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Let M be a countably infinite first order relational structure which
is homogeneous in the sense of Fraïssé. We show, under the
assumption that the class of finite substructures of M has the free
amalgamation property, along with the assumption that Aut(M)

is transitive on M but not equal to Sym(M), that Aut(M) is a
simple group. This generalises results of Truss, Rubin and others.
The proof uses the Polish group structure of the automorphism
group and generalises to certain other homogeneous structures,
with prospects for further application.
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1. Introduction

In this paper, by a homogeneous structure we mean a countably infinite relational structure such
that every isomorphism between finite substructures of M extends to an automorphism of M . Such
structures are typically constructed by Fraïssé amalgamation, and their automorphism groups pro-
vide a rich supply of groups interesting both as permutation groups and as topological groups.
Under small extra assumptions (for example that the language has finitely many relation symbols),
the automorphism group will be oligomorphic, or, equivalently, M will be ω-categorical, that is, any
countably infinite L-structure which satisfies the same first order sentences as M will be isomorphic
to M .

There are many results on normal subgroup structure of such automorphism groups. For example,
the automorphism group of a pure countably infinite set (an indiscernible set), that is the symmetric
group Sym(N), has as its proper non-trivial normal subgroups just the group FSym(N) of all per-
mutations of finite support, and its subgroup of index two consisting of the even permutations;
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and the group Aut(Q,<) has as its proper non-trivial normal subgroups just the group L(Q) con-
sisting of automorphisms g which ‘live on the left’ (they fix pointwise some interval (a,∞) for
some a ∈ Q), a corresponding group R(Q) of permutations which ‘live on the right’, and the in-
tersection B(Q) := L(Q) ∩ R(Q). Likewise Truss [25] showed that the automorphism group of the
random graph is simple, as is that of the random graph with edges coloured randomly from a count-
able set C . (The random graph is the unique countable homogeneous graph which embeds all finite
graphs.) The corresponding result was proved for the universal homogeneous partial order in [9], and
for the generic k-uniform hypergraphs and some other structures by Lovell [19]. Earlier, Rubin [21],
in an unpublished manuscript, gave a proof of simplicity for some binary homogeneous structures
including the Kn-free graphs and the universal homogeneous tournament, and the result for the tour-
nament also appears in unpublished work of Jaligot. For a survey of some of this work, including
the unpublished work of Rubin, see [26]. At the other extreme, the 2-homogeneous countably infinite
trees considered by Droste [5], which may be viewed as homogeneous structures in an appropriate
finite relational language, have automorphism groups with 22ℵ0 distinct normal subgroups [6]. The
examples suggest that in general, if Aut(M) is not simple, then it has some obvious proper non-
trivial normal subgroups, explicable in terms of its action, but the proofs involved are often very
intricate.

In this paper, we give a uniform proof of the simplicity of the automorphism groups in cases
(other than a pure set) where the underlying amalgamation is canonical in a sense which we shall
make precise. Our methods do not work for structures involving orderings, such as the universal
homogeneous partial order, but they work for the random graph, the random Kn-free graphs and
the ‘Henson digraphs’ and higher arity analogues, and also (after a small tweak) for the random
tournament. The main theorem of the paper is the following.

Theorem 1.1. Let M be a homogeneous structure which is free in the sense of Definition 2.1, and such that
Aut(M) is transitive on M but is not equal to Sym(M). Then

(a) Aut(M) is a simple group;
(b) (Melleray) if g ∈ Aut(M)\ {1} and h ∈ Aut(M), then h is a product of at most 32 conjugates of g and g−1 .

Part (b) of the theorem is a rapid consequence of our proof of (a), using a descriptive-set-theoretic
argument provided, after the first draft of this paper was submitted, by Julien Melleray.

Transitivity is required in the theorem, since the structure consisting of a countably infinite set
with an infinite coinfinite subset defined by a unary predicate is free homogeneous, but its automor-
phism group is not simple. In fact, the latter group is isomorphic to a direct product Sym(N)×Sym(N)

and hence even has proper non-trivial closed normal subgroups. The conclusion of Lemma 2.11 below
does not hold in this example.

Our proof exploits the Polish group structure of the automorphism group. The proof reduces to two
technical steps, namely Lemma 2.11, which eliminates the possibility of a normal subgroup consisting
of ‘bounded’ automorphisms, and Proposition 3.1. It is based on a method of Lascar, from [18] – see
in particular Lemma 3.3 below. Lascar used his approach to show that a certain quotient of the group
of ‘strong’ automorphisms of a countable saturated strongly minimal set must be simple. The same
method was later exploited by Gardener [8] to describe the normal subgroup structure of certain
infinite dimensional classical groups. Note, though, that in the above work of Truss, Rubin, Lovell, and
Jaligot, a much smaller bound is found than the number 32 in Theorem 1.1(b). For example, for the
random graph, the bound is three [27]. We expect that refinement of our proof of (a) could improve
the bound 32.

We believe our method to have considerable potential for further generalisation, but have not yet
achieved this. Possible further examples to consider include the following.

(i) The automorphism groups of the generalised polygons constructed by Tent in [24]. This would
be particularly striking, since these groups have a BN-pair, so would provide new examples of
non-algebraic simple groups with a (non-split) BN-pair.
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(ii) Urysohn space (see [28] or for example [3]), and the countable universal homogeneous metric
space with rational distances. Here one should not expect simplicity as there is a normal sub-
group consisting of isometries of ‘bounded displacement’, but the corresponding quotient groups
may be simple.

(iii) Certain ‘Hrushovski constructions’, such as the ω-categorical pseudoplane (not published by
Hrushovski, but see [29]), and ‘ab initio’ structures obtained before ‘collapse’ in Hrushovski’s
construction in [14] of a strongly minimal set.

In each case, the amalgamation can be done canonically, and in (i) and (iii) it may be viewed as
‘free amalgamation’. In (i) and (iii) we still need an analogue of Lemma 2.11, eliminating any pos-
sibility of a normal subgroup of ‘bounded’ automorphisms. Also, in (i) and (iii) the model-theoretic
algebraic closure operator is non-trivial, which causes problems when extending partial automor-
phisms in the proof of Proposition 3.1. A further problem is that in our proof of 3.1, we appear
to need that if A and B are freely amalgamated over C , and C0 ⊂ C , then A \ C and B \ C are
freely amalgamated over C0, and this does not hold for the canonical form of amalgamation used
in (ii).

Notation 1.2. If G is a group of automorphisms of a structure M , then group elements act on the left,
i.e. we write g(x) for the image of x ∈ M under g . Let gh := h−1 gh, and [g,h] = g−1h−1 gh. If the
group G acts on M and D ⊂ M , then G(D) denotes the pointwise stabiliser of D; if d̄ enumerates D
this may also be denoted by Gd̄ .

