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Let F denote an algebraically closed field and let V denote a
vector space over F with finite positive dimension. We consider
a pair of linear transformations A : V → V and A∗ : V → V that
satisfy the following conditions: (i) each of A, A∗ is diagonalizable;
(ii) there exists an ordering {V i}d

i=0 of the eigenspaces of A such
that A∗V i ⊆ V i−1 + V i + V i+1 for 0 � i � d, where V−1 = 0 and
Vd+1 = 0; (iii) there exists an ordering {V ∗

i }δi=0 of the eigenspaces
of A∗ such that AV ∗

i ⊆ V ∗
i−1 + V ∗

i + V ∗
i+1 for 0 � i � δ, where

V ∗−1 = 0 and V ∗
δ+1 = 0; (iv) there is no subspace W of V such

that AW ⊆ W , A∗W ⊆ W , W �= 0, W �= V . We call such a pair
a tridiagonal pair on V . It is known that d = δ. For 0 � i � d let θi

(resp. θ∗
i ) denote the eigenvalue of A (resp. A∗) associated with V i

(resp. V ∗
i ). The pair A, A∗ is said to have q-Racah type whenever

θi = a + bq2i−d + cqd−2i and θ∗
i = a∗ + b∗q2i−d + c∗qd−2i for 0 �

i � d, where q,a,b, c,a∗,b∗, c∗ are scalars in F with q,b, c,b∗, c∗
nonzero and q2 /∈ {1,−1}. This type is the most general one. We
classify up to isomorphism the tridiagonal pairs over F that have
q-Racah type. Our proof involves the representation theory of the
quantum affine algebra Uq(ŝl2).
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1. Tridiagonal pairs

Throughout this paper F denotes a field and F denotes the algebraic closure of F.
We begin by recalling the notion of a tridiagonal pair. We will use the following terms. Let V

denote a vector space over F with finite positive dimension. For a linear transformation A : V → V
and a subspace W ⊆ V , we call W an eigenspace of A whenever W �= 0 and there exists θ ∈ F such
that W = {v ∈ V | Av = θ v}; in this case θ is the eigenvalue of A associated with W . We say that A
is diagonalizable whenever V is spanned by the eigenspaces of A.

Definition 1.1. (See [22, Definition 1.1].) Let V denote a vector space over F with finite positive di-
mension. By a tridiagonal pair (or TD pair) on V we mean an ordered pair of linear transformations
A : V → V and A∗ : V → V that satisfy the following four conditions.

(i) Each of A, A∗ is diagonalizable.
(ii) There exists an ordering {V i}d

i=0 of the eigenspaces of A such that

A∗V i ⊆ V i−1 + V i + V i+1 (0 � i � d), (1)

where V−1 = 0 and Vd+1 = 0.
(iii) There exists an ordering {V ∗

i }δi=0 of the eigenspaces of A∗ such that

AV ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1 (0 � i � δ), (2)

where V ∗−1 = 0 and V ∗
δ+1 = 0.

(iv) There does not exist a subspace W of V such that AW ⊆ W , A∗W ⊆ W , W �= 0, W �= V .

We say the pair A, A∗ is over F. We call V the underlying vector space.

Note 1.2. According to a common notational convention A∗ denotes the conjugate-transpose of A. We
are not using this convention. In a TD pair A, A∗ the linear transformations A and A∗ are arbitrary
subject to (i)–(iv) above.

We now give some background on TD pairs; for more information we refer the reader to [22–
27,60]. The concept of a TD pair originated in the study of the (P and Q )-polynomial association
schemes [3] and their relationship to the Askey scheme of orthogonal polynomials [2,32]. The concept
is implicit in [3, p. 263], [36] and more explicit in [53, Theorem 2.1]. A systematic study began in [22].
As research progressed, connections were found to representation theory [1,4,17,21,24,26,28,29,33–35,
49,51,52,56,61], partially ordered sets [57], the bispectral problem [18–20,63], statistical mechanical
models [4–10,13–15,50], and classical mechanics [64].

We now recall some basic facts about TD pairs. Let A, A∗ denote a TD pair on V , as in Defini-
tion 1.1. By [22, Lemma 4.5] the integers d and δ from (ii), (iii) are equal; we call this common value
the diameter of the pair. By [22, Theorem 10.1] the pair A, A∗ satisfies two polynomial equations called
the tridiagonal relations; these generalize the q-Serre relations [56, Example 3.6] and the Dolan–Grady
relations [56, Example 3.2]. See [9,37,54,56,61] for results on the tridiagonal relations. An ordering of
the eigenspaces of A (resp. A∗) is said to be standard whenever it satisfies (1) (resp. (2)). We comment
on the uniqueness of the standard ordering. Let {V i}d

i=0 denote a standard ordering of the eigenspaces
of A. By [22, Lemma 2.4], the ordering {Vd−i}d

i=0 is also standard and no further ordering is standard.
A similar result holds for the eigenspaces of A∗ . Let {V i}d

i=0 (resp. {V ∗
i }d

i=0) denote a standard order-
ing of the eigenspaces of A (resp. A∗). By [22, Corollary 5.7], for 0 � i � d the spaces V i , V ∗

i have the
same dimension; we denote this common dimension by ρi . By [22, Corollaries 5.7, 6.6] the sequence
{ρi}d

i=0 is symmetric and unimodal; that is ρi = ρd−i for 0 � i � d and ρi−1 � ρi for 1 � i � d/2.
We call the sequence {ρi}d

i=0 the shape of A, A∗ . The shape conjecture [22, Conjecture 13.5] states that
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if F is algebraically closed then ρi �
(d

i

)
for 0 � i � d. The shape conjecture has been proven for a

number of special cases [23,25,28,29]. The TD pair A, A∗ is called sharp whenever ρ0 = 1. By [47,
Theorem 1.3], if F is algebraically closed then A, A∗ is sharp. It is an open problem to classify the
sharp TD pairs up to isomorphism, but progress is being made [25,28,29,46,48,62]. The TD pairs of
shape (1,1, . . . ,1) are called Leonard pairs [55, Definition 1.1], and these are classified up to isomor-
phism [55,58]. This classification yields a correspondence between the Leonard pairs and a family of
orthogonal polynomials consisting of the q-Racah polynomials and their relatives [2,59]. This family
coincides with the terminating branch of the Askey scheme [32]. See [38–44,60] and the references
therein for results on Leonard pairs.

We now summarize the present paper. For the above TD pair A, A∗ let {V i}d
i=0 (resp. {V ∗

i }d
i=0)

denote a standard ordering of the eigenspaces of A (resp. A∗). For 0 � i � d let θi (resp. θ∗
i ) denote

the eigenvalue of A (resp. A∗) for V i (resp. V ∗
i ). By [22, Theorem 11.1] the expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗
i−2 − θ∗

i+1

θ∗
i−1 − θ∗

i

(3)

are equal and independent of i for 2 � i � d − 1. For this constraint the “most general” solution is

θi = a + bq2i−d + cqd−2i (0 � i � d), (4)

θ∗
i = a∗ + b∗q2i−d + c∗qd−2i (0 � i � d), (5)

q,a,b, c,a∗,b∗, c∗ ∈ F, (6)

q �= 0, q2 �= 1, q2 �= −1, bb∗cc∗ �= 0. (7)

For this solution q2 + q−2 + 1 is the common value of (3). The TD pair A, A∗ is said to have q-Racah
type whenever (4)–(7) hold. By [58, Theorem 5.16] the Leonard pairs of q-Racah type correspond to
the q-Racah polynomials.

In this paper we classify up to isomorphism the TD pairs over an algebraically closed field that
have q-Racah type. Our main result is Theorem 3.3. The proof involves the representation theory of
the quantum affine algebra Uq(ŝl2).

2. Tridiagonal systems

When working with a TD pair, it is often convenient to consider a closely related object called
a TD system. To define a TD system, we recall a few concepts from linear algebra. Let V denote
a vector space over F with finite positive dimension. Let End(V ) denote the F-algebra of all linear
transformations from V to V . Let A denote a diagonalizable element of End(V ). Let {V i}d

i=0 denote an
ordering of the eigenspaces of A and let {θi}d

i=0 denote the corresponding ordering of the eigenvalues
of A. For 0 � i � d define Ei ∈ End(V ) such that (Ei − I)V i = 0 and Ei V j = 0 for j �= i (0 � j � d).
Here I denotes the identity of End(V ). We call Ei the primitive idempotent of A corresponding to V i

(or θi ). Observe that (i)
∑d

i=0 Ei = I; (ii) Ei E j = δi, j Ei (0 � i, j � d); (iii) V i = Ei V (0 � i � d);

(iv) A = ∑d
i=0 θi Ei . Moreover

Ei =
∏

0� j�d
j �=i

A − θ j I

θi − θ j
. (8)

Note that each of {Ai}d
i=0, {Ei}d

i=0 is a basis for the F-subalgebra of End(V ) generated by A. Moreover∏d
i=0(A − θi I) = 0. Now let A, A∗ denote a TD pair on V . An ordering of the primitive idempotents

of A (resp. A∗) is said to be standard whenever the corresponding ordering of the eigenspaces of A
(resp. A∗) is standard.
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Definition 2.1. (See [22, Definition 2.1].) Let V denote a vector space over F with finite positive di-
mension. By a tridiagonal system (or TD system) on V we mean a sequence

Φ = (
A; {Ei}d

i=0; A∗;{E∗
i

}d
i=0

)

that satisfies (i)–(iii) below.

(i) A, A∗ is a TD pair on V .
(ii) {Ei}d

i=0 is a standard ordering of the primitive idempotents of A.
(iii) {E∗

i }d
i=0 is a standard ordering of the primitive idempotents of A∗ .

We say Φ is over F. We call V the underlying vector space.

The notion of isomorphism for TD systems is defined in [45, Section 3].

Definition 2.2. Let Φ = (A; {Ei}d
i=0; A∗; {E∗

i }d
i=0) denote a TD system on V . For 0 � i � d let θi

(resp. θ∗
i ) denote the eigenvalue of A (resp. A∗) associated with the eigenspace Ei V (resp. E∗

i V ).
We call {θi}d

i=0 (resp. {θ∗
i }d

i=0) the eigenvalue sequence (resp. dual eigenvalue sequence) of Φ . We ob-
serve {θi}d

i=0 (resp. {θ∗
i }d

i=0) are mutually distinct and contained in F. We say Φ is sharp whenever
the TD pair A, A∗ is sharp.

