νf with ν = ord�(d), is normal in Γ̃d and has the
property that its intersection with Kd has �-power index and Ñ ∩ Γ̃ = N .

The diagram

Z/dZ Z/dZ

0 Z Γ̃d Γ 1

0 Z

×d

Γ̃ Γ 1

has exact rows; the upper vertical maps are surjective and the lower vertical maps are injective.
Deligne’s result and the first part of this result imply that the relative pro-� completion of this
diagram is

Z�/dZ� Z�/dZ�

Z�/df Z� Γ̃
(�)
d Γ (�) 1

0 Z�/f Z�

×d

Γ̃ (�) Γ (�) 1

where f � e and f ∈ {1,2}. The second assertion follows. �
The following useful lemma is easily proved using the universal mapping property of relative

pro-� completion.

Lemma 2.6. Suppose that

1 K P
ψ

P 1

is a short exact sequence of profinite groups. Suppose that Γ is a discrete or profinite group and
that ρ : Γ → P is a continuous dense homomorphism. Denote ψ ◦ρ by ρ. If K is a pro-� group,
then the natural homomorphism Γ (�),ρ → Γ (�),ρ is an isomorphism. �
Example 2.7. Let S be the Z-group scheme SLn+1 or Spn, where n � 1. Let P = S(Z�) and
P = S(F�). Suppose that Γ is a discrete or profinite group and that ρ : Γ → S(Z�) is a continu-
ous, dense homomorphism. Suppose that ψ : P → P is reduction mod �. Since kerψ is a pro-�
group, there is a natural isomorphism Γ (�),ρ ∼= Γ (�),ρ .
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2.2. Remarks on pro-� completion

To conclude this section, we establish some basic facts about standard (i.e., relative to the
trivial representation) pro-� completion. Denote the lower central series of a discrete group Γ by

Γ = L1Γ ⊇ L2Γ ⊇ L3Γ ⊇ · · · .

The following observation follows directly from the fact that every finite �-group is nilpotent.

Lemma 2.8. For all discrete groups Γ , the natural mapping

Γ (�) → lim←−
n

(
Γ/Ln

)(�)

is an isomorphism.

This result can be refined as follows. For an integer m, let supp(m) denote the set of prime
divisors of m. For a set S of prime numbers and a subgroup N of Γ , define

S
√

N = {
g ∈ Γ : there exists an integer m > 0 with supp(m) ⊆ S and gm ∈ N

}
.

The fact that the set of torsion elements of a nilpotent group is a characteristic subgroup, implies
that if N is a normal (resp. characteristic) subgroup of Γ and Γ/N is nilpotent, then for all S,
S
√

N is a normal (resp. characteristic) subgroup of Γ .
Denote the complement of S in the set ℘ of prime numbers by S′. When S consists of a single

prime number �, we shall write �
√

N for S
√

N and �′√
N for S′√

N . For simplicity, we denote ℘
√

N

by
√

N . This is the set of all elements of Γ that are torsion mod N .
Again, the fact that every finite � group is nilpotent implies:

Lemma 2.9. For all discrete groups Γ , the natural mapping

Γ (�) → lim←−
n

(
Γ/

�′√
Ln

)(�)

is an isomorphism.

For each n � 1, define DnΓ to be the inverse image in Γ of the torsion elements of Γ/LnΓ .
That is, DnΓ = √

LnΓ , which is a characteristic subgroup of Γ . It is known as the nth rational
dimensional subgroup of Γ .6

Recall from the introduction that a discrete group Γ is �-regular if every finite quotient of Γ

that is an �-group is the quotient of a torsion free nilpotent quotient of Γ .
The condition that a discrete group Γ be �-regular may be expressed in terms of the groups

DmΓ and �′√
LnΓ . Observe that for all positive integers n, DnΓ ⊇ �′√

LnΓ .

6 The groups DnΓ can also be constructed as follows. Suppose that F is a field of characteristic zero. Denote the
augmentation ideal of the group algebra FΓ by JF . Then DnΓ is the intersection of Γ with 1 + Jn

F
in FΓ . For a proof

see [34, Theorem 1.10, p. 474].
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Proposition 2.10. A discrete group Γ is �-regular if for each positive integer n, there exists an
integer m > 0 such that DmΓ ⊆ �′√

LnΓ . In this case, the mapping

Γ (�) → lim←−
n

(
Γ/Dn

)(�)

is an isomorphism.

Proof. The natural mapping

Γ (�) ∼= lim←−
n

(
Γ/

�′√
Ln

)(�) → lim←−
n

(
Γ/Dn

)(�)

is surjective. The condition in the statement guarantees that it is also injective. �
Not all groups that inject into their pro-� completions are �-regular.

Example 2.11. Suppose that S = SLn+1 or Spn where n � 2. Suppose that Γ = S(Z)[�m] where
m � 1. Even though this group injects into its pro-� completion S(Z�)[�m], the homomorphism

Γ (�) → lim←−
k

(
Γ/Dk

)(�)

is trivial as Γ has no non-trivial torsion free abelian quotients [37], and therefore no non-trivial
torsion free nilpotent quotients.

If the graded quotients of the lower central series of Γ have no �-torsion, then DnΓ = �′√
LnΓ

for all n > 0. Thus we have:

Corollary 2.12. Suppose that Γ is a discrete group. If the graded quotients of the lower central
series of Γ have no �-torsion, then Γ is �-regular.

We conclude this section with the following result, which follows easily from the fact that
every finite �-group is nilpotent.

Proposition 2.13. If Γ is a discrete group such that H1(Γ ) ⊗ F� = 0, then Γ (�) is trivial.

3. Mapping class and Torelli groups

Suppose that g and n are non-negative integers satisfying 2g − 2 + n > 0. Fix a closed, ori-
ented surface S of genus g and a finite subset x = {x1, . . . , xn} of n distinct points in S. The
corresponding mapping class group will be denoted

ΓS,x = π0 Diff+(S,x),

where Diff+(S,x) denotes the group of orientation preserving diffeomorphisms of S that fix x
pointwise. By the classification of surfaces, the diffeomorphism class of (S,x) depends only
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on (g,n). Consequently, the group ΓS,x depends only on the pair (g,n). It will be denoted by Γg,n

when we have no particular marked surface (S,x) in mind.
For a commutative ring A, set HA = H1(S;A). The intersection pairing H⊗2

A → A is skew
symmetric and unimodular. The choice of a symplectic basis of HA gives an isomorphism
Sp(HA) ∼= Spg(A) of 2g × 2g symplectic matrices with entries in A. The action of Diff+(S,x)

on S induces a homomorphism

ρ : ΓS,x → Sp(HZ)

which is well-known to be surjective.
Let ρ : ΓS,x → Sp(HZ/�Z) be reduction of ρ mod �. Define Γ

(�)
S,x to be the relative pro-�

completion of ΓS,x with respect to ρ. By Example 2.7, this is isomorphic to the relative pro-�
completion of ΓS,x with respect to the natural homomorphism ΓS,x → Sp(HZ�

).

Proposition 3.1. Suppose that n � 0, that S is a surface of genus � 2, and that x = {x0, . . . , xn}
is a set of n + 1 distinct points of S. Set x′ = x − {x0} and S′ = S − x′. Then

(1) the natural homomorphism ΓS,x → Γ
(�)
S,x is injective;

(2) the sequence 1 → π1(S
′, x0)

(�) → Γ
(�)
S,x → Γ

(�)

S,x′ → 1 of relative pro-� completions is exact.

Proof. Since π1(S
′, x0) is residually nilpotent and since the graded quotients of its lower central

series are torsion free (cf. [30] when n = 0), the homomorphism π1(S
′, x0) → π1(S

′, x0)
(�) is

injective. Thus Autπ1(S
′, x0) → Autcts π1(S

′, x0)
(�) is also injective. Since ΓS,x is a subgroup

of Autπ1(S
′, x0), it is a subgroup of Autcts π1(S

′, x0)
(�). The first assertion now follows as the

inclusion of ΓS,x into Autcts π1(S
′, x0)

(�) factors through the completion homomorphism:

ΓS,x → Γ
(�)
S,x → Autcts π1(S

′, x0)
(�).

Since relative pro-� completion is right exact, to prove the second assertion, we need only show
that π1(S

′, x0)
(�) → Γ

(�)
S,x is injective. But this follows as the composite

π1(S
′, x0)

(�) → Γ
(�)
S,x → Autcts π1(S

′, x0)
(�)

is the conjugation action, which is injective as π1(S
′, x0)

(�) has trivial center (cf. [1] when
n = 0). �

The Torelli group TS,x is defined to be the kernel of ρ. Its isomorphism class depends only
on (g,n). It will be denoted by Tg,n when we have no particular marked surface in mind.

Proposition 3.2. Suppose that n � 0, that S is a surface of genus � 2, and that x = {x0, . . . , xn}
is a set of n + 1 distinct points of S. Set x′ = x − {x0} and S′ = S − x′. Then the sequence

1 → π1(S
′, x0)

(�) → T
(�)
S,x → T

(�)

S,x′ → 1

of relative pro-� completions is exact.
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Proof. We need only prove the injectivity of the left-hand mapping. But this follows from the
injectivity of the composite

π1(S
′, x0)

(�) → T
(�)
S,x → Γ

(�)
S,x

which was established in Proposition 3.1. �
3.1. Variant: Tangent vectors and boundary components

Suppose that x is a set of n distinct points in S and that vj is a non-zero tangent vector
at yj ∈ S, and {y1, . . . , yr} is a set of r distinct points, disjoint from x. Set �v = {v1, . . . , vr}.
Define

ΓS,x,�v = π0 Diff+(S,x, �v),

the group of connected components of the group of orientation preserving diffeomorphisms of S

that fix x and �v pointwise. The corresponding Torelli group TS,x,�v is the kernel of the homomor-
phism ΓS,x,�v → Sp(H1(S)). For m ∈ N, define its level m subgroup Γg,n,�r [m] to be the kernel of
the natural homomorphism Γg,n,�r → Sp(H1(S;Z/m)).