If M is a homogeneous structure and ā, ā′ , b̄ are tuples from M , we write ā ≡b̄ ā′ if ā and ā′
lie in the same orbit of Aut(M)b̄ , that is, in model-theoretic language, if they have the same type

over b̄. If M is a first order structure and n ∈ N>0, we say that a subset D of Mn is definable if it is
the solution set of a first order formula, possibly with parameters; D is A-definable, where A ⊂ M ,
if the parameters can be chosen from A. Also, D is A-invariant if it is a union of Aut(M)(A)-orbits
on Mn , and D is invariant if it is A-invariant for some finite A. If M is ω-categorical, for example if
M is homogeneous over a finite relational language, and A ⊂ M is finite, then, by the Ryll–Nardzewski
Theorem (see [13] or [1]), D ⊂ Mn is A-definable if and only if it is A-invariant.

If A, B are first order structures, we write A � B if A is a substructure of B in the sense of model
theory (which corresponds to the graph-theorist’s notion of ‘induced substructure’).

Finally, by a digraph we mean a structure in a language with a single binary irreflexive relation R
satisfying ∀x ∀y (Rxy → ¬R yx); it is a tournament if in addition it satisfies ∀x ∀y (x = y ∨ Rxy ∨ R yx).

We shall freely use that if M is a countably infinite structure, then G := Aut(M) has naturally the
structure of a Polish group, that is, a topological group such that the topology comes from a Pol-
ish space structure (that is, a complete separable metric space). For example, let M = {an: n ∈ ω},
and define a metric d on G , putting d(g,h) = 1

n+1 where n is least such that g(an) 
= h(an) or

g−1(an) 
= h−1(an). If f is a finite partial isomorphism of M (that is, an isomorphism between fi-
nite substructures of M), let O f := {g ∈ G: g extends f }. Then the set of such O f forms a basis of
neighbourhoods for this topology; in particular, there is a basis of neighbourhoods of the identity
consisting of subgroups G(F ) (F a finite subset of M).

Recall that a subset A of a Polish space X has the Baire Property if there is an open set U such
that the symmetric difference A�U is meagre. The following result of Pettis is well known – see
[16, Theorem 9.9].

Proposition 1.3. Let G be a Polish group and let H be a subgroup of G with the Baire property. Then H is
meagre or clopen.

For general background on homogeneous structures, see [1] or [20]. Another possible source is [4],
in particular, the introduction; this monograph gives the classification of countable homogeneous
digraphs.
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2. Free amalgamation

Let L be a first order language containing no function or constant symbols. As a general assumption
for the paper, we assume that for each relation symbol R of L, if Ra1 . . .ak holds in a structure,
then a1, . . . ,ak are distinct. This assumption is harmless, since the relations in the language can be
adjusted to ensure this, without affecting automorphism groups, homogeneity, or the notion of free
amalgamation below.

Recall that an age over L is a collection of finite L-structures, containing just countably many non-
isomorphic structures, which is closed under isomorphism and (induced) substructure, and has the
Joint Embedding Property (JEP). If M is a countably infinite L-structure, then its age Age(M) is the
collection of all finite L-structures which embed in M .

Definition 2.1. (i) An age C is an amalgamation class or has the amalgamation property, if, whenever
A, B1, B2 ∈ C and f i : A → Bi are embeddings (i = 1,2) there is D ∈ C and embeddings gi : Bi → D
such that g1 ◦ f1|A = g2 ◦ f2|A .

(ii) We say the amalgamation class C has the disjoint amalgamation property (DAP) if in (i), the gi
and D can be chosen so that g1(B1) ∩ g2(B2) = g1 f1(A).

(iii) The amalgamation class C has the free amalgamation property (FAP) if, whenever B1, B2 ∈ C ,
A ∈ C , and f i : A → Bi are embeddings (i = 1,2) there are D ∈ C and embeddings gi : Bi → D such
that g1 ◦ f1|A = g2 ◦ f2|A and g1(B1) ∩ g2(B2) = g1 f1(A), and in addition, for each relation symbol R
of L, no tuple of D which satisfies R meets both of g1(B1) \ g1 f1(A) and g2(B2) \ g2 f2(A).

By Fraïssé’s Theorem [7,1], if C is an amalgamation class, then there is a (unique up to isomor-
phism) countably infinite homogeneous L-structure M such that Age(M) = C . We shall refer to M as
the Fraïssé limit of C . Furthermore, the age of any homogeneous L-structure is an amalgamation class.
We shall say that M is a free homogeneous L-structure if Age M is a free amalgamation class. If M is
a homogeneous L-structure and A, B1, B2 are finite substructures of M such that B1 ∩ B2 ⊆ A and no
tuple of B1 ∪ B2 ∪ A satisfying an L-relation meets both B1 \ A and B2 \ A, we denote the structure
on B1 ∪ B2 ∪ A as B1 ⊕A B2, and write B1 ↓A B2. As a slight abuse of notation, we allow here that
A = ∅, and then write B1 ↓ B2. This notation is motivated by non-forking in model-theoretic stability
theory.

Remark 2.2. (1) If M is free homogeneous then for any finite sets A, B, C ⊂ M there is g ∈ Aut(M)(A)

such that g(B) ↓A C . For non-empty A, this holds by amalgamating B ∪ A and C ∪ A freely over A (as
structures in Age(M)), and then using homogeneity. The statement holds even if A is empty. Indeed,
if A = ∅, choose a ∈ M \ (B ∪ C) and g ∈ Aut(M)a such that g(B) ↓a C ; then g(B) ↓ C .

(2) If B1 ↓A∪A′ B2 and A′ ∩ (B1 ∪ B2 ∪ A) = ∅, then B1 ↓A B2. This is not a standard property of
model-theoretic independence relations, but is important in the proof of Proposition 3.1 below.

(3) The relation ↓ also satisfies a model-theoretic ‘stationarity’ property: A, C ⊂ M are finite, b̄ and
b̄′ lie in the same Aut(M)(C)-orbit, and b̄ ↓C A and b̄′ ↓C A, then b̄ and b̄′ lie in the same Aut(M)(C∪A)-
orbit. This is an immediate consequence of homogeneity.

(4) If A is finite and b̄ ≡A b̄′ with b̄ ↓A b̄′ , then there is g ∈ Aut(M)(A) with g(b̄b̄′) = b̄′b̄.

Example 2.3. We give some examples of free homogeneous relational structures.

(i) The random graph and random digraph, and the generic Kn-free homogeneous graph. The last
example is the Fraïssé limit of the class of finite graphs which do not have Kn as an induced
subgraph; this class is a free amalgamation class since the free amalgam B1 ⊕A B2 is Kn-free
provided B1 and B2 are.

(ii) The ‘Henson digraphs’ [10]. Such a digraph is determined by a collection T of finite tournaments,
and consists of all digraphs not embedding any member of T .

(iii) For any k > 2, the generic k-hypergraph, and, for each � > k, the homogeneous k-hypergraph
which is universal subject to not embedding an �-pyramid, that is, an �-set all of whose k-subsets
are hyper-edges.
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Some examples of homogeneous structures which are not free, for various different reasons, in-
clude: the universal homogeneous tournament; any homogeneous structure (M, E) where E is an
equivalence relation on M; (Q,<) (and the countable universal homogeneous poset); the universal
homogeneous two-graph [2, Section 7]; and the countable universal homogeneous metric space with
rational distances (since amalgamation is constrained by the triangle inequality, and since in a metric
space any two points have to have a specified distance).