The following notation will be useful.

Definition 2.3. Let λ denote an indeterminate and let F[λ] denote the F-algebra consisting of the
polynomials in λ that have all coefficients in F. Let {θi}d

i=0 and {θ∗
i }d

i=0 denote scalars in F. Then for
0 � i � d we define the following polynomials in F[λ]:

τi = (λ − θ0)(λ − θ1) · · · (λ − θi−1),

ηi = (λ − θd)(λ − θd−1) · · · (λ − θd−i+1),

τ ∗
i = (

λ − θ∗
0

)(
λ − θ∗

1

) · · · (λ − θ∗
i−1

)
,

η∗
i = (

λ − θ∗
d

)(
λ − θ∗

d−1

) · · · (λ − θ∗
d−i+1

)
.

Note that each of τi , ηi , τ ∗
i , η∗

i is monic with degree i.

We now recall the split sequence of a sharp TD system. This sequence was originally defined in
[28, Section 5] using the split decomposition [22, Section 4], but in [48] an alternate definition was
introduced that is more convenient to our purpose.

Definition 2.4. (See [48, Definition 2.5].) Let (A; {Ei}d
i=0; A∗; {E∗

i }d
i=0) denote a sharp TD system over F,

with eigenvalue sequence {θi}d
i=0 and dual eigenvalue sequence {θ∗

i }d
i=0. By [47, Lemma 5.4], for 0 �

i � d there exists a unique ζi ∈ F such that

E∗
0τi(A)E∗

0 = ζi E∗
0

(θ∗
0 − θ∗

1 )(θ∗
0 − θ∗

2 ) · · · (θ∗
0 − θ∗

i )
.

Note that ζ0 = 1. We call {ζi}d
i=0 the split sequence of the TD system.
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Definition 2.5. Let Φ denote a sharp TD system. By the parameter array of Φ we mean the sequence
({θi}d

i=0; {θ∗
i }d

i=0; {ζi}d
i=0) where {θi}d

i=0 (resp. {θ∗
i }d

i=0) is the eigenvalue sequence (resp. dual eigen-
value sequence) of Φ and {ζi}d

i=0 is the split sequence of Φ .

The following result shows the significance of the parameter array.

Proposition 2.6. (See [29], [47, Theorem 1.6].) Two sharp TD systems over F are isomorphic if and only if they
have the same parameter array.

3. The classification

In this section we state our main result and discuss its significance.

Definition 3.1. Let d denote a nonnegative integer and let ({θi}d
i=0; {θ∗

i }d
i=0) denote a sequence of

scalars taken from F. We call this sequence q-Racah whenever the following (i), (ii) hold.

(i) θi �= θ j , θ∗
i �= θ∗

j if i �= j (0 � i, j � d).
(ii) There exist q,a,b, c,a∗,b∗, c∗ that satisfy (4)–(7).

Referring to Definition 3.1, condition (i) implies a restriction on the scalars in condition (ii). We
now clarify this restriction.

Lemma 3.2. The following are equivalent for all integers d � 0, nonzero q ∈ F, and a,b, c ∈ F:

(i) The scalars {a + bq2i−d + cqd−2i}d
i=0 are mutually distinct;

(ii) q2i �= 1 for 1 � i � d and b �= cq2d−2i for 1 � i � 2d − 1.

Proof. Routine. �
The following is our main result.

Theorem 3.3. Assume the field F is algebraically closed and let d denote a nonnegative integer. Let
({θi}d

i=0; {θ∗
i }d

i=0) denote a q-Racah sequence of scalars in F and let {ζi}d
i=0 denote any sequence of scalars

in F. Then the following are equivalent:

(i) There exists a TD system Φ over F that has parameter array ({θi}d
i=0; {θ∗

i }d
i=0; {ζi}d

i=0);
(ii) ζ0 = 1, ζd �= 0, and

0 �=
d∑

i=0

ηd−i(θ0)η
∗
d−i

(
θ∗

0

)
ζi . (9)

Suppose (i), (ii) hold. Then Φ is unique up to isomorphism of TD systems.

Our proof of Theorem 3.3 is contained in Section 10.
We now discuss the significance of Theorem 3.3. The following conjectured classification of TD

pairs was introduced in [28, Conjecture 14.6]; see also [45, Conjecture 6.3] and [48, Conjecture 11.1].

Conjecture 3.4. (See [28, Conjecture 14.6].) Assume the field F is algebraically closed. Let d denote a nonneg-
ative integer and let

({θi}d
i=0;

{
θ∗

i

}d ; {ζi}d
i=0

)
(10)
i=0
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denote a sequence of scalars taken from F. Then there exists a TD system Φ over F with parameter array (10)
if and only if (i)–(iii) hold below:

(i) θi �= θ j , θ∗
i �= θ∗

j if i �= j (0 � i, j � d).
(ii) ζ0 = 1, ζd �= 0, and

0 �=
d∑

i=0

ηd−i(θ0)η
∗
d−i

(
θ∗

0

)
ζi .

(iii) The expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗
i−2 − θ∗

i+1

θ∗
i−1 − θ∗

i

are equal and independent of i for 2 � i � d − 1.

Suppose (i)–(iii) hold. Then Φ is unique up to isomorphism of TD systems.

The “only if ” direction of Conjecture 3.4 was proved in [45, Section 8]. The last assertion of Con-
jecture 3.4 follows from Proposition 2.6. The “if ” direction of Conjecture 3.4 was proved for d � 5 in
[48, Theorems 11.2 and 12.1]. Theorem 3.3 establishes the “if ” direction of Conjecture 3.4 for the case
in which ({θi}d

i=0; {θ∗
i }d

i=0) has q-Racah type. We remark that our forthcoming paper [29] contains a
comprehensive treatment of the TD pairs for which q is not a root of unity, where q2 + q−2 + 1 is
the common value of (3). The treatment establishes the “if ” direction of Conjecture 3.4 assuming that
restriction on q.

4. An outline of the proof for Theorem 3.3

In the proof of Theorem 3.3 the main part is to demonstrate that (ii) implies (i). This demonstration
will consume most of the paper from Section 6 through Section 10. Here we summarize the argument.

Assuming F is algebraically closed, we fix a q-Racah sequence ({θi}d
i=0; {θ∗

i }d
i=0) of scalars in F, and

a sequence {ζi}d
i=0 of scalars in F that satisfy condition (ii) of Theorem 3.3. Our goal is to display a TD

system over F that has parameter array ({θi}d
i=0; {θ∗

i }d
i=0; {ζi}d

i=0). To this end we fix q,a,b, c,a∗,b∗, c∗

that satisfy (4)–(7). Associated with q is the algebra Uq(ŝl2) over F with Chevalley generators e±
i , K ±1

i ,
i ∈ {0,1}. We consider the Uq(ŝl2)-modules V of the form

V = V (α1) ⊗ V (α2) ⊗ · · · ⊗ V (αd),

where each V (αi) is a 2-dimensional evaluation module with evaluation parameter αi . The module V
decomposes into a direct sum of weight spaces {Ui}d

i=0, with K0 − q2i−d1 and K1 − qd−2i1 vanishing

on Ui for 0 � i � d. The dimension of Ui is
(d

i

)
for 0 � i � d. Using b, c,b∗, c∗ we obtain certain

elements R, L ∈ Uq(ŝl2) such that

RUi ⊆ Ui+1, LUi ⊆ Ui−1 (0 � i � d),

where U−1 = 0 and Ud+1 = 0. The R, L satisfy some attractive equations and act nicely with respect to
the Hopf algebra structure. Using R, L we associate with V a certain monic univariate polynomial P V

of degree d, called the (nonstandard) Drinfel’d polynomial [30]. Using some properties of P V we show
that the parameters {αi}d

i=1 can be chosen so that ζi is the eigenvalue of Li Ri on U0 for 0 � i � d; for
the rest of this section we work with this choice. Define
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A = a1 + bK0 + cK1 + R,

A∗ = a∗1 + b∗K0 + c∗K1 + L.

Using the equations satisfied by R, L we show that A, A∗ satisfy a pair of tridiagonal relations. From
the construction

(A − θi1)Ui ⊆ Ui+1,
(

A∗ − θ∗
i 1

)
Ui ⊆ Ui−1 (0 � i � d).

Using this we argue that A (resp. A∗) is diagonalizable on V with eigenvalues {θi}d
i=0 (resp. {θ∗

i }d
i=0).

For 0 � i � d let Ei (resp. E∗
i ) denote the element of Uq(ŝl2) that acts on V as the primitive idempo-

tent of A (resp. A∗) associated with θi (resp. θ∗
i ). Using the tridiagonal relations and a few other facts

we show that on V ,

Ei A∗E j = 0, E∗
i AE∗

j = 0 if |i − j| > 1 (0 � i, j � d). (11)

Using ζd �= 0 and (9) we show that on V ,

E∗
0 Ed E∗

0 �= 0, E∗
0 E0 E∗

0 �= 0. (12)

Let T denote the subalgebra of Uq(ŝl2) generated by A, A∗ and let T E∗
0 V denote the T -submodule

of V generated by E∗
0 V = U0. We show that T E∗

0 V contains a unique maximal proper T -submodule;
denote this by M and consider the quotient T -module L = T E∗

0 V /M . By construction the T -module
L is irreducible. Using this and (11), (12) we show that the elements (A; {Ei}d

i=0; A∗; {E∗
i }d

i=0) act on
L as a TD system which we denote by Φ . By the construction Φ has eigenvalue sequence {θi}d

i=0 and
dual eigenvalue sequence {θ∗

i }d
i=0. We argue using the choice of V that Φ has split sequence {ζi}d

i=0.
Therefore Φ has parameter array ({θi}d

i=0; {θ∗
i }d

i=0; {ζi}d
i=0) and we have accomplished our goal.

5. The algebra Uq(̂sl2)

The quantum affine algebra Uq(ŝl2) belongs to a family of algebras discovered independently by
Drinfel’d [16] and Jimbo [31]. In this section we recall some facts about Uq(ŝl2) that will be useful in
the proof of Theorem 3.3. For convenience we follow the notational conventions of Chari and Pressley
[11,12].