The group ΓS,x,�v is isomorphic to the mapping class group of a genus g surface with n

marked points and r boundary components. The isomorphism can be seen by replacing
S − {x1, . . . , xn, y1, . . . , yr} by the real oriented blow-up of S − {x1, . . . , xn} at each of the yj .
(See [15, §4.1] for more details.)

The groups ΓS,x,�v and TS,x,�v depend only on g, n and r . We shall often denote them by Γg,n,�r
and Tg,n,�r . The indices n and �r will be dropped when they are zero. For example, Γ

g,�1 denotes
the mapping class group associated to a genus g surface with one tangent vector, while Γg,1
denotes the mapping class group of a genus g surface with one marked point.

Replacing each tangent vector by its anchor point defines a natural surjective homomorphism
Γg,n,�r → Γg,n+r whose kernel consists of the free abelian group generated by the r Dehn twists
about the anchor points of the tangent vectors. The extension

0 → Zr → Γg,n,�r → Γg,n+r → 1

is central and, by right exactness of relative pro-� completion, induces an exact sequence

Zr
� → Γ

(�)

g,n,�r → Γ
(�)
g,n+r → 1.

Proposition 3.3. The sequence

0 → Zr
� → Γ

(�)

g,n,�r → Γ
(�)
g,n+r → 1

is exact.

Proof. Suppose that 2g − 1 + m > 0. Denote the fundamental group of a genus g surface S

with m punctures and one boundary component (with base point lying on the boundary)
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by Π
g,m,�1. It is a free group 〈a1, . . . , ag, b1, . . . , bg, z1, . . . , zm〉 of rank 2g + m generated by

a standard set of generators. The boundary loop c is given by

c = z−1
1 · · · z−1

m

g∏
j=1

ajbj a
−1
j b−1

j .

The action of the Dehn twist on the boundary is conjugation by c−1, which is of infinite order as
Π

g,m,�1 is free.

Since Π
g,m,�1 is free, it injects into its pro-� completion Π

(�)

g,m,�1. Consequently, the action of a

Dehn twist about the boundary of S on Π
(�)

g,m,�1 has infinite order. In other words, the restriction

of the natural homomorphism

ψ : Γ
g,m,�1 → AutΠ(�)

g,m,�1

to the central Z generated by the Dehn twist about the boundary, is injective. This proves the
result when r = 1.

When r > 1, consider the homomorphism φj : Γg,n,�r → Γ
g,n+r−1,�1 that replaces all but

the j th (1 � j � r) tangent vector by its anchor point. The composite

Zr Γg,n,�r
ψ◦φj

AutΠ(�)

g,n+r−1,�1

is injective on the j th factor, and trivial on all others. This implies that the homomorphism
Zr

� → Γ
(�)

g,n,�r is injective. �
3.2. Continuous actions

For later use, we show that when g � 3, even though T
(�)

g,n,�r may not inject into Γ
(�)

g,n,�r , there is

still a natural action of Γ
(�)

g,n,�r on T
(�)

g,n,�r .

Proposition 3.4. If g � 3, then for all r, n � 0, the conjugation action Γg,n,�r → AutTg,n,�r in-

duces a continuous action Γ
(�)

g,n,�r → AutT (�)

g,n,�r .

Proof. Set Γ = Γg,n,�r , T = Tg,n,�r and S = Spg . Denote the genus g reference surface by X.
Since pro-� completion is functorial, the conjugation action induces an action Γ → AutT (�).
Since T acts trivially on the graded quotients of the lower central series of T (�), its image in
AutT (�) lies in the kernel Aut0 T (�) of the natural homomorphism AutT (�) → AutH1(T

(�)).
Since g � 3, T is finitely generated by [25], which implies that H1(T

(�)) = H1(T ) ⊗ Z�. Since
the sequence

1 → Aut0 T (�) → AutT (�) → AutH1(T ) ⊗ Z�

is exact and Aut0 T (�) is a pro-� group, to prove the result, it suffices to show that the action of
S(Z) on H1(T ) ⊗ Z� factors through S(Z) → S(Z�). Johnson [26] has shown that H1(T ) has
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only 2-torsion and that H1(T )/torsion is an algebraic representation of the group scheme S. This
implies that when � is odd, the S(Z) action on H1(T ) ⊗ Z� factors through S(Z) → S(Z�).

To establish the result when � = 2, we need another fundamental fact that was established
by Johnson in [26]. Namely, H1(T ;F2) is isomorphic to a space7 of cubic boolean polynomials
on the F2-valued quadratic forms on H1(X;F2) with respect to its intersection form. This im-
plies that the action of S(Z) on H1(T ;F2) factors through S(Z) → S(F2). Since the 2-torsion
H1(T )(2) of H1(T ) is an S(Z) submodule of H1(T ;F2), it is also an S(F2)-module. To show
that the action of S(Z) on H1(T ) ⊗ Z2 factors through S(Z) → S(Z2), it suffices to show that
the image of S(Z)[2] in AutH1(T ) ⊗ Z2 is contained in a pro-2 subgroup of AutH1(T ) ⊗ Z2.
This is because S(Z2) is the relative pro-2 completion of S(Z) with respect to S(Z) → S(F2) by
Proposition 2.2 and Example 2.7.

Write H1(T ) as an extension

0 → H1(T )(2) → H1(T ) → V → 0.

Johnson’s computation of H1(T ) implies that V is a finitely generated, torsion free Z-module that
is an algebraic representation of S. The image of S(Z)[2] in AutH1(T ) preserves this sequence
and is thus contained in a subgroup G of AutH1(T ) ⊗ Z2 that is an extension

0 → HomZ

(
V,H1(T )(2)

) → G → S(Z2)[2] → 1,

which is a pro-2 group and thus completes the proof. �
3.3. Notational convention

To avoid confusion, we make explicit our convention that the relative pro-� completion of
the mapping class group Γg,n,�r [m] (resp. the arithmetic group Spg(Z)[m]) with respect to the
natural homomorphism to the closure of its image in Spg(Z�) will be denoted by Γg,n,�r [m](�)
(resp. Spg(Z)[m](�)).

4. Relative unipotent completion of discrete groups

Relative unipotent completion is analogous to relative pro-� completion, but often more com-
putable as it is controlled by cohomology. In many situations, including the ones in this paper,
the relative pro-� completion of a group Γ maps to its relative unipotent completion. In such
cases, relative unipotent completion can be used to give a lower bound for the size of the relative
pro-� completion of a discrete group; under very favorable conditions, it can be used to compute
the relative pro-� completion.

There are various kinds of relative unipotent completion, in this paper we need only the sim-
plest kind, which is reviewed in this section. More details can be found in [11,15]. Throughout
this section, F will denote a field of characteristic zero.

The basic data are:

(1) a discrete group Γ ;

7 The space depends on n and r .
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(2) a reductive linear algebraic F -group R;
(3) a Zariski dense representation ρ : Γ → R(F).

The relative unipotent completion of Γ with respect to ρ is a proalgebraic group G over F which
is an extension

1 → U → G → R → 1,

where U is a prounipotent F -group, together with a homomorphism ρ̂ : Γ → G(F ) that lifts ρ. It
is characterized by the following universal mapping property: if G is a linear algebraic F -group
that is an extension of R by a unipotent group and if ρ̃ : Γ → G(F) is a homomorphism that
lifts ρ, then there is a unique homomorphism φ : G → G of proalgebraic F -groups such that

G(F )

φΓ

ρ̂

ρ̃

R(F )

G(F)

commutes.
We shall denote the relative unipotent completion of Γ with respect to ρ by G(Γ,ρ), or simply

G(Γ ) when ρ is clear from context.
The relative unipotent completion of a discrete group can be constructed as an inverse limit

of Zariski dense representations ρ̂ : Γ → G(F), where the F -group G is an extension of R by a
unipotent group. Alternatively, G(Γ ) can be constructed as the tannakian fundamental group of
the category of finite dimensional FΓ -modules V that admit a filtration

0 = I0V ⊆ I1V ⊆ · · · ⊆ In−1V ⊆ InV = V

by FΓ -submodules with the property that each graded quotient IkV/Ik−1V has a rational action
of R for which the action of Γ on it factorizes through ρ : Γ → R(F). This is a neutral tannakian
category R(Γ,ρ) over F . There is a natural isomorphism

π1
(

R(Γ,ρ),ω
) ∼= G(Γ,ρ)

where ω : R(Γ,ρ) → VecF is the forgetful functor. See [7] for definitions and [17, §7] for dis-
cussion of tannakian description of weighted completion.