Remark 2.4. If A is a structure over a relational language L, then an L-structure B is a weak substruc-
ture of A if its domain is a subset of that of A, and for any n ∈ N, relation symbol R in L of arity n,
and b1, . . . ,bn ∈ B , B |� Rb1 . . .bn ⇒ A |� Rb1 . . .bn . We shall say that the homogeneous structure M
is monotone if Age(M) is closed under weak substructure. Then by the main theorem of [11], if M
is a monotone free homogeneous structure over a finite relational language and C := Age(M), then
C has Herwig’s extension property: for any A ∈ C there is B ∈ C such that A � B and every partial
isomorphism between substructures of A extends to an automorphism of B . As a consequence, M has
the small index property: every subgroup of Aut(M) of index less than the continuum is open.

Many other properties of free, and of monotone free, homogeneous structures are summarised in
[20, 6.5.6 and 6.5.7]. For example, if M is free homogeneous over a finite relational language, then if
G := Aut(M) acts without inversions on a combinatorial tree T then every element of G fixes a vertex
of T , so G is not a non-trivial free product with amalgamation. If in addition M is monotone, then
G is not the union of a countable chain of proper subgroups, so as G also does not have (Z,+) as
a homomorphic image, G has the property (FA) defined by Serre in [22]; that is, in any action of G
without inversions on a combinatorial tree, there is a global fixed vertex.

We begin with some easy remarks on free homogeneous L-structures. Observe first that if G is
any closed permutation group on a countably infinite set X , then there is a homogeneous structure
M with domain X such that Aut(M) = G (as permutation groups): introduce a relation symbol for
each G-orbit on k-tuples, for all k ∈ N. However, our first lemma ensures, for example, that a free ho-
mogeneous structure cannot have locally compact automorphism group (with respect to the topology
defined above).

Lemma 2.5. Let M be a free homogeneous L-structure. Then for any finite A ⊂ M, Aut(M)(A) has no finite
orbits on M \ A.

Proof. This follows from (2.15) of [1], as (FAP) implies (DAP). �
Lemma 2.6. Let M be a transitive free homogeneous L-structure. Then G := Aut(M) acts primitively on M.

Proof. We shall apply the criterion of D.G. Higman [12]: a transitive permutation group H on X is
primitive if and only if, for every orbit Ω of H on unordered pairs from X , the ‘orbital graph’ ΓΩ

with vertex set X and edge set Ω is connected.
Choose distinct a,b ∈ M , and by (FAP) find a′ such that a ↓b a′ . Let Ω be the orbit {{g(a), g(a′)}:

g ∈ G} of G on 2-subsets of M .
Given any distinct a,b ∈ M , there is c ∈ M such that {a, c} and {b, c} both lie in Ω . Indeed, choose

c ∈ M so that {a, c} ∈ Ω . We may in addition choose c so that b ↓a c, so also {b, c} ∈ Ω . It follows that
the orbital graph ΓΩ with edge set Ω is connected.

It remains to check that any other orbital graph with edge set � is connected. By the last para-
graph, it suffices to show that if {a1,a2} ∈ Ω then a1, a2 are at distance two in the orbital graph Γ� .
To see this, let {a,b} ∈ �. Choose g ∈ Ga so that if b′ := g(b) then b ↓a b′ . Then {b,b′} ∈ Ω and there
is a path of length two in Γ� from b to b′ , as required. �

The next lemma yields that ω-categorical free homogeneous L-structures satisfy the model-
theoretic condition ‘weak elimination of imaginaries’. See [13, p. 161] for details on this.
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Lemma 2.7. Let M be a free homogeneous L-structure, and G := Aut(M).

(i) If A, B ⊂ M are finite, then G(A∩B) = 〈G(A), G(B)〉.
(ii) If X ⊆ Mn is invariant, there is a unique smallest set D ⊂ M such that X is D-invariant.

Proof. (i) The containment ⊇ is clear. For ⊆, suppose g ∈ G(A∩B) . Using Remark 2.2(1) choose
h1 ∈ G(A) with h1 g(A) ↓A B . Then h1 g(A) ∩ B = A ∩ B . There is h2 ∈ G(B) with h2h1 g(A) ↓B A. Then
as h2h1 g(A) ∩ B = A ∩ B , Remark 2.2(2) yields h2h1 g(A) ↓A∩B A. Likewise choose h3 ∈ G(B) so that
h3(A) ↓B A, so h3(A) ↓A∩B A. Now if ā enumerates A, then by Remark 2.2(3), h3(ā) ≡A h2h1 g(ā).
Hence there is h4 ∈ G(A) so that h4h2h1 g|A = h3|A . Thus, h−1

3 h4h2h1 g ∈ G(A) , so g ∈ 〈G(A), G(B)〉.
(ii) This is a standard consequence of (i). Suppose that X is invariant over the finite sets D1

and D2. Put D = D1 ∩ D2. Then if g ∈ G(D) then g ∈ 〈G(D1), G(D2)〉 by (i), so g fixes X setwise. Hence
X is D-invariant. �
Lemma 2.8. Assume M is a free homogeneous L-structure and G = Aut(M). Then G has no proper non-trivial
open normal subgroups.

Proof. Suppose for a contradiction that K is a proper non-trivial open normal subgroup of G . Then
there is finite F ⊂ M such that G(F ) � K . Also, G \ K is open, as it is a union of (open) cosets of K .
Thus, there is an open set U = O f ⊆ G \ K . Here, f is a finite partial automorphism of M so U
consists of all extensions of f in G . Let A := dom( f ) and B := ran( f ). By (FAP) there is F ′ ≡ F with
F ′ ↓ A ∪ B . Let g ∈ G with g(F ) = F ′ . Then as K is normal in G , G(F ′) = G(F g ) � K . Now idF ′ ∪ f is a
partial isomorphism, so by homogeneity extends to some h ∈ G . However h ∈ K (as h fixes F ′), and
h ∈ G \ K , as h ∈ U f . This is a contradiction. �

We aim next to show that if M is a free homogeneous structure which is not a ‘pure set’, then any
non-trivial normal subgroup of Aut(M) contains fixed-point-free elements. This (slightly strengthened)
is then combined with Proposition 3.1 to prove Theorem 1.1.

Lemma 2.9. Let M be a transitive free homogeneous L-structure, G = Aut(M), and d̄ be a finite tuple from M.
Let g ∈ Gd̄ \ {1}. Suppose that {Ωi: i ∈ I} is the set of infinite orbits of Gd̄ on M, and that I1 := {i ∈ I:
supp(g) ∩ Ωi 
= ∅}. Then I1 = I .

Proof. Suppose this is false, so I1 
= I , and let I2 = I \ I1. For j = 1,2, let G j be the group induced by
Gd̄ on

⋃
i∈I j

Ωi , and let M j be the substructure of M induced on
⋃

i∈I j
Ωi .

First, we suppose that Gd̄ induces G1 × G2. By free amalgamation, it follows that M1 ↓d̄ M2. In
particular,

(∗) for each i ∈ I1 there is h ∈ Gd̄ fixing M2 pointwise with supp(h)∩Ωi 
= ∅ (put h = g) and for each
i ∈ I2 there is h ∈ Gd̄ fixing M1 pointwise with supp(h) ∩ Ωi 
= ∅.