Throughout this section assume F is algebraically closed. We fix a nonzero q ∈ F such that q2 �= 1,
and adopt the following notation:

[n]q = qn − q−n

q − q−1
, n = 0,1,2, . . . . (13)

Definition 5.1. (See [11, p. 262].) The quantum affine algebra Uq(ŝl2) is the associative F-algebra
with 1, defined by generators e±

i , K ±1
i , i ∈ {0,1} and the following relations:

Ki K −1
i = K −1

i Ki = 1, (14)

K0 K1 = K1 K0, (15)

Kie
±
i K −1

i = q±2e±
i , (16)

Kie
±
j K −1

i = q∓2e±
j , i �= j, (17)
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[
e+

i , e−
i

] = Ki − K −1
i

q − q−1
, (18)

[
e±

0 , e∓
1

] = 0, (19)

(
e±

i

)3
e±

j − [3]q
(
e±

i

)2
e±

j e±
i + [3]qe±

i e±
j

(
e±

i

)2 − e±
j

(
e±

i

)3 = 0, i �= j. (20)

In (18), (19) the expression [r, s] means rs − sr. We call e±
i , K ±1

i , i ∈ {0,1} the Chevalley generators for
Uq(ŝl2).

In [11, Section 4] Chari and Pressley consider some finite-dimensional irreducible Uq(ŝl2)-modules
Vn(α), where α is a nonzero scalar in F and n is a positive integer. These modules are called evalua-
tion modules. The scalar α is the evaluation parameter and n + 1 is the dimension. We will make use
of V 1(α); for notational convenience we denote this module by V (α).

Definition 5.2. (See [11, Section 4].) For all nonzero α ∈ F the Uq(ŝl2)-module V (α) has a basis x, y
on which the Chevalley generators act as follows:

K1x = qx, K1 y = q−1 y,

e−
1 x = y, e−

1 y = 0,

e+
1 x = 0, e+

1 y = x,

K0x = q−1x, K0 y = qy,

e−
0 x = 0, e−

0 y = qα−1x,

e+
0 x = q−1αy, e+

0 y = 0.

We now recall how the tensor product of two Uq(ŝl2)-modules becomes a Uq(ŝl2)-module. In
what follows all unadorned tensor products are meant to be over F.

Lemma 5.3. (See [11, p. 263].) Uq(ŝl2) has the following Hopf algebra structure. The comultiplication � satis-
fies

�
(
e+

i

) = e+
i ⊗ Ki + 1 ⊗ e+

i ,

�
(
e−

i

) = e−
i ⊗ 1 + K −1

i ⊗ e−
i ,

�(Ki) = Ki ⊗ Ki .

The counit ε satisfies

ε
(
e±

i

) = 0, ε(Ki) = 1.

The antipode S satisfies

S(Ki) = K −1
i , S

(
e+

i

) = −e+
i K −1

i , S
(
e−

i

) = −Kie
−
i .

Combining Lemma 5.3 with [12, p. 110] we routinely obtain the following.
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Lemma 5.4. Let V , W denote Uq(ŝl2)-modules. Then the tensor product V ⊗ W has the following Uq(ŝl2)-
module structure. For v ∈ V , for w ∈ W and for i ∈ {0,1},

e+
i (v ⊗ w) = e+

i v ⊗ Ki w + v ⊗ e+
i w,

e−
i (v ⊗ w) = e−

i v ⊗ w + K −1
i v ⊗ e−

i w,

Ki(v ⊗ w) = Ki v ⊗ Ki w.

Definition 5.5. (See [12, p. 110].) There exists a one-dimensional Uq(ŝl2)-module on which each ele-
ment z ∈ Uq(ŝl2) acts as ε(z)I , where ε is from Lemma 5.3 and I is the identity map. In particular on
this module each of e±

0 , e±
1 vanishes and each of K ±1

0 , K ±1
1 acts as I . This module is irreducible and

unique up to isomorphism. We call this module the trivial Uq(ŝl2)-module.

Definition 5.6. Let d denote a nonnegative integer. By a standard Uq(ŝl2)-module of diameter d we mean

V (α1) ⊗ V (α2) ⊗ · · · ⊗ V (αd), (21)

where 0 �= αi ∈ F for 1 � i � d. For d = 0 we interpret (21) to be the trivial Uq(ŝl2)-module.

For our purpose we only need those standard Uq(ŝl2)-modules of diameter d such that q2i �= 1 for
1 � i � d. The following definition will facilitate our discussion of these modules.

Definition 5.7. An integer d will be called feasible (with respect to q) whenever d � 0 and q2i �= 1 for
1 � i � d. Note that 0 and 1 are feasible.

The following result is immediate from Definition 5.7.

Lemma 5.8. For all feasible integers d the scalars {qd−2i}d
i=0 are mutually distinct.

Let V denote a standard Uq(ŝl2)-module with feasible diameter d. The F-vector space V has a
basis

v1 ⊗ v2 ⊗ · · · ⊗ vd, vi ∈ {x, y} (1 � i � d). (22)

Note that V has dimension 2d . For notational convenience we abbreviate the basis (22) as follows.
For all subsets s ⊆ {1,2, . . . ,d} define us = v1 ⊗ v2 ⊗ · · · ⊗ vd , where vi = x if i /∈ s and vi = y if i ∈ s
(1 � i � d). For example u∅ = x ⊗ x ⊗ · · · ⊗ x. Pick a subset s ⊆ {1,2, . . . ,d}. By Lemma 5.4 we have

K0us = q2|s|−dus, K1us = qd−2|s|us, (23)

where |s| denotes the cardinality of s. Thus each of K0, K1 is diagonalizable on V with eigenvalues
{qd−2i}d

i=0. Moreover K0, K1 are inverses of one another on V . For 0 � i � d define

Ui = Span
{

us
∣∣ s ⊆ {1,2, . . . ,d}, |s| = i

}
.

Note that V = ∑d
i=0 Ui (direct sum), and that Ui has dimension

(d
i

)
for 0 � i � d. Moreover

(
K0 − q2i−d1

)
Ui = 0,

(
K1 − qd−2i1

)
Ui = 0 (24)
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for 0 � i � d. Combining (16), (17) with (24) we find that for 0 � i � d,

e+
0 Ui ⊆ Ui+1, e−

1 Ui ⊆ Ui+1, (25)

e−
0 Ui ⊆ Ui−1, e+

1 Ui ⊆ Ui−1, (26)

where U−1 = 0 and Ud+1 = 0. We call the sequence {Ui}d
i=0 the weight space decomposition of V .

We call u∅ the highest weight vector of V . The action of e±
0 , e±

1 on the basis (22) can be obtained
using Lemma 5.4 but the answer is slightly complicated. For all subsets s ⊆ {1, . . . ,d} let s denote the
complement of s in {1, . . . ,d}. By Lemma 5.4,

e−
1 us =

∑
i∈s

us∪iq
|{1,2,...,i−1}∩s|−|{1,2,...,i−1}∩s|, (27)

e+
1 us =

∑
i∈s

us\iq
|{i+1,i+2,...,d}∩s|−|{i+1,i+2,...,d}∩s|, (28)

e−
0 us =

∑
i∈s

us\iα
−1
i q|{1,2,...,i−1}∩s|−|{1,2,...,i−1}∩s|+1, (29)

e+
0 us =

∑
i∈s

us∪iαiq
|{i+1,i+2,...,d}∩s|−|{i+1,i+2,...,d}∩s|−1. (30)

6. The elements R, L of Uq(̂sl2)

From now until the end of Section 7 we adopt the following assumption.

Assumption 6.1. We assume the field F is algebraically closed. We fix nonzero scalars q,b, c,b∗, c∗ in
F such that q2 �= 1.

In this section we define the elements R, L of Uq(ŝl2) and discuss their basic properties.

Definition 6.2. We define

R = ue+
0 + ve−

1 K1, (31)

L = u∗e+
1 + v∗e−

0 K0, (32)

where u, v, u∗, v∗ are any scalars in F such that

uv∗ = −bb∗q−1(q − q−1)2
, (33)

vu∗ = −cc∗q−1(q − q−1)2
. (34)

Note that u, v, u∗, v∗ are nonzero.

Note 6.3. Referring to Definition 6.2, the choice of u, v, u∗, v∗ is immaterial and we could fix spe-
cific values for the duration of the paper. But doing so tends to obscure the essential relation-
ships (33), (34).



78 T. Ito, P. Terwilliger / Journal of Algebra 322 (2009) 68–93
Lemma 6.4. We have

K0 R K −1
0 = q2 R, K1 R K −1

1 = q−2 R, (35)

K0LK −1
0 = q−2L, K1LK −1

1 = q2L. (36)

Proof. Use (14)–(17) and Definition 6.2. �
Let Uq(L(sl2)) denote the quotient of Uq(ŝl2) by the two sided ideal generated by K0 K1 − 1. The

name Uq(L(sl2)) is motivated by the fact that this algebra is a q-deformation of the universal en-
veloping algebra of the loop algebra L(sl2) = sl2 ⊗ F[t, t−1]. This is discussed in [11, Section 3.3]. In
what follows, we will use the same notation for an element of Uq(ŝl2) and its image in Uq(L(sl2)).

Lemma 6.5. The following hold in Uq(L(sl2)):

R3L − [3]q R2LR + [3]q RLR2 − LR3

= (
q − q−1)(q2 − q−2)(q3 − q−3)(cc∗K1 R2 K1 − bb∗K0 R2 K0

)
, (37)

L3 R − [3]q L2 RL + [3]q LRL2 − RL3

= (
q − q−1)(q2 − q−2)(q3 − q−3)(bb∗K0L2 K0 − cc∗K1L2 K1

)
. (38)

Proof. To verify (37), eliminate R, L using Definition 6.2 and simplify the result using the relations
in Definition 5.1, together with the fact in Uq(L(sl2)) the elements K0, K1 become inverses of one
another. Eq. (38) is similarly verified. �
Lemma 6.6. For all integers n � 0 the element Ln Rn commutes with each of K0 , K1 .