Example 4.1. If Γ is an arithmetic subgroup of an almost simple Q-group G of real rank � 2,
and F is any field of characteristic zero, then the relative unipotent completion of Γ with respect
to the inclusion Γ ↪→ G(F) is G/F , [11, p. 84]. In particular, if Γ is a finite index subgroup of
Spg(Z) and g � 2 (resp. of SLn(Z) and n � 3), then the relative unipotent completion of Γ with
respect to the inclusion ρ : Γ → Spg(F ) (resp. Γ → SLn(F )) is Spg/F (resp. SLn/F ). When
g = 1, the completion of Γ has a very large prounipotent radical—it is free of countable rank,
[12, Remark 3.9].
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4.1. Unipotent completion

When R is the trivial group, relative unipotent completion reduces to unipotent (also called
Malcev) completion. We shall denote the unipotent completion of Γ over F by Γ un

/F .
The unipotent completion of a finitely generated group is always defined over Q. Sup-

pose that Γ is finitely generated. Denote its unipotent completion Γ un
/Q

over Q by Γ un. Since
(Γ un ⊗Q F)(F ) = Γ un(F ), the homomorphism Γ → Γ un(F ) induces a homomorphism
Γ un

/F → Γ un ⊗Q F . This homomorphism is an isomorphism. Proofs can be found in [11] and [16].
Denote the nth term of the lower central series of Γ un by LnΓ un. The following “well-known”

result follows from [36] and [34], as explained in [21, (2.17)].

Proposition 4.2. If Γ is a finitely generated group and F is a field of characteristic 0, then
DnΓ equals the inverse image of (LnΓ un)(F ) under the natural homomorphism Γ → Γ un(F ).
Moreover, the image of DnΓ is Zariski dense in LnΓ un and there is a natural isomorphism(

DnΓ/Dn+1) ⊗Z F ∼= (
LnΓ un)(F )/

(
Ln+1Γ un)(F ).

4.2. Relative unipotent completion of mapping class groups

Suppose that S is a compact oriented surface of genus g � 0, that r and n are non-negative
integers such that 2g − 2 + n + r > 0, that x is a finite subset of S of cardinality n, and that �v is
a finite set of tangent vectors of S of cardinality r as in Section 3.1. The natural homomorphism

ρ : ΓS,x,�v → Sp
(
H1(S;F)

)
is Zariski dense. Denote the relative unipotent completion of ΓS,x,�v with respect to ρ by GS,x,�v.
The relative completion of Γg,n,�r will be denoted by Gg,n,�r .

Note that, when g = 0 and n + r � 3, H1(S) is trivial so that relative unipotent completion is
unipotent completion: G0,n,�r = Γ un

0,n,�r/F .
We recall some basic facts about relative unipotent completion of mapping class groups. First,

for all g � 0 and n + r > 0, the natural homomorphism Γg,n,�r → Gg,n,�r is injective.
For a non-negative integer m, the level m subgroup Γg,n,�r [m] of Γg,n,�r is defined to be the

kernel of the mod m reduction ρm : Γg,n,�r → Spg(Z/m) of ρ. Note that Γg,n,�r = Γg,n,�r [1] and
Tg,n,�r = Γg,n,�r [0]. When g � 3, the relative unipotent completion is independent of the level.

Theorem 4.3. (See Hain [12].) If g � 3, then for all non-negative integers r, n and all positive
integers m, the inclusion Γg,n,�r [m] → Γg,n,�r induces an isomorphism on relative unipotent com-
pletions. When g = 1,2, the relative completion of Γg,n,�r [m] depends non-trivially on the level
m > 0.

Right exactness implies that the sequence

T un
g,n,�r → Gg,n,�r → Spg → 1

is exact.
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Theorem 4.4. (See Hain [11,12].) If g � 3, then the kernel of T un
g,n,�r → Gg,n,�r is isomorphic to

the additive group Ga . That is, there is an exact sequence

0 → Ga → T un
g,n,�r → Gg,n,�r → Spg → 1.

5. Unipotent completion versus pro-� completion

In this section we show that when Γ is a finitely generated �-regular group, the natural homo-
morphism Γ (�) → Γ un(Q�) is injective, a fact we shall need in the proof of Theorem 1.

Lemma 5.1. (See [16, Lemma A.7].) If Γ is a finitely generated discrete group and �

a prime number, then the natural homomorphism Γ → Γ un(Q�) induces a homomorphism
Γ (�) → Γ un(Q�).

Next we give conditions under which this homomorphism is injective. In these cases, the
unipotent completion of a group Γ over Q� can be used to “compute” pro-� completion of Γ .

As in previous sections, the lower central series of any group (discrete, profinite, proalgebraic)
G will be denoted

G = L1G ⊇ L2G ⊇ L3G ⊇ · · · .

Proposition 5.2. If Γ is a finitely generated �-regular group, then the natural homomorphism
Γ (�) → Γ un(Q�) is injective.

Proof. The unipotent completion of any group is the inverse limit of the unipotent completions
of its torsion free nilpotent quotients

Γ un = lim←−
n

(
Γ/Dn

)un
.

By Proposition 2.10, the �-regularity of Γ implies that

Γ (�) ∼= lim←−
n

(
Γ/Dn

)(�)
.

It therefore suffices to prove the result when Γ is a finitely generated, torsion free nilpotent group.
This is easily proved by induction on the length of the filtration D• of Γ . If D2Γ is trivial, then
Γ is a finitely generated abelian group, and thus isomorphic to ZN for some N . In this case

Γ (�) ∼= Γ ⊗Z Z� and Γ un(Q�) ∼= Γ ⊗Z Q�.

So the result follows. If Dn+1 is trivial, then we can write Γ as an extension

1 → DnΓ → Γ → Γ ′ → 1
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where Γ ′ = Γ/Dn. Both Γ ′ and DnΓ are finitely generated, torsion free, nilpotent groups. By
induction, we may assume that the result is true for Γ ′ and DnΓ . To complete the proof, consider
the commutative diagram

1 DnΓ Γ Γ ′ 1

(DnΓ )(�)

jn

Γ (�)

j

(Γ ′)(�)

j ′

1

1 (DnΓ )un(Q�)
i

Γ un(Q�) (Γ ′)un(Q�) 1

The third row is exact by Proposition 4.2; the second is exact by the right exactness of pro-�
completion. The maps jn and j ′ are injective by induction. Since i is injective, j is as well. �
6. Proof of Theorem 1

Fix integers g � 3, n � 0, r � 0 and m � 1. Set Γ = Γg,n,�r , Γ [m] = Γg,n,�r [m] and T = Tg,n,�r .
Denote the Z-group scheme Spg by S.

Fix a prime number �. Denote the pro-� completion of T by T (�) and the relative pro-�
completion of Γ [m] with respect to the standard homomorphism to S(Z�)[m] by Γ [m](�). By
Proposition 2.2, the relative pro-� completion of S(Z)[m] is S(Z�)[m].

6.1. An upper bound

In this section, we prove that if T is �-regular, then the kernel of T (�) → Γ (�) is either 0 or
isomorphic to Z�.

The right exactness of relative pro-� completion implies that the sequence

T (�) → Γ [m](�) → S(Z�)[m] → 1

is exact. Denote the kernel of T (�) → Γ [m](�) by K�,m. When T is �-regular, we can give a tight
upper bound on the size of K�,m.

Lemma 6.1. The kernel K�,m of T (�) → Γ [m](�) is an abelian pro-� group contained in the
center of T (�). It has a natural S(Z�)[m] action.

Proof. By Proposition 3.4, the conjugation action Γ → AutT induces a continuous action
Γ [m](�) → AutT (�). The kernel K�,m of T (�) → Γ [m](�) is thus a Γ [m](�)-module that is con-
tained in the center of T (�). Since T (�) acts trivially on K�,m, the Γ [m]-action on K�,m descends
to a S(Z�)[m]-action. �

We suspect, but cannot prove, that the S(Z)[m]-action on K�,m is trivial. When T is �-regular,
we can prove this and give a strong upper bound on the size of K�,m.
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Proposition 6.2. If T is �-regular, then the kernel K�,m of T (�) → Γ [m](�) is a compact subgroup
of Q� and is therefore either 0 or isomorphic to Z�. The S(Z)[m]-action on K�,m is trivial.

Proof. Since T is �-regular, j : T (�) → T un(Q�) is injective. The diagram

T (�)

j

Γ [m](�) S(Z�)[m] 1

0 Q� T un(Q�) G(Q�) S(Q�) 1

commutes and has exact rows by Theorem 4.4 and the right exactness of relative pro-� comple-
tion. Consequently, the kernel of T (�) → Γ [m](�) is contained in the intersection of im j with Q�,
which is compact as T (�) is profinite. The first assertion follows as the compact subgroups of Q�

are 0 and �nZ� where n ∈ Z. The triviality of the S(Z)[m]-action on K�,m follows from the fact
that the inclusion Γ [m] → Γ induces an isomorphism on relative unipotent completions [12,
Proposition 3.3], and because the kernel of T un → G is a trivial G -module with respect to the
action of G on T un that is induced by the conjugation action of Γ on T . �

All remaining sections of Section 6 are devoted to proving that, regardless of whether T is
�-regular or not, the kernel of T (�) → Γ (�) contains copy of Z�.

6.2. The groups G and Ĝ.

The argument to prove the non-triviality of the kernel of T (�) → Γ (�) is somewhat intricate
and uses the structure of some natural quotients of Γ .

Consider the filtration

Γ = D0Γ ⊇ D1Γ ⊇ D2Γ ⊇ · · ·

of Γ defined, when k � 1, by DkΓ := DkT . Since T is finitely generated [25], the graded
quotients D1/Dk+1 are finitely generated, torsion free nilpotent groups for all k � 1. Each graded
quotient is an S(Z)-module.