By free amalgamation, there is some (unique) r ∈ I such that for x ∈ Ωr , x ↓ d̄. By symmetry (since
this part of the argument uses (∗), not the definition of I1), we may suppose that r ∈ I2. It follows
easily, by free amalgamation over d̄, that any finite substructure of M embeds in Ωr .

For each i ∈ I , we may write Ωi as Ωi(d̄), so Ωi(d̄′) is the image of Ωi under any automorphism f
such that f (d̄) = d̄′ . Pick s ∈ I1. If x ∈ Ωs then by free amalgamation there is d̄′ ≡x d̄ with d̄ ↓x d̄′ (so
d̄ ↓ d̄′). Clearly such d̄′ lies in Ωr , so for any y ∈ Ωs , there is f ∈ Gd̄,d̄′ with f (x) = y (we use here that

Gd̄ = G1 × G2). That is, Ωs(d̄) ⊆ Ωs(d̄′) for any d̄′ ≡ d̄ with d̄ ↓ d̄′ . For such d̄′ , by Remark 2.2(4) there
is h ∈ G interchanging d̄ and d̄′ . Hence in fact Ωs(d̄) = Ωs(d̄′). However, for x ∈ Ωs , we may choose
d̄′ ≡ d̄ with d̄′ ↓ d̄x. Then x ∈ Ωs(d̄) ∩ Ωr(d̄′), with d̄ ↓ d̄′ , contradicting that Ωs(d̄) = Ωi(d̄′).

Suppose now that Gd̄ does not induce G1 × G2. Then there is an L-relation R , a subtuple d̄′ of
d̄, and ā, ā′ in M1 and b̄, b̄′ in M2 such that ā ≡d̄ ā′ , b̄ ≡d̄ b̄′ , and Rāb̄d̄′ ∧ ¬Rā′b̄′d̄′ (after reordering
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variables in R if necessary). Using an automorphism, we may suppose b̄ = b̄′ . By free amalgamation,
we may suppose ā′ ↓d̄ b̄. Let ā enumerate the set A.

Claim. We may suppose g(A) 
= A.

Proof. By definition of I1, and replacing g by a Gd̄-conjugate if necessary, we may suppose g|A 
= idA ,
but that g(A) = A. Hence, we may also suppose |A| > 1. Let ā = (a1, . . . ,an) and assume g(a1) 
= a1.
There is ā∗ ≡d̄a1

ā with ā∗ ↓d̄a1
ā. Choose h ∈ Gd̄ with h(ā) = ā∗ . Then h−1 gh(A) 
= A, so we may

replace g by h−1 gh to obtain the claim. �
Put A∗ := A ∩ g(A). By free amalgamation, there is ā′′ ≡d̄ā g(ā) with ā′′ ↓d̄ā b̄. Then ā′′ ↓d̄A∗ b̄ by

Remark 2.2(2), so in particular, ¬Rā′′b̄d̄′ . Now find h ∈ Gd̄ā with h−1(g(ā)) = ā′′ . Then gh maps ā to
ā′′ and fixes d̄b̄ (as g fixes pointwise the Gd̄-orbit of b̄). This is impossible, as Rāb̄d̄′ ∧ ¬Rā′′b̄d̄′ . �
Corollary 2.10. Let M be a transitive free homogeneous L-structure, let G = Aut(M) and assume G 
=
Sym(M). Let g ∈ G \ {1}, let D ⊂ M be finite, and let U be an infinite G(D)-orbit on M. Then

(i) g does not fix U pointwise, and, in fact,
(ii) supp(g) ∩ U is infinite.

Proof. (i) Suppose for a contradiction that g fixes U pointwise. We may suppose that D is minimal
such that U is D-invariant. Let d̄ be an enumeration of D . By Lemma 2.9, g(d̄) 
= d̄. Put d̄′ := g(d̄).

We first claim that g(D) = D . Indeed, by the minimality of |D| and Lemma 2.7(ii), D is the unique
smallest set over which U is invariant. Hence, as g(U ) = U , g(D) = D .

Next, by a theorem of Wielandt (Exercise 3 on p. 38 of [1]), as G is primitive (Lemma 2.6), supp(g)

is infinite.
It follows easily that there is h ∈ Gd̄ \ CG(g). Indeed, find distinct a1,a2 ∈ supp(g) \ D with

g(a1) = a2, and use (DAP) to find a′
1 
= a1 with a′

1a2d̄ ≡ a1a2d̄. There is h ∈ G with h(a1a2d̄) = a′
1a2d̄,

and it follows that gh(a1) 
= g(a1). Now [g,h] is a non-identity element of G which fixes d̄ and satis-
fies supp([g,h]) ∩ U = ∅. This is impossible, by Lemma 2.9.

(ii) This follows immediately from (i). For if F := supp(g) ∩ U is finite, then there is an infinite
G(D∪F )-orbit contained in U which is fixed pointwise by g . �
Lemma 2.11. Assume M is a homogeneous L-structure whose age has (DAP), and assume g ∈ G := Aut(M)

and that for each finite D ⊂ M, g does not fix pointwise any infinite G(D)-orbit. Then there is h ∈ G such that
[g,h] is fixed-point-free and has no 2-cycles.

Proof. We build h by a ‘back-and-forth’ construction as the union of a chain of finite partial automor-
phisms, so we must show how to add elements to its domain and range. Suppose that hn has been
defined, a /∈ dom(hn), and our task is to extend hn to hn+1 so that hn+1(a) is defined. Since the age
of M has (DAP), there is an infinite set of points b ∈ M such that hn ∪ {(a,b)} is a partial automor-
phism, and this is an orbit of G(ran(hn)); hence by our assumption we may choose such b also to lie
in supp(g). In particular, we may choose b so that in addition h−1

n (g(b)) is undefined. Then define
hn+1(a) = b and build in, for further extensions hm of hn+1, the requirement that h−1

m (g(b)) 
= g(a).
This ensures that [g,h](a) 
= a, and we may arrange also that g−1h−1

n+1 ghn+1 does not fix any other
point by choosing b outside the finite set ran(ghn). We also ensure, when choosing b, that there is no
point c such that [g,hn+1]2(c) = c. This again eliminates only finitely many possibilities for b. Thus,
at any given stage there will be finitely many ‘commitments’, i.e. finitely many points to avoid when
making a one-point extension.