Proof. Use Lemma 6.4. �
Lemma 6.7. Let V denote a standard Uq(ŝl2)-module with feasible diameter d and let {Ui}d

i=0 denote the
corresponding weight space decomposition. Then

RUi ⊆ Ui+1, LUi ⊆ Ui−1 (0 � i � d). (39)

Proof. Use (24)–(26) and Definition 6.2. �
7. The split sequence of a standard Uq(̂sl2)-module

Throughout this section Assumption 6.1 remains in effect. We fix elements R, L ∈ Uq(ŝl2) as in
Definition 6.2.

Definition 7.1. Let V denote a standard Uq(ŝl2)-module with feasible diameter d and let {Ui}d
i=0 de-

note the corresponding weight space decomposition. By Lemma 6.7, for 0 � i � d the space U0 is
invariant under Li Ri ; let ζi denote the corresponding eigenvalue. Note that ζ0 = 1. We call the se-
quence {ζi}d

i=0 the split sequence of V .

Our goal in this section is to obtain the following result.

Proposition 7.2. Let d denote a feasible integer and let {ζi}d
i=0 denote a sequence of scalars in F such that

ζ0 = 1. Then there exists a standard Uq(ŝl2)-module V of diameter d that has split sequence {ζi}d
i=0 .
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In order to prove Proposition 7.2 we will consider a generating function involving the split se-
quence called the (nonstandard) Drinfel’d polynomial. We will define this polynomial shortly.

Definition 7.3. Let V denote a standard Uq(ŝl2)-module with feasible diameter d. For 0 � i � d define

σi = ζi

(q − q−1)2(q2 − q−2)2 · · · (qi − q−i)2
, (40)

where {ζi}d
i=0 is the split sequence of V . The denominator in (40) is nonzero by Definition 5.7. Observe

that σ0 = 1. We call {σi}d
i=0 the normalized split sequence of V .

Definition 7.4. For all integers i � 0 define f i ∈ F[λ] by

f i = bb∗q−2i + cc∗q2i − λ,

where q,b,b∗, c, c∗ are from Assumption 6.1.

Definition 7.5. Let V denote a standard Uq(ŝl2)-module with feasible diameter d. We define a poly-
nomial P V ∈ F[λ] by

P V = (−1)d
d∑

i=0

σd−i f0 f1 · · · f i−1, (41)

where {σi}d
i=0 is the normalized split sequence of V . We observe that P V is monic with degree d. We

call P V the (nonstandard) Drinfel’d polynomial of V .

Note 7.6. The Drinfel’d polynomial from [30, Definition 9.3] is equal to the polynomial P V from Defi-
nition 7.5, times (−1)d(q − q−1)2(q2 − q−2)2 · · · (qd − q−d)2.

From now on, when we refer to the Drinfel’d polynomial we mean the nonstandard Drinfel’d
polynomial from Definition 7.5.

We now compute the Drinfel’d polynomial for a few easy cases.

Lemma 7.7. Let V denote the trivial Uq(ŝl2)-module from Definition 5.5. Then P V = 1.

Proof. Routine. �
Lemma 7.8. Pick a nonzero α ∈ F and consider the Uq(ŝl2)-module V = V (α) from Definition 5.2. The corre-
sponding Drinfel’d polynomial satisfies

P V = λ − αuu∗q−2 + α−1 v v∗q2

q−1(q − q−1)2
, (42)

where u, v, u∗, v∗ are from Definition 6.2.

Proof. Let σ1 denote term one of the normalized split sequence for V . We show

σ1 = αuu∗q−2 + α−1 v v∗q2

−1 −1 2
− bb∗ − cc∗. (43)
q (q − q )
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By Definitions 7.1 and 7.3, σ1 = ζ1(q − q−1)−2 where ζ1 is the eigenvalue of LR on the weight
space U0. Let x, y denote the basis for V from Definition 5.2. By construction x is a basis for U0, so x is
an eigenvector for LR with eigenvalue ζ1. Using Definitions 5.2 and 6.2 we find Rx = (uq−1α + vq)y
and Ly = (u∗ + v∗q2α−1)x; therefore ζ1 = (uq−1α + vq)(u∗ + v∗q2α−1). Evaluating this using (33),
(34) and σ1 = ζ1(q − q−1)−2 we obtain (43). Setting d = 1 and σ0 = 1 in (41) we find P V = −σ1 − f0.
Evaluating this using (43) and f0 = bb∗ + cc∗ − λ we obtain (42). �

Consider a standard Uq(ŝl2)-module V = ⊗d
i=1 V (αi) with feasible diameter d. We will now show

that the Drinfel’d polynomial of V is equal to the product of the Drinfel’d polynomials
∏d

i=1 P V (αi) .

Lemma 7.9. The comultiplication � from Lemma 5.3 acts on the elements R, L as follows.

�(R) = 1 ⊗ R + ue+
0 ⊗ K0 + ve−

1 K1 ⊗ K1, (44)

�(L) = 1 ⊗ L + u∗e+
1 ⊗ K1 + v∗e−

0 K0 ⊗ K0. (45)

Proof. Use Lemma 5.3, Definition 6.2, and the fact that � is an algebra homomorphism. �
Lemma 7.10. Let V denote a standard Uq(ŝl2)-module with diameter 1. Let W denote any Uq(ŝl2)-module.
Then for all integers n � 1 the following (i), (ii) hold on V ⊗ W :

(i) �(Rn) = 1 ⊗ Rn + [n]q Rn where

Rn = uqn−1e+
0 ⊗ Rn−1 K0 + vq1−ne−

1 K1 ⊗ Rn−1 K1. (46)

(ii) �(Ln) = 1 ⊗ Ln + [n]q Ln where

Ln = u∗q1−ne+
1 ⊗ K1Ln−1 + v∗qn−1e−

0 K0 ⊗ K0Ln−1. (47)

Proof. (i) The proof is by induction on n. First assume n = 1. Then the result is immediate from (44).
Next assume n � 2. By (44) and since �(Rn) = �(Rn−1)�(R), the expression �(Rn) − 1 ⊗ Rn is equal
to

(
�

(
Rn−1) − 1 ⊗ Rn−1)(1 ⊗ R) (48)

plus u times

�
(

Rn−1)(e+
0 ⊗ K0

)
(49)

plus v times

�
(

Rn−1)(e−
1 K1 ⊗ K1

)
. (50)

We now find the action of (48)–(50) on V ⊗ W . By induction, on V ⊗ W the expression �(Rn−1) −
1 ⊗ Rn−1 is equal to [n − 1]q times

uqn−2e+
0 ⊗ Rn−2 K0 + vq2−ne−

1 K1 ⊗ Rn−2 K1. (51)
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By this and Lemma 6.4, on V ⊗ W the expression (48) is equal to [n − 1]q times

uqne+
0 ⊗ Rn−1 K0 + vq−ne−

1 K1 ⊗ Rn−1 K1.

By (25) and since V has diameter 1, the elements (e+
0 )2 and e−

1 e+
0 are zero on V . Therefore (51)

times e+
0 ⊗ K0 is zero on V ⊗ W , so (49) is equal to e+

0 ⊗ Rn−1 K0 on V ⊗ W . Similarly (50) is equal
to e−

1 K1 ⊗ Rn−1 K1 on V ⊗ W . By these comments we routinely obtain �(Rn) = 1 ⊗ Rn + [n]q Rn .
(ii) Similar to the proof of (i) above. �

Proposition 7.11. Pick a feasible integer d � 1. Let V denote a standard Uq(ŝl2)-module with diameter 1,
and let W denote a standard Uq(ŝl2)-module with diameter d − 1. Note that the Uq(ŝl2)-module V ⊗ W is
standard with diameter d. The normalized split sequence for V ⊗ W is described as follows:

σ0(V ⊗ W ) = 1,

σn(V ⊗ W ) = (
qd−n − qn−d)(bb∗qn−d − cc∗qd−n)σn−1(W ) + σn(W ) + σ1(V )σn−1(W )

(1 � n � d − 1),

σd(V ⊗ W ) = σ1(V )σd−1(W ).

Proof. Let x denote the highest weight vector in V , and observe

(
K0 − q−11

)
x = 0, (K1 − q1)x = 0. (52)

Let ξ denote the highest weight vector for W , and observe

(
K0 − q1−d1

)
ξ = 0,

(
K1 − qd−11

)
ξ = 0. (53)

Note that x ⊗ ξ is the highest weight vector for V ⊗ W . We claim that for all integers n � 1,

Ln Rn(x ⊗ ξ) − x ⊗ Ln Rnξ − [n]2
q LRx ⊗ Ln−1 Rn−1ξ

= (
qn − q−n)2(

qd−n − qn−d)(bb∗qn−d − cc∗qd−n)
x ⊗ Ln−1 Rn−1ξ. (54)

To prove the claim we evaluate the left-hand side of (54). The term Ln Rn(x ⊗ ξ) coincides with the
image of �(Ln)�(Rn) on x ⊗ ξ . Computing this image using Lemma 7.10 one encounters the terms
Ln(1 ⊗ Rn) and (1 ⊗ Ln)Rn . Using (52) and e+

1 x = 0, e−
0 x = 0 we find Ln(1 ⊗ Rn) is zero on x ⊗ ξ . Using

(53) and Ln Rn−1ξ = 0 we find (1 ⊗ Ln)Rn is zero on x ⊗ ξ . By these comments and Lemma 7.10 the
left-hand side of (54) is equal to [n]2

q times

Ln Rn(x ⊗ ξ) − LRx ⊗ Ln−1 Rn−1ξ. (55)

The two terms in (55) are evaluated as follows. To evaluate the first term use (46) and (47). To
evaluate the second term expand LRx using Definition 6.2. Now reduce further using (16), (52), (53)
along with Definition 6.2, Lemma 6.6 and

(
e−

0 e+
0 − 1

)
x = 0,

(
e+

1 e−
1 − 1

)
x = 0.

The reduction shows that the left-hand side of (54) is equal to the right-hand side of (54). The claim
is now proved. As we examine the terms in (54), we note the following from Definitions 7.1, 7.3. For
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0 � n � d the vector x ⊗ ξ is an eigenvector for Ln Rn with eigenvalue

(
q − q−1)2(

q2 − q−2)2 · · · (qn − q−n)2
σn(V ⊗ W ).