Set

V = D1Γ/D2Γ = H1(T ;Z)/torsion.

Then for all positive integers m we have an extension

1 → V → Γ [m]/D2 → S(Z)[m] → 1. (2)

Denote the relative pro-� completion of Γ [m]/D2 with respect to the natural homomorphism to
S(Z�)[m] by (Γ [m]/D2)(�). Set V� = V ⊗ Z�.

Lemma 6.3. For all positive integers m, there is an injection

φm : Γ [m]/D2 → S(Z)[m] � V
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that commutes with the projections to S(Z)[m] and whose restriction to V is multiplication by 2.
Its image has finite index.

Proof. It suffices to prove the case m = 1. The extension (2) is determined by a class
e ∈ H 2(S(Z),V ). Johnson’s theorem implies (cf. [12]) that V is isomorphic to the sum of
Λ3H/H and n + r copies of H , where H denotes the defining representation of Spg . Since
−I ∈ S(Z) acts as −1 on V and is central in S(Z), it follows from the “center kills” argument
that H 2(S(Z),V ) is annihilated by 2. In particular, 2e = 0. Consequently, the extension of S(Z)

by V obtained by pushing out the extension (2) along the multiplication by 2 map ×2 : V → V

splits. This implies that there is a map of extensions

1 V

×2

Γ/D2

φ

S(Z) 1

1 V S(Z) � V S(Z) 1.

(3)

The result follows. �
Corollary 6.4. If � is odd, the relative pro-� completion of Γ [m]/D2 is isomorphic to
S(Z�)[m] � V�. When � = 2, (Γ [m]/D2)(2) has finite index in S(Z2)[m] � V2.

Proof. We first show that the relative pro-�-completion of S(Z)[m] � V is S(Z�)[m] � V�. The
relative pro-� completion of S(Z)[m] is S(Z�)[m] and the pro-� completion of V is V�. The
obvious homomorphism

φ : S(
Z[m]) � V → S(Z�)[m] � V�

is continuous. It therefore induces a homomorphism φ� such that the diagram

V�
(
S(Z) � V

)(�)

φ�

S(Z�)[m] 1

1 V� S(Z�)[m] � V� S(Z�)[m] 1

commutes and has exact rows. It follows that φ� is an isomorphism.
When � is odd, 2 is a unit in Z�. The result now follows from right exactness of relative pro-�

completion by taking the relative pro-� completion of the diagram

1 V

×2

Γ [m]/D2

φ

S(Z)[m] 1

1 V S(Z)[m] � V S(Z)[m] 1

which is the restriction of the diagram (3) to the level m subgroups. �
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The next step is to enlarge the quotient Γ [m]/D2 of Γ [m] by a central extension. Since V ⊗Q
is a rational representation of S and since (Gr•D T )⊗ Q is a graded Lie algebra in the category of
S(Z)-modules that is generated by (Gr1

D T ) ⊗ Q ∼= V ⊗ Q, each (DkT /Dk+1) ⊗ Q is a rational
representation of the algebraic group S ⊗ Q. By [12, Theorem 10.1], when r = n = 0,

dim
[(

D2Tg/D
3Tg

) ⊗ Q
]S(Z) = 1.

Let α0 : D2Tg/D
3Tg → Q be an S(Z)-invariant projection. Since the action of S(Z) is semi-

simple, this projection is unique up to scalar multiplication. Define αQ : D2T/D3 → Q be the
composite

D2T/D3 → D2Tg/D
3Tg

α0−→ Q.

Since D2T/D3 is finitely generated, the image of αQ is isomorphic to Z. Let α : D2T/D3 → Z
be the unique (up to sign) surjection whose composition with Z → Q is αQ.

6.2.1. Construction of G

This is a key construction in the proof. Define G to be the group obtained by pushing out the
extension

0 → D2T/D3 → Γ/D3 → Γ/D2 → 1

along the surjection α : D2T/D3 → Z. It is an extension of Γ/D2 by Z. It can also be written as
an extension

1 → E → G → S(Z) → 1,

where the kernel E is a central extension of V by Z, whose structure we compute below.

6.2.2. Heisenberg groups
Suppose that W and A are abelian groups, and that b : W ⊗Z W → A is a bilinear pairing.

The Heisenberg group Heisb(W,A) is the group whose underlying set is W × A and whose
multiplication is

(w,a) · (w′, a′) = (
w + w′, a + a′ + b(w,w′)

)
.

This is a central extension

0 → A → Heisb(W,A) → W → 0 (4)

of W by A. The commutator induces the skew symmetric bilinear pairing

c : W ⊗Z W → A
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defined by c(w,w′) = b(w,w′) − b(w′,w).8 The abelianization of Heisb(W,A) is thus an ex-
tension

0 → A/ im c → H1
(
Heisb(W,A)

) → W → 0. (5)

When W is a free abelian group of finite rank, c can be regarded as an element of H 2(W ;A).
It is the class of the extension (4) and determines it up to isomorphism of extensions. Thus, when
W is torsion free of finite rank, every central extension of W by A is of the form Heisb(W,A)

for some bilinear pairing b : W ⊗ W → A.

Example 6.5. The classical integral Heisenberg group is the group Heisb(Z
2,Z), where

b((x, y), (x′, y′)) = xy′. It is isomorphic to the group

(1 Z Z
0 1 Z
0 0 1

)

The class of the extension is the class of the skew symmetrization ((x, y), (x′, y′)) = xy′ − x′y
of b, which is the generator of H 2(Z2;Z) ∼= Z.

Lemma 6.6. If b : W × W → Z is a bilinear pairing on a finitely generated, torsion free abelian
group, then the natural homomorphism

Heisb(W,Z) → Heisb(W ⊗ Z�,Z�)

is the pro-� completion of Heisb(W,Z).

Proof. Consider the diagram

Z� Heisb(W,Z)(�) W ⊗ Z� 1

1 Z� Heisb(W ⊗ Z�,Z�) W ⊗ Z� 1

Right exactness of pro-� completion implies that the first row is exact. Since the first and third
vertical maps are isomorphisms, the central map is also an isomorphism. �

Since V is a finitely generated, torsion free group, the kernel E of the homomorphism
G → S(Z) is a Heisenberg group. The commutator of E induces a skew symmetric bilinear
pairing V × V → Z which is S(Z)-invariant because it is invariant under the conjugation action
of the mapping class group on T . The commutator pairing can be written as dq , where d is a
positive integer and q : V × V → Z is a primitive pairing. (That is, it cannot be divided by any

8 Note that if b is skew symmetric, then c = 2b.
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integer > 1.) In other words, the class of the extension is dq ∈ H 2(V ,Z). It follows from the
sequence (5) that the abelianization of E is an extension

0 → Z/d → H1(E) → V → 0.

Proposition 6.7. The integer d divides 2 and E is a subgroup of Heisq(V ,Z) of index 2/d .

Proof. Since T → E is surjective, H1(T ) → H1(E) is surjective. The definition of the rational
dimension subgroups implies that D2T surjects onto the torsion subgroup of H1(T ). It follows
that the torsion subgroup of H1(T ) surjects onto Z/d . Since the torsion subgroup of H1(T ) has
exponent 2 [26], it follows that d = 1 or 2. Standard facts about group cohomology imply that if
d = 2, then E ∼= Heisq(V ,Z). If d = 1, then E has index 2 in Heisq(V ,Z). �

Since 2 is a unit in Z� when � is odd, Lemma 6.6 and the previous result give the following
computation of E(�).

Corollary 6.8. If � is an odd prime number, then the pro-� completion of E is isomorphic to
Heisq(V ⊗ Z�,Z�). If � = 2, then either E(2) is isomorphic to Heisq(V ⊗ Z2,Z2) or has index 2
in it. In either case, the completion Z� → E(�) of the inclusion Z ↪→ E of the central Z into E is
injective.

6.2.3. Construction of Ĝ

It will be necessary to compute the relative pro-� completion of G up to a finite group. In
order to do this, we will construct another group Ĝ that contains G as a finite index subgroup.

Proposition 6.9. There is a group Ĝ that is an extension

0 → Z → Ĝ → S(Z) � V → 1 (6)

that contains G as a finite index subgroup. More precisely, there is a diagram of extensions

0 Z

×8/d

G Γ/D2

φ1

1

0 Z Ĝ S(Z) � V 1

where d ∈ {1,2} is the integer defined before Proposition 6.7 and φ1 is the homomorphism con-
structed in Lemma 6.3. The extension of S(Z) by Z obtained by restricting the extension (6)
to S(Z) is −(8g + 4) times the universal central extension S̃(Z) of S(Z).

It will follow from the proof of Corollary 6.10 that d is, in fact, 2.

Proof. The proof uses the geometry of moduli spaces of curves. We first review the construction
of the biextension bundle; a detailed exposition can be found in [20]. In this proof, all moduli
spaces are defined over C and are viewed as analytic orbifolds. The moduli space Ag (viewed
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as an orbifold) is a model of the classifying space BS(Z) of S(Z). The bundle of intermediate
jacobians J over Ag associated to the representation

V0 := Λ3H/H ∼= Tg/D
2Tg

of S(Z), where H denotes the defining representation of S, is a model of the classifying space
B(S(Z) � V0). A splitting of the extension is given by the zero section of J (V0) → Ag .
There is a natural line bundle B0 → J (V0) whose associated C∗-bundle B∗

0 is a model of
B(S(Z) � Heisq(V0,Z)), where q is the S-invariant bilinear pairing V × V → Z defined be-
fore Proposition 6.7. The restriction of B0 to the zero section Ag is trivial. A detailed exposition
of the construction of B0 is given in [20].