The other case is when hn has been defined, with b /∈ ran(hn), and we must find a such that
hn+1 := hn ∪{(a,b)} is a partial isomorphism. If b /∈ supp(g), then we may choose a to be any point in
supp(g) such that hn+1 := hn ∪ {(a,b)} is a partial isomorphism; then g−1h−1

n+1 ghn+1(a) = g−1(a) 
= a.
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Such a exists by our assumption, and if we choose a such that in addition g−1(a) /∈ dom(hn), then
g−1h−1

n+1 ghn+1 is fixed-point-free. So suppose b ∈ supp(g). If h−1
n (g(b)) is defined, and equals c, say,

choose a so that hn ∪{(a,b)} is a partial isomorphism and a 
= g−1(c). On the other hand, if h−1
n (g(b))

is undefined, choose a to be any point in supp(g) so that hn ∪ {(a,b)} is a partial isomorphism,
and build in for the future the commitment h−1

n (g(b)) 
= g(a); we also ensure a is chosen with
g−1(a) /∈ dom(hn), to ensure g−1h−1

n+1 ghn+1 is fixed-point-free. In both cases in this paragraph, when
choosing a, we also avoid finitely many points, to ensure that eventually [g,h] has no 2-cycle. �
Remark 2.12. (1) Observe, for use in the proof of Theorem 1.1, that the element [g,h] = g−1(h−1 gh)

is a product of two conjugates of g−1 and g .
(2) The conclusion of Lemma 2.11 holds for many homogeneous structures for which the amalga-

mation is not free. Note though that it fails for Aut(Q,<), since an automorphism may have support
within a bounded interval, in which case all elements of its normal closure have support within a
bounded interval. It also fails for many treelike structures.

3. Proof of Theorem 1.1

The heart of the proof of Theorem 1.1 is the following proposition (an analogue of Lemma 9
of [18]). A small adaptation of the proof, with an appropriate notion of ↓, yields simplicity also for
the automorphism group of the universal homogeneous tournament (see Remark 3.2 below).

Proposition 3.1. Let M be a free homogeneous L-structure, let G := Aut(M), and suppose that g ∈ G is fixed-
point-free and has no 2-cycles. Define α : G8 → G by α(h1, . . . ,h8) := gh1 . . . gh8 . Let U1, . . . , U8 be non-
empty open subsets of G. Then there is non-empty open Y ⊂ G such that α(U1 × · · · × U8) is dense in Y .

Proof. We may suppose that there are finite partial automorphisms u1, . . . , u8 of M such that U1 =
O u1 , . . . , U8 = O u8 . It suffices to prove the proposition with u1, . . . , u8 replaced by finite extensions.
Let α(u1, . . . , u8) denote the partial function M → M given by

u−1
1 gu1 . . . u−1

8 gu8.

For a ∈ M , we write α(a) for α(u1, . . . , u8)(a). In the claim below, part (1) and (2) ensure that if a
sufficiently big final segment of α is defined on a ∈ M , then α(a) is defined, and (2) ensures the same
for α−1.

Claim 1. We may extend u1, . . . , u8 finitely to ensure the following.

(1) For any a ∈ M , if u7u−1
8 gu8(a) is defined, then α(a) is defined.

(2) For any a ∈ M , if u2u−1
1 g−1u1(a) is defined, then α−1(a) is defined.

(3) If ā := dom(u4) ∩ dom(u5), b̄ := dom(u4) \ dom(u5), and c̄ := dom(u5) \ dom(u4), then b̄ ↓ā c̄.
(4) If a ∈ dom(u4) ∩ dom(u5) then gu1 ◦ · · · ◦ gu4(a) is defined and lies in ran(α(u1, . . . , u8)).
(5) dom(u3) ∩ (dom(u5) \ dom(u4)) = ∅ and dom(u6) ∩ (dom(u4) \ dom(u5)) = ∅.

Proof of Claim 1. We first indicate the basic idea. We define finitely many one-point extensions of
u1, . . . , u8. To avoid proliferation of notation, we keep the same symbols u1, . . . , u8, i.e., we avoid
writing ui,n for the extension of ui at stage n. Thus, the construction is dynamic in the sense that
the meaning of the symbols u1, . . . , u8 changes as the construction proceeds, but they always denote
finite partial isomorphisms. We remind the reader that unlike u1, . . . , u8, the element g is already
completely defined as an automorphism of M .

At any stage, with given defined u1, . . . , u8, we say that a point a ∈ M is old if a ∈ A′ :=⋃
−2�i�2 gi(A), where

A = dom(u1) ∪ · · · ∪ dom(u8) ∪ ran(u1) ∪ · · · ∪ ran(u8).
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Suppose for some j = 1, . . . ,8 we wish to make a one-point extension of u j , by defining u j(a). Let A′
be the set of old points at this stage. If b̄ is an enumeration of dom(u j) and u j(b̄) = c̄, choose d such
that b̄a ≡ c̄d and d ↓c̄ A′ , and define u j(a) = d. Such d exists by free amalgamation, and the extension
of u j is a partial isomorphism. The same applies to one-point extensions of u−1

j . Call such one-point
extensions good extensions. All our extensions below are good.

Initially, we aim for the following strengthenings of (1), (2), namely:

(1)′ For any a ∈ M , if u−1
8 gu8(a) is defined, then α(a) is defined.

(2)′ For any a ∈ M , if u−1
1 g−1u1(a) is defined, then α−1(a) is defined.

Suppose for example u−1
8 gu8(a) is defined, and equals b, but u7(b) is undefined (a violation

of (1)′). To ensure that α(a) is defined, we first make a good extension of u7 to define u7(b). Then,
after defining u7(b), as g is fixed-point-free and as u7(b) was chosen not among the old points at
that stage, u−1

7 (gu7(b)) is undefined. Make a good extension of u−1
7 to define this, and proceed right-

to-left along α(u1, . . . , u8), always making good extensions, to ensure a ∈ dom(α(u1, . . . , u8)). If we
do this successively for all points a such that u−1

8 gu8(a) is defined but α(a) is undefined, then (1)′ is
achieved. (Of course it could be that for the above pair a,b, the element u7(b) was already defined,
but α(u1, . . . , u8)(a) was not – in that case start the process further to the left along α.) Call this
‘Step A’. After Step A, (1)′ holds, but (2)′ may not.

Next, as Step B, we repeat this process, with α−1 in place of α, to ensure that (2)′ holds. That is,
we work from left to right along α (or right-to-left along α−1), always making good extensions. In
the process, for certain points a, we may define u8(a) = b and then u−1

8 (g−1(b)) = c (or it may be

that u8(a) = b was already defined, after Step A or in an earlier stage of Step B, but u−1
8 (g−1(b)) = c

is now defined). In particular, it could happen that we create a violation of (1)′; that is, for some d,
after Step A u−1

8 gu8(d) was undefined, but now after Step B it is defined but α(d) is not. So after
Step B, (2)′ holds but (1)′ may fail.

We claim that after Step B, if u−1
8 gu8(d) is defined, but α(d) is not defined, then u7(u−1

8 gu8(d)) is

undefined. To see this, suppose first that u−1
8 gu8(d) became defined when we put u−1

8 (g−1(b)) = c;

that is, there was some c′ such that u−1
1 g−1u1(c′) was defined but α−1(c′) was undefined, and

as part of Step B we ensured that α−1(c′) is defined and equals c. If c = d, then after Step B,
α(u1, . . . , u8)(d) is indeed defined, contrary to hypothesis. The other possibility is that u−1

8 gu8(d)

becomes defined because g−1(b) = gu8(d), but then, because c was chosen to witness a good ex-
tension of u−1

8 , we find that u7(u−1
8 gu8(d)) = u7(c) is undefined. Alternatively, suppose u−1

8 gu8(d)

became defined when at Step B we put u8(a) = b, so before putting u−1
8 (g−1(b)) = c. If a = d then

as b was chosen witnessing a good extension of u8, and g(b) 
= b, we have g(b) 
∈ dom(u−1
8 ), con-

tradicting that u−1
8 gu8(d) becomes defined at this stage. The other possibility is that u8(d) was

previously defined and u−1
8 gu8(d) becomes defined when we put u8(a) = b, because b = gu8(d). This

too could not occur, for as b witnesses a good extension of u8, u8(d) cannot previously have been
defined.