The vector x is an eigenvector for LR with eigenvalue (q − q−1)2σ1(V ). For 0 � n � d − 1 the vector ξ

is an eigenvector for Ln Rn with eigenvalue

(
q − q−1)2(

q2 − q−2)2 · · · (qn − q−n)2
σn(W ).

Also Ld Rdξ = 0 by Lemma 6.7 and since W has diameter d − 1. Evaluating (54) using these facts we
obtain the result. �
Proposition 7.12. With the notation and assumptions of Proposition 7.11, we have P V ⊗W = P V P W .

Proof. By Definition 7.5 we have P V = −σ1(V ) − f0. Again using Definition 7.5,

P W = (−1)d−1
d−1∑
j=0

σd−1− j(W ) f0 f1 · · · f j−1, (56)

P V ⊗W = (−1)d
d∑

i=0

σd−i(V ⊗ W ) f0 f1 · · · f i−1. (57)

Using Definition 7.4,

f0 = f j + (
q j − q− j)(bb∗q− j − cc∗q j) (0 � j � d − 1). (58)

In Eq. (56) we multiply both sides by P V and use (58) to get

P V P W = (−1)d
d−1∑
j=0

σd−1− j(W ) f0 f1 · · · f j−1
(

f j + (
q j − q− j)(bb∗q− j − cc∗q j) + σ1(V )

)
. (59)

In (59) the sum is a linear combination of { f0 f1 · · · f i−1}d
i=0. In this linear combination, for 0 � i � d

let γi denote the coefficient of f0 f1 · · · f i−1. We show

γi = σd−i(V ⊗ W ). (60)

First assume i = 0. Then (60) holds since both sides equal σ1(V )σd−1(W ). Next assume 1 � i � d − 1.
By construction

γi = (
qi − q−i)(bb∗q−i − cc∗qi)σd−1−i(W ) + σ1(V )σd−1−i(W ) + σd−i(W ).

Evaluating this using Proposition 7.11 we routinely obtain (60). Next assume i = d. Then (60) holds
since both sides equal 1. We have verified (60) for 0 � i � d. Therefore

P V P W = (−1)d
d∑

i=0

σd−i(V ⊗ W ) f0 f1 · · · f i−1.

Comparing this with (57) we obtain P V ⊗W = P V P W . �
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Proposition 7.13. Let V = ⊗d
i=1 V (αi) denote a standard Uq(ŝl2)-module with feasible diameter d. Then the

Drinfel’d polynomial P V is given by

P V =
d∏

i=1

P V (αi). (61)

Proof. Use Proposition 7.12 and induction on d. �
We will make a few more comments on the Drinfel’d polynomial and then prove Proposition 7.2.

Lemma 7.14. For all r ∈ F there exists a nonzero α ∈ F such that λ − r is the Drinfel’d polynomial for V (α).

Proof. Since F is algebraically closed and uu∗v v∗ �= 0, there exists a nonzero α ∈ F such that the
fraction on the right in (42) is equal to r. The result follows in view of Lemma 7.8. �
Note 7.15. Referring to Lemma 7.14, for a given r the scalar α is not uniquely determined in general.
If α is a solution then q4 v v∗u−1(u∗)−1α−1 is also a solution and there is no further solution.

Proposition 7.16. Let d denote a feasible integer and let P ∈ F[λ] denote a monic polynomial of degree d. Then
there exists a standard Uq(ŝl2)-module V of diameter d such that P V = P .

Proof. Since F is algebraically closed there exist scalars {ri}d
i=1 in F such that P = ∏d

i=1(λ − ri). By
Lemma 7.14, for 1 � i � d there exists a nonzero αi ∈ F such that λ − ri is the Drinfel’d polynomial
for V (αi). Define the Uq(ŝl2)-module V = ⊗d

i=1 V (αi). By construction V is standard with diameter

d. Also P V = ∏d
i=1(λ − ri) by Proposition 7.13, so P V = P . The result follows. �

Proof of Proposition 7.2. For 0 � i � d define

σi = ζi

(q − q−1)2(q2 − q−2)2 · · · (qi − q−i)2
. (62)

Define a polynomial P ∈ F[λ] by

P = (−1)d
d∑

i=0

σd−i f0 f1 · · · f i−1 (63)

where the f j are from Definition 7.4. Observe that P is monic with degree d. By Proposition 7.16
there exists a standard Uq(ŝl2)-module of diameter d such that P V = P . Comparing (41), (63) we find
the sequence {σi}d

i=0 from (62) is the normalized split sequence for V . Comparing (40), (62) we find
{ζi}d

i=0 is the split sequence for V . �
We finish this section with some formulae for later use.
Let V denote a standard Uq(ŝl2)-module with feasible diameter d � 1, and let {Ui}d

i=0 denote
the corresponding weight space decomposition. Let ζ1 denote term one of the split sequence for V
and recall from Definition 7.1 that ζ1 is the eigenvalue of LR on U0. By Lemma 6.7 the space Ud is
invariant under RL; let ζ×

1 denote the corresponding eigenvalue.

Lemma 7.17. Let V = ⊗d
i=1 V (αi) denote a standard Uq(ŝl2)-module with feasible diameter d � 1. Then the

following (i)–(iii) hold.
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(i) ζ1 = uu∗q−1 ∑d
i=1 αi + v v∗q3 ∑d

i=1 α−1
i − (q − q−1)(qd − q−d)(bb∗q1−d + cc∗qd−1);

(ii) ζ×
1 = uu∗q−1 ∑d

i=1 αi + v v∗q3 ∑d
i=1 α−1

i − (q − q−1)(qd − q−d)(bb∗qd−1 + cc∗q1−d);
(iii) ζ1 − ζ×

1 = (q − q−1)(qd−1 − q1−d)(qd − q−d)(bb∗ − cc∗).

Proof. Parts (i), (ii) are routinely obtained using (23), (27)–(30) and Definition 6.2. Part (iii) follows
from (i), (ii). �
8. The elements A, A∗ of Uq(̂sl2)

From now until the end of Section 9 we adopt the following assumption.

Assumption 8.1. Assume the field F is algebraically closed. We fix a q-Racah sequence ({θi}d
i=0; {θ∗

i }d
i=0)

of scalars in F. We fix q,a,b, c,a∗,b∗, c∗ that satisfy (4)–(7) and fix R, L ∈ Uq(ŝl2) as in Definition 6.2.

In this section we define the elements A, A∗ ∈ Uq(ŝl2) and investigate their properties.

Definition 8.2. With reference to Assumption 8.1 we define

A = a1 + bK0 + cK1 + R, (64)

A∗ = a∗1 + b∗K0 + c∗K1 + L. (65)

We are going to show that A, A∗ satisfy a pair of tridiagonal relations. We now introduce the
parameters involved in those relations.

Definition 8.3. Define β = q2 + q−2 and

γ = −a
(
q − q−1)2

, � = a2(q − q−1)2 − bc
(
q2 − q−2)2

, (66)

γ ∗ = −a∗(q − q−1)2
, �∗ = a∗2(q − q−1)2 − b∗c∗(q2 − q−2)2

. (67)

We mention one significance of the parameters in Definition 8.3.

Lemma 8.4. The following (i)–(iv) hold:

(i) γ = θi−1 − βθi + θi+1 (1 � i � d − 1);
(ii) γ ∗ = θ∗

i−1 − βθ∗
i + θ∗

i+1 (1 � i � d − 1);

(iii) � = θ2
i−1 − βθi−1θi + θ2

i − γ (θi−1 + θi) (1 � i � d);

(iv) �∗ = θ∗2
i−1 − βθ∗

i−1θ
∗
i + θ∗2

i − γ ∗(θ∗
i−1 + θ∗

i ) (1 � i � d).

Proof. Routine verification using (4), (5) and Definition 8.3. �
Proposition 8.5. In Uq(L(sl2)),

A3 A∗ − [3]q A2 A∗ A + [3]q A A∗ A2 − A∗ A3 = γ
(

A2 A∗ − A∗ A2) + �
(

A A∗ − A∗ A
)
,

A∗3 A − [3]q A∗2 A A∗ + [3]q A∗ A A∗2 − A A∗3 = γ ∗(A∗2 A − A A∗2) + �∗(A∗ A − A A∗),
where γ ,γ ∗,�,�∗ are from Definition 8.3.

Proof. Routine verification using Lemmas 6.4, 6.5, and Definition 8.2. �
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Note 8.6. The above equations are called the tridiagonal relations [56].

9. The action of A, A∗ on a standard Uq(̂sl2)-module

Throughout this section Assumption 8.1 remains in effect. We fix a standard Uq(ŝl2)-module V
with diameter d and let {Ui}d

i=0 denote the corresponding weight space decomposition. Let {ζi}d
i=0

denote the split sequence of V .
In this section we describe the action of A, A∗ on V .

Lemma 9.1. We have q2i �= 1 for 1 � i � d. In other words d is feasible with respect to q.

Proof. Immediate from Lemma 3.2. �
Lemma 9.2. The following hold for 0 � i � d:

(i) The element R acts on Ui as A − θi1.
(ii) The element L acts on Ui as A∗ − θ∗

i 1.

Proof. Immediate from Definition 8.2 and (24). �
Lemma 9.3. The following hold for 0 � i � d:

(i) (A − θi1)Ui ⊆ Ui+1 ,
(ii) (A∗ − θ∗

i 1)Ui ⊆ Ui−1 .

Proof. (i) Combine Lemma 9.2(i) with the inclusion on the left in (39).
(ii) Combine Lemma 9.2(ii) with the inclusion on the right in (39). �

Lemma 9.4. The element A (resp. A∗) is diagonalizable on V with eigenvalues {θi}d
i=0 (resp. {θ∗

i }d
i=0). More-

over for 0 � i � d the dimension of the eigenspace for A (resp. A∗) associated with θi (resp. θ∗
i ) is equal to

(d
i

)
.