The period mapping Mg → Ag lifts to a holomorphic mapping ν0 : Mg → J (V0), which
is the normal function that takes the moduli point of the curve C to the point in the primitive
intermediate jacobian of JacC that corresponds to the algebraic cycle C − C− in JacC:

J (V0)

Mg

ν0

Ag

However, it does not lift to a section of B∗
0 → Ag . The obstruction is the first Chern class of ν∗

0 B0,
which is (8g + 4)λ ∈ H 2(Mg;Z) ∼= H 2(Ag;Z), where λ is the first Chern class of the line
bundle L over Ag corresponding to the universal central extension of S(Z), pulled back to Mg .
This Chern class computation follows from results of Morita [32, (5.8)] and is proved directly
in [19].

The Chern class computation implies that the pullback of B0 ⊗ L⊗(−(8g+4)) to Mg along
ν0 is trivial. This implies that ν0 : Mg → J (V0) lifts to a section ν̃ of the C∗-bundle
(B0 ⊗ L⊗(−(8g+4)))∗:

Mg

ν̃ ν0

(
B0 ⊗ L⊗(−(8g+4))

)∗ J (V0) Ag

At this stage it is useful to reinterpret this statement group theoretically. Set Ĝ0 =
π1((B0 ⊗ L⊗(−(8g+4)))∗,∗). This is an extension

0 → Z → Ĝ0 → S(Z) � V0 → 1

that is also an extension of S(Z) by the Heisenberg group Heisq(V0,Z). Its restriction to S(Z)

(fundamental group of the zero section of J (V0)) is L⊗(−(8g+4)), which has class −(8g + 4)λ ∈
H 2(S(Z);Z). The lift ν̃ of the normal function ν0 induces a homomorphism Γg → Ĝ0 whose
image contains the center Z; the induced homomorphism Tg → V0 is twice the Johnson homo-
morphism and has image 2V0.
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This induces a homomorphism ψ : E → Heisq(V0,Z). Noting that the commutator pairing of
Heisq(V0,Z) is 2q , we see that ψ must be multiplication by 8/d on the central Z’s:

Λ2V0
×4

dq

Λ2V0

2q

Z
×8/d

Z

Here the first column is the commutator pairing of E and the second is the commutator pairing
of Heisq(V0,Z). This completes the proof of the result when r = n = 0 by taking Ĝ = Ĝ0.

By replacing Γg,n,�r by Γg,n+r , we may assume that r = 0. When n = 1, V = Λ3H . There is
a family of intermediate jacobians J (Λ3H) over Ag , which also fibers over J (V0):

J
(
Λ3H

) → J (V0) → Ag.

This has fundamental group S(Z) � Λ3H and the restriction of ν1 to Tg,1 induces twice
the Johnson homomorphism Tg,1 → Λ3H . The normal function lifts to a normal function
ν1 : Mg,1 → J (Λ3H) that induces the homomorphism Γg,1 → S(Z) � Λ3H of Lemma 6.3.
It is the normal function that takes the moduli point of the pointed curve (C,x) to the point in
the intermediate jacobian of H3(JacC) determined by the algebraic cycle Cx − C−

x in JacC.
This generalizes to the case n > 1 as follows: Denote the projection Λ3H → V0 by p. Then,

by [14, Corollary 3],

V = {
(u1, . . . , un) ∈ (

Λ3H
)n: p(u1) = · · · = p(un)

}
.

Define J (V ) to be fibered product of n copies of J (Λ3H) over J (V0). It is a model of
the classifying space of S(Z) � V . Each of the n points determines a normal function νj :
Mg,n → J (Λ3H). These all project to the normal function

Mg,n → Mg
ν0−→ J (V0).

They therefore define a section νn : Mg,n → J (V ). This induces the homomorphism
Γg,n → S(Z) � V of Lemma 6.3.

Denote the projection J (V ) → J (V0) by π . Then one has a diagram

π∗(B0 ⊗ L⊗(−(8g+4))
)∗ (

B0 ⊗ L⊗(−(8g+4))
)∗

J (V )
π J (V0)

Mg,n

ν̃n

νn

Ag Ag
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The group Ĝ is defined to be

Ĝ = π1
(
π∗(B0 ⊗ L⊗(−(8g+4))

)∗
,∗)

.

The homomorphism Γg,n → Ĝ is induced by ν̃n. Its image is G. �
Denote the inverse image of S(Z)[m] in G by G[m] and by Ĝ[m] the inverse image of

S(Z)[m] under the natural projection Ĝ → S(Z). Then G[m] has finite index in Ĝ[m].

Corollary 6.10. For all positive integers m, there is a subgroup S̃ of G[m] whose image S′ under
the quotient mapping G[m] → S(Z)[m] has finite index and which is, up to 4-torsion, −(2g + 1)

times the restriction of the universal central extension of S(Z) to S′. Moreover, d = 2 and E is
isomorphic to Heisq(V ,Z).

Proof. Denote by Ŝ(Z) the restriction of the extension (6) to S(Z). This is −(8g + 4) times
the universal central extension of S(Z). Let S̃ be the intersection of G[m] with Ŝ(Z) in Ĝ. The
statement about the Chern class of the extension follows as S̃ contains the center of G[m], which
has index 8/d in the center of Ŝ(Z). Its Chern class is thus, up to 8/d-torsion, d/8 times the
restriction of the Chern class −(8g + 4)λ of the extension Ŝ(Z) of S(Z). Since λ generates
H 2(Spg(Z),Z), this forces d = 2. The remaining assertion follows from Proposition 6.7. �

Recall that G[m] is an extension

1 → E → G[m] → S(Z)[m] → 1.

Corollary 6.11. For all prime numbers �, the kernel of the homomorphism

E(�) → G[m](�)

is isomorphic to Z�.

Proof. Apply relative pro-� completion to the diagram

0 Z
α

β

S̃ S′ 1

1 E
γ

G[m] S(Z)[m] 1

to obtain the commutative diagram

Z�
α(�)

β(�)

S̃(�) S′(�) 1

E(�)
γ (�)

G[m](�) S(Z)[m](�) 1
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whose rows are exact. Corollary 6.8 implies that β(�) is injective. Since S̃ has index 4 in Ŝ(Z),
Proposition 2.5 implies that the image of α(�) is finite, so that kerα(�) ∼= Z�. The commutativity
of the diagram implies that β(�)(kerα(�)) is contained in kerγ (�). Since kerγ (�) is contained in
ker{E(�) → V (�)}, which is isomorphic to Z�, this gives the result. �
6.3. The kernel of T (�) → Γ (�) contains Z�

We have the exact sequence

1 → K → T (�) → Γ [m](�) → S(Z�)[m] → 1

where K := K�,m. Denote the kernel of the mapping Γ → G by C. This is a subgroup of T .
Observe that T/C is isomorphic to Heisq(V ,Z) and that Γ [m]/C is isomorphic to G[m].

Denote the closure of the image of C in T (�) (resp., Γ [m](�)) by CT (resp., CΓ ). Since C is
normal in Γ [m], CΓ is normal in Γ [m](�). Right exactness of relative pro-� completion implies
that G[m](�) ∼= Γ [m](�)/CΓ and (T /C)(�) ∼= T (�)/CT . It also implies that the sequence

1 → K/(K ∩ CT ) → (T /C)(�) → G[m](�) → S(Z�)[m] → 1

is exact. Corollary 6.11 implies that K/(K ∩ CT ) ∼= Z�. It follows that K contains a copy of Z�.

6.4. Genus 2

When g = 2, the homomorphism T (�) → Γ (�)[m] has a large kernel. For simplicity, we re-
strict ourselves to the case n = r = 0. Non-injectivity in the case r + n > 0 follows by a similar
argument. Details are left to the reader.

Set

T := im
{
T

(�)
2 → Γ

(�)
2 [m]}.

Observe that its abelianization, H1(T ) is a pro-� group with a continuous Sp2(Z�)[m] action.
Mess’ computations [31] imply that, as an Sp2(Z)-module,

H1(T2) ∼= Ind
Sp2(Z)

C2�SL2(Z)2 Z.

Here the group C2 � SL2(Z)2 is the stabilizer in Sp2(Z) of the decomposition of the integral
homology of an abelian surface which is the product of two elliptic curves. The cyclic group C2
interchanges the two factors, and the two copies of SL2(Z) act on the homology of the two
elliptic factors.

It is easy to produce �-adic quotients of H1(T2) that cannot be quotients of H1(T ). For exam-
ple, choose a prime number p that does not divide m�. Let

M = Ind
Sp2(Fp)

C2�SL2(Fp)2 Z�.

View this as an Sp2(Z)[m]-module via the projection Sp2(Z)[m] → Sp2(Fp), which is surjective
as p does not divide m.



R. Hain, M. Matsumoto / Journal of Algebra 321 (2009) 3335–3374 3363
Proposition 6.12. The group M is not a continuous quotient of H1(T ). Consequently,
H1(T

(�)) → H1(T ) is not injective.