As Step C, apply Step A again, to ensure that (1)′ holds. By the last paragraph, when dealing at
Step C with some d such that u−1

8 gu8(d) is defined, but α(d) is not, we will make a good extension

of u1 and then a good extension of u−1
1 , i.e. two good extensions. Of course, Step C may be applied

to several such points d, but each such d will involve a good extension of u1 followed by a good
extension of u−1

1 .
It can be checked that now (2)′ also holds. For suppose it fails, that is, u−1

1 g−1u1(a) is defined,
but α−1(a) is not defined. Then this failure was caused at Step C. That is, at Step C, to ensure
that α(u1, . . . , u8) was defined at some point d, we defined u1(e) = c for some e and c, and then
u−1

1 (g(c)) = b. As a result, u−1
1 g−1u1(a) became defined. We emphasise that by the last paragraph

both c and b are new points witnessing good extensions – there was a good extension of u1 followed
by a good extension of u−1

1 . There are four possibilities.
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(i) a = b. In this case, α−1(a) is defined and equals d, contrary to hypothesis.
(ii) a = e. Then c was chosen outside the previous set g(dom(u−1

1 )) (as it was chosen when making
a good extension), and as g has no 2-cycles, g−1(c) 
= g(c), so u−1

1 is still (after putting u1(e) = c

and u−1
1 (g(c)) = b) not defined on g−1(c). (This is the reason for the requirement in Lemma 2.11

that [g,h] have no 2-cycles.) Likewise, by the choice of c, it could not be that earlier in Step C
when dealing with another violation of (1)′ , we defined u−1

1 (g−1(c)). Hence u−1
1 g−1u1(a) is un-

defined, a contradiction.
(iii) u1(a) was defined before Step C or at an earlier part of Step C when handling another violation

of (1)′ , and g−1(u1(a)) = g(c), so u−1
1 g−1u1(a) = b. In this case, c = g−2(u1(a)), contrary to the

choice of c at Step C.
(iv) u1(a) was defined before Step C or at an early part of Step C, and g−1(u1(a)) = c, so

u−1
1 g−1u1(a) = e. In this case, again, α−1(a) is defined and equals d, a contradiction.

Thus, after Steps A–C, conditions (1)′ and (2)′ hold, and it remains to ensure (3) and (4). At Step D
we ensure (3). For this, for any b ∈ dom(u4) \ dom(u5), make a good extension to ensure u5(b) is
defined, and for any c ∈ dom(u5) \ dom(u4), define u4(c) by a good extension. This ensures that
dom(u4) = dom(u5), so (3) (and also (5)) hold. It is easily seen that (1)′ and (2)′ are preserved, since
only the ‘middle’ elements u4, u5 of α are extended.

As Step E, we ensure (4). If a ∈ dom(u4)∩ dom(u5), make good extensions to ensure that gu1 ◦ · · · ◦
gu4(a) is defined, and (g−1)u8 ◦ · · · ◦ (g−1)u5 (a) is defined. At Step E, we might have to extend u4 to
u′

4, by defining u′−1
4 (c) = d, where c = gu4(a). Such d will be chosen with d ↓dom(u4) A, where A is

the set of old points at this stage. Likewise, we might have to extend u5 to u′
5 by defining u′−1

5 (c) = d
where c = g−1u5(a), and for such d we will have A ↓dom(u5) d. It follows that Step E cannot create a
violation of (3). Likewise no violation of (5) is created.

Step E could create a violation of (1)′ or (2)′ . For example, possibly at Step E we define u−1
1 (e) = f ,

where f is a new point, and possibly e = g−1u1(e′), so u−1
1 g−1u1(e′) is defined but α−1(e′) is not,

violating (2)′ . However, since f is chosen new, at the end of Step E the element u2( f ) will not have
been defined, so u2u−1

1 g−1u1(e′) is not defined. Thus, (2) holds, and likewise (1) holds. �
Given the claim, define y to be the partial map α(u1, . . . , u8), and put Y := O y . We show that

α(U1 × · · · × U8) is dense in Y . That is, we show that for any finite extension y′ of y induced by an
element of G , there are finite extensions u′

1, . . . , u′
8 of u1, . . . , u8 respectively such that α(u′

1, . . . , u′
8)

extends y′ . We may suppose that y is the map ā �→ b̄, and y′ is the map āē �→ b̄ f̄ , with ē disjoint
from ā. Applying α(u1, . . . , u8), read from right to left, we may put

ā0 := ā, ā1 := u8(ā), ā2 := gu8(ā), ā3 = u−1
8 gu8(ā), . . . , ā24 := b̄.

Also put ē0 := ē, ē24 := f̄ . Making good extensions of u8, u1 if necessary, we may suppose ē1 :=
u8(ē0), ē2 := gu8(ē0), ē3 = gu8(ē0), and also ē23 := u1(ē24), ē22 := g−1u1(ē24), and ē21 = (g−1)u1 (ē24)

are defined, but that Claim 1 above still holds.
At this stage, we extend u1, . . . , u8 to u∗

1, . . . , u∗
8, successively choosing appropriate ē4, . . . , ē10,

ē20, . . . , ē14 and putting u∗
8 := u8, u∗

7 = u7 ∪ {(ē3, ē4), (ē6, ē5)}, u∗
6 = u6 ∪ {(ē6, ē7), (ē9, ē8)} (where

g(ē4) = ē5 and g(ē7) = ē8), and u∗
5 = u5 ∪{(ē9, ē10)}, and also u∗

1 := u1, u∗
2 = u2 ∪{(ē21, ē20), (ē18, ē19)},

u∗
3 = u3 ∪ {(ē18, ē17), (ē15, ē16)} (where g−1(ē20) = ē19 and g−1(ē17) = ē16), and u∗

4 = u4 ∪ {(ē15, ē14)}.
Here, if ā := (a1, . . . ,an), b̄ = (b1, . . . ,bn), then (ā, b̄) is a slight abuse of notation for the partial
map {(a1,b1), . . . , (an,bn)}. All such extensions are chosen to be good. Now define ē11 := g(ē10) and
ē13 := g−1(ē14). At this stage conditions (1) and (2) of Claim 1 may be violated, but (3) and (4) hold.
The fact that (3) still holds uses part (5) of Claim 1. Indeed, ē15 is in dom(u∗

4) but was chosen to
have a certain type over dom(u3) ∪ ē18. Since ē20 was constructed by a sequence of good extensions
and g is fixed-point-free, ē18 ∩ dom(u5) = ∅. Hence (dom(u3) ∪ ē18) ∩ (dom(u5) \ dom(u4)) = ∅, so
no violation of (3) was forced, so as ē15 was chosen successively to realise good extensions, there is
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no such violation. Likewise, ē9 is in dom(u∗
5), but realises a certain type over dom(u6) ∪ ē6, which is

disjoint from dom(u4) \ dom(u5), so again causes no violation of (3).
The remaining task is to choose ē12 so that u′

5 := u∗
5 ∪ (ē12, ē11) and u′

4 := u∗
4 ∪ (ē12, ē13) are both

partial isomorphisms. We may suppose that u∗
4 = (ā12, ā13)∪ (b̄12, b̄13), and u∗

5 = (ā12, ā11)∪ (c̄12, c̄11),
for some b̄12, b̄13, c̄12, c̄11. Observe that ē13 and b̄13 have no common entries, and ē11 and c̄11 have
no common entries, by the choice of ē14 and ē10 realising good extensions.