Proof. We first display the eigenvalues of A. Recall that {θi}d
i=0 are mutually distinct, and Ui has

dimension
(d

i

)
for 0 � i � d. By Lemma 9.3(i) we see that, with respect to an appropriate basis for V ,

A is represented by a lower triangular matrix that has diagonal entries {θi}d
i=0, with θi appearing(d

i

)
times for 0 � i � d. Hence for 0 � i � d the scalar θi is a root of the characteristic polynomial

of A with multiplicity
(d

i

)
. We now show A is diagonalizable. To do this we show that the minimal

polynomial of A has distinct roots. By Lemma 9.3(i) we find
∏d

i=0(A − θi1) vanishes on V . By this
and since {θi}d

i=0 are distinct we see that the minimal polynomial of A has distinct roots. Therefore
A is diagonalizable. We have now proved our assertions concerning A; our assertions concerning A∗
are similarly proved. �

At this point it is convenient to introduce the primitive idempotents for A and A∗ .

Definition 9.5. For 0 � i � d we define the following elements in Uq(ŝl2):

Ei =
∏

0� j�d
j �=i

A − θ j1

θi − θ j
, E∗

i =
∏

0� j�d
j �=i

A∗ − θ∗
j 1

θ∗
i − θ∗

j

. (68)
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We observe that Ei (resp. E∗
i ) acts on V as the primitive idempotent of A (resp. A∗) associated with

the eigenvalue θi (resp. θ∗
i ). In particular Ei V (resp. E∗

i V ) is the eigenspace of A (resp. A∗) on V
associated with the eigenvalue θi (resp. θ∗

i ).

Lemma 9.6. Each of Ei V and E∗
i V has dimension

(d
i

)
for 0 � i � d.

Proof. Immediate from Definition 9.5 and the last sentence in Lemma 9.4. �
Lemma 9.7. The following hold for 0 � i � d:

(i) Ei V + · · · + Ed V = Ui + · · · + Ud,
(ii) E∗

0 V + · · · + E∗
i V = U0 + · · · + Ui .

Proof. (i) Let Xi = ∑d
j=i U j and X ′

i = ∑d
j=i E j V . We show Xi = X ′

i . Define Ti = ∏d
j=i(A − θ j1). Then

X ′
i = {v ∈ V | Ti v = 0}, and Ti Xi = 0 by Lemma 9.3(i), so Xi ⊆ X ′

i . Now define Si = ∏i−1
j=0(A − θ j1).

Observe that Si V = X ′
i , and Si V ⊆ Xi by Lemma 9.3(i), so X ′

i ⊆ Xi . By these comments Xi = X ′
i .

(ii) Similar to the proof of (i) above. �
Lemma 9.8. The following (i), (ii) hold on V provided that d � 1.

(i) E∗
0 AE∗

0 = a0 E∗
0 where

a0 = θ0 + ζ1
(
θ∗

0 − θ∗
1

)−1
. (69)

(ii) Ed A∗Ed = a∗
d Ed where

a∗
d = θ∗

1 − ζ1 + (θ∗
0 − θ∗

1 )(θ0 − θd−1)

θd−1 − θd
. (70)

Proof. (i) The expression E∗
0 − 1 is zero on E∗

0 V by Definition 9.5, and E∗
0 V = U0 by Lemma 9.7(ii).

Therefore it suffices to show that E∗
0(A − a01) is zero on U0. By Definition 7.1 LR − ζ11 is zero on U0.

By Lemmas 9.2 and 9.3, LR = (A∗ − θ∗
1 1)(A − θ01) on U0. By Definition 9.5, E∗

0 A∗ = θ∗
0 E∗

0 on V . We
may now argue that on U0,

E∗
0ζ1 = E∗

0 LR

= E∗
0

(
A∗ − θ∗

1 1
)
(A − θ01)

= (
θ∗

0 − θ∗
1

)
E∗

0(A − θ01).

By this and (69) the expression E∗
0(A − a01) is zero on U0.

(ii) The expression Ed − 1 is zero on Ed V by Definition 9.5, and Ed V = Ud by Lemma 9.7(i).
Therefore it suffices to show that Ed(A∗ − a∗

d1) is zero on Ud . By the paragraph above Lemma 7.17,
the expression RL − ζ×

1 1 is zero on Ud . Evaluating Lemma 7.17(iii) using (4), (5) we find

ζ1 − ζ×
1 = (

θ∗
1 − θ∗

d

)
(θd−1 − θd) − (

θ∗
0 − θ∗

1

)
(θ0 − θd−1). (71)

By Lemmas 9.2 and 9.3, RL = (A − θd−11)(A∗ − θ∗
d 1) on Ud . By Definition 9.5, Ed A = θd Ed on V . We

may now argue that on Ud ,
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Edζ
×
1 = Ed RL

= Ed(A − θd−11)
(

A∗ − θ∗
d 1

)

= (θd − θd−1)Ed
(

A∗ − θ∗
d 1

)
.

By this and (70), (71) the expression Ed(A∗ − a∗
d1) is zero on Ud . �

Lemma 9.9. For 0 � i, j � d the following (i), (ii) hold on V .

(i) Ei A∗E j = 0 if |i − j| > 1;
(ii) E∗

i AE∗
j = 0 if |i − j| > 1.

Proof. Assume d � 2; otherwise there is nothing to prove. We first show that Ei A∗E j = 0 on V for
1 < |i − j| < d. For notational convenience define a two variable polynomial

p(λ,μ) = λ2 − βλμ + μ2 − γ (λ + μ) − �, (72)

where β , γ , � are from Definition 8.3. In the first equation of Proposition 8.5 we multiply each term
on the left by Ei and the right by E j . We simplify the result using the fact that Ei A = θi Ei and
AE j = θ j E j on V . After a brief calculation this shows

0 = Ei A∗E j(θi − θ j)p(θi, θ j) (73)

on V . We claim that in (73) the coefficient of Ei A∗E j is nonzero. Of course θi − θ j �= 0 since
θ0, . . . , θd are mutually distinct. We now show p(θi, θ j) �= 0. Since |i − j| < d we have 1 � i � d − 1
or 1 � j � d − 1. We may assume 1 � i � d − 1 since p(θi, θ j) = p(θ j, θi). By Lemma 8.4(iii) we
have p(θi, θi−1) = 0 and p(θi, θi+1) = 0. The expression p(θi,μ) is a quadratic polynomial in μ with
roots θi−1, θi+1. Since |i − j| > 1 we have θ j �= θi−1 and θ j �= θi+1. Therefore p(θi, θ j) �= 0 as de-
sired. Now in (73) the coefficient of Ei A∗E j is nonzero, so Ei A∗E j = 0 on V . Swapping the roles of
A, A∗ in the above argument, we similarly find E∗

i AE∗
j = 0 on V for 1 < |i − j| < d. Next we show

that E0 A∗Ed = 0 on V . Observe (A∗ − θ∗
d 1)Ud ⊆ Ud−1 by Lemma 9.3(ii), so A∗Ud ⊆ Ud−1 + Ud . By

Lemma 9.7(i), Ed V = Ud and Ed−1 V + Ed V = Ud−1 + Ud . By these comments A∗Ed V ⊆ Ed−1 V + Ed V .
We assume d � 2 so E0 vanishes on Ed−1 V + Ed V and therefore E0 A∗Ed = 0 on V . Next we show that
E∗

d AE∗
0 = 0 on V . Observe (A − θ01)U0 ⊆ U1 by Lemma 9.3(i), so AU0 ⊆ U0 + U1. By Lemma 9.7(ii),

E∗
0 V = U0 and E∗

0 V + E∗
1 V = U0 + U1. By these comments AE∗

0 V ⊆ E∗
0 V + E∗

1 V . We assume d � 2 so
E∗

d vanishes on E∗
0 V + E∗

1 V and therefore E∗
d AE∗

0 = 0 on V . Next we show that Ed A∗E0 = 0 on V .

Since V = ∑d
i=0 Ui it suffices to show that Ed A∗E0 = 0 on Ui for 0 � i � d. Observe Ed A∗E0 = 0 on Ui

for 1 � i � d, since
∑d

i=1 Ui = ∑d
i=1 Ei V by Lemma 9.7(i) and since E0 vanishes on Ei V for 1 � i � d.

To show Ed A∗E0 = 0 on U0, recall U0 = E∗
0 V so it suffices to show that Ed A∗E0 E∗

0 = 0 on V . By

Definition 9.5, 1 = ∑d
i=0 E∗

i on V . In this equation we multiply each term on the right by AE∗
0. We

evaluate the result using Lemma 9.8(i) and the fact that E∗
i AE∗

0 = 0 on V for 2 � i � d. This yields

AE∗
0 = a0 E∗

0 + E∗
1 AE∗

0 (74)

on V . In (74) we multiply each term on the left by A∗ to find

A∗ AE∗
0 = a0θ

∗
0 E∗

0 + θ∗
1 E∗

1 AE∗
0 (75)

on V . By Definition 9.5, 1 = ∑d
i=0 Ei on V . In this equation we multiply each term on the left by

Ed A∗ . We evaluate the result using Lemma 9.8(ii) and the fact that Ed A∗Ei = 0 on V for 1 � i � d −2;
this yields
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Ed A∗ = Ed A∗E0 + Ed A∗Ed−1 + a∗
d Ed (76)

on V . In (76) we multiply each term on the right by A to find

Ed A∗ A = θ0 Ed A∗E0 + θd−1 Ed A∗Ed−1 + θda∗
d Ed (77)

on V . Consider the equation which is θ∗
1 Ed times (74) minus Ed times (75) minus (76) times θd−1 E∗

0
plus (77) times E∗

0. We simplify this equation using the fact that A∗E∗
0 = θ∗

0 E∗
0 and Ed A = θd Ed on V .

The calculation shows that on V the expression (θ0 − θd−1)Ed A∗E0 E∗
0 coincides with Ed E∗

0 times

(
θ∗

0 − θ∗
1

)
a0 + (θd−1 − θd)a

∗
d + θdθ

∗
1 − θd−1θ

∗
0 . (78)

Note that θ0 − θd−1 is nonzero since d � 2. By (69), (70) the expression (78) is zero. Therefore
Ed A∗E0 E∗