Proof. If there were a quotient mapping π : H1(T ) → M , it would have to be Sp2(Z)[m]-
equivariant. Since Sp2(Z)[p] acts trivially on M , Sp2(Z�)[pm] would have to act trivially on M .
But this is impossible as Sp2(Z�)[pm] = Sp2(Z�)[m] and since Sp2(Z)[m] → Sp2(Fp) is sur-
jective. �

An improvement of the previous result and the following corollary were suggested by the
referee.

Corollary 6.13. The kernel of T
(�)
2 → Γ2[m](�) contains a copy of Z�.

Proof. Set K = ker{T (�) → T }. The previous result implies that the composite K → T → M is
non-trivial. Since M is a free Z�-module, the image of K → M is a non-zero free Z�-module,
which implies that K contains at least one copy of Z�. �
7. Proof of Theorem 3

First we prove the case r = 0, from which the case r > 0 follows by a group theoretic argument
presented at the end of this section.

Suppose that 2g − 2 + n > 0. Denote the moduli stack of smooth projective n-pointed genus
g curves by Mg,n/Z and its Deligne–Mumford compactification by Mg,n/Z [28,29].

Several times in this section we need to normalize a scheme in another scheme which is
not irreducible. Specifically, suppose that Y ′ → Y is a finite flat representable 1-morphism of
Deligne–Mumford stacks. Suppose that X is an integral scheme and that X′ → Y is a morphism
from a nonempty Zariski open subset of X to Y . Define the normalization of X with respect to

X′ → Y ← Y ′

to be the disjoint union of the normalizations of X in the function fields of the irreducible com-
ponents of X′ ×Y Y ′.

7.1. Tangential base points

The notion of tangential base point was introduced by Deligne in [5]. A Q-rational tangential
base point of a connected scheme X yields an exact functor from the category of finite étale
coverings of X to the category of finite étale coverings of Spec Q, and hence induces a homo-
morphism π1(Spec Q) → π1(X). Since we deal only with fundamental groups, we identify a
tangential base point with the corresponding exact functor.

We consider the Q-rational tangential base points constructed as follows. Let

C → SpecZ�q1, q2, . . . , q3g−3+n�
be the universal deformation of a maximally degenerate stable curve of type (g,n) over Z, where
the parameter qi corresponds to a smoothing of the ith double point. Such deformations are
constructed in [24, Remark 2.3.10].
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Let

[C] : Spec Z�q1, q2, . . . , q3g−3+n� → Mg,n/Z

be the classifying map. The choice of the set of parameters qi determines a Q-rational base point
of Mg,n/Z as follows.9

For each positive integer m, set

B = Q�q1, q2, . . . , q3g−3+n� and B1/m = Q
�
q

1/m

1 , q
1/m

2 , . . . , q
1/m

3g−3+n

�
.

Then [C] induces a map

[C]m : SpecB1/m
[
(q1 · · ·q3g−3+n)

−1] → Mg,n/Q.

Suppose that M → Mg,n/Q is a finite étale covering and M̃m be the normalization of B1/m with
respect to

SpecB1/m
[
(q1 · · ·q3g−3+n)

−1] → Mg,n/Q ← M.

By Abhyankar’s lemma [10, Exposé XIII], there is a positive integer m such that M̃m is étale
over B1/m. By specializing each q

1/m
i to 0, we obtain a finite etale cover of Spec Q. This covering

is independent of the choice of m and defines an exact functor from the category of finite étale
covers of Mg,n/Q to the finite étale covers of Spec Q. We shall abuse notation and denote this
tangential base point of Mg,n by [C].

The tangential base point [C] induces a section of the short exact sequence

1 → π1(Mg,n ⊗ Q) → π1(Mg,n ⊗ Q) → GQ → 1 (7)

and thus a Galois action

ρ[C] : GQ → Autπ1(Mg,n ⊗ Q).

The choice of an imbedding Q ↪→ C determines an isomorphism

π1(Mg,n ⊗Z Q) ∼= Γ ∧
g,n

of the geometric fundamental group of Mg,n with the profinite completion of the mapping class
group Γg,n. We will make this identification. By Proposition 2.1, the relative pro-� completion

of Γ ∧
g,n is isomorphic to Γ

(�)
g,n .

Our next task is to lift the base point [C] of Mg,n to a base point [C′] of Mg,n+1. The special
fiber C0 (qj = 0, all j ) of the curve C is a stable curve, each of whose components is isomorphic
to P1; each P1 has exactly three distinguished points (i.e., singular points or marked points).
Denote the n marked points of C by x1, . . . , xn. Define C′

0 to be the curve obtained by replacing
the first node (q1 = 0) by a copy of P1, where 0,∞ ∈ P1 are nodes. Take xn+1 to be the point 1

9 If qi is replaced by −qi for example, the exact functor, and hence the base point, changes.
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on the added P1. Then C′
0 is an n+1 marked stable curve whose moduli point in [C′

0] in Mg,n+1

maps to the moduli point [C0] in Mg,n by forgetting (n + 1)st point.
Extend C′

0 to an (n + 1)-marked curve C′ over Z�q1, . . . , q3g−3+n+1 � using the deformation
theory construction in [24]. Label the parameters so that q3g−3+n+1 is the parameter associated
to the double point at the ∞ on the attached P1, q1 the parameter associated to that at 0 on
the attached P1, and qj is the parameter corresponding to the j th node of C0 when 1 < j �
3g − 3 + n.

The curve C′ corresponds to a morphism [C′] : Spec Z�q1, . . . , q3g−3+n+1 � → Mg,n+1. If we
forget the (n+1)st marked point from C′, we have a family of semi-stable curves. Its stabilization
is isomorphic to C × Spec Z�q1, . . . , q3g−3+n+1 �. Thus, the following diagram

Spec Z�q1, . . . , q3g−3+n+1 � [C′]
Mg,n+1

Spec Z�q1, . . . , q3g−3+n� [C]
Mg,n.

commutes, where the left vertical map is obtained by q1 �→ q1q3g−3+n+1 and qi �→ qi when
1 < i � 3g − 3 + n.

This and the above construction of the exact functors give a homomorphism

π1
(

Mg,n+1, [C′]) → π1
(

Mg,n, [C])
that preserves the section from GQ. On the other hand, the image of [C′] is in the fiber isomorphic
to C, which gives a tangential base point of the smooth fiber locus CZ((q1,...,q3g−3+n)).10 Let Ω be
an algebraically closed field that contains B1/m for all positive integers m. Then we have a short
exact sequence

1 → π1
(
CΩ, [C′]) → π1

(
Mg,n+1/Q, [C′]) → π1

(
Mg,n/Q, [C]) → 1. (8)

The left group is isomorphic to the profinite completion of Πg,n, the fundamental group of an n-
punctured, genus g reference surface. This short exact sequence gives the universal monodromy
representation

π1(Mg,n/Q, [C]) → OutΠ(�)
g,n. (9)

Restricting to the geometric fundamental group gives the geometric monodromy representation

Γ ∧
g,n

∼= π1
(

Mg,n/Q, [C]) → OutΠ(�)
g,n.

Further restricting to the action on the abelianization of π
(�)
1 (CΩ), we obtain a representation

Γ ∧
g,n → Spg(Z�). The GQ-actions (induced from (8) and the tangential section) on Γ ∧

g,n and

10 For a ring R we denote R�t1, . . . , tr �[t−1, . . . , t−1
r ] by R((t1, . . . , tr )).
1
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Spg(Z�) are GQ-equivariant. Thus, the functoriality of relative pro-� completion implies that
there is a Galois action

ρ
(�)
[C] : GQ → AutΓ (�)

g,n.

Theorem 7.1 (Mochizuki–Tamagawa). For all prime numbers � and all (g,n) satisfying
2g − 2 + n > 0, the representation ρ

(�)
[C] is unramified outside �. That is, it factors through

π1(Spec Z[1/�]):

GQ → π1
(
Spec Z[1/�]) → AutΓ (�)

g,n.

The case g = 0 is proved by Ihara [23].

7.2. Étale coverings of moduli spaces

Suppose that A is a ring contained in an algebraically closed field Ω of characteristic 0, and
hence that A is an integral domain. We have Γ ∧

g,n
∼= π1(Mg,n/Ω) → π1(Mg,n/A). We say that a

finite étale covering M → Mg,n/A is geometrically relative-�, if the corresponding Γ ∧
g,n-action

on fibers factors through Γ
(�)
g,n . This is independent of the choice of A → Ω . The category of

such coverings is a Galois category. By restricting to the geometrically relative-� coverings, we
obtain the quotient

1 → Γ (�)
g,n → π1(Mg,n ⊗ Q)′ → GQ → 1 (10)

of (7).
The existence of suitable finite coverings of Mg,n that have a compactification that is smooth

over Z[1/�] was established by de Jong and Pikaart when n = 0 for all � in [27], when n > 0 and
� is odd by Boggi and Pikaart in [4], and when n > 0 and � = 2 by Pikaart in [35]. Their results
needed here are summarized in the following statement.

Proposition 7.2. For all prime numbers � and all (g,n) satisfying 2g − 2 + n > 0, there is a
geometrically relative-� Galois covering M → Mg,n defined over Z[1/�] that satisfies:

(0) M is an integral scheme;
(1) the normalization M of Mg,n in the function field of M is proper and smooth over Z[1/�];
(2) the boundary M \ M is a relative normal crossing divisor over Z[1/�];
(3) the ramification index of the covering M → Mg,n along any irreducible component of the

boundary is a power of �;
(4) the natural map Γ

(�)
g,n → Spg(Z/�) factors through the quotient of Γ

(�)
g,n corresponding to

the Galois covering M ⊗ Q → Mg,n ⊗ Q for odd �; for � = 2, the same statement with
Spg(Z/4).