Claim 2. b̄12 ↓ā12 c̄12.

Proof of Claim 2. By (4), if d ∈ b̄12 ∩ c̄12 then d ∈ ā12. Therefore, the claim follows from (3). �
Given Claim 2, choose ē′

12 so that u∗
5 ∪ (ē′

12, ē11) is a partial isomorphism; that is, ā12c̄12ē′
12 ≡

ā11c̄11ē11. Then ā12ē′
12 ≡ ā13ē13, as ā12ē′

12 ≡ ā11ē11 and ((g−1)u∗
8 ◦ (g−1)u∗

7 ◦ (g−1)u∗
6 ◦ (u∗

5)
−1 g−1)×

(ā11ē11) = ā0ē0 ≡ ā24ē24 = (gu∗
1 ◦ gu∗

2 ◦ gu∗
3 ◦ (u∗

4)
−1 g)(ā13ē13). Thus, there is b̄′

12 such that a12ē′
12b̄′

12 ≡
ā13ē13b̄13, and b̄′

12 ↓ā12 ē′
12

c̄12. By the remark before Claim 2, ē′
12 does not meet c̄12 or b̄′

12. Thus,

b̄′
12 ↓ā12 c̄12. Hence, by Claim 2, as b̄′

12ā12 ≡ b̄13ā13 ≡ b̄12ā12, we have ā12b̄12c̄12 ≡ ā12b̄′
12c̄12 so there is

h ∈ G with h(ā12b̄′
12c̄12) = ā12b̄12c̄12. Put ē12 = h(ē′

12). Then ā12b̄′
12c̄12ē′

12 ≡ ā12b̄12c̄12ē12. In particular,
ā12c̄12ē12 ≡ ā12c̄12ē′

12 ≡ ā11c̄11ē11 and ā12b̄12ē12 ≡ ā12b̄′
12ē′

12 ≡ ā13b̄13ē13. Thus, ē12 has the required
properties. �
Remark 3.2. Let M be the universal countable homogeneous tournament. Since any two vertices must
be related by an arc, M is not a free homogeneous L-structure. However, there is an asymmetric notion
of free amalgamation: given finite A, B1, B2 ⊂ M write B1 ↓A B2 if B1 ∩ B2 ⊆ A and for all b1 ∈ B1 \ A
and b2 ∈ B2 \ A we have b1 → b2.

With this notion of free amalgamation, the proof of Proposition 3.1 can be shown to hold with very
minor modifications. In the definition of a good extension, when extending u, v , w or their inverses,
if finding an element d in an appropriate orbit over a tuple c̄, we choose d so that d ↓c̄ A, where A is
the set of old points. However, when extending x, y, z or their inverses, we would choose d so that
A ↓c̄ d. This ensures that property (4) in Claim 1 holds, with the adapted definition of ↓.

The following lemma encapsulates the idea we have taken from Lascar [18] (where it is applied
with G the automorphism group of a strongly minimal set, g an ‘unbounded’ strong automorphism,
and n = 2). Of course, in the statement below, some occurrences of g could be replaced by g−1.

Lemma 3.3. Let G be a Polish group, let g ∈ G \ {1}, let n be a positive integer, and define β : Gn → G by
β(h1, . . . ,hn) = gh1 . . . ghn . Suppose that for any non-empty open U1, . . . , Un ⊆ G there is non-empty Y ⊂ G
such that β(U1 × · · · × Un) is dense in Y . Then any normal subgroup K of G containing g is open.

Proof. As β is continuous, E = Im(β) is an analytic subset of G , so has the Baire property by
[23, Theorem 4.3.2]. Furthermore, the group H generated by E has the Baire property. For example
this holds since H = ⋃

k�1 Xk , where Xk is the set of elements of H expressible by a word of length

k in E ∪ E−1: each Xk is analytic so has the Baire property, and H is a countable union of such sets
so has the Baire property by Proposition 3.5.1 of [23].

If F is a closed nowhere-dense subset of G then F ′ := β−1(F ) is closed in Gn . Also, F ′ is nowhere
dense: for suppose that F ′ is dense in U1 × · · · × Un , a non-empty open subset of Gn . Let Y be as in
the lemma. Then β(F ′) = F is dense in Y , a contradiction.

It follows that E := Im(α) is not meagre. For otherwise, E ⊆ ⋃
k∈ω Fk where the Fk are closed

nowhere-dense. Then Gn = β−1(E) ⊆ ⋃
k∈ω β−1(Fk). Each β−1(Fk) is closed nowhere-dense by the

last paragraph, and this contradicts the Baire Category Theorem.
Thus, H , the group generated by E , is not meagre. Hence, as H has the Baire property, by Proposi-

tion 1.3 it is open. Thus, since any normal subgroup of G containing g must contain H , the group K
must also be open. �
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Finally, we restate and prove our main theorem.

Theorem 3.4.

(a) The homogeneous structures of each of the following kinds have simple automorphism group.
(i) Any transitive free homogeneous structure whose automorphism group is not the full symmetric

group.
(ii) The universal homogeneous tournament.

(iii) For any integer n � 3, the homogeneous digraph which is universal subject to omitting an indepen-
dent set of size n.

(b) (Melleray) In each of the cases (i)–(iii), if g is a non-identity automorphism then any automorphism is a
product of at most 32 conjugates of g and g−1 .

Parts (ii) and (iii) above also follow from [21]. The examples in (iii) arise in Cherlin’s classification
of homogeneous digraphs – see the family In in [4, p. 74].

Proof of Theorem 3.4. In each case, let M be the homogeneous structure under consideration, and
put G := Aut(M).

(a)(i) Let N be a non-trivial normal subgroup of G . By Corollary 2.10 and Lemma 2.11, there is
g ∈ N which is fixed-point-free and has no 2-cycles. Thus, we may define the map α : G8 → G as in
Proposition 3.1. By that proposition and Lemma 3.3, N is open. Hence, by Lemma 2.8, N = G .

(ii) Let h ∈ G \ {1}. We first claim that h does not fix pointwise any infinite definable set. Indeed,
let X ⊂ M be infinite and ā-definable. Easily, there are distinct b, c ∈ M outside ā such that h(b) = c.
Then by the universal property characterising the tournament M , there is d ∈ X with b → d and
d → c; then h(d) 
= d.