0 = 0 on V and hence Ed A∗E0 = 0 on V . Next we show that E∗
0 AE∗

d = 0 on V . Since

V = ∑d
i=0 Ui it suffices to show that E∗

0 AE∗
d = 0 on Ui for 0 � i � d. Observe E∗

0 AE∗
d = 0 on Ui

for 0 � i � d − 1, since
∑d−1

i=0 Ui = ∑d−1
i=0 E∗

i V by Lemma 9.7(ii) and since E∗
d vanishes on E∗

i V for
0 � i � d − 1. To show E∗

0 AE∗
d = 0 on Ud , recall Ud = Ed V so it suffices to show that E∗

0 AE∗
d Ed = 0

on V . We mentioned earlier that 1 = ∑d
i=0 Ei on V . In this equation we multiply each term on the

right by A∗Ed . We evaluate the result using Lemma 9.8(ii) and the fact that Ei A∗Ed = 0 on V for
0 � i � d − 2. This yields

A∗Ed = Ed−1 A∗Ed + a∗
d Ed (79)

on V . In (79) we multiply each term on the left by A to find

A A∗Ed = θd−1 Ed−1 A∗Ed + θda∗
d Ed (80)

on V . We mentioned earlier that 1 = ∑d
i=0 E∗

i on V . In this equation we multiply each term on
the left by E∗

0 A. We evaluate the result using Lemma 9.8(i) and the fact that E∗
0 AE∗

i = 0 on V for
2 � i � d − 1; this yields

E∗
0 A = a0 E∗

0 + E∗
0 AE∗

1 + E∗
0 AE∗

d (81)

on V . In (81) we multiply each term on the right by A∗ to find

E∗
0 A A∗ = θ∗

0 a0 E∗
0 + θ∗

1 E∗
0 AE∗

1 + θ∗
d E∗

0 AE∗
d (82)

on V . Consider the equation which is θd−1 E∗
0 times (79) minus E∗

0 times (80) minus (81) times θ∗
1 Ed

plus (82) times Ed . We simplify this equation using the fact that AEd = θd Ed and E∗
0 A∗ = θ∗

0 E∗
0 on V .

The calculation shows that on V the expression (θ∗
1 − θ∗

d )E∗
0 AE∗

d Ed coincides with E∗
0 Ed times (78).

The scalar θ∗
1 − θ∗

d is nonzero and we already showed that (78) is zero, so E∗
0 AE∗

d Ed = 0 on V and
hence E∗

0 AE∗
d = 0 on V . �

Lemma 9.10. For 0 � i � d the following holds on V :

E∗
0τi(A)E∗

0 = ζi E∗
0

(θ∗
0 − θ∗

1 )(θ∗
0 − θ∗

2 ) · · · (θ∗
0 − θ∗

i )
. (83)
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Proof. It suffices to show that

(
θ∗

0 − θ∗
1

)(
θ∗

0 − θ∗
2

) · · · (θ∗
0 − θ∗

i

)
E∗

0τi(A) − ζi1 (84)

is zero on E∗
0 V . We pick w ∈ E∗

0 V and show (84) is zero at w . Setting i = 0 in Lemma 9.7(ii) we find
E∗

0 V = U0. By Definition 7.1 we find Li Ri − ζi1 is zero on U0. By these comments Li Ri w = ζi w . Using
Lemmas 9.2 and 9.3,

Li Ri = (
A∗ − θ∗

1 1
)(

A∗ − θ∗
2 1

) · · · (A∗ − θ∗
i 1

)
τi(A)

on U0. Therefore

(
A∗ − θ∗

1 1
)(

A∗ − θ∗
2 1

) · · · (A∗ − θ∗
i 1

)
τi(A)w = ζi w.

In this equation we apply E∗
0 to both sides and use E∗

0 A∗ = θ∗
0 E∗

0, E∗
0 w = w to find (84) is zero at w .

The result follows. �
10. The proof of Theorem 3.3

Throughout this section we adopt the following assumption.

Assumption 10.1. Assume the field F is algebraically closed. We fix a q-Racah sequence
({θi}d

i=0; {θ∗
i }d

i=0) of scalars in F, and a sequence {ζi}d
i=0 of scalars in F that satisfy condition (ii)

of Theorem 3.3.

With reference to Assumption 10.1, our goal in this section is to display a TD system over F

that has parameter array ({θi}d
i=0; {θ∗

i }d
i=0; {ζi}d

i=0). To this end we fix q,a,b, c,a∗,b∗, c∗ that satisfy

(4)–(7). Using this data we define R, L ∈ Uq(ŝl2) as in Definition 6.2, and then A, A∗ ∈ Uq(ŝl2) as in
Definition 8.2. Let {Ei}d

i=0, {E∗
i }d

i=0 be as in Definition 9.5. In view of Proposition 7.2 and Lemma 9.1

we fix a standard Uq(ŝl2)-module V with diameter d that has split sequence {ζi}d
i=0.

Lemma 10.2. The elements E∗
0 E0 E∗

0 , E∗
0 Ed E∗

0 are nonzero on V .

Proof. By construction E∗
0 V �= 0. Concerning E∗

0 Ed E∗
0, by the equation on the left in (68) we have Ed =

τd(A)τd(θd)
−1. By Lemma 9.10 (with i = d) E∗

0τd(A)E∗
0 = η∗

d(θ∗
0 )−1ζd E∗

0 on V . Therefore E∗
0 Ed E∗

0 =
τd(θd)

−1η∗
d(θ∗

0 )−1ζd E∗
0 on V . By this and since ζd �= 0 we find E∗

0 Ed E∗
0 is nonzero on V . Concerning

E∗
0 E0 E∗

0, by the equation on the left in (68) we have E0 = ηd(A)ηd(θ0)
−1. By [41, Proposition 5.5],

ηd = ∑d
i=0 ηd−i(θ0)τi . By these comments and Lemma 9.10,

E∗
0 E0 E∗

0 = E∗
0ηd(θ0)

−1η∗
d

(
θ∗

0

)−1
d∑

i=0

ηd−i(θ0)η
∗
d−i

(
θ∗

0

)
ζi

on V . In the above line the sum is nonzero by (9) so E∗
0 E0 E∗

0 is nonzero on V . �
Definition 10.3. Let T denote the subalgebra of Uq(ŝl2) generated by A, A∗ . We observe that T con-
tains Ei, E∗

i for 0 � i � d.

Observe that T E∗
0 V is the T -submodule of V generated by E∗

0 V . We now examine this module.
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Lemma 10.4. Let W denote a proper T -submodule of T E∗
0 V . Then E∗

0 W = 0.

Proof. Suppose E∗
0 W �= 0. The space E∗

0 V contains E∗
0 W and has dimension 1, so E∗

0 V = E∗
0 W . The

space W is T -invariant and E∗
0 ∈ T so E∗

0 W ⊆ W . Therefore E∗
0 V ⊆ W , which yields T E∗

0 V ⊆ W . This
contradicts the fact that W is properly contained in T E∗

0 V . Therefore E∗
0 W = 0. �

Lemma 10.5. Let W and W ′ denote proper T -submodules of T E∗
0 V . Then W + W ′ is a proper T -submodule

of T E∗
0 V .

Proof. We show W + W ′ �= T E∗
0 V . The kernel of E∗

0 on T E∗
0 V is properly contained in T E∗

0 V , since
0 �= E∗

0 V ⊆ T E∗
0 V . This kernel contains each of W , W ′ by Lemma 10.4, so this kernel contains W +W ′ .

Therefore W + W ′ �= T E∗
0 V and the result follows. �

Definition 10.6. Let W denote a proper T -submodule of T E∗
0 V . Then W is called maximal whenever

W is not contained in any proper T -submodule of T E∗
0 V , besides itself.

Lemma 10.7. There exists a unique maximal proper T -submodule in T E∗
0 V .

Proof. Concerning existence, consider

∑
W

W , (85)

where the sum is over all proper T -submodules W of T E∗
0 V . The space (85) is a proper T -submodule

of T E∗
0 V by Lemma 10.5, and since T E∗

0 V has finite dimension. The T -submodule (85) is maximal by
the construction. Concerning uniqueness, suppose W and W ′ are maximal proper T -submodules of
T E∗

0 V . By Lemma 10.5 W + W ′ is a proper T -submodule of T E∗
0 V . The space W + W ′ contains each

of W , W ′ so W + W ′ is equal to each of W , W ′ by the maximality of W and W ′ . Therefore W = W ′
and the result follows. �
Definition 10.8. Let M denote the maximal proper T -submodule of T E∗

0 V . Let L denote the quotient
T -module T E∗

0 V /M . By construction the T -module L is nonzero, finite-dimensional and irreducible.

Proposition 10.9. The sequence (A; {Ei}d
i=0; A∗; {E∗

i }d
i=0) acts on L as a TD system with parameter array

({θi}d
i=0; {θ∗

i }d
i=0; {ζi}d

i=0).

Proof. We first show that (A; {Ei}d
i=0; A∗; {E∗

i }d
i=0) acts on L as a TD system. We start with a

few statements that follow from the construction. The space L is a direct sum of the nonzero
spaces among {Ei L}d

i=0 and a direct sum of the nonzero spaces among {E∗
i L}d

i=0. For 0 � i � d,
(A − θi1)Ei L = 0 and (A∗ − θ∗

i 1)E∗
i L = 0. Using Lemma 9.9,

A∗Ei L ⊆ Ei−1L + Ei L + Ei+1L (0 � i � d), (86)

where E−1 = 0 and Ed+1 = 0. Moreover

AE∗
i L ⊆ E∗

i−1L + E∗
i L + E∗

i+1L (0 � i � d), (87)

where E∗−1 = 0 and E∗
d+1 = 0. Observe that E∗

0 L �= 0 since M does not contain E∗
0 V . We now show

E0L �= 0. Suppose E0L = 0. Then E0T E∗
0 V ⊆ M so E0 E∗

0 V ⊆ M . In this containment we apply E∗
0 to

both sides and use E∗
0 M = 0 to get E∗

0 E0 E∗
0 V = 0. This contradicts Lemma 10.2 so E0L �= 0. Next we

show Ed L �= 0. Suppose Ed L = 0. Then Ed T E∗
0 V ⊆ M so Ed E∗

0 V ⊆ M . In this containment we apply E∗
0
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to both sides and use E∗
0 M = 0 to get E∗

0 Ed E∗
0 V = 0. This contradicts Lemma 10.2 so Ed L �= 0. We now

show Ei L �= 0 for 1 � i � d−1. Let i be given and suppose Ei L = 0. Then E0L +· · ·+ Ei−1L is a nonzero
proper T -submodule of L in view of (86). This contradicts the irreducibility of the T -module L. There-
fore Ei L �= 0 for 1 � i � d −1. There exists an integer δ (0 � δ � d) such that E∗

i L �= 0 for 0 � i � δ and
E∗

δ+1L = 0. By the above comments the sequence (A; {Ei}d
i=0; A∗; {E∗

i }δi=0) acts on L as a TD system.