We shall explain how this statement follows from their results. For G a finite quotient of Πg,n

by a characteristic subgroup, Deligne and Mumford [8] introduced the moduli stack GMg,n over
Z[1/|G|] of smooth projective curves of type (g,n) with a Teichmüller structure of level G. It is
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the normalization over Z[1/|G|] of the finite Galois covering GMg,n/Q → Mg,n/Q correspond-
ing to the kernel of π1(Mg,n/Q) → OutG. The construction over Spec Z[1/|G|] works equally
well when G is a quotient of Πg,n by a finite index subgroup stabilized by π1(Mg,n/Q).

Proposition 7.2 is proved by considering M = GMg,n/Z[1/�] for a suitable choice of G.
Specifically take G to be:

(1) the quotient group of Πg,0 by the normal subgroup generated by the fourth term of its lower
central subgroup and all �th powers when � is odd and n = 0;

(2) the quotient group of Πg,0 by the normal subgroup generated by the fourth term of its lower
central subgroup and all fourth powers when � = 2 and n = 0;

(3) the quotient Πg,n/W 3Πg,n, where W 3 denotes the third term of the weight filtration defined
in [4]), by all �th powers when � is odd and n > 0;

(4) the quotient Πg,n/W 4Πg,n, where W 4 denotes the fourth term of the weight filtration de-
fined in [4]), by all fourth powers when � = 2 and n > 0.

For details, see de Jong and Pikaart [27, Theorem 3.1.1(iii) and Proposition 2.3.6] for the first
two cases, Boggi and Pikaart [4, Proposition 2.6(ii) and Proposition 2.8] in the third case, and
Pikaart [35, Theorem 3.3.1(2) and Theorem 3.3.3(7)] in the fourth case. The extra condition for
the case � = 2 in (4) in Proposition 7.2 is to assure that M is a scheme, not just a stack.

Let p �= � be a prime number. For a subring A of the field Ω , Mg,n/A denotes the base change
to A. Denote by Zur

p the maximal étale cover of Zp , and by Qur
p its fraction field. There is a natural

morphism

Mg,n/Qp

f−→ Mg,n/Zur
p
.

Denote the Galois categories of geometrically relative-� coverings of Mg,n/A by C(Mg,n/A).

Note that the fundamental group of C(Mg,n/Qp
) is isomorphic to Γ

(�)
g,n .

Proposition 7.3. The above f induces an equivalence of categories

f ∗ : C(Mg,n/Zur
p
) → C(Mg,n/Qp

).

Proof. Take a geometrically relative �-covering M as in Proposition 7.2. Choose a connected
component of M ⊗ Zur

p . It is a connected object of C(Mg,n/Zur
p
), which we denote by MZur

p
.

Since M → Mg,n[1/�] is etale and p �= �, the base change MQp
of MZur

p
is a connected object

of C(Mg,n/Qp
). Since the boundary of M is a relatively normal crossing divisor over Z[1/�],

so is the boundary of the Zariski closure of MZur
p

in MZur
p

over Zur
p . The Base Change Theorem

[10, Exposé XII] implies that f induces an equivalence between the Galois categories of the
finite étale �-coverings of MZur

p
and MQp

. Since M is a geometrically relative-� Galois cover
of Mg,n defined over Z[1/�] that satisfies condition (4) of Proposition 7.2, the category C(MA)

of �-coverings of MA is the subcategory of C(Mg,n/A) consisting of all the objects (and the
morphisms) over MA (A = Qp or Zur

p ).
Choose a geometric point xQp

of MQp
. Let xZur

p
be its image in MZur

p
. Let x′

A denote their

image in Mg,n/A, for A = Qp or Zur
p . Then π1(C(MA), xA) is a finite index subgroup of

π1(C(Mg,n/A), x′ ), and the quotient set is identified with the fiber F(x′ ) of MA over x′ pointed
A A A
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at xA. The cardinality of F(x′
A) is the covering degree of MA → Mg,n/A, hence is the same for

A = Qp and Zur
p . We have the following commutative diagram

π1(C(MQp
), xQp

) π1(C(Mg,n/Qp
), x′

Qp
) F (x′

Qp
)

π1(C(MZur
p
), xZur

p
) π1(C(Mg,n/Zur

p
), x′

Zur
p
) F (x′

Zur
p
),

where, in each row, the right-hand set is the quotient of the middle group by the left-hand group.
The left-hand vertical arrow has been proved to be an isomorphism. Since the right-hand mapping
is bijective, the middle vertical arrow is an isomorphism. The result follows. �
7.3. Proof of Theorem 7.1

It suffices to show that for every p �= �, the inertia group π1(Q
ur
p ) at p acts trivially on the

relative pro-� completion of the mapping class group.
We use the notation of Section 7.1. Take M over Z[1/�] as in Proposition 7.2 and MZur

p
as

in the proof of Proposition 7.3. A tangential base point of M over [C] induces an exact functor
from C(MZur

p
) to the category C(Zur

p ) of finite étale coverings of Zur
p as follows.

Let M̃ be the normalization of SpecZur
p �q1, . . . , q3g−3+n� with respect to

Spec Zur
p �q1, . . . , q3g−3+n�[(q1 . . . q3g−3+n)

−1] → Mg,n/Zur
p

← MZur
p
.

The second and third assertions of Proposition 7.2 concerning ramification imply that there are
�-power integers k1, . . . , k3g−3+n (possibly 1) such that

M̃ ∼= SpecZur
p

�
q

1/k1
1 , . . . , q

1/k3g−3+n

3g−3+n

�
.

This gives a Zur
p -rational tangential base point on MZur

p
. Abhyankar’s lemma [10, Exposé XIII]

implies that, for each finite étale �-covering N of MZur
p

, there is an �-power integer j such that

Ñ → Spec Zur
p

�
q

1/jk1
1 , . . . , q

1/jk3g−3+n

3g−3+n

�

is a finite étale morphism, where Ñ is the normalization of

Spec Zur
p

�
q

1/jk1
1 , . . . , q

1/jk3g−3+n

3g−3+n

�

with respect to

Spec Zur
p

�
q

1/jk1
1 , . . . , q

1/jk3g−3+n

3g−3+n

�[
(q1 . . . q3g−3+n)

−1] → MZur
p

← N.

By specializing the q
1/jki

i to zero, we obtain a finite étale covering of Zur
p . This gives an exact

functor C(MZur) → C(Zur). The geometric point ξ : SpecQp → Spec Zur gives a fiber functor Fξ
p p p
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of C(Zur
p ), whose composition with the above functor is the fiber functor F ′

ξ of C(MZur
p
) associ-

ated to q
1/k1
1 , . . . , q

1/k3g−3+n

3g−3+n . Composing with the functor C(Mg,n/Zur
p
) → C(MZur

p
) gives a fiber

functor F ′′
ξ of C(Mg,n/Zur

p
):

C(Mg,n/Zur
p
)

F ′′
ξ

C(MZur
p
)

F ′
ξ

C(Zur
p )

Fξ

Sets

Note that the fiber functor [C]∗(ξ) equals F ′′
ξ . Define [C]Zur

p
to be the composite

π1
(
Zur

p ,Fξ

) → π1
(

C(MZur
p
),F ′

ξ

) → π1
(

C(Mg,n/Zur
p
),F ′′

ξ

)
.

This and the similar construction over Qur
p gives a commutative diagram

π1(Mg,n/Qp
,F ′′

ξ )(�)

π1(Q
ur
p ,Fξ )

[C]Qur
p

π1(C(Mg,n/Qur
p
),F ′′

ξ )

π1(Zur
p ,Fξ )

[C]Zur
p

π1(C(Mg,n/Zur
p
),F ′′

ξ ).

where the top right-hand arrow is the inclusion of a normal subgroup. The top right-hand group is
isomorphic to Γ

(�)
g,n . It is a normal subgroup of π1(C(Mg,n/Qur

p
),F ′′

ξ ). Proposition 7.3 implies that
the composite of the two right-hand vertical maps is an isomorphism. The action of the inertia
π1(Q

ur
p ) at p on Γ

(�)
g,n is conjugation by an element of π1(C(Mg,n/Qur

p
),F ′′

ξ ). The commutativ-
ity of the diagram implies that the inertia action factors through π1(Z

ur
p ,Fξ ), which is trivial.

Theorem 7.1 follows.
Denote the kernel of GQ → π1(Z[1/�]) by J�. Define Γ

arith,(�)
g,n to be the quotient of

π1(Mg,n/Q, [C]) by the normal subgroup generated by [C]∗(J�) and the kernel of Γ̂g,n → Γ
(�)
g,n .

Taking the quotient of the middle and the right-hand groups in the short exact sequence (10), we
obtain the following result.

Corollary 7.4. For all prime numbers � and all (g,n) satisfying 2g − 2 + n > 0, there is a split
exact sequence

1 → Γ (�)
g,n → Γ arith,(�)

g,n → π1
(
Z[1/�]) → 1.