It follows from Lemma 2.11 that there is fixed-point-free g ∈ 〈h〉G with no 2-cycles (the latter is
automatic for automorphisms of tournaments). Thus, by Remark 3.2, the conclusion of Proposition 3.1
holds with respect to g , so by Lemma 3.3, any normal subgroup of G containing h is open. The
proof of Lemma 2.8, working with the notion ↓ from Remark 3.2, easily shows that G has no proper
non-trivial open normal subgroups.

(iii) This is essentially as in (ii). Again for finite A, B, C ⊂ M we put B ↓A C if for any b ∈ B \ A and
c ∈ C \ A we have b → c, and argue as in Proposition 3.1 and Remark 3.2.

(b) In case (i), by Theorem 3.1 of Ivanov [15], G has a comeagre, and so in particular a dense,
conjugacy class. In cases (ii) and (iii) we do not know of a reference for the existence of a comea-
gre conjugacy class. However, it follows immediately from Theorem 2.1 of [17] that G has a dense
conjugacy class. For example, to handle case (ii), let C be the collection of all finite tournaments
(U ,→), and let C p be the collection of expansions of members of C by the graph of a partial
tournament-isomorphism; that is, (U ,→, f ) ∈ C p if and only if (U ,→) ∈ C and f is the graph of an
isomorphism between subtournaments of (U ,→). Then C p has the joint embedding property, since
given (U1,→, f1), (U2,→, f2) ∈ C p , assumed to have disjoint vertex sets, there is (U ,→, f ) ∈ C p

where U := U1 ∪ U2, u1 → u2 for all u1 ∈ U1 and u2 ∈ U2, (U1,→) and (U2,→) are substructures of
(U ,→), and f := f1 ∪ f2.

By a well-known result [16, 8.46, p. 55], from the existence of a dense conjugacy class it fol-
lows that any analytic subset of G which is a union of conjugacy classes is meagre or comeagre.
Let g ∈ G \ {1}. By Lemma 2.11 and Remark 2.12(1), there is f ∈ G , a product of two conjugates
of g and g−1, with no fixed points or 2-cycles. For any such f , consider the map α f : G8 → G
considered in Proposition 3.1; so α f (h1, . . . ,h8) = f h1 . . . f h8 . Then S := Im(α f ) ∪ (Im(α f ))

−1 is an-
alytic, and invariant under conjugation by elements of G , and by Proposition 3.1 it is not meagre
(see also the proof of Lemma 3.3). Hence, by the result quoted above, S is comeagre. Thus, as
S = S−1, it follows that every element of G is a product of at most two elements of S . Since
every element of S is a product of at most 16 = 2 × 8 conjugates of g and g−1, the result fol-
lows. �



52 D. Macpherson, K. Tent / Journal of Algebra 342 (2011) 40–52
Acknowledgment

We are very grateful to Julien Melleray for providing the proof of Theorem 3.4(b) and for allowing
us to include it in this paper. We also thank David Evans for pointing out, just in time, an error in the
previous proof of Proposition 3.1.

References

[1] P.J. Cameron, Oligomorphic Permutation Groups, London Math. Soc. Lecture Note Ser., vol. 152, Cambridge University Press,
Cambridge, 1990.

[2] P.J. Cameron, A census of infinite distance-transitive graphs, Discrete Math. 192 (1998) 11–26.
[3] P.J. Cameron, A.M. Vershik, Some isometry groups of the Urysohn space, Ann. Pure Appl. Logic 143 (2006) 70–78.
[4] G. Cherlin, The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous n-Tournaments,

Mem. Amer. Math. Soc., vol. 621, Amer. Math. Soc., Providence, RI, 1998.
[5] M. Droste, Structure of Partially Ordered Sets with Transitive Automorphism Group, Mem. Amer. Math. Soc., vol. 334, Amer.

Math. Soc., Providence, RI, 1985.
[6] M. Droste, W.C. Holland, H.D. Macpherson, Automorphism groups of infinite semilinear orders I, Proc. Lond. Math. Soc.

(3) 58 (1989) 454–478.
[7] R. Fraïssé, Sur certaines relations qui généralisent l’order des nombres rationnels, C. R. Acad. Sci. Paris 237 (1953) 540–542.
[8] T. Gardener, Infinite-dimensional classical groups, J. Lond. Math. Soc. (2) 51 (1995) 219–229.
[9] A.M.W. Glass, S.H. McCleary, M. Rubin, Automorphism groups of countable homogeneous partially ordered sets, Math.

Z. 214 (1993) 55–66.
[10] C.W. Henson, Countable homogeneous relational structures and ℵ0-categorical theories, J. Symbolic Logic 37 (1972) 494–

500.
[11] B. Herwig, Extending partial isomorphisms for the small index property of many ω-categorical structures, Israel J.

Math. 107 (1998) 93–123.
[12] D.G. Higman, Intersection matrices for finite permutation groups, J. Algebra 6 (1967) 22–42.
[13] W. Hodges, Model Theory, Cambridge University Press, Cambridge, 1993.
[14] E. Hrushovski, A new strongly minimal set, Ann. Pure Appl. Logic 62 (1993) 147–166.
[15] A.A. Ivanov, Automorphisms of homogeneous structures, Notre Dame J. Form. Log. 46 (4) (2005) 419–424.
[16] A. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.
[17] A.S. Kechris, C. Rosendal, Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proc. Lond.

Math. Soc. (3) 94 (2007) 302–350.
[18] D. Lascar, Les automorphismes d’un ensemble fortement minimal, J. Symbolic Logic 57 (1992) 238–251.
[19] S. Lovell, Automorphism groups of homogeneous structures, PhD thesis, University of Leeds, 2007.
[20] H.D. Macpherson, A survey of homogeneous structures, Discrete Math. 311 (2011) 1599–1634.
[21] M. Rubin, Unpublished notes, 1988.
[22] J.-P. Serre, Trees, Springer-Verlag, Berlin, 1980.
[23] S.M. Srinavasta, A Course on Borel Sets, Grad. Texts in Math., Springer, 1998.
[24] K. Tent, Free polygons, twin trees, and CAT(1)-spaces, Pure Appl. Math. Q., special issue in honour of J. Tits, in press.
[25] J.K. Truss, The group of the countable universal graph, Math. Proc. Cambridge Philos. Soc. 105 (1989) 223–236.
[26] J.K. Truss, Infinite simple permutation groups – a survey, in: C. Campbell, E. Robertson (Eds.), Groups St. Andrews 1989,

vol. 2, in: London Math. Soc. Lecture Note Ser., vol. 160, Cambridge University Press, Cambridge, 1991, pp. 463–484.
[27] J.K. Truss, The automorphism group of the random graph: four conjugates good, three conjugates better, Discrete Math. 268

(2003) 257–271.
[28] P.S. Urysohn, Sur un espace metrique universel, Bull. Sci. Math. 51 (1927) 1–38.
[29] F.O. Wagner, Relational structures and dimensions, in: R. Kaye, H.D. Macpherson (Eds.), Automorphism Groups of First-

Order Structures, Oxford University Press, Oxford, 1994.


	Simplicity of some automorphism groups
	1 Introduction
	2 Free amalgamation
	3 Proof of Theorem 1.1
	Acknowledgment
	References