Now d = δ by the third sentence below Note 1.2. We have shown (A; {Ei}d
i=0; A∗; {E∗

i }d
i=0) acts on L

as a TD system which we denote by Φ . By construction Φ has eigenvalue sequence {θi}d
i=0 and dual

eigenvalue sequence {θ∗
i }d

i=0. By Lemma 9.10 and since the canonical map T E∗
0 V → L is a T -module

homomorphism, we have

E∗
0τi(A)E∗

0 = ζi E∗
0

(θ∗
0 − θ∗

1 )(θ∗
0 − θ∗

2 ) · · · (θ∗
0 − θ∗

i )
(0 � i � d)

on L. By this and Definition 2.4 the sequence {ζi}d
i=0 is the split sequence for Φ . By these comments

Φ has parameter array ({θi}d
i=0; {θ∗

i }d
i=0; {ζi}d

i=0) and the result follows. �
It is now a simple matter to prove Theorem 3.3.

Proof of Theorem 3.3. The implication (i) ⇒ (ii) is proved in [45, Corollary 8.3]. The implication
(ii) ⇒ (i) follows from Proposition 10.9. Now assume (i), (ii) hold. Then the last assertion of the theo-
rem follows from Proposition 2.6. �
11. Remarks

In this section we prove the shape conjecture for the TD pairs over an algebraically closed field
that have q-Racah type.

Proposition 11.1. Assume the field F is algebraically closed, and let {ρi}d
i=0 denote the shape of a TD pair over

F that has q-Racah type. Then ρi �
(d

i

)
for 0 � i � d.

Proof. For the TD pair in question we pick a standard ordering of their primitive idempotents to
obtain a TD system. Without loss we may identify this TD system with the one in Proposition 10.9.
Referring to the TD system in Proposition 10.9, we show that each of Ei L and E∗

i L has dimension

at most
(d

i

)
. The space Ei L is the image of Ei T E∗

0 V under the canonical homomorphism T E∗
0 V → L.

Therefore the dimension of Ei L is at most the dimension of Ei T E∗
0 V . The space Ei T E∗

0 V is contained

in Ei V so the dimension of Ei T E∗
0 V is at most the dimension of Ei V . The dimension of Ei V is

(d
i

)
by Lemma 9.6. Our conclusion for Ei L follows from the above comments. Our conclusion for E∗

i L are
similarly obtained. �
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math.QA/0310042.
[25] T. Ito, P. Terwilliger, Two non-nilpotent linear transformations that satisfy the cubic q-Serre relations, J. Algebra Appl. 6

(2007) 477–503, arXiv:math.QA/0508398.
[26] T. Ito, P. Terwilliger, The q-tetrahedron algebra and its finite-dimensional irreducible modules, Comm. Algebra 35 (2007)

3415–3439, arXiv:math.QA/0602199.
[27] T. Ito, P. Terwilliger, Finite-dimensional irreducible modules for the three-point sl2 loop algebra, Comm. Algebra 36 (2008)

4557–4598, arXiv:0707.2313.
[28] T. Ito, P. Terwilliger, Tridiagonal pairs of Krawtchouk type, Linear Algebra Appl. 427 (2007) 218–233, arXiv:0706.1065.
[29] T. Ito, P. Terwilliger, The augmented tridiagonal algebra, preprint.
[30] T. Ito, P. Terwilliger, The Drinfel’d polynomial of a tridiagonal pair, Des. Codes Cryptogr., submitted for publication,

arXiv:0805.1465.
[31] M. Jimbo, A q-difference analogue of U (g) and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985) 63–69.
[32] R. Koekoek, R.F. Swarttouw, The Askey scheme of hypergeometric orthogonal polynomials and its q-analog, report 98-17,

Delft University of Technology, The Netherlands, 1998; Available at http://aw.twi.tudelft.nl/~koekoek/research.html.
[33] H.T. Koelink, Askey–Wilson polynomials and the quantum su(2) group: Survey and applications, Acta Appl. Math. 44 (1996)

295–352.
[34] H.T. Koelink, q-Krawtchouk polynomials as spherical functions on the Hecke algebra of type B , Trans. Amer. Math. Soc. 352

(2000) 4789–4813.
[35] T.H. Koornwinder, Askey–Wilson polynomials as zonal spherical functions on the SU(2) quantum group, SIAM J. Math.

Anal. 24 (1993) 795–813.
[36] D. Leonard, Orthogonal polynomials, duality, and association schemes, SIAM J. Math. Anal. 13 (1982) 656–663.
[37] K. Nomura, Tridiagonal pairs and the Askey–Wilson relations, Linear Algebra Appl. 397 (2005) 99–106.
[38] K. Nomura, P. Terwilliger, Balanced Leonard pairs, Linear Algebra Appl. 420 (2007) 51–69, arXiv:math.RA/0506219.
[39] K. Nomura, P. Terwilliger, Some trace formulae involving the split sequences of a Leonard pair, Linear Algebra Appl. 413

(2006) 189–201, arXiv:math.RA/0508407.
[40] K. Nomura, P. Terwilliger, The determinant of A A∗ − A∗ A for a Leonard pair A, A∗ , Linear Algebra Appl. 416 (2006) 880–

889, arXiv:math.RA/0511641.
[41] K. Nomura, P. Terwilliger, Matrix units associated with the split basis of a Leonard pair, Linear Algebra Appl. 418 (2006)

775–787, arXiv:math.RA/0602416.
[42] K. Nomura, P. Terwilliger, Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair,

Linear Algebra Appl. 420 (2007) 198–207, arXiv:math.RA/0605316.
[43] K. Nomura, P. Terwilliger, The switching element for a Leonard pair, Linear Algebra Appl. 428 (2008) 1083–1108,

arXiv:math.RA/0608623.
[44] K. Nomura, P. Terwilliger, The split decomposition of a tridiagonal pair, Linear Algebra Appl. 424 (2007) 339–345,

arXiv:math.RA/0612460.
[45] K. Nomura, P. Terwilliger, Sharp tridiagonal pairs, Linear Algebra Appl. 429 (2008) 79–99, arXiv:0712.3665.
[46] K. Nomura, P. Terwilliger, Towards a classification of the tridiagonal pairs, Linear Algebra Appl. 429 (2008) 503–518,

arXiv:0801.0621.
[47] K. Nomura, P. Terwilliger, The structure of a tridiagonal pair, Linear Algebra Appl. 429 (2008) 1647–1662, arXiv:0802.1096.
[48] K. Nomura, P. Terwilliger, Tridiagonal pairs and the μ-conjecture, Linear Algebra Appl. 430 (2009) 455–482.
[49] M. Noumi, K. Mimachi, Askey–Wilson polynomials as spherical functions on SUq(2), in: Quantum Groups, Leningrad, 1990,

in: Lecture Notes in Math., vol. 1510, Springer, Berlin, 1992, pp. 98–103.
[50] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. (2) 65 (1944) 117–

149.

http://aw.twi.tudelft.nl/~koekoek/research.html


T. Ito, P. Terwilliger / Journal of Algebra 322 (2009) 68–93 93
[51] H. Rosengren, Multivariable orthogonal polynomials as coupling coefficients for Lie and quantum algebra representations,
PhD thesis, Centre for Mathematical Sciences, Lund University, Sweden, 1999.

[52] H. Rosengren, An elementary approach to the 6 j-symbols (classical, quantum, rational, trigonometric, and elliptic), Ra-
manujan J. 13 (2007) 131–166, arXiv:math.CA/0312310.

[53] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebraic Combin. 1 (1992) 363–388.
[54] P. Terwilliger, The subconstituent algebra of an association scheme III, J. Algebraic Combin. 2 (1993) 177–210.
[55] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra

Appl. 330 (2001) 149–203, arXiv:math.RA/0406555.
[56] P. Terwilliger, Two relations that generalize the q-Serre relations and the Dolan–Grady relations, in: Physics and Combina-

torics, Nagoya, 1999, World Scientific Publishing, River Edge, NJ, 2001, pp. 377–398, arXiv:math.QA/0307016.
[57] P. Terwilliger, Introduction to Leonard pairs, in: OPSFA, Rome, 2001, J. Comput. Appl. Math. 153 (2) (2003) 463–475.
[58] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the

parameter array, Des. Codes Cryptogr. 34 (2005) 307–332, arXiv:math.RA/0306291.
[59] P. Terwilliger, Leonard pairs and the q-Racah polynomials, Linear Algebra Appl. 387 (2004) 235–276, arXiv:math.QA/

0306301.
[60] P. Terwilliger, An algebraic approach to the Askey scheme of orthogonal polynomials, in: Orthogonal Polynomials and

Special Functions, in: Lecture Notes in Math., vol. 1883, Springer, Berlin, 2006, pp. 255–330, arXiv:math.QA/0408390.
[61] P. Terwilliger, R. Vidunas, Leonard pairs and the Askey–Wilson relations, J. Algebra Appl. 3 (2004) 411–426, arXiv:

math.QA/0305356.
[62] M. Vidar, Tridiagonal pairs of shape (1,2,1), Linear Algebra Appl. 429 (2008) 403–428, arXiv:0802.3165.
[63] A.S. Zhedanov, “Hidden symmetry” of Askey–Wilson polynomials, Teoret. Mat. Fiz. 89 (1991) 190–204.
[64] A.S. Zhedanov, A. Korovnichenko, “Leonard pairs” in classical mechanics, J. Phys. A 5 (2002) 5767–5780.


	Tridiagonal pairs of q-Racah type
	Tridiagonal pairs
	Tridiagonal systems
	The classification
	An outline of the proof for Theorem 3.3
	The algebra Uq(sl2)
	The elements R, L of Uq(sl2)
	The split sequence of a standard Uq(sl2)-module
	The elements A,A* of U q(sl2)
	The action of A,A* on a standard U q(sl2)-module
	The proof of Theorem 3.3
	Remarks
	References