Proof. Consider the section of the short exact sequence (10) given by the tangential base
point [C]. Theorem 7.1 implies that the image of the kernel of GQ → π1(Z[1/�]) under the

section induced by [C] centralizes Γ
(�)
g,n , hence is a normal subgroup of the middle group. We
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can divide the middle and the right-hand groups by this kernel to obtain the short exact sequence.
The splitting is induced by [C]. �

The following corollary was suggested by the referee.

Corollary 7.5. The group Γ
arith,(�)
g,n is canonically isomorphic to the fundamental group of the

Galois category C(Mg,n/Z[1/�]) with respect to the tangential base point [C]. In particular, al-

though the definition of Γ
arith,(�)
g,n depends on the choice of [C], two different choices yield two

isomorphic groups. The isomorphism is canonical up to an inner automorphism.

Proof. Denote the kernel of GQ → π1(Z[1/�]) by J�. By the definition of Γ
arith,(�)
g,n given above,

we have an identification

Γ arith,(�)
g,n = π1

(
C(Mg,n/Q)

)/([C]∗(J�)
)
.

On the other hand, by the “purity of the branched locus”, we have

π1
(

C(Mg,n/Z[1/�])
) ∼= π1

(
C(Mg,n/Q)

)
/〈Tp | p �= �〉,

where Tp denotes the inertia subgroup of π1(C(Mg,n/Q)) along the divisor Mg,n/Fp
of

Mg,n/Z[1/�], and 〈Tp | p �= �〉 denotes the normal subgroup topologically generated by the union
of the Tp for all primes p �= �. The result will follow from the statement that these two quotients

are identical as it implies that Γ
arith,(�)
g,n is canonically isomorphic to the fundamental group of

the Galois category C(Mg,n/Z[1/�]) with fiber functor [C], and another choice of [C] yields an
isomorphic fundamental group, with isomorphism determined up to an inner automorphism. The
rest of the proof consists in proving this equality.

When a covering in C(Mg,n/Z[1/�]) is pulled back along the tangential section [C] over
Z[1/�], it gives a finite étale covering of Z[1/�]. This implies that [C]∗(J�) acts trivially on the
corresponding fiber, and hence that [C]∗(J�) ⊆ 〈Tp | p �= �〉. To establish the reverse inclusion,

it suffices to show that the image of Tp in Γ
arith,(�)
g,n is trivial. Consider the exact sequence

1 → 〈T̃p〉 → π1
(

C(Mg,n/Qur
p
)
) → π1

(
C(Mg,n/Zur

p
)
) → 1,

where T̃p is the inertia subgroup of π1(C(Mg,n/Qur
p
)), and 〈T̃p〉 is the normal subgroup topo-

logically generated by T̃p . The construction in Corollary 7.4, when Z[1/�] is replaced with Zur
p ,

gives a short exact sequence

1 → Γ (�)
g,n → π1

(
C(Mg,n/Qur

p
)
)
/[C]∗

(
π1(Q

ur
p )

) → π1
(
Zur

p

) → 1.

Since π1(Z
ur
p ) is trivial, the left group is isomorphic to the middle group. Consider the commu-

tative diagram

T̃p π1
(

C(Mg,n/Qur
p
)
)
/[C]∗(π1(Q

ur
p ))

Tp π1
(

C(Mg,n/Q)
)
/[C]∗(J�) Γ

arith,(�)
g,n .
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Since the left-hand vertical map is surjective, the triviality of the bottom horizontal map will
follow from the triviality of the upper horizontal map. Since

π1(Q
ur
p )

[C]∗

π1(Z
ur
p )

[C]∗

π1
(

C(Mg,n/Qur
p
)
)

π1
(

C(Mg,n/Zur
p
)
)

commutes and the top right group is trivial, the bottom horizontal map factors through a homo-
morphism

π1
(

C(Mg,n/Qur
p
)
)
/[C]∗

(
π1(Q

ur
p )

) → π1
(

C(Mg,n/Zur
p
)
)
,

which is an isomorphism because the both groups are isomorphic to Γ
(�)
g,n by the above argument

and Proposition 7.3. Since the image of T̃p is trivial in the right-hand group, it is also trivial in

the left-group. This establishes the isomorphism of Γ
arith,(�)
g,n with the fundamental group of the

Galois category C(Mg,n/Z[1/�]) and with it, the result. �
Theorem 7.6. For all prime numbers � and all (g,n) satisfying 2g − 2 + n > 0, the universal
monodromy representation (9)

π1
(

Mg,n/Q, [C]) → Outπ(�)
1 (CΩ)

factors through Γ
arith,(�)
g,n .

Proof. Since the universal monodromy representation is the outer representation associated to
the extension (8), it suffices to show that

1 → π1(CΩ)(�) → Γ
arith,(�)
g,n+1 → Γ arith,(�)

g,n → 1

is exact. This is equivalent to the exactness of

1 → π1(CΩ)(�) → Γ
(�)
g,n+1 → Γ (�)

g,n → 1,

which was proved in Proposition 3.1(2). �
Remark 7.7. The proof of Theorem 7.1 was communicated to us by Tamagawa. Mochizuki gave
a more sophisticated proof, sketched below, which uses log geometry and avoids the construc-
tions of Boggi, de Jong, and Pikaart in Proposition 7.2.

In the above proof, the problem of proving the result is reduced to studying the �-coverings
of M in Proposition 7.2, where M ⊂ M is the complement of a normal crossing divisor. This
allows the use of [10, Exposé XII]. Mochizuki, on the other hand, takes N → Mg,n/Z[1/�] to be
the covering corresponding to π1(Mg,n/Z[1/�]) → GSpg(Z/�). He equips Mg,n with the stan-

dard log structure. The normalization N of Mg,n/Z[1/�] is then log-regular since the ramification
is tame. Mochizuki uses the log-purity theorem of Kato and Fujiwara (unpublished; see [33] for
a proof) in place of [10, Exposé XII] to complete the proof.
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7.4. The case r > 0

Theorem 7.1 establishes Theorem 3 in the case r = 0. The case r > 0 reduces to the case
r = 0.

We first discuss the Deligne–Mumford compactification of Mg,n,�r . Suppose that 2g − 2 +
n + r > 0. Define a stable curve of type (g,n, �r) to be a stable curve of type (g,n + r) together
with the choice of a non-zero tangent vector at each of the last r points. The moduli space of
stable curves of type (g,n, �r) is a (Gm)r -bundle over Mg,n+r , which is not complete if r > 0.
Denote the line bundle associated to the j th factor of this (Gm)r bundle by Lj . Its fiber over
the stable curve [C,x1, . . . , xn, y1, . . . , yr ] is Tyj

C, the tangent space of C at yj . The j th factor

of the (Gm)r bundle over Mg,n+r has fiber Tyj
C − {0} over [C,x1, . . . , xn, y1, . . . , yr ] and is

therefore defined over SpecZ. We compactify the j th factor of the (Gm)r bundle in the usual
way; namely:

P(Lj ⊕ O Mg,n+r
).

Define Mg,n,�r to be the fibered product over Mg,n+r of the bundles P(Lj ⊕ O Mg,n+r
). This is

defined over Spec Z as each of its factors is.
The construction of the deformation of maximally degenerate curves over Z, and the con-

struction of Q-rational tangential base points are all similar to constructions in the case r = 0
explained above. We start with a maximally degenerate stable curve of type (g,n + r) and then
construct the universal deformation over Z,

[C] : Spec Z�q1, q2, . . . , q3g−3+n+r � → Mg,n+r/Z.

The fiber product SpecZ�q1, q2, . . . , q3g−3+n+r � ×Mg,n+r/Z
Mg,n,�r is (P1)r -bundle over

Spec Z�q1, q2, . . . , q3g−3+n+r �. Take q ′
1, . . . , q

′
r to be the standard coordinate of each copy of

P1 so that q ′
i = 0 gives the zero of the ith copy of P1 ⊃ Gm. Now

[C′] : Spec Z
�
q1, q2, . . . , q3g−3+n+r , q

′
1, . . . , q

′
r

� → Mg,n,�r/Z

gives a tangential base point compatible with [C]. In the following, we use the Galois action
given by these tangential base points.

Suppose that r > 0. We have to establish the triviality of the action on Γ
(�)

g,n,�r of the inertia
subgroup Ip of GQ at p. By Proposition 3.3, the sequence

0 → Z�(1)r → Γ
(�)

g,n,�r → Γ
(�)
g,n+r → 1

is exact. Fix σ ∈ Ip and take g ∈ Γ
(�)

g,n,�r . Then, since Ip acts trivially on Γ
(�)
g,n+r (this is the case

r = 0), we can define a function

ϕ : Γ (�) → Z�(1)r

g,n,�r
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by ϕ : h �→ σ(h)h−1. Since Z�(1)r is central in Γ
(�)

g,n,�r , ϕ is a group homomorphism. Since Ip

acts trivially on Z�(1)r , ϕ induces a homomorphism

ϕ : Γ (�)
g,n+r → Z�(1)r .

Since Γg,n+r is finitely generated, H 1(Γg,n+r ,Z) is a finitely generated torsion free abelian
group. Since H 1(Γg,n+r ,Q) vanishes for all g � 1,11 H 1(Γg,n+r ,Z) vanishes whenever g � 1.

This implies that ϕ is trivial whenever g � 1 as Γg,n+r is dense in Γ
(�)
g,n+r . It follows that Ip acts

trivially on Γ
(�)

g,n,�r . When g = 0, relative pro-� completion coincides with pro-� completion, so
that we can appeal to [10, Exposé XII].
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